NOTICE OF ACCEPTANCE (NOA)

PGT Industries, Inc.
1070 Technology Drive
North Venice, FL 34275

SCOPE: This NOA is being issued under the applicable rules and regulations governing the use of construction materials. The documentation submitted has been reviewed and accepted by Miami-Dade County RER - Product Control Section to be used in Miami Dade County and other areas where allowed by the Authority Having Jurisdiction (AHJ).

This NOA shall not be valid after the expiration date stated below. The Miami-Dade County Product Control Section (In Miami-Dade County) and/or the AHJ (in areas other than Miami-Dade County) reserve the right to have this product or material tested for quality assurance purposes. If this product or material fails to perform in the accepted manner, the manufacturer will incur the expense of such testing and the AHJ may immediately revoke, modify, or suspend the use of such product or material within their jurisdiction. RER reserves the right to revoke this acceptance if it is determined by Miami-Dade County Product Control Section that this product or material fails to meet the requirements of the applicable building code.

This product is approved as described herein and has been designed to comply with the Florida Building Code, including the High Velocity Hurricane Zone.

APPROVAL DOCUMENT: Drawing No. 7700NOA-1, titled “Aluminum Single Hung Install (LM)”, sheets 1 through 11 of 11, dated 04/01/18, with revision A dated 03/11/20, prepared by manufacturer, signed and sealed by Anthony Lynn Miller, P.E., bearing the Miami-Dade County Product Control Revision stamp with the Notice of Acceptance number and expiration date by the Miami-Dade County Product Control Section.

MISSILE IMPACT RATING: Large and Small Missile Impact Resistant

LABELING: Each unit shall bear a permanent label with the manufacturer's name or logo, city, state, model/series, and following statement: "Miami-Dade County Product Control Approved", unless otherwise noted herein.

RENEWAL of this NOA shall be considered after a renewal application has been filed and there has been no change in the applicable building code negatively affecting the performance of this product.

TERMINATION of this NOA will occur after the expiration date or if there has been a revision or change in the materials, use, and/or manufacture of the product or process. Misuse of this NOA as an endorsement of any product, for sales, advertising or any other purposes shall automatically terminate this NOA. Failure to comply with any section of this NOA shall be cause for termination and removal of NOA.

ADVERTISEMENT: The NOA number preceded by the words Miami-Dade County, Florida, and followed by the expiration date may be displayed in advertising literature. If any portion of the NOA is displayed, then it shall be done in its entirety.

INSPECTION: A copy of this entire NOA shall be provided to the user by the manufacturer or its distributors and shall be available for inspection at the job site at the request of the Building Official.

This NOA revises NOA # 18-0430.06 and consists of this page 1 and evidence pages E-1, E-2, E-3 and E-4, as well as approval document mentioned above.

The submitted documentation was reviewed by Carlos M. Utrera, P.E.
PGT Industries, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

1. Submitted under NOA # 18-0430.06

A. DRAWINGS
1. Manufacturer's die drawings and sections.
2. Drawing No. 7700NOA-1, titled “Aluminum Single Hung Install (LM), sheets 1 through 11 of 11, dated 04/01/18, prepared by manufacturer, signed and sealed by Anthony Lynn Miller, P.E.

B. TESTS
1. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202-94
 2) Uniform Static Air Pressure Test, Loading per FBC, TAS 202-94
 3) Water Resistance Test, per FBC, TAS 202-94
 4) Large Missile Impact Test per FBC, TAS 201-94
 5) Cyclic Wind Pressure Loading per FBC, TAS 203-94
 6) Forced Entry Test, per FBC 2411.3.2.1, and TAS 202-94 along with marked-up drawings and installation diagram of an aluminum single hung window, prepared by Fenestration Testing Laboratory, Inc., Test Report No. FTL-18-7835.1, dated 04/03/18, signed and sealed by Idalmis Ortega, P.E.
2. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202-94
 2) Uniform Static Air Pressure Test, Loading per FBC, TAS 202-94
 3) Water Resistance Test, per FBC, TAS 202-94
 4) Large Missile Impact Test per FBC, TAS 201-94
 5) Cyclic Wind Pressure Loading per FBC, TAS 203-94
 6) Forced Entry Test, per FBC 2411.3.2.1, and TAS 202-94 window, prepared by Fenestration Testing Laboratory, Inc., Test Reports No. FTL-18-7835.2, dated 05/04/18, signed and sealed by Idalmis Ortega, P.E.

