

DEPARTMENT OF REGULATORY AND ECONOMIC RESOURCES (RER) BOARD AND CODE ADMINISTRATION DIVISION

NOTICE OF ACCEPTANCE (NOA)

Windoor Inc., 104 Triple Diamond Blvd. North Venice, FL 34275

Scope:

This NOA is being issued under the applicable rules and regulations governing the use of construction materials. The documentation submitted has been reviewed and accepted by Miami-Dade County RER -Product Control Section to be used in Miami Dade County and other areas where allowed by the Authority Having Jurisdiction (AHJ).

This NOA shall not be valid after the expiration date stated below. The Miami-Dade County Product Control Section (In Miami Dade County) and/or the AHJ (in areas other than Miami Dade County) reserve the right to have this product or material tested for quality assurance purposes. If this product or material fails to perform in the accepted manner, the manufacturer will incur the expense of such testing and the AHJ may immediately revoke, modify, or suspend the use of such product or material within their jurisdiction. RER reserves the right to revoke this acceptance, if it is determined by Miami-Dade County Product Control Section that this product or material fails to meet the requirements of the applicable building code.

This product is approved as described herein, and has been designed to comply with the Florida Building Code, including the High Velocity Hurricane Zone.

DESCRIPTION: Series "450" Aluminum Outswing glazed Doors w/wo Sidelites - Impact

APPROVAL DOCUMENT: Drawing No. **FD450 Rev 1** (former **18-107D**), titled "Series 450 French Door, glazed & Outswing", sheets 1 thru 17 of 17, prepared by manufacturer, dated 06/12/20, signed and sealed by Lynn Miller, P.E., bearin the Miami-Dade County Product Control Revision stamp with the Notice of Acceptance number and expiration date by the Miami-Dade County Product Control Section.

- 1. See Design Pressure ratings in sheets **2**, **9**, **10**, **11**, **12 &13** for unit sizes Vs lock options, mullion type, door/ sidelite, glass / sill types and anchors. Lower Design Pressure shall control.
- 2. For mulled units lower Design pressure of doors or mullion shall control for entire assembly.
- 3. Exterior Design Pressure= +50.0 PSF w/ threshold (sill type S-I). Sills (threshold) types SS-1 & SS-2 are not rated for water infiltration. See thresholds (sills sheet <u>9</u>.
- 4. See Partial 7/16" & 1" Composite panels in sheet <u>3</u>. Narrow stile sidelites are limited to **18**" or less.
- 5. The frame is of alternate size must not exceed 125 ft², nor panel tested area and max. Panel height.

LABELING: Each unit shall bear a permanent label with the manufacturer's name or logo, city, state and series and following statement: "Miami-Dade County Product Control Approved", noted herein.

RENEWAL of this NOA shall be considered after a renewal application has been filed and there has been no change in the applicable building code negatively affecting the performance of this product.

TERMINATION of this NOA will occur after the expiration date or if there has been a revision or change in the materials, use, and/or manufacture of the product or process. Misuse of this NOA as an endorsement of any product, for sales, advertising or any other purposes shall automatically terminate this NOA. Failure to comply with any section of this NOA shall be cause for termination and removal of NOA.

ADVERTISEMENT: The NOA number preceded by the words Miami-Dade County, Florida, and followed by the expiration date may be displayed in advertising literature. If any portion of the NOA is displayed, then it shall be done in its entirety.

INSPECTION: A copy of this entire NOA shall be provided to the user by the manufacturer or its distributors and shall be available for inspection at the job site at the request of the Building Official.

This NOA revises #18-0926.06 (PLA) consists of this page 1 and evidence pages E-1, E-2, E-3, E-4 & E-5, as well as approval document mentioned above.

The submitted documentation was reviewed by Ishaq I. Chanda, P.E.

NOA No. 20-0619.08 Expiration Date: November 09, 2021 Approval Date: November 25, 2020 Page 1

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

1. Evidence submitted in previous NOA

A. DRAWINGS

1. Drawing No.**W98-01 Rev O**, titled "Series 450 Outswing Doors & Sidelites", sheets 1, 1.1, 1.2, 1.3, 1.4, 2, 2.1, 2.2, 2.3, 3, 3.1, 4, 5, 6, 7, 7.1 and 7.2 of 7, prepared by Al-Farooq Corp., dated 10/27/97 and last revised on 09/21/17, signed and sealed by Javad Ahmad, P.E.

B. TESTS

1. None.

C. CALCULATIONS

 Anchor verification calculations and structural analysis, complying with FBC 5th Edition (2014) and with FBC 6th Edition (2017), prepared by Al Farooq Corporation, dated 09/29/17, signed and sealed by Javad Ahmad, P.E.

D. QUALITY ASSURANCE

1. Miami Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS

- Notice of Acceptance No. 17-0712.03 issued to Eastman Chemical Company (MA) for the "Saflex CP - Saflex and Saflex HP Composite Glass Interlayers w/ PET Core", expiring on 12/11/18.
- 2. Notice of Acceptance No. 17-0712.05 issued to Eastman Chemical Company (MA) for the "Saflex Clear and Color Glass Interlayers", expiring on 05/21/21.

F. STATEMENTS

1. Statement letter of conformance to FBC 5th Edition (2014) and FBC 6th Edition (2017) and letter of no financial interest, prepared by Al Farooq Corporation, dated 08/30/17, signed and sealed by Javad Ahmad, P.E.

G. OTHER

- 1. This NOA revises #16-0329.04, expiring on 11/09/21.
- 2. Evidence submitted in previous NOA

A. DRAWINGS

- 1. Manufacturer's die drawings and sections (Submitted under files below).
- 2. Drawing No.**W98-01 Rev M**, titled "Series 450 Outswing Doors & Sidelites", sheets 1, 1.1, 1.2, 1.3, 1.4, 2, 2.1, 2.2, 2.3, 3, 3.1, 4, 5, 6, 7, 7.1 and 7.2 of 7, prepared by Al-Farooq Corporation, dated 10-27-97 and last revised on 03-22-16, signed and sealed by Javad Ahmad, P.E.

B. TESTS (Submitted under files #14-1103.08 /#12-0706.03/#11-1025.02/#09-0723.04)

- 1. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202-94
 - 2) Uniform Static Air Pressure Test, Loading per FBC TAS 202-94
 - 3) Water Resistance Test, per FBC, TAS 202-94(+50.0 PSF, sill S-I only)
 - 4) Large Missile Impact Test per FBC, TAS 201-94
 - 5) Cyclic Wind Pressure Loading per FBC, TAS 203-94
 - 6) Forced Entry Test, per FBC 2411 3.2.1, TAS 202-94

Windoor, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

B. TESTS (continue):

Along with manufacturer's parts and section drawing marked-up drawings of aluminum In swing / Outswing door w/wo sidelites, by Hurricane Testing Laboratory, Inc., Test Report No. **HTL-0080-0304-11** dated 11/28/2011 and **HTL-0080-0902-11**, signed and sealed by Vinu J. Abraham, P.E. Note: This test report has been revised by addendum letters, issued by Architectural Testing (Former Hurricane Testing Lab), dated 01/20/12 and 04/03/12, both signed and sealed by Vinu J. Abraham, P.E. Abraham, P.E.

Along with manufacturer's parts and section drawing marked-up drawings of double aluminum outswing doors, issued by Architectural Testing, Test Report No(s) **B-5234.02-450-18** dated 12/19/2011, signed and sealed by Vinu J. Abraham, P.E.

