Miami Tech, Inc.
3611 NW 74 Street
Miami, FL 33147

SCOPE:
This NOA is being issued under the applicable rules and regulations governing the use of construction materials. The documentation submitted has been reviewed and accepted by Miami–Dade County RER–Product Control Section to be used in Miami–Dade County and other areas where allowed by the Authority Having Jurisdiction (AHJ).

This NOA shall not be valid after the expiration date stated below. The Miami–Dade County Product Control Section (In Miami–Dade County) and/or the AHJ (in areas other than Miami–Dade County) reserve the right to have this product or material tested for quality assurance purposes. If this product or material fails to perform in the accepted manner, the manufacturer will incur the expense of such testing and the AHJ may immediately revoke, modify, or suspend the use of such product or material within their jurisdiction. RER reserves the right to revoke this acceptance, if it is determined by Miami–Dade County Product Control Section that this product or material fails to meet the requirements of the applicable building code. This product is approved as described herein, and has been designed to comply with the Florida Building Code, including the High Velocity Hurricane Zone.

DESCRIPTION: Aluminum A/C Stand

APPROVAL DOCUMENT: Drawing No. 15-2476, titled “Aluminum A/C Stand HVHZ Compliant”, sheets 1 through 10 of 10, dated 01/10/2007, and last revised on 11/01/2017, prepared by Engineering Express, signed and sealed by Frank L. Bennardo, P.E., bearing the Miami-Dade County Product Control revision stamp with the Notice of Acceptance number & expiration date by Miami-Dade County Product Control Section.

MISSILE IMPACT RATING: None.

LABELING: Each unit shall bear a permanent label with the manufacturer’s name or logo, city, state, model/series, and following statement: "Miami–Dade County Product Control Approved", unless otherwise noted herein.

RENEWAL of this NOA shall be considered after a renewal application has been filed and there has been no change in the applicable building code negatively affecting the performance of this product.

TERMINATION of this NOA will occur after the expiration date or if there has been a revision or change in the materials, use, and/or manufacture of the product or process. Misuse of this NOA as an endorsement of any product, for sales, advertising or any other purposes shall automatically terminate this NOA. Failure to comply with any section of this NOA shall be cause for termination and removal of NOA.

ADVERTISEMET: The NOA number preceded by the words Miami–Dade County, Florida, and followed by the expiration date may be displayed in advertising literature. If any portion of the NOA is displayed, then it shall be done in its entirety.

INSPECTION: A copy of this entire NOA shall be provided to the user by the manufacturer or its distributors and shall be available for inspection at the job site at the request of the Building Official. This NOA revises and renews NOA# 16-0601.01 and consists of this page 1 and evidence pages E-1, as well as approval document mentioned above.

The submitted documentation was reviewed by Sifang Zhao, P.E.

Expiration Date: January 15, 2024
Approval Date: June 21, 2018
NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

A. DRAWINGS
 1. Drawing No. 15-2476, titled “Aluminum A/C Stand HVHZ Compliant”, sheets 1 through 10 of 10, dated 01/10/2007, and last revised on 11/01/2017, prepared by Engineering Express, signed and sealed by Frank L. Bennardo, P.E.

B. TESTS
 1. Load Testing of Aluminum A/C Stand Post to Welded Baseplate, prepared by QC Metallurgical, Inc., QCM Job No. 15KM-958, dated 11/13/15, signed by Jerry Iacofano (Voluntary Testing) (Submitted under NOA No. 15-0902.05)

C. CALCULATIONS
 1. Engineering design calculations, prepared by Engineering Express, date 11/21/17 and last revised on 04/25/18, signed and sealed by Frank L. Bernardo, P.E.
 2. Engineering design calculations, prepared by Engineering Express, dated 05/25/16 and last revised on 06/23/16, signed and sealed by Frank L. Bernardo, P.E. (Submitted under NOA No. 16-0601.01)

D. QUALITY ASSURANCE
 1. Miami Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS
 1. None.

F. STATEMENTS

G. OTHER
 1. Notice of Acceptance No. 16-0601.01, issued to Miami Tech, Inc., for their Aluminum A/C Stand, approved on 07/14/2016 and expiring on 01/15/2019.