C. CALCULATIONS
2. Glazing complies with ASTM E1300-09

D. QUALITY ASSURANCE
1. Miami-Dade Department of Regulatory and Economic Resources (RER).

Carlos M. Utrera, P.E.
Product Control Examiner
NOA No. 20-0401.11
Expiration Date: August 23, 2023
Approval Date: July 30, 2020
NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

E. MATERIAL CERTIFICATIONS
1. Notice of Acceptance No. 17-1114.14 issued to Kuraray America, Inc. for their “Trosifol® Ultraclear, Clear and Color PVB Glass Interlayers” dated 01/18/18, expiring on 07/08/19.
2. Notice of Acceptance No. 17-0808.02 issued to Kuraray America, Inc. for their “SentryGlas® (Clear and White) Glass Interlayers” dated 12/28/17, expiring on 07/04/23.

F. STATEMENTS
2. Statement letter of no financial interest, dated April 24, 2018, issued by manufacturer, signed and sealed by Anthony Lynn Miller, P.E.
3. Proposal No. 18-0005R issued by the Product Control Section, dated 01/16/18, signed by Manuel Perez, P.E.

G. OTHERS
1. None.
NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

2. New Evidence Submitted

A. DRAWINGS
 1. Manufacturer's die drawings and sections.
 2. Drawing No. 7700NOA-1, titled “Aluminum Single Hung Install (LM)”, sheets 1 through 11 of 11, dated 04/01/18, with revision A dated 03/11/20, prepared by manufacturer, signed and sealed by Anthony Lynn Miller, P.E.

B. TESTS
 1. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202-94
 2) Uniform Static Air Pressure Test, Loading per FBC, TAS 202-94
 3) Water Resistance Test, per FBC, TAS 202-94
 4) Large Missile Impact Test per FBC, TAS 201-94
 5) Cyclic Wind Pressure Loading per FBC, TAS 203-94
 6) Forced Entry Test, per ASTM F588 and TAS 202-94
 along with marked-up drawings and installation diagram of all PGT Industries, Inc. representative units listed below and tested to qualify Dowsil 791 and Dowsil 983 silicones, prepared by Fenestration Testing Laboratory, Inc., Test Reports No.: FTL-7897, PGT PW5520 PVC Fixed Window (unit 6 in proposal), dated 09/03/14
 FTL-20-2107.1, PGT SGD780 Aluminum Sliding Glass Door (unit 7 in proposal)
 FTL-20-2107.2, PGT CA740 Alum. Outswing Casement Window (unit 8 in proposal)
 FTL-20-2107.3, PGT PW7620A Aluminum Fixed Window (unit 9 in proposal) and
 FTL-20-2107.4, PGT PW7620A Aluminum Fixed Window (unit 10 in proposal)
 dated 07/13/20, all signed and sealed by Idalmis Ortega, P.E.

C. CALCULATIONS

D. QUALITY ASSURANCE
 1. Miami- Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS
 1. None.
NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

F. STATEMENTS
2. Statement letter of no financial interest, dated March 10, 2020, issued by manufacturer, signed and sealed by Anthony Lynn Miller, P.E.
3. Proposal No. 19-1155 TP issued by the Product Control Section, dated January 10, 2020, signed by Ishaq Chanda, P.E.

G. OTHERS
SERIES SH7700A IMPACT RESISTANT SINGLE HUNG WINDOW

1) THIS PRODUCT HAS BEEN DESIGNED & TESTED TO COMPLY WITH THE REQUIREMENTS OF THE FLORIDA BUILDING CODE, INCLUDING THE HIGH VELOCITY HURRICANE ZONE (HVHZ).