- 2. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202-94
 - 2) Uniform Static Air Pressure Test, Loading per FBC TAS 202-94
 - 3) Water Resistance Test, per FBC, TAS 202-94
 - 4) Large Missile Impact Test per FBC, TAS 201-94
 - 5) Cyclic Wind Pressure Loading per FBC, TAS 203-94
 - 6) Forced Entry Test, per FBC 2411 3.2.1, TAS 202-94.

Along with manufacturer's parts and section drawing marked-up drawings of aluminum out/in swing door w/sidelites, by Hurricane Testing Laboratory, Inc., Test Report No. HTL-97055 (0080-912-97) dated 09/23/97 thru 02/27/98 for specimen #1, 2, 3, 4 tested per PA202-94, specimen #4, 5A, 5B, 5C tested per PA201-94 & PA203-94, signed and sealed by Timothy S. Marshall, P.E. Along with manufacturer's parts and section drawing marked-up drawings of aluminum out swing door w/sidelites, by Hurricane Testing Laboratory, Inc., Test Report No. HTL-01071 (0080-0402-02) dated 04/01/2002 tested per PA201-94 & PA203-94, signed and sealed by Vinu J. Abraham, P.E. (submitted in file # 09-0723.04). Original tests conducted per SFBC, PA 201, 202 & 203-94 now known as FBC, TAS 201, 202 & 203-94.

3. Reference Certified Testing Laboratories test report # CTLA **3056WA**, issued to CGI Windows & Doors Inc. pert TAS 201, 202 and 203-94 for specimen #1 thru #30 for laminated PVB glass, insulated PVB laminated glass with Duraseal and super spacers, signed and sealed by Ramesh C. Patel, P.E.

C. CALCULATIONS (Submitted under files #14-1103.08)

- Anchor verification calculations and structural analysis, complying with FBC-2014(5th Edition), prepared by Al Farooq Corporation, dated 10/27/14 and last revised on AUG 27, 2015, signed and sealed by Javad Ahmad, P.E.
- 2. Additional intermediate horizontal mull calculations, prepared by Al Farooq Corporation, dated JUN 29, 2012, signed and sealed by Javad Ahmad, P.E. (Submitted under file # **11-1025.03**)
- 3. Glazing complies w/ ASTME-1300-02, -04 & -09.

D. QUALITY ASSURANCE

1. Miami Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS

1. Notice of Acceptance No. **17-0808.02** issued to Kuraray America, Inc. (former E.I. DuPont De Nemours & Co., Inc.) for the "Sentry Glass ® Interlayer", expiring on 07/4/23.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

E. MATERIAL CERTIFICATIONS (continue):

- Notice of Acceptance No. 18–0301.06 issued to Eastman Chemical Company (MA) (Former Solutia, Inc.) for the "Saflex CP - Saflex and Saflex HP Composite Glass Interlayers w/ PET Core", expiring on 12/11/23.
- 3. Notice of Acceptance No. **17-0712.05** issued to Eastman Chemical Company (MA) (Former Solutia, Inc.) for the "Saflex Clear and Color Glass Interlayers", expiring on 05/21/21.

F. STATEMENTS

1. Statement letter of conformance to FBC 2014(5th Edition) and letter of no financial interest, prepared by Al Farooq Corporation, dated 09/30/14, signed and sealed by Javad Ahmad, P.E.

G. OTHER

- 1. This NOA revises & renews #14-1103.08, expiring on November 09, 2021.
- 2. Hardware cut sheets verified and marked-up by the Architectural Testing (former Hurricane Testing lab).
- 3. Test proposal dated 12/16/14 approved by RER and Test proposal # **10-0940**, dated 11/17/10 approved by BNC.
- **3.** Evidence submitted under Previous approval.

A. DRAWINGS

1. Drawing No.**18-107D**, titled "Series 450 Outswing Doors & Sidelites", sheets 1, 1.1, 1.2, 1.3, 1.4, 2, 2.1, 2.2, 2.3, 3, 3.1, 4, 5, 6, 7, 7.1 and 7.2 of 7, prepared by Al-Farooq Corporation, dated SEP 19, 2018, signed and sealed by Javad Ahmad, P.E.

B. TESTS

1. None.

C. CALCULATIONS

1. None.

D. QUALITY ASSURANCE

1. Miami Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS

- 1. Notice of Acceptance No. **14-0916.11** issued to Kuraray America, Inc. (former E.I. DuPont DE Nemours & Co., Inc.) for the "Sentry Glass ® Interlayer", expiring on 07/4/17.
- Notice of Acceptance No. 14–0423.15 issued to Eastman Chemical Company (MA) (Former Solutia, Inc.) for the "Saflex CP - Saflex and Saflex HP Composite Glass Interlayers w/ PET Core", expiring on 12/11/18.
- 3. Notice of Acceptance No. 15–1201.11 issued to Eastman Chemical Company (MA) (Former Solutia, Inc.) for the "Saflex Clear and Color Glass Interlayers", expiring on 05/21/21.

F. STATEMENTS (Submitted under files #14-1103.08)

1. Statement letter of conformance to FBC 2017 (6th Edition) and letter of private label, prepared by Al Farooq Corporation, dated 09/19/18, signed and sealed by Javad Ahmad, P.E.

G. OTHER

- 1. This NOA revises NOA #17-1011.12 (PLA), expiring on November 09, 2021.
- 2. Private Label Agreement (PLA) between CGI Windows and Doors, Inc. and Windoor Inc., signed by Dean M. Ruark, P.E., Vice President on behalf of both companies.
- 3. Reference CGI NOA # 17-1011.12 (#16-0329.04), expiring 11/09/21.

Windoor, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

3. New Evidence submitted

A. DRAWINGS

1. Drawing No. **FD450 Rev 1** (former **18-107D**), titled "Series 450 French Door, glazed & Outswing", sheets 1 thru 17 of 17, prepared by manufacturer, dated 06/12/20, signed and sealed by Lynn Miller, P.E.

B. TESTS

- 1. Test reports on: 1) Air Infiltration Test, per FBC, TAS 202–94
 - 2) Uniform Static Air Pressure Test, Loading per FBC, TAS 202–94
 - 3) Water Resistance Test, per FBC, TAS 202–94
 - 4) Large Missile Impact Test per FBC, TAS 201–94
 - 5) Cyclic Wind Pressure Loading per FBC, TAS 203–94

along with marked-up drawings and installation diagram of all PGT Industries, Inc., CGI Windows and Doors, Inc. and WinDoor, Inc. representative units listed below and tested to qualify **Dowsil 791** and **Dowsil 983** silicones, per Proposal #19-1155TP, prepared by Fenestration Testing Laboratory, Inc., Test Reports No.:

WinDoor, Inc. test specimens:

FTL-20-2078.1, WinDoor PW3000 Aluminum Fixed Lite (unit 11 in proposal)

FTL-20-2078.2, WinDoor HR9470 Thermally Broken Alum. Horiz. Roller (unit 12)

FTL-20-2078.3, WinDoor SGD8100 Alum. Sliding Glass Door (unit 13 in proposal)

FTL-20-2078.4, WinDoor HR9470 Thermally Broken Alum. Horiz. Roller (unit 14)

- FTL-20-2078.5, WinDoor PW9020 Alum. Fixed Lite (unit 15 in proposal) and
- FTL-20-2078.6, WinDoor PW9020 Alum. Fixed Lite (unit 16 in proposal)

all dated 09/24/20 and signed and sealed by Idalmis Ortega, P.E.