Sifang Zhao, P.E.
Product Control Examiner
NOA No. 17-1218.02
Expiration Date: January 15, 2024
Approval Date: June 21, 2018
MEAN UNIT HEIGHT & MAX FACE AREA CALCULATION DIRECTIVE:

1. CALCULATE THE MEAN UNIT HEIGHT BY THE FOLLOWING EQUATION:
 - TWO UNITS: \(\frac{H_1+H_2}{2} \)
 - THREE UNITS: \(\frac{H_1+H_2+H_3}{3} \)
 - FOUR UNITS: \(\frac{H_1+H_2+H_3+H_4}{4} \)
 - "n" UNITS: \(\frac{H_1+H_2+...+H_n}{n} \)

2. CALCULATE THE MAXIMUM UNIT FACE AREA BY THE FOLLOWING EQUATION:
 - TWO UNITS: \((H_1	imes W_1)+(H_2	imes W_2) \)
 - THREE UNITS: \((H_1	imes W_1)+(H_2	imes W_2)+(H_3	imes W_3) \)
 - FOUR UNITS: \((H_1	imes W_1)+(H_2	imes W_2)+(H_3	imes W_3)+(H_4	imes W_4) \)
 - "n" UNITS: \((H_1	imes W_1)+(H_2	imes W_2)+...+(H_n	imes W_n) \)

EXAMPLE SCENARIO:

1. CONSIDER A FOUR UNIT CONFIGURATION WITH THE DIMENSIONS AS SHOWN BELOW.
2. CALCULATE THE MEAN UNIT HEIGHT:
 - FOUR UNITS: \(\frac{H_1+H_2+H_3+H_4}{4} = \frac{20+25+22+27}{4} = 24 \) MEAN UNIT HEIGHT
3. CALCULATE THE MAXIMUM FACE AREA:
 - FOUR UNITS: \((H_1	imes W_1)+(H_2	imes W_2)+(H_3	imes W_3)+(H_4	imes W_4) = (20\times 21)+(20\times 25)+(22\times 32)+(25\times 27) = 2304 \) in²

TOTAL FACE AREA= 2304 in²

24 MEAN UNIT HEIGHT
STAND EXAMPLE

(The following example illustrates the procedure used to determine the maximum allowable wind pressure & uplift for any given mechanical unit configuration that conforms to the dimension restrictions listed herein. See sheet 2 for mean unit height & maximum face area calculation directive. See sheet 2 for component schedule. See sheet 9 for anchor schedule.)

MECHANICAL UNIT/STAND CRITERIA:
- Consider the installation of (4) mechanical units, (11-20" tall) x 24" deep x 21" wide, (11-20" tall) x 24" deep x 25" wide, (11-22" tall) x 24" deep x 22" wide, (22" x 22" deep x 250 lb max weight) installed with the following criteria:
 - Number of legs frames = (4) frames
 - Stand height = 20" stand depth spread
 - Host structure type = 2,000 PSI concrete (as verified by others).

PROCEDURE:
- **1.** Determine the mean unit height for the given configuration.
- **2.** Determine the maximum face area for the given configuration.
- **3.** Locate design schedule that applies to the given configuration.
- **4.** Determine the maximum allowable lateral & uplift wind loads.
- **5.** Install stand per permissible anchor types and verify host structure type.