2) SHUTTERS ARE NOT REQUIRED WHEN USED IN WIND-BORNE DEBRIS REGIONS. FOR IN-DOOR GLASS INSTALLATIONS ABOVE 33\(^{\circ}\) IN THE HVHZ, THE OUTBOARD LITE CAP MUST BE TEMPERED. USE ONLY GLASS TYPES 3, 7, 12, 13 OR 15.

3) FOR MASONRY APPLICATIONS IN MIAMI-DADE COUNTY, USE ONLY MIAMI-DADE COUNTY APPROVED MASONRY ANCHORS. MATERIALS USED FOR ANCHOR EVALUATIONS WERE SOUTHERN PINE. ASTM C330 CONCRETE MASONRY UNITS AND CONCRETE WITH MIN. KSI PER ANCHOR TYPE.

4) ALL WOOD BUCKS LESS THAN 1-1/2" THICK ARE TO BE CONSIDERED 1X INSTALLATIONS. 1X WOOD BUCKS ARE OPTIONAL IF INSTALLATION IS DIRECTLY TO STUCCO. WOOD BUCKS DEPICTED AS 2X ARE 1-1/2" THICK OR GREATER. 1X AND 2X BUCKS WHEN SHOWN SHALL BE DESIGNED AND SECURED TO PROPERLY TRANSFER LOADS TO THE STRUCTURE. WOOD BUCK DESIGN AND INSTALLATION IS THE RESPONSIBILITY OF THE ENGINEER (EOR) OR ARCHITECT OF RECORD (AOR).

5) ANCHOR EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALL DRESSING OR STUCCO. USE ANCHORS OF SUFFICIENT LENGTH TO ACHIEVE REQUIRED MIN. EMBEDMENT. INSTALLATION ANCHORS SHOULD BE SEALED. OVERALL SEALING & FLASHING STRATEGY FOR WATER RESISTANCE OF INSTALLATION SHALL BE DONE BY OTHERS AND IS BEYOND THE SCOPE OF THESE INSTRUCTIONS.

6) 1/4" MAX. SHIMS ARE REQUIRED AT EACH ANCHOR LOCATION WHERE THE PRODUCT IS NOT FLUSH TO THE SUBSTRATE. USE SHIMS CAPABLE OF TRANSFERRING APPLIED LOADS.

7) DESIGN PRESSURES:
 A. NEGATIVE DESIGN LOADS BASED ON STRUCTURAL & CYCLE TESTING AND GLASS PER ASTM E1300.
 B. POSITIVE DESIGN LOADS BASED ON WATER TEST PRESSURE, STRUCTURAL & CYCLE TESTING AND GLASS PER ASTM E1300.
 C. DESIGN LOADS ARE BASED ON ALLOWABLE STRESS DESIGN, ASD.

8) THE ANCHORAGE METHODS SHOWN HAVE BEEN DESIGNED TO RESIST THE WIND LOADS CORRESPONDING TO THE REQUIRED DESIGN PRESSURE. THE 33-10% STRESSES INCREASE HAS NOT BEEN USED IN THE DESIGN OF THIS PRODUCT. THE 1.6 LOAD DURATION FACTOR WAS USED FOR THE EVALUATION OF ANCHORS INTO WOOD ANCHORS THAT COME INTO CONTACT WITH OTHER DECKING MATERIALS SHALL MEET THE REQUIREMENTS OF THE FLORIDA BUILDING CODE FOR CORROSION RESISTANCE.

9) METAL SUBSTRATE TO MEET MIN. STRENGTH AND THICKNESS REQUIREMENTS PER CURRENT FLORIDA BUILDING CODE AND TO BE REVIEWED BY THE AUTHORITY HAVING JURISDICTION.

10) REFERENCES: TEST REPORTS FTL-18-7853.1 & 18-7853.2; ELCO ULTRASON NOA; DEVALT/ELO CRETEPLEX NOA; DEVALT ULTRASON + NOA; NATIONAL DESIGN SPECIFICATION FOR WOOD CONSTRUCTION, ANSI/SPA NDS & ALUMINUM DESIGN MANUFACTURER.

11) APPLICABLE EGRESS REQUIREMENTS TO BE REVIEWED BY BUILDING OFFICIAL.