PGT Industries, Inc. test specimens:

FTL-7897, PGT PW5520 PVC Fixed Window (unit 6 in proposal), dated 09/03/14

FTL-20-2107.1, PGT SGD780 Aluminum Sliding Glass Door (unit 7 in proposal) FTL-20-2107.2, PGT CA740 Alum. Outswing Casement Window (unit 8 in proposal) FTL-20-2107.3, PGT PW7620A Aluminum Fixed Window (unit 9 in proposal) and FTL-20-2107.4, PGT PW7620A Aluminum Fixed Window (unit 10 in proposal)

all dated 07/13/20 and signed and sealed by Idalmis Ortega, P.E.

CGI Windows and Doors Inc. test specimens:

FTL-20-2108.1, CGI SH360 Aluminum Single Hung Window (unit 1 in proposal) **FTL-20-2108.2,** CGI CA238 Alum. Outswing Casement Window (unit 2 in proposal) **FTL-20-2108.3,** CGI SGD560 Aluminum Sliding Glass Door (unit 3 in proposal) **FTL-20-2108.4,** CGI PW410 Aluminum Fixed Window (unit 4 in proposal) and **FTL-20-2108.5,** CGI SH360 Aluminum Single Hung Window (unit 5 in proposal)all dated 08/24/20 and signed and sealed by Idalmis Ortega, P.E.

C. CALCULATIONS

1. Anchor verification calculations and structural analysis, complying with FBC 7th Edition (2020), dated 06/12/20 and revised on 06/20/20, prepared by manufacturer, signed, and sealed by Anthony Lynn Miller, P.E.

WinDoor, Inc.

NOTICE OF ACCEPTANCE: EVIDENCE SUBMITTED

D. QUALITY ASSURANCE

1. Miami Dade Department of Regulatory and Economic Resources (RER).

E. MATERIAL CERTIFICATIONS

1. None.

F. STATEMENTS

- 1. Statement letter of conformance to FBC 2020 (7th Edition), issued by manufacturer, dated 6/12/20, signed and sealed by Lynn Miller, P. E.
- 2. Notification of Successor Engineer per the Florida Administrative Code Section 61G15-27.001, notifying original engineer that the successor engineer is assuming full professional and legal responsibility for all engineering documents pertaining to this NOA, dated 06/12/20, signed and sealed by A. Lynn Miller, P.E.
- 3. Private Label Agreement dated 07/17/20 between Windoors, Inc. and CGI Windows and Doors, signed by Dean M. Ruark, P.E., V.P. Eng., on behalf of respective companies

G. OTHER

- 1. This NOA revises # 18-0926.06 (PLA), updates to FBC 2020, expiring 11/09/21.
- 2. Additional associated reference file #20-0619.07 (LMI).
- 3. RER Test proposals #19-1155 dated 01/10/20 approved by Ishaq I. Chanda, P.E.

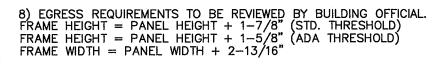
Ishag 1. Chands

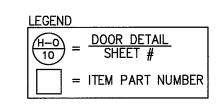
Ishaq I. Chanda, P.E. Product Control Examiner NOA No 20-0619.08 Expiration Date: November 09, 2021 Approval Date: November 25, 2020

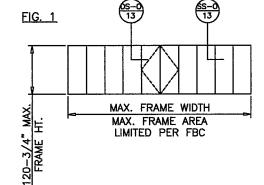
SERIES 450 ALUM. OUTSWING GLAZED DOORS WITH OR WITHOUT SIDELITES. LARGE & SMALL MISSILE

1) THIS PRODUCT HAS BEEN DESIGNED AND TESTED TO COMPLY WITH THE REQUIREMENTS OF THE 2017 (6TH EDITION)/2020 (7TH EDITION) FLORIDA BUILDING CODE INCLUDING HIGH VELOCITY HURRICANE ZONE (HVHZ).

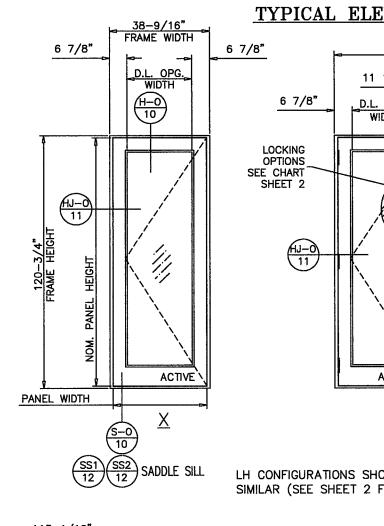
1BY OR 2BY WOOD BUCKS & BUCK FASTENERS BY OTHERS, MUST BE DESIGNED AND INSTALLED ADEQUATELY TO TRANSFER APPLIED PRODUCT LOADS TO THE BUILDING STRUCTURE.


3) ANCHORS SHALL BE CORROSION RESISTANT, SPACED AS SHOWN ON DETAILS AND INSTALLED PER MANUF'S INSTRUCTIONS, SPECIFIED EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALL DRESSING OR STUCCO.


4) A LOAD DURATION INCREASE IS USED IN DESIGN OF ANCHORS INTO WOOD ONLY.


5) ALL SHIMS TO BE HIGH IMPACT, NON-METALLIC AND NON-COMPRESSIBLE.

6) MATERIALS INCLUDING BUT NOT LIMITED TO STEEL/METAL SCREWS, THAT COME INTO CONTACT WITH OTHER DISSIMILAR MATERIALS SHALL MEET THE REQUIREMENTS OF THE 2017/2020 FLORIDA BUILDING CODE & ADOPTED STANDARDS.


7) THIS PRODUCT APPROVAL IS GENERIC AND DOES NOT PROVIDE INFORMATION FOR A SITE SPECIFIC PROJECT, I.É. LIFE SAFETY OF THIS PRODUCT, ADEQUACY OF STRUCTURE RECEIVING THIS PRODUCT AND SEALING AROUND OPENING FOR WATER INFILTRATION RESISTANCE ETC. CONDITIONS NOT SHOWN IN THIS DRAWING ARE TO BE ANALYZED SEPARATELY, AND TO BE REVIEWED BY BUILDING OFFICIAL.