RESULT:
- **See sheet 2, calculation directive step #1 for methods of calculating the mean unit height.** For clarification, this configuration has been worked out in the example scenario. (Mean unit height = 24 in)
- **See sheet 2, calculation directive step #2 for methods of calculating the maximum total unit face area.** For clarification, this configuration has been worked out in the example scenario. (Maximum unit face area = 2304 in²)
- For a 2304 in² max total unit face area on a 30" stand height with (4) supporting frames, the allowable wind loads are as follows:
 - Allowable lateral wind load: 94.9 PSF (from table above)
 - Allowable uplift wind load: 76.4 PSF (from table above)

TABLE LEGEND:
- **#2** Notes example value for use with cover page directive

DESIGN SCHEDULE NOTES:
1. Maximum calculated face area shall be equal to or less than the maximum face area for each configuration.
2. Reference anchor schedule for anchor types listed herein.
3. Design values in parenthesis represent capacities when tied-down straps are used. See detail 5 on sheet 9 for strap details.

NOTE:
- sheet 2
- calculation directive step
- maximum total unit face area
- allowable wind loads
- allowable lateral wind load
- allowable uplift wind load
- example value for use with cover page directive

PRODUCT REVISED:
- 12/2016

DESIGN SCHEDULE COVER SHEET:
- 15-2476

PAGE DESCRIPTION:
- Cover sheet

DOCUMENT ID:
- 14-21206-01

Registration Date:
- 07/18/2016

APPENDIX A: EXHIBITS
- Appendix A

APPENDIX B: TABLES
- Appendix B

APPENDIX C: EXHIBITS
- Appendix C
20" Stand Depth Minimum: Max Face Area (21600 in² - 75600 in²), Frame Quantity (3-5 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Allowable Plant Load (kips)</th>
<th>Max Allowable Lateral Load (kips)</th>
<th>Max Allowable Moment (in.kips)</th>
<th>Max Allowable Shear (kips)</th>
<th>Max Allowable Uplift (kips)</th>
<th>Max Allowable Base Shear (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
<th>Max Allowable Base Uplift (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
<tr>
<td>24"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
<tr>
<td>30"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
<tr>
<td>36"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
<tr>
<td>42"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
<tr>
<td>48"</td>
<td>21600 in²</td>
<td>20000 kips</td>
<td>20000 in.kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
<td>2000 kips</td>
<td>2000 kips.in</td>
</tr>
</tbody>
</table>

20" Stand Depth Minimum: Max Face Area (14400 in² - 50400 in²), Frame Quantity (2-3 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Allowable Plant Load (kips)</th>
<th>Max Allowable Lateral Load (kips)</th>
<th>Max Allowable Moment (in.kips)</th>
<th>Max Allowable Shear (kips)</th>
<th>Max Allowable Uplift (kips)</th>
<th>Max Allowable Base Shear (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
<th>Max Allowable Base Uplift (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
<tr>
<td>24"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
<tr>
<td>30"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
<tr>
<td>36"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
<tr>
<td>42"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
<tr>
<td>48"</td>
<td>14400 in²</td>
<td>10000 kips</td>
<td>10000 in.kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
<td>1000 kips</td>
<td>1000 kips.in</td>
</tr>
</tbody>
</table>

20" Stand Depth Minimum: Max Face Area (7200 in² - 25200 in²), Frame Quantity (3-6 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Allowable Plant Load (kips)</th>
<th>Max Allowable Lateral Load (kips)</th>
<th>Max Allowable Moment (in.kips)</th>
<th>Max Allowable Shear (kips)</th>
<th>Max Allowable Uplift (kips)</th>
<th>Max Allowable Base Shear (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
<th>Max Allowable Base Uplift (kips)</th>
<th>Max Allowable Base Moment (kips.in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
<tr>
<td>24"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
<tr>
<td>30"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
<tr>
<td>36"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
<tr>
<td>42"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
<tr>
<td>48"</td>
<td>7200 in²</td>
<td>5000 kips</td>
<td>5000 in.kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips</td>
<td>500 kips.in</td>
<td>500 kips</td>
<td>500 kips.in</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum calculated face area shall be equal to or less than the allowable face area for each configuration.
2. Standard Schedule for anchor types listed herein.