TABLE 1: ALLOWABLE GLASS TYPES

<table>
<thead>
<tr>
<th>Glass Type</th>
<th>Description (Listed from Exterior to Interior)</th>
<th>DP Table #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8"FAN, 0.060"PVF, 1/8"AN</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1/8"FAN, 0.060"PVF, 1/8"AN</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>13/16"LIG, 1/8"TP CAP, AIRSPACE, 1/8"AN, 0.060"PVF, 1/8"AN</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1/8"HS, 0.060"PVF, 1/8"HS</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>3/16"AN, 0.060"PVF, 3/16"AN</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>13/16"LIG, 3/16"AN CAP, AIRSPACE, 1/8"AN, 0.060"PVF, 1/8"AN</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>13/16"LIG, 3/16"TP CAP, AIRSPACE, 1/8"AN, 0.060"PVF, 1/8"AN</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>3/16"AN, 0.060"SG, 3/16"AN</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3/16"HS, 0.060"SG, 3/16"HS</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>13/16"LIG, 1/8"AN CAP, AIRSPACE, 1/8"HS, 0.060"SG, 1/8"HS</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>13/16"LIG, 1/8"AN CAP, AIRSPACE, 1/8"AN, 0.060"SG, 1/8"AN</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>13/16"LIG, 1/8"TP CAP, AIRSPACE, 1/8"HS, 0.060"SG, 1/8"HS</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>13/16"LIG, 1/8"TP CAP, AIRSPACE, 1/8"AN, 0.060"SG, 1/8"AN</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>13/16"LIG, 1/8"AN CAP, AIRSPACE, 1/8"HS, 0.060"SG, 1/8"HS</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>13/16"LIG, 1/8"TP CAP, AIRSPACE, 1/8"AN, 0.060"SG, 1/8"AN</td>
<td>5</td>
</tr>
</tbody>
</table>

USER INSTRUCTIONS:

1) DETERMINE THE SITE SPECIFIC WINDOW OPENING'S DESIGN PRESSURE REQUIREMENT FROM ASCE 7.

2) KNOWING YOUR GLAZING OPTION (TABLE 1), WINDOW INSTALLATION CONFIGURATION AND REQUIRED ANCHOR DESIGN PRESSURE FROM TABLES 2-5. IT MUST EQUAL OR EXCEED THE DESIGN PRESSURE REQUIREMENT FOR THE WINDOW OPENING OBTAINED IN STEP 1.

3) DETERMINE THE ANCHOR QUANTITY FROM TABLES 6 & 7.

4) INSTALL, AS PER SHEET 7 FOR FLANGE INSTALLATION, SHEET 8 FOR EQUAL LEG INSTALLATION OR SHEET 9 FOR INTEGRAL FIN INSTALLATION.

NOTE: DESIGN PRESSURE RATING DETERMINATION IS THE SAME PROCESS FOR ALL FRAME TYPES (FLANGE, INTEGRAL FIN OR EQUAL LEGBOX).

FIGURE A: ALLOWABLE SASH CONFIGURATIONS AND SHAPES

WIDTH | WIDTH | WIDTH | WIDTH

HEIGHT | HEIGHT | HEIGHT | HEIGHT

RECTANGULAR WITH EQUAL LITE SASH

RADIUS-TOP WITH PREVIEW SASH

RECTANGULAR WITH CHASE SASH

CODES / STANDARDS USED:

- 2020 FLORIDA BUILDING CODE (FBC), 7TH EDITION
- 2017 FLORIDA BUILDING CODE (FBC), 8TH EDITION
- ASTM E1300-09
- ANSI/SPA NDS 2018 FOR WOOD CONSTRUCTION
- ALUMINUM DESIGN MANUAL, ADM-2015
- AIGI S500-10
- AISC 360-16

ID= KURARAY SENTRYGLASS® INTERLAYER BY KURARAY AMERICA, INC. PV6 = KURARAY TROSIFOL® PV6 INTERLAYER BY KURARAY AMERICA, INC.