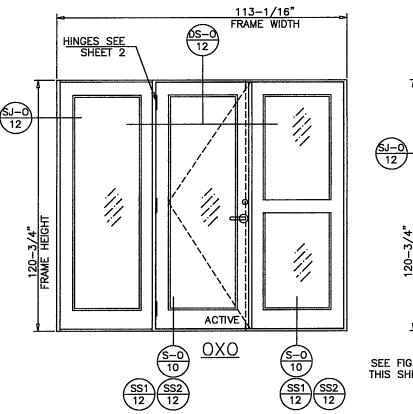
MULTIPLE SIDELITES W/ DOORS WITHIN TESTED FRAME AREA ARE AVAILABLE (SEE SHEET 14) 125 SQ. FT. TESTED FRAME AREA

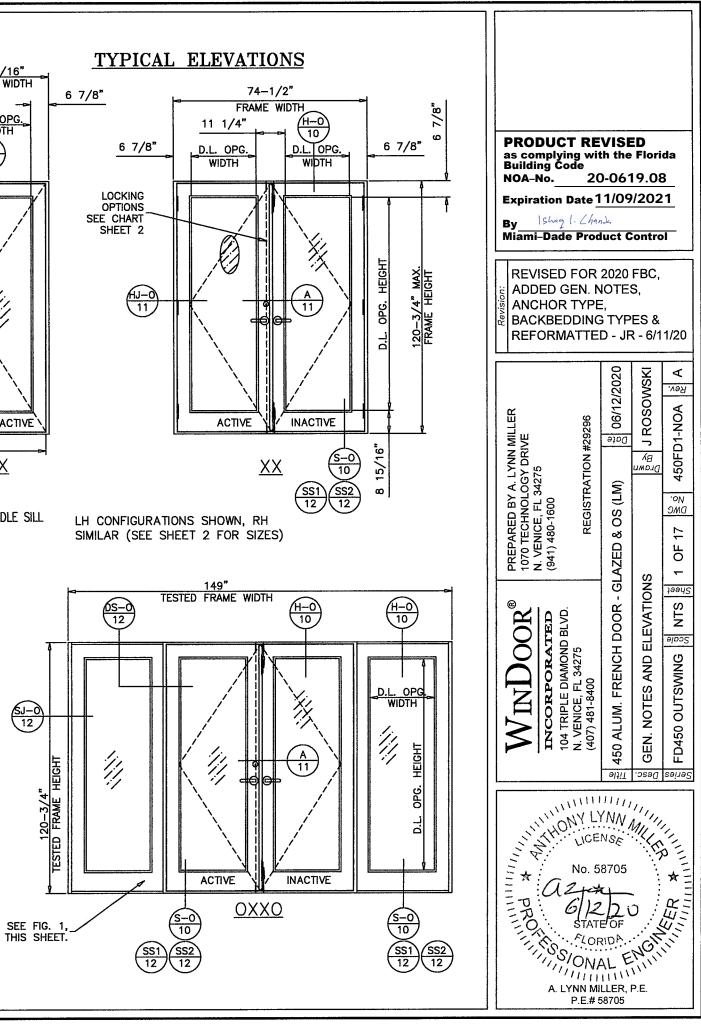
STEPS TO USE CHARTS:

1) DETERMINE WIND LOAD BASED ON PROVISIONS OF 2017/2020 FLORIDA BLDG. CODE.

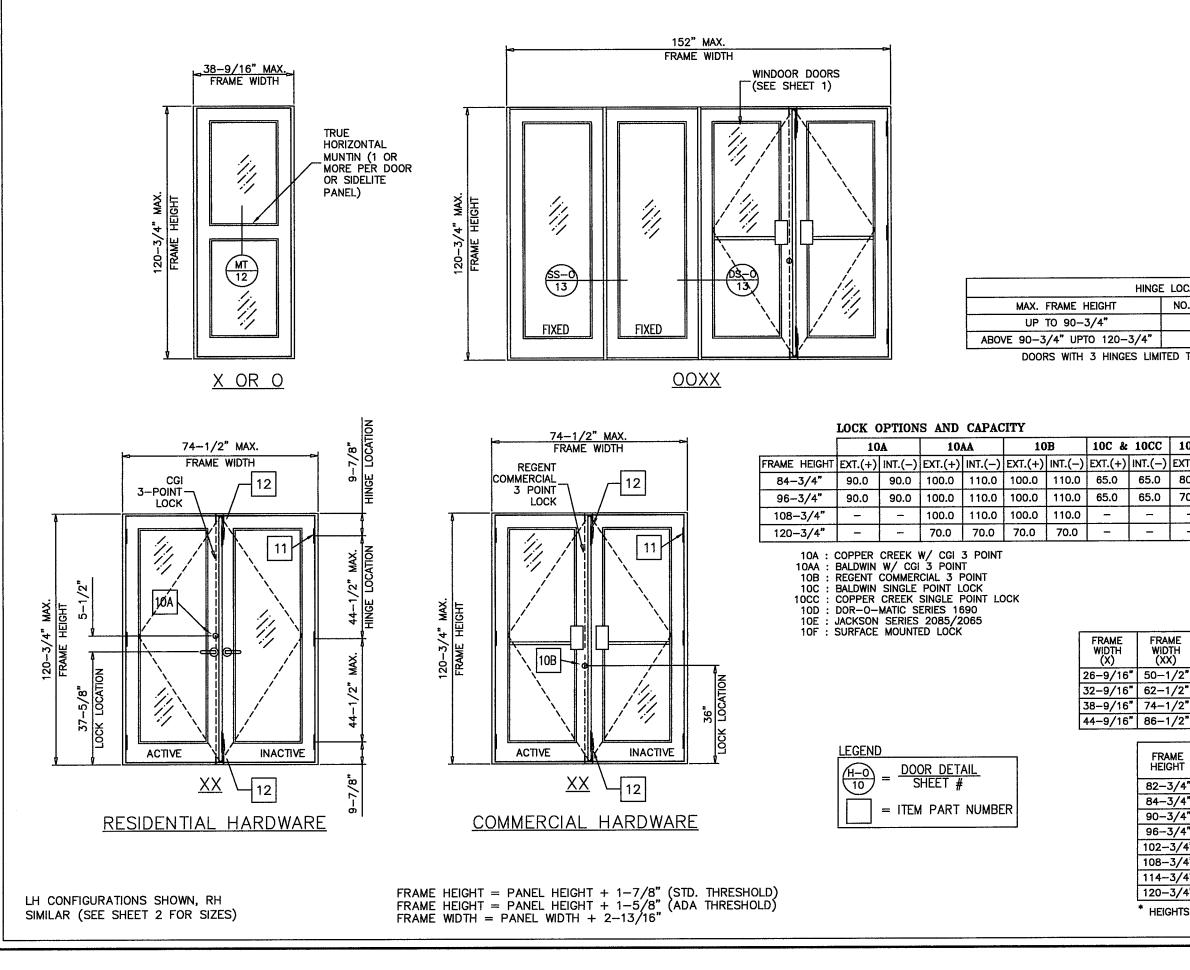
2) DETERMINE WATER INFILTRATION REQUIREMENTS BASED ON PROVISIONS OF FBC.

3) SELECT A DOOR SYSTEM I.E. OUTSWING AND TYPE OF THRESHOLD FROM SHEET 14 AND LOCK OPTIONS FROM SHEET 2.