PRODUCT REVISED

By Miami Dade Product Control

Excellence in Engineering

Miami Tech, Inc.

Design Schedule Notes:
1. Maximum calculated face area shall be equal to or less than the allowable face area for each configuration.
2. Standard schedule for anchor types listed here.
30° Stand Depth Minimum: Max Face Area (2800 in² - 10080 in²), Frame Quantity (4-7 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Height</th>
<th>Max Face Area</th>
<th>Max Allowable Lateral Load</th>
<th>Max Base Moment (in ft-lb)</th>
<th>Max Base Shear (in kips)</th>
<th>Max Base Uplift (in kips)</th>
<th>Max Base Capacity (in kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>30 ft</td>
<td>2800 in²</td>
<td>145.4 kips</td>
<td>371.8 kips</td>
<td>21.0 kips</td>
<td>20.8 kips</td>
<td>87.0 kips</td>
</tr>
<tr>
<td>2A</td>
<td>4200 ft</td>
<td>5600 in²</td>
<td>228.4 kips</td>
<td>490.4 kips</td>
<td>25.4 kips</td>
<td>25.5 kips</td>
<td>118.8 kips</td>
</tr>
<tr>
<td>3A</td>
<td>6000 ft</td>
<td>7680 in²</td>
<td>284.9 kips</td>
<td>621.2 kips</td>
<td>29.9 kips</td>
<td>30.6 kips</td>
<td>148.4 kips</td>
</tr>
<tr>
<td>4A</td>
<td>8400 ft</td>
<td>10080 in²</td>
<td>314.2 kips</td>
<td>751.9 kips</td>
<td>34.5 kips</td>
<td>34.5 kips</td>
<td>177.8 kips</td>
</tr>
</tbody>
</table>

30° Stand Depth Minimum: Max Face Area (2160 in² - 7560 in²), Frame Quantity (3-6 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Height</th>
<th>Max Face Area</th>
<th>Max Allowable Lateral Load</th>
<th>Max Base Moment (in ft-lb)</th>
<th>Max Base Shear (in kips)</th>
<th>Max Base Uplift (in kips)</th>
<th>Max Base Capacity (in kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>30 ft</td>
<td>2160 in²</td>
<td>102.0 kips</td>
<td>262.6 kips</td>
<td>14.3 kips</td>
<td>14.1 kips</td>
<td>53.6 kips</td>
</tr>
<tr>
<td>2A</td>
<td>4200 ft</td>
<td>4200 in²</td>
<td>170.6 kips</td>
<td>431.2 kips</td>
<td>22.8 kips</td>
<td>22.8 kips</td>
<td>91.2 kips</td>
</tr>
<tr>
<td>3A</td>
<td>6000 ft</td>
<td>6000 in²</td>
<td>201.8 kips</td>
<td>504.7 kips</td>
<td>26.7 kips</td>
<td>26.7 kips</td>
<td>115.0 kips</td>
</tr>
<tr>
<td>4A</td>
<td>8400 ft</td>
<td>8400 in²</td>
<td>231.4 kips</td>
<td>638.2 kips</td>
<td>29.5 kips</td>
<td>29.4 kips</td>
<td>139.4 kips</td>
</tr>
</tbody>
</table>