AN = ANNEALED

HS = HEAT-STRENGTHENED

TP = TEMPERED

GENERAL NOTES

ELEVATIONS...... 1
DESIGN PRESSURES / GLAZING DETAILS...... 2-4
ANCHOR QUANTITIES...... 5
INSTALLATION, FLANGE...... 6
INSTALLATION, EQUAL LEG...... 7
INSTALLATION, INTEGRAL FIN...... 8
EXTRUSION PROFILES...... 9
ASSEMBLY & PARTS LIST...... 10
LICENSED P.E. No. 05705
A. L. Powers
3/20/23
No. 05705
A. L. POWERS, P.E.
<table>
<thead>
<tr>
<th>TABLE 2:</th>
<th>Bottom Sash Description for Given Range</th>
<th>Sash Height Range (in)</th>
<th>Design Pressure (Ibs/sq ft) for Glass Types 1 & 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip to Tip Width</td>
<td>18"</td>
<td>24"</td>
<td>30"</td>
</tr>
<tr>
<td>24"</td>
<td>Equal-H e</td>
<td>12.464</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Standard Profile</td>
<td>12.994 - 15.953</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Shorten</td>
<td>12.464 - 12.563</td>
<td>+65.0</td>
</tr>
<tr>
<td>30"</td>
<td>Equal-H e</td>
<td>12.204</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Standard Profile</td>
<td>15.944 - 19.651</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Shorten</td>
<td>12.464 - 14.130</td>
<td>+65.0</td>
</tr>
<tr>
<td>36"</td>
<td>Equal-H e</td>
<td>22.964</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Standard Profile</td>
<td>20.131 - 22.983</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Shorten</td>
<td>12.464 - 14.130</td>
<td>+65.0</td>
</tr>
<tr>
<td>42"</td>
<td>Equal-H e</td>
<td>21.204</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Standard Profile</td>
<td>24.131 - 25.763</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Shorten</td>
<td>12.464 - 14.130</td>
<td>+65.0</td>
</tr>
<tr>
<td>48"</td>
<td>Equal-H e</td>
<td>20.964</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Standard Profile</td>
<td>24.131 - 25.763</td>
<td>+65.0</td>
</tr>
<tr>
<td></td>
<td>Shorten</td>
<td>12.464 - 14.130</td>
<td>+65.0</td>
</tr>
</tbody>
</table>

1) MINIMUM SASH HEIGHT FOR FLANGED WINDOWS IS: TIP TO TIP HEIGHT - 49.391
MINIMUM SASH HEIGHT FOR INTEGRAL FIN AND EQUAL LEG WINDOWS IS: BUCK HEIGHT - 48.391
MINIMUM SASH HEIGHT FOR TIP TO TIP HEIGHT - 48.806
MINIMUM SASH HEIGHT FOR INTEGRAL FIN AND EQUAL LEG, RADIUS TOP WINDOWS IS: BUCK HEIGHT - 48.806

2) FOR SIZES NOT SHOWN, ROUND UP TO THE NEXT AVAILABLE SIZE
3) FOR RADIUS TOP WINDOWS, FIND THE SMALLEST WINDOW IN THE TABLE ABOVE WHICH THE RADIUS TOP WINDOW WILL COMPLETELY FIT WITHIN
4) WINDOWS WITH THE LOW SILL OPTION ARE LIMITED TO A MAXIMUM POSITIVE DESIGN PRESSURE OF +65 PSF. NEGATIVE DESIGN PRESSURES ARE UNAFFECTED.
<table>
<thead>
<tr>
<th>Bottom Sash Description for Given Flange</th>
<th>Top to Top Width</th>
<th>Design Pressure (psf) for Glass Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tip to Tip Height</td>
<td>18"</td>
<td>20"</td>
</tr>
<tr>
<td>31° Equal-Height</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 60" - 96"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 96" - 120"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 120" - 144"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 144" - 168"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 168" - 192"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 192" - 216"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 216" - 240"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 240" - 264"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 264" - 288"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 288" - 312"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 312" - 336"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 336" - 360"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 360" - 384"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 384" - 408"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 408" - 432"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 432" - 456"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 456" - 480"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 480" - 504"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 504" - 528"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 528" - 552"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 552" - 576"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 576" - 600"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 600" - 624"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 624" - 648"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 648" - 672"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 672" - 696"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 696" - 720"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 720" - 744"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 744" - 768"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
<tr>
<td>Standard Pressure 768" - 792"</td>
<td>15.994</td>
<td>+0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0 +0.0 -0.0</td>
</tr>
</tbody>
</table>