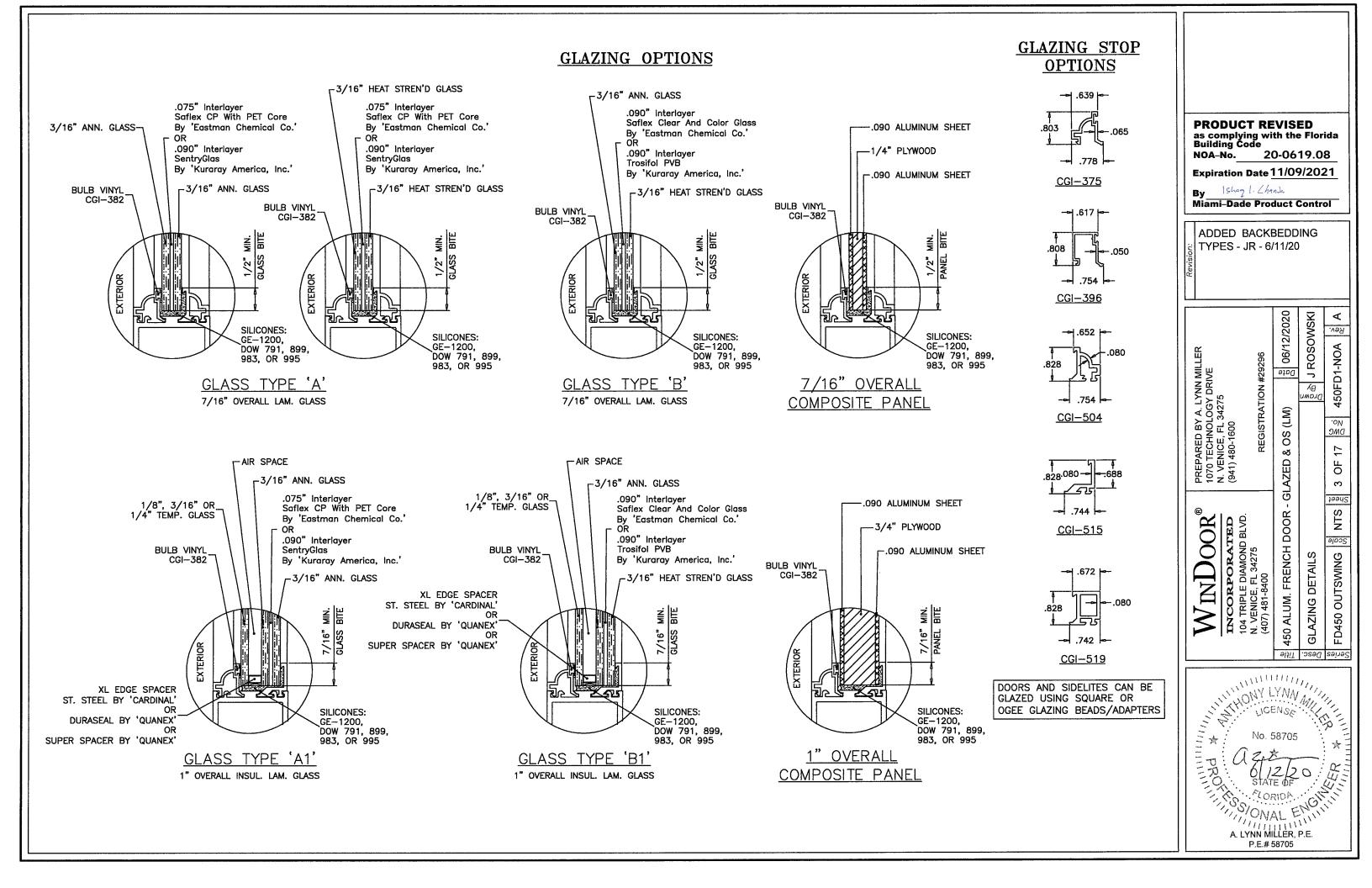

4) CHECK THE ALLOWABLE EXTERIOR AND INTERIOR LOADS FROM APPROPRIATE CHARTS ON SHEETS 2, 13 & 14. THE ALLOWABLE LOADS MUST MEET OR EXCEED THE DESIGN LOADS REQUIREMENTS.

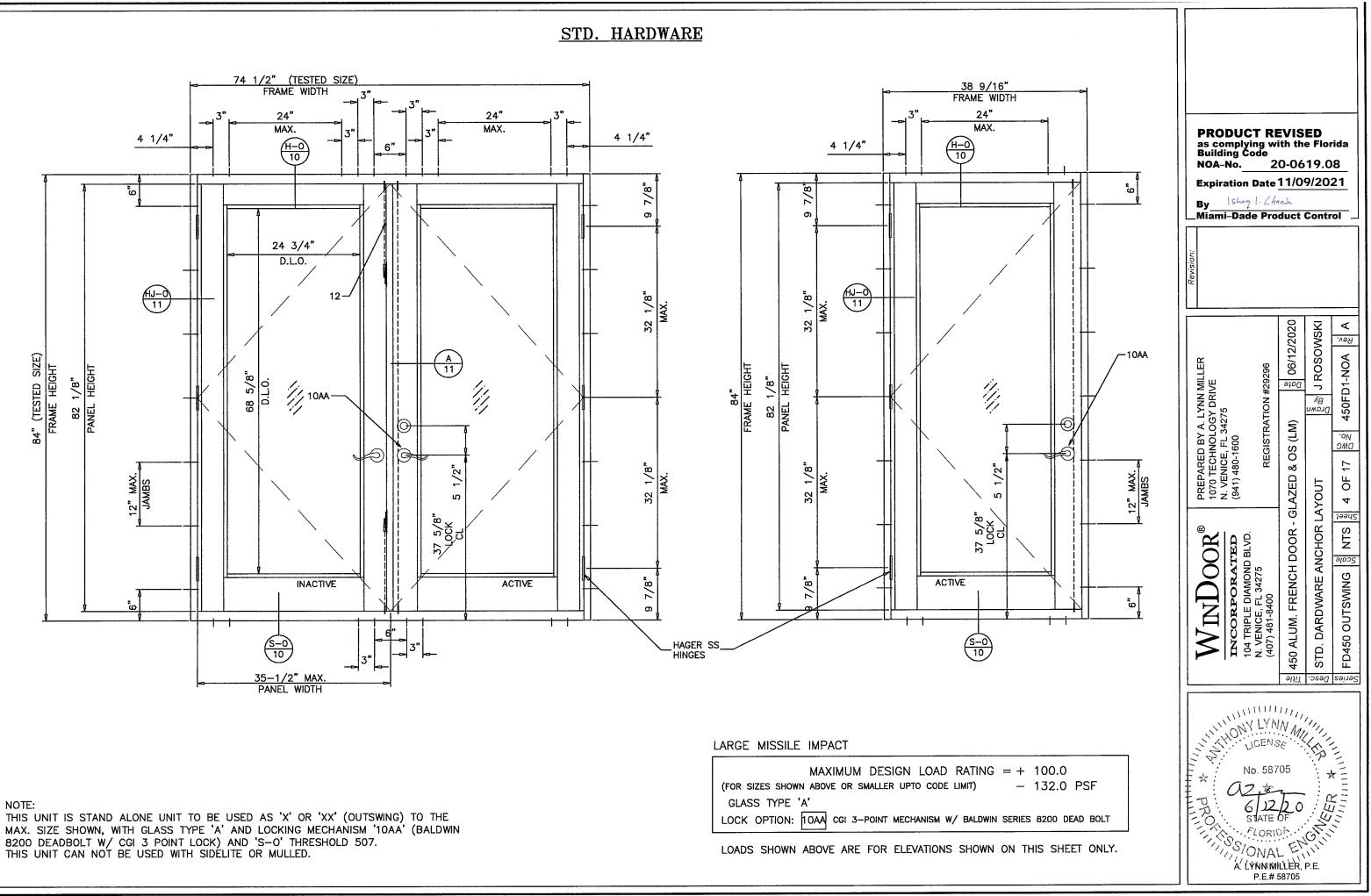

5) SELECT AND CHECK ANCHORS TO MEET LOAD. (SEE SHEETS 15 & 16)