30° Stand Depth Minimum: Max Face Area (1440 in² - 5040 in²), Frame Quantity (2-5 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Height</th>
<th>Max Face Area</th>
<th>Max Allowable Lateral Load</th>
<th>Max Base Moment (in ft-lb)</th>
<th>Max Base Shear (in kips)</th>
<th>Max Base Uplift (in kips)</th>
<th>Max Base Capacity (in kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>30 ft</td>
<td>1440 in²</td>
<td>66.0 kips</td>
<td>168.0 kips</td>
<td>8.7 kips</td>
<td>8.6 kips</td>
<td>32.8 kips</td>
</tr>
<tr>
<td>2A</td>
<td>4200 ft</td>
<td>2880 in²</td>
<td>99.0 kips</td>
<td>252.0 kips</td>
<td>13.0 kips</td>
<td>12.9 kips</td>
<td>45.6 kips</td>
</tr>
<tr>
<td>3A</td>
<td>6000 ft</td>
<td>3600 in²</td>
<td>117.3 kips</td>
<td>324.8 kips</td>
<td>15.4 kips</td>
<td>15.3 kips</td>
<td>59.0 kips</td>
</tr>
<tr>
<td>4A</td>
<td>8400 ft</td>
<td>5040 in²</td>
<td>137.4 kips</td>
<td>391.8 kips</td>
<td>17.6 kips</td>
<td>17.5 kips</td>
<td>71.8 kips</td>
</tr>
</tbody>
</table>

30° Stand Depth Minimum: Max Face Area (720 in² - 2520 in²), Frame Quantity (2-3 Frames)

<table>
<thead>
<tr>
<th>Stand Height</th>
<th>Max Height</th>
<th>Max Face Area</th>
<th>Max Allowable Lateral Load</th>
<th>Max Base Moment (in ft-lb)</th>
<th>Max Base Shear (in kips)</th>
<th>Max Base Uplift (in kips)</th>
<th>Max Base Capacity (in kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>30 ft</td>
<td>720 in²</td>
<td>33.0 kips</td>
<td>82.5 kips</td>
<td>4.4 kips</td>
<td>4.3 kips</td>
<td>16.5 kips</td>
</tr>
<tr>
<td>2A</td>
<td>4200 ft</td>
<td>1440 in²</td>
<td>50.0 kips</td>
<td>125.0 kips</td>
<td>6.0 kips</td>
<td>5.9 kips</td>
<td>22.0 kips</td>
</tr>
<tr>
<td>3A</td>
<td>6000 ft</td>
<td>2160 in²</td>
<td>58.9 kips</td>
<td>153.9 kips</td>
<td>7.3 kips</td>
<td>7.2 kips</td>
<td>26.0 kips</td>
</tr>
</tbody>
</table>

Design Schedule Notes:

1. Maximum calculated face area shall be used or less than the maximum allowable face area for each configuration.
2. Reference anchor schedule for anchor types listed herein.
HD STAND DESIGN SCHEDULE

36" STAND DEPTH MINIMUM: MAX FACE AREA (3000 sq ft - 12000 sq ft), FRAME QUANTITY (5-8 FRAMES)

<table>
<thead>
<tr>
<th>Frame</th>
<th>MKG</th>
<th>Base</th>
<th>Unit to Frame Ratio</th>
<th>Max. Area</th>
<th>Max. Stiffness</th>
<th>Max. Shear</th>
<th>Max. Base</th>
<th>Max. Base Stiffness</th>
<th>Max. Base Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1.5</td>
<td>10000 sq ft</td>
<td>3000 sq ft</td>
<td>10000</td>
<td>3000</td>
<td>10000 sq ft</td>
<td>3000 sq ft</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1.5</td>
<td>12000 sq ft</td>
<td>3000 sq ft</td>
<td>12000</td>
<td>3000</td>
<td>12000 sq ft</td>
<td>3000 sq ft</td>
</tr>
</tbody>
</table>

36" STAND DEPTH MINIMUM: MAX FACE AREA (2800 sq ft - 10000 sq ft), FRAME QUANTITY (4-7 FRAMES)

<table>
<thead>
<tr>
<th>Frame</th>
<th>MKG</th>
<th>Base</th>
<th>Unit to Frame Ratio</th>
<th>Max. Area</th>
<th>Max. Stiffness</th>
<th>Max. Shear</th>
<th>Max. Base</th>
<th>Max. Base Stiffness</th>
<th>Max. Base Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1.5</td>
<td>2800 sq ft</td>
<td>3000 sq ft</td>
<td>2800</td>
<td>3000</td>
<td>2800 sq ft</td>
<td>3000 sq ft</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3000 sq ft</td>
<td>3000 sq ft</td>
<td>3000</td>
<td>3000</td>
<td>3000 sq ft</td>
<td>3000 sq ft</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>1.5</td>
<td>3200 sq ft</td>
<td>3000 sq ft</td>
<td>3200</td>
<td>3000</td>
<td>3200 sq ft</td>
<td>3000 sq ft</td>
</tr>
</tbody>
</table>