Notes:
1. Tip to Tip Dimensions Shown For Integral Fin and Equal-Leg Windows, Subtract 1" From the Tip to Tip Dimension in the Table to Determine the Window Size.
2. For Sizes Not Shown, Round Up To the Next Available Size.
3. For Radius Top Windows, Find the Smallest Window Size in the Table Above Which the Radius Top Window Will Completely Fit Within.
4. Windows with the Low Sill Option are Limited to a Maximum Positive Design Pressure of +65 psf. Negative Design Pressures are unaffected.
Table 4: Design Pressure (psig) for Glass Types 4-7

<table>
<thead>
<tr>
<th>Bottom Sash Description for Given Range</th>
<th>Sash Height Range (n</th>
<th>Tip to Tip Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>12.464 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>31"</td>
<td>16.654 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>36-39"</td>
<td>19.652 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>40"</td>
<td>22.964 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>45"</td>
<td>24.994 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>50-55"</td>
<td>27.777 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>60"</td>
<td>29.792 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>76"</td>
<td>34.194 +50.0 -90.0</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Design Pressure for Glass Types 8-15

<table>
<thead>
<tr>
<th>Bottom Sash Description for Given Range</th>
<th>Sash Height Range (n</th>
<th>Tip to Tip Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>24"</td>
<td>12.464 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>31"</td>
<td>16.654 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>36-39"</td>
<td>19.652 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>40"</td>
<td>22.964 +50.0 -90.0</td>
<td></td>
</tr>
<tr>
<td>45"</td>
<td>24.994 +50.0 -90.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Minimum sash height for flanged windows is: Tip to Tip Height - 40.391
2. Minimum sash height for integral fin and equal-leg windows is: Buck Height - 48.391
3. Minimum sash height for integral fin and equal-leg, radius top windows is: Tip to Tip Height - 49.808
4. Windows with the low sill option are limited to a maximum positive design pressure of +65 psf. Negative design pressures are unafflicted.
<table>
<thead>
<tr>
<th>Glass Type</th>
<th>Description (Listed from Exterior to Interior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8" AN, .090" PVB, 1/8" AN</td>
</tr>
<tr>
<td>3</td>
<td>15/16" LIG, 1/8" AN, CAP, AIRSPACE, .180" AN, .090" PVB, 1/8" AN</td>
</tr>
<tr>
<td>4</td>
<td>.180" HS, .090" PVB, .180" HS</td>
</tr>
<tr>
<td>5</td>
<td>3/16" AN, .090" PVB, 3/16" AN</td>
</tr>
<tr>
<td>6</td>
<td>15/16" LIG, 3/16" AN, CAP, AIRSPACE, 1/8" AN, .090" PVB, 1/8" AN</td>
</tr>
<tr>
<td>7</td>
<td>15/16" LIG, 3/16" TP, CAP, AIRSPACE, 1/8" AN, .090" PVB, 1/8" AN</td>
</tr>
</tbody>
</table>

*MINIMUM SASH HEIGHT FOR FLANGED WINDOWS IS: TIP TO TIP HEIGHT - 48.391

MINIMUM SASH HEIGHT FOR INTEGRAL, FIN AND EQUAL-LEG WINDOWS IS: BUCK HEIGHT - 48.391

MINIMUM SASH HEIGHT FOR FLANGED, RADIUS TOP WINDOWS IS: TIP TO TIP HEIGHT - 48.606

MINIMUM SASH HEIGHT FOR INTEGRAL, FIN AND EQUAL-LEG, RADIUS TOP WINDOWS IS: BUCK HEIGHT - 48.606

1) TIP TO TIP DIMENSIONS SHOWN, FOR INTEGRAL FIN AND EQUAL-LEG WINDOWS, SUBTRACT 1" FROM THE TIP TO TIP DIMENSION IN THE TABLE TO DETERMINE THE WINDOW SIZE.