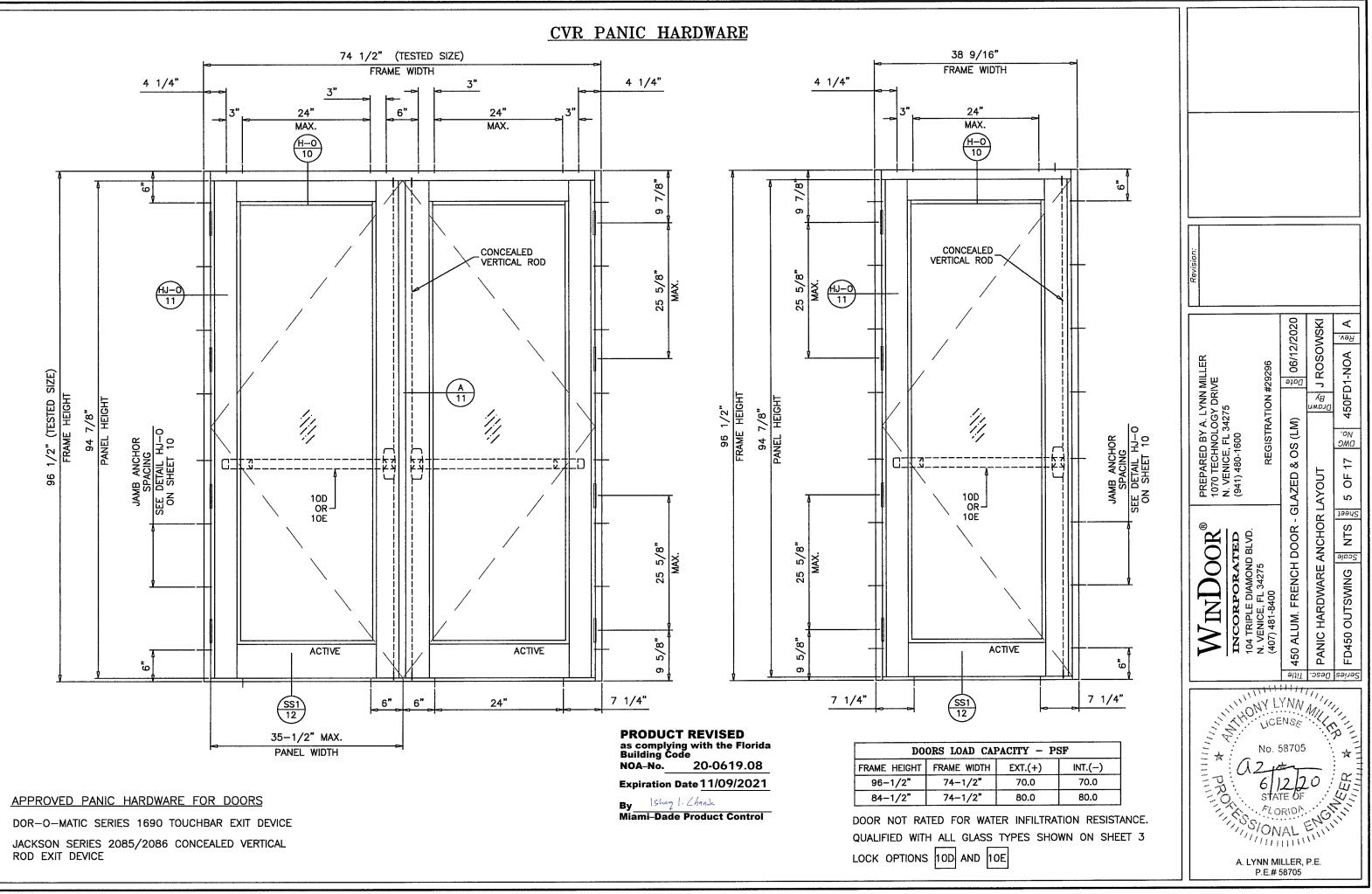
6) FOR MULLED SIDELITE REFER TO MULLION CAPACITY ON SHEET 13.


7) LOWER DESIGN PRESSURE FROM LOCKS CHART, PANEL PERFORMANCE CHART, MULLION PERFORMANCE CHART AND ANCHOR CAPACITY CHARTS AT MULLION AND MTG. STILE ENDS SHALL CONTROL THE ENTIRE SYSTEM.

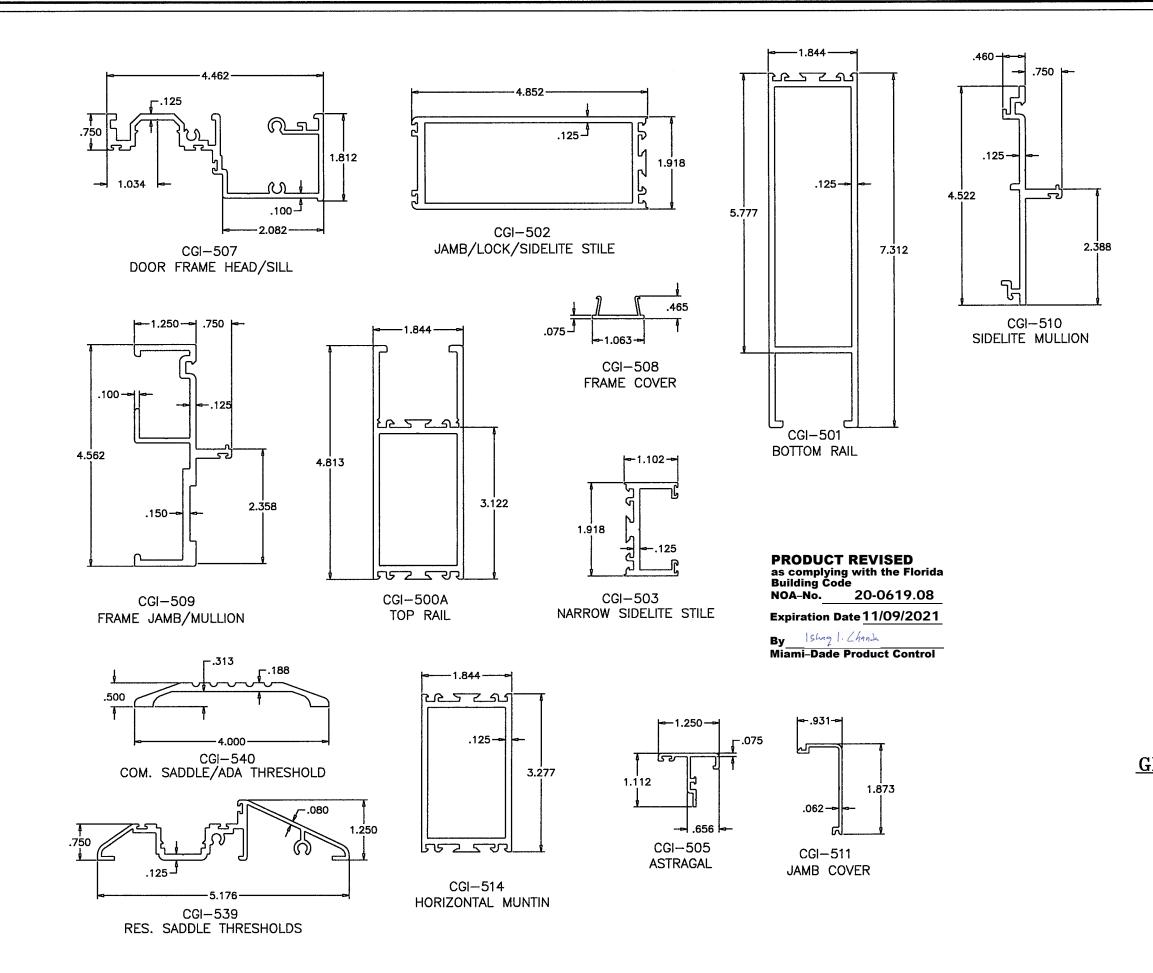
8) MATERIALS INCLUDING BUT NOT LIMITED TO STEEL/METAL SCREWS. THAT COME INTO CONTACT WITH OTHER DISSIMILAR MATERIALS SHALL MEET THE REQUIREMENTS OF THE FLORIDA BUILDING CODE.