36" STAND DEPTH MINIMUM: MAX FACE AREA (2160 sq ft - 7500 sq ft), FRAME QUANTITY (3-6 FRAMES)

<table>
<thead>
<tr>
<th>Frame</th>
<th>MKG</th>
<th>Base</th>
<th>Unit to Frame Ratio</th>
<th>Max. Area</th>
<th>Max. Stiffness</th>
<th>Max. Shear</th>
<th>Max. Base</th>
<th>Max. Base Stiffness</th>
<th>Max. Base Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1.5</td>
<td>2160 sq ft</td>
<td>3000 sq ft</td>
<td>2160</td>
<td>3000</td>
<td>2160 sq ft</td>
<td>3000 sq ft</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>1.5</td>
<td>2400 sq ft</td>
<td>3000 sq ft</td>
<td>2400</td>
<td>3000</td>
<td>2400 sq ft</td>
<td>3000 sq ft</td>
</tr>
</tbody>
</table>

36" STAND DEPTH MINIMUM: MAX FACE AREA (1440 sq ft - 5040 sq ft), FRAME QUANTITY (2-5 FRAMES)

<table>
<thead>
<tr>
<th>Frame</th>
<th>MKG</th>
<th>Base</th>
<th>Unit to Frame Ratio</th>
<th>Max. Area</th>
<th>Max. Stiffness</th>
<th>Max. Shear</th>
<th>Max. Base</th>
<th>Max. Base Stiffness</th>
<th>Max. Base Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>1.5</td>
<td>1440 sq ft</td>
<td>3000 sq ft</td>
<td>1440</td>
<td>3000</td>
<td>1440 sq ft</td>
<td>3000 sq ft</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>1.5</td>
<td>1680 sq ft</td>
<td>3000 sq ft</td>
<td>1680</td>
<td>3000</td>
<td>1680 sq ft</td>
<td>3000 sq ft</td>
</tr>
</tbody>
</table>

NOTE: Use the table above for the design schedule information.

Design by Miami Tech, Inc.

Phone: 305-376-6543, Fax: 305-376-6543

1501 Neptunium Drive, Dania Beach, FL 33004
HD Stand Design Schedule Continued

36" Stand Depth Minimum: Max Face Area (720 in² - 2256 in²), Frame Quantity (2-3 Frames)

| MAX FACE AREA |
|---------------|
| 24' 36"" 720 in² | 264.7 MPF | 277.7 MPF | 290.7 MPF | 290.7 MPF | 303.7 MPF | 303.7 MPF | 316.7 MPF | 316.7 MPF | 329.7 MPF | 329.7 MPF | 342.7 MPF | 342.7 MPF | 355.7 MPF | 355.7 MPF | 368.7 MPF | 368.7 MPF | 381.7 MPF | 381.7 MPF | 394.7 MPF | 394.7 MPF | 407.7 MPF | 407.7 MPF |
| 24' 36" 1200 in² | 354.7 MPF | 367.7 MPF | 380.7 MPF | 380.7 MPF | 393.7 MPF | 393.7 MPF | 406.7 MPF | 406.7 MPF | 419.7 MPF | 419.7 MPF | 432.7 MPF | 432.7 MPF | 445.7 MPF | 445.7 MPF | 458.7 MPF | 458.7 MPF | 471.7 MPF | 471.7 MPF | 484.7 MPF | 484.7 MPF | 497.7 MPF | 497.7 MPF |
| 24' 36" 1800 in² | 464.7 MPF | 477.7 MPF | 490.7 MPF | 490.7 MPF | 503.7 MPF | 503.7 MPF | 516.7 MPF | 516.7 MPF | 529.7 MPF | 529.7 MPF | 542.7 MPF | 542.7 MPF | 555.7 MPF | 555.7 MPF | 568.7 MPF | 568.7 MPF | 581.7 MPF | 581.7 MPF | 594.7 MPF | 594.7 MPF | 607.7 MPF | 607.7 MPF |
| 24' 36" 2500 in² | 574.7 MPF | 587.7 MPF | 600.7 MPF | 600.7 MPF | 613.7 MPF | 613.7 MPF | 626.7 MPF | 626.7 MPF | 639.7 MPF | 639.7 MPF | 652.7 MPF | 652.7 MPF | 665.7 MPF | 665.7 MPF | 678.7 MPF | 678.7 MPF | 691.7 MPF | 691.7 MPF | 704.7 MPF | 704.7 MPF | 717.7 MPF | 717.7 MPF |