2) FOR SIZES NOT SHOWN, ROUND UP TO THE NEXT AVAILABLE SIZE.

3) FOR RADIUS TOP WINDOWS, FIND THE SMALLEST WINDOW SIZE IN THE TABLE ABOVE WHICH THE RADIUS TOP WINDOW WILL COMPLETELY FIT WITHIN.

4) WINDOWS WITH THE LOW SILL OPTION ARE LIMITED TO A MAXIMUM POSITIVE DESIGN PRESSURE OF +65 PSF. NEGATIVE DESIGN PRESSURES ARE UNAFFECTED.
<table>
<thead>
<tr>
<th>15°</th>
<th>25°</th>
<th>33°</th>
<th>37°</th>
<th>41°</th>
<th>45°</th>
<th>49°</th>
<th>63°</th>
<th>76°</th>
<th>84°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anchor Quantities Required for"Through-Framing"Installation</td>
<td>Using Glass Types B-15</td>
<td>Tip to Tip Width</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bottom Sash Description for Given Range</td>
<td>Sash Height Range (in)</td>
<td>16°</td>
<td>20°</td>
<td>23°</td>
<td>29°</td>
<td>32°</td>
<td>33°</td>
<td>37°</td>
<td>41°</td>
</tr>
<tr>
<td>Jamb</td>
</tr>
<tr>
<td>Above Mid-Rail</td>
</tr>
<tr>
<td>Above Bottom Rail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 7B:</th>
<th>Glass Type</th>
<th>Description (Listed from Exterior to Interior)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3/4" AN, 090° SG, 3/16" AN</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3/16" HS, 090° SG, 3/16" HS</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13/16" LG, 1/8" AN CAP, AIRSPACE, 1/8" HS, 090° SG, 1/8" HS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13/16" LG, 1/8" AN CAP, AIRSPACE, 3/16" AN, 090° SG, 3/16" AN</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13/16" LG, 1/8" TP CAP, AIRSPACE, 1/8" HS, 090° SG, 1/8" HS</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13/16" LG, 1/8" TP CAP, AIRSPACE, 3/16" AN, 090° SG, 3/16" AN</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>13/16" LG, 3/16" AN CAP, AIRSPACE, 1/8" HS, 090° SG, 1/8" HS</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13/16" LG, 3/16" TP CAP, AIRSPACE, 1/8" HS, 090° SG, 1/8" HS</td>
<td></td>
</tr>
</tbody>
</table>

MINIMUM SASH HEIGHT FOR FLANGED WINDOWS IS: TIP TO TIP HEIGHT - 49.301

MINIMUM SASH HEIGHT FOR INTEGRAL FIN AND EQUAL-LEG WINDOWS IS: BUCK HEIGHT - 48.301

MINIMUM SASH HEIGHT FOR FLANGED, RADIUS TOP WINDOWS IS: TIP TO TIP HEIGHT - 48.805

MINIMUM SASH HEIGHT FOR INTEGRAL FIN AND EQUAL-LEG, RADIUS TOP WINDOWS IS: BUCK HEIGHT - 48.805

1) **TIP TO TIP DIMENSIONS SHOWN FOR INTEGRAL FIN AND EQUAL-LEG WINDOWS, SUBTRACT 1" FROM THE TIP TO TIP DIMENSION IN THE TABLE TO DETERMINE THE WINDOW SIZE.**

2) **FOR SIZES NOT SHOWN, ROUND UP TO THE NEXT AVAILABLE SIZE.**

3) **FOR RADIUS TOP WINDOWS, FIND THE SMALLEST WINDOW SIZE IN THE TABLE ABOVE WHICH THE RADIUS TOP WINDOW WILL COMPLETELY FIT WITHIN.**

4) **WINDOWS WITH THE LOW SILL OPTION ARE LIMITED TO A MAXIMUM DESIGN PRESSURE OF +50 PSF, NEGATIVE DESIGN PRESSURES ARE UNAFFECTED.**