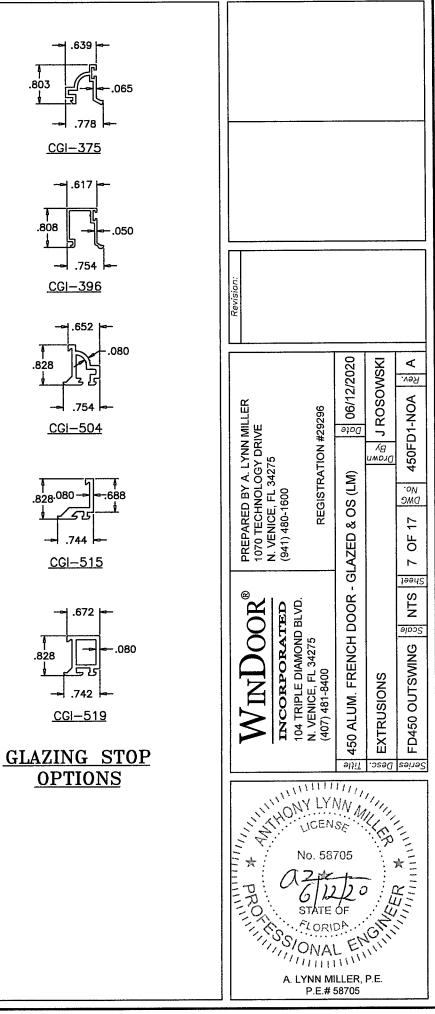


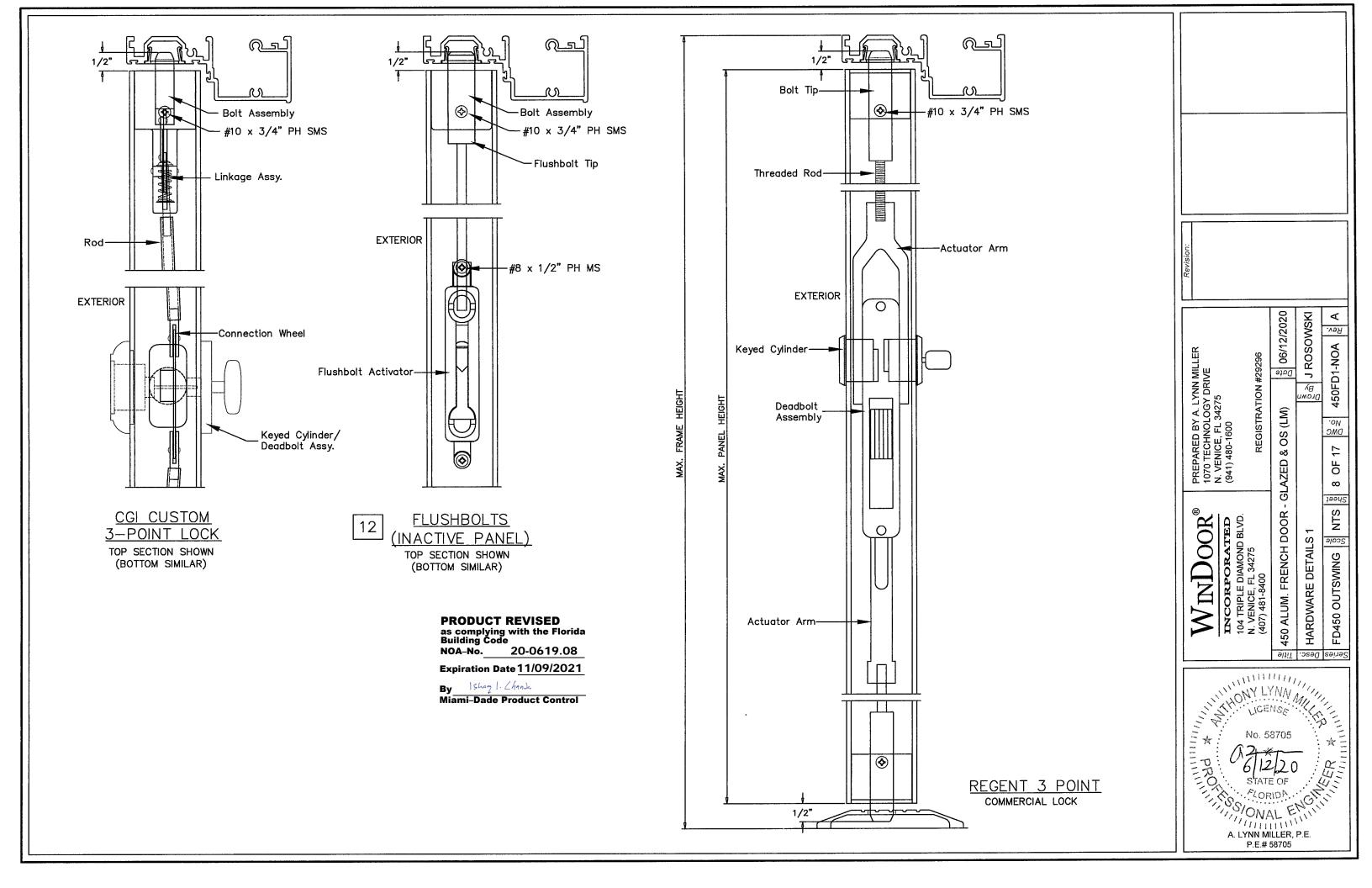


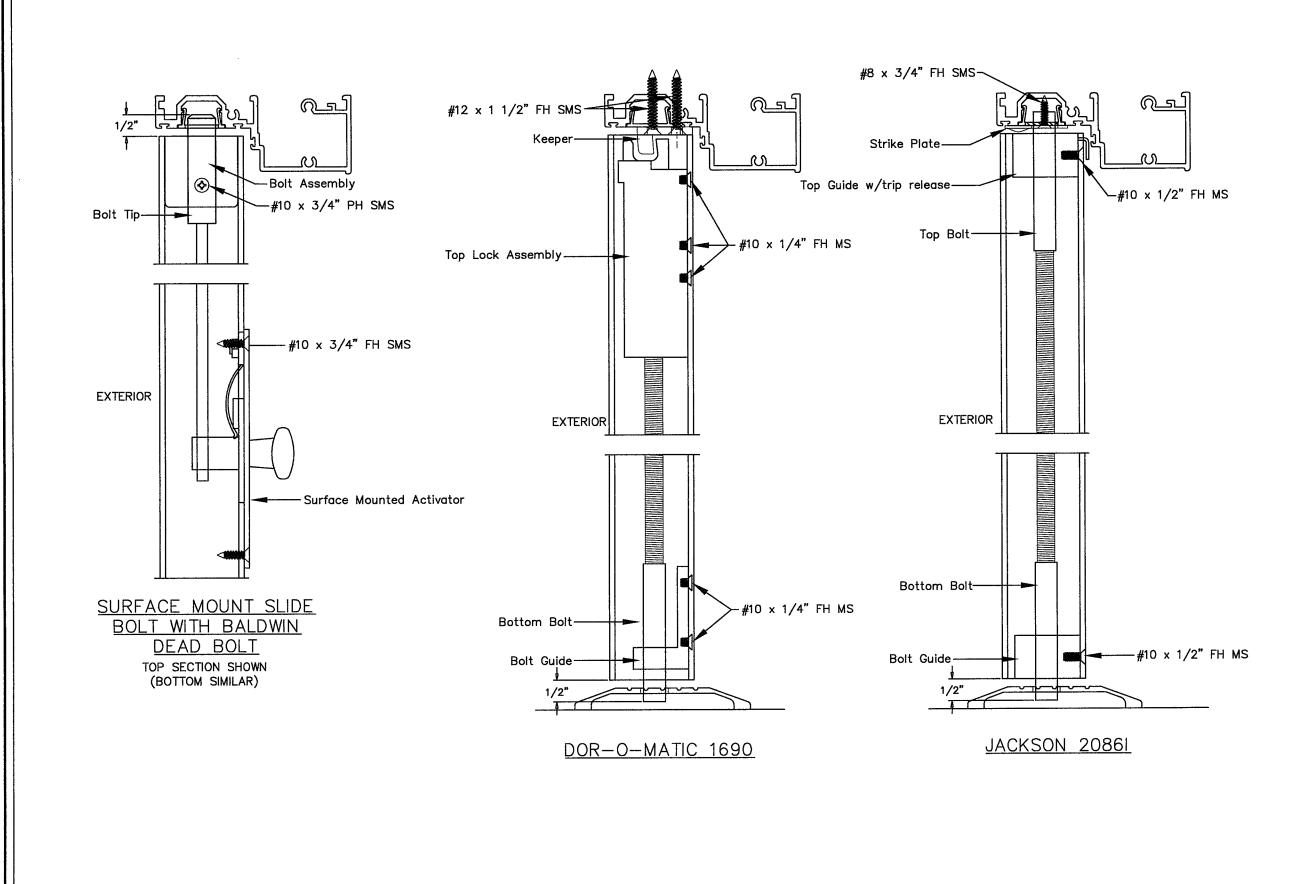

HARDWARE DESCRIPTION, TYPICAL ELEVATIONS

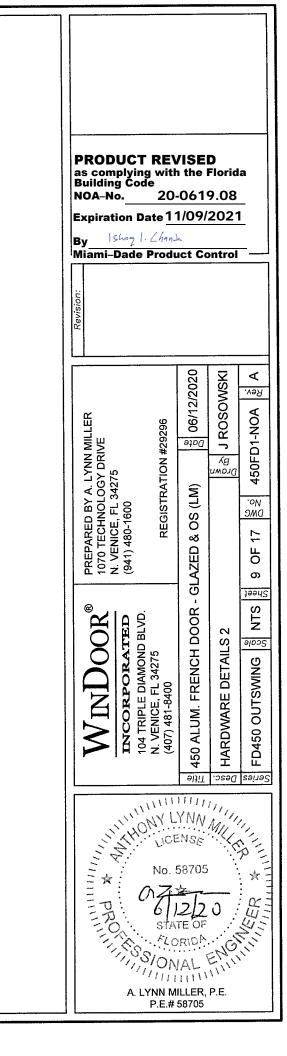
					PRC)D om		Γ RE	VISI	ED Elor	ida
					Build	lin	g Co	de			
					NOA				0-06		
					Expi	rat	ion E)ate <u>1</u>	11/09	9/202	21
					By	19	shag	. Lha	ndes		
							+		duct (Contro	ol
					1						
					ļ						
				:uo							
				Revision:							
				Re							
					ļ						
CATIO	NS				•						
D. RE		AX. S	PACING						020	SKI	∢
3		35	1/2"						5/2(Ň	.vэЯ
4		44	1/2"		К			6	06/12/2020	J ROSOWSKI	⊻
TO 1	00 PSF				PREPARED BY A. LYNN MILLER 1070 TECHNOLOGY DRIVE			REGISTRATION #29296		RO	450FD1-NOA
					ΞĽ			#26	Date		Ξ
					ξñ	10		NO		0гаwn	L P
					<u>ج</u> ۲	1275		ATI		U	45
					× ∂	- 34	0	TR	E		.0N
OD a	& 10E		OF		PREPARED BY A. LYNN MII 1070 TECHNOLOGY DRIVE	N. VENICE, FL 34275	160	GIS	GLAZED & OS (LM)		DMC
(+)		EXT.(-			문	Ы	08	Ш		NN NN	
30.0	INT.(-) I 80.0	100.0			M H O	Ĕ.	(4		Ĩ	ELEVATIONS	OF 17
70.0	70.0	90.0	_		PRE	ź	6		E E	AT	
0.0	70.0	90.0			·	_			N	Ш	7
					0				1		Jeet