Design Schedule Notes:
1. Max Anchor Calculated Face Area shall be equal to or less than Max Face Area for each configuration.
2. Reference anchor schedule for anchor types listed herein.

42" Stand Depth Minimum: Max Face Area (3600 in² - 12600 in²), Frame Quantity (5-8 Frames)

42" Stand Depth Minimum: Max Face Area (2880 in² - 10080 in²), Frame Quantity (4-7 Frames)

42" Stand Depth Minimum: Max Face Area (2160 in² - 7560 in²), Frame Quantity (3-6 Frames)
"HD" STAND DESIGN SCHEDULE CONTINUED

42' STAND DEPTH MINIMUM: MAX FACE AREA (1440in² - 5040in²), FRAME QUANTITY (2-5 FRAMES)

<table>
<thead>
<tr>
<th>STAND DEPTH</th>
<th>MAX FRAME HEIGHT</th>
<th>MAX FACE AREA</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
<th>MAX ALLOWABLE LATERAL LOAD</th>
<th>MAX ALLOWABLE LATERAL LOAD COEF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30'</td>
<td>366 5/8'</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>126.5 SF</td>
<td>135.5 SF</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>127.0 SF</td>
<td>136.0 SF</td>
<td>127.0 SF</td>
</tr>
<tr>
<td>35'</td>
<td>366 5/8'</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>126.5 SF</td>
<td>135.5 SF</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>127.0 SF</td>
<td>136.0 SF</td>
<td>127.0 SF</td>
</tr>
<tr>
<td>40'</td>
<td>366 5/8'</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>126.5 SF</td>
<td>135.5 SF</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>127.0 SF</td>
<td>136.0 SF</td>
<td>127.0 SF</td>
</tr>
<tr>
<td>45'</td>
<td>366 5/8'</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>126.5 SF</td>
<td>135.5 SF</td>
<td>126.9 SF</td>
<td>135.9 SF</td>
<td>127.0 SF</td>
<td>136.0 SF</td>
<td>127.0 SF</td>
</tr>
</tbody>
</table>

LOAD TRANSFER INFORMATION FOR USE WITH HOST STRUCTURE-VERIFICATION ONLY

"CUSTOM ASSEMBLY" DESIGN SCHEDULE

1. UNITS: 3 FRAME CONFIGURATION
 - MAX UNIT WIDTH: 24" W1
 - AC UNIT: (H=3,W1)
 - CUSTOM ASSEMBLY NOTES:
 2. EACH FRAME (POST PAIR) SHALL UTILIZE THE CROSS BRACING PER DETAIL 1/6 ON THIS SHEET.
 3. EACH UNIT SHALL UTILIZE (3) SUPPORT ANGLES PER DETAIL 1A/10 OR 1B/10 OF THIS DRAWING EQUALLY SPACED ALONG LENGTH OF UNIT (1/3" MINIMUM FROM ENDS OF UNIT).

2. UNITS: 4 FRAME CONFIGURATION
 - ADDITIONAL MAX UNIT WIDTH: 24" W1
 - CUSTOM ASSEMBLY NOTES:
 2. ADDITIONAL EACH FRAME (POST PAIR) SHALL UTILIZE THE CROSS BRACING PER DETAIL 1/6 ON THIS SHEET.
 3. ADDITIONAL EACH UNIT SHALL UTILIZE (3) SUPPORT ANGLES PER DETAIL 1A/10 OR 1B/10 OF THIS DRAWING EQUALLY SPACED ALONG LENGTH OF UNIT (1/3" MINIMUM FROM ENDS OF UNIT).

3. UNITS: 5 FRAME CONFIGURATION
 - ADDITIONAL MAX UNIT WIDTH: 24" W1
 - CUSTOM ASSEMBLY NOTES:
 2. ADDITIONAL EACH FRAME (POST PAIR) SHALL UTILIZE THE CROSS BRACING PER DETAIL 1/6 ON THIS SHEET.
 3. ADDITIONAL EACH UNIT SHALL UTILIZE (3) SUPPORT ANGLES PER DETAIL 1A/10 OR 1B/10 OF THIS DRAWING EQUALLY SPACED ALONG LENGTH OF UNIT (1/3" MINIMUM FROM ENDS OF UNIT).

2' MAX

36'0" MAX

ATTACH CROSS BRACE ANGLES TO POST MY (3) 5/16"XS OR 3/8"GR 5/16"THHR OR 3"X1/2" GR FILET WELD (3/8" LONG TOP AND BOTTOM OF ANGLES)

12" MAX @ 30' HT.
22" MAX @ 30' HT.
16" MAX @ 30' HT.

PROVIDE (2) 1"X2"X4" 5001-T5 ALUM CROSS BRACES AS SHOWN PER FRAME

8 SCALE: N1/8 ELEVATION VIEW

1 CROSS BRACE DETAIL - CUSTOM ASSEMBLY

10
FRAME ASSEMBLY & UNIT TIE-DOWN DETAILS:

1. FRAME ASSEMBLY DETAIL

2. A/C UNIT TIE-DOWN DETAIL

3. ALT. A/C UNIT TIE-DOWN DETAIL

4. ALT. A/C UNIT TIE-DOWN DETAIL

NOTE: Unit tie-down details may also be used to anchor the unit to the support angle shown on Sheet 10. I.E. I-beam can be substituted with angle support as base material.

FRAME ASSEMBLY DETAIL

- 1" x 22 GA. AISI MIN. GA #6 2.5 MIN. S/S TO A/C UNIT (2) EA.
- ISOLATOR PADS BEYOND (BY OTHERS). MIN. 4 PER UNIT

A/C UNIT TIE-DOWN DETAIL

- 22 GA (0.0299" MIN., F/3-58 ksi MIN.) STEEL A/C HOUSING UNIT
- ISOLATOR PADS BEYOND (BY OTHERS). MIN. 4 PER UNIT
- 3/16 S. S. BOLT, THRU BOLT CENTERS ABOUT LEG

ALT. A/C UNIT TIE-DOWN DETAIL

- 22 GA (0.0299" MIN., F/3-58 ksi MIN.) STEEL A/C HOUSING UNIT
- ISOLATOR PADS BEYOND (BY OTHERS). MIN. 4 PER UNIT

TIE-DOWN STRAP DETAIL

- 1 1/2" X 22 GA. AISI MIN. GA #6 2.5 MIN. S/S TO A/C UNIT (1) EA.
- ISOLATOR PADS BEYOND (BY OTHERS). MIN. 4 PER UNIT

PRODUCT REVIEW

As complying with the Florida Building Code Approval No. 17-1245, EXP.
Expiration Date: 02/09/2020

By: [Signature]
Mario Ochoa Product Control