		70.0	70.0		°2	1	a e		N N	g	NTS
									ğ	A S	1
					X			Ω		E E	aloos
					\varkappa		A Ö	427	N N	١. ٣	D Z
					\square		DA P	253	SEI	I SS	
					N		2 -	щ <u>8</u>	Ē.	۲Å	TS
D	DOR/SIDEL	LITE	D.L. OPG.				104 TRIPLE DIAMOND BLVD	N. VENICE, FL (407) 481-8400	450 ALUM. FRENCH DOOR	DESIGN PRESSURES AND	FD450 OUTSWING
	PANEL WIDTH		WIDTH		2			۳È	ALI	0	50
	23-3/4'		12-3/4"			1	ļģ	ΖĬ	20	ES S	2
	29-3/4		18-3/4"						4		
	35-3/4'		24-3/4"						əlfiT	.osəQ	series
,#	41-3/4'		30-3/4"								501105
	יישרי	ITE					,,,,	1111	Π_{II}		
: "	DOR/SIDEL PANEL	*	D.L. OPG. HEIGHT		.\	11	NY	LYN	IN A.	11,	
	HEIGHT				S.	$\langle \lambda \rangle$	0	CEN	SF	Ľ,	·
4" 4"	80-7/8		67-3/8" 69-3/8"		18			-		: Cp	31
+ +"	82-7/8 88-7/8		69-3/8" 75-3/8"	-	```		No	o. 587	705	· .	=
+ 4"	94-7/8		75-378 81-3/8"	[*	/	80	-Eit-		; '	
4"	100-7/8		87-3/8"	IE	70	C	Λ -	5-	1.		rΞΙ
4"	106-7/8		93-3/8"		PRO	•	0	THE	<u>l</u>	1	13
4"	112-7/8	10	99-3/8"		: <u>}</u> %	\sim	. F	LUDI	0. 0A .·'	J.	\sum
4"	118-7/8		105-3/8"		11	S'S	51-		0F DA 14.ER, 58705	5.1	
S FO	R STD. TH		IOLD			11	SIC Min	NA		ÞΕ '/'	
							~: ⊭ĵ	۳۱۹۱۲ P.E.#	58705	.تا. ا	
											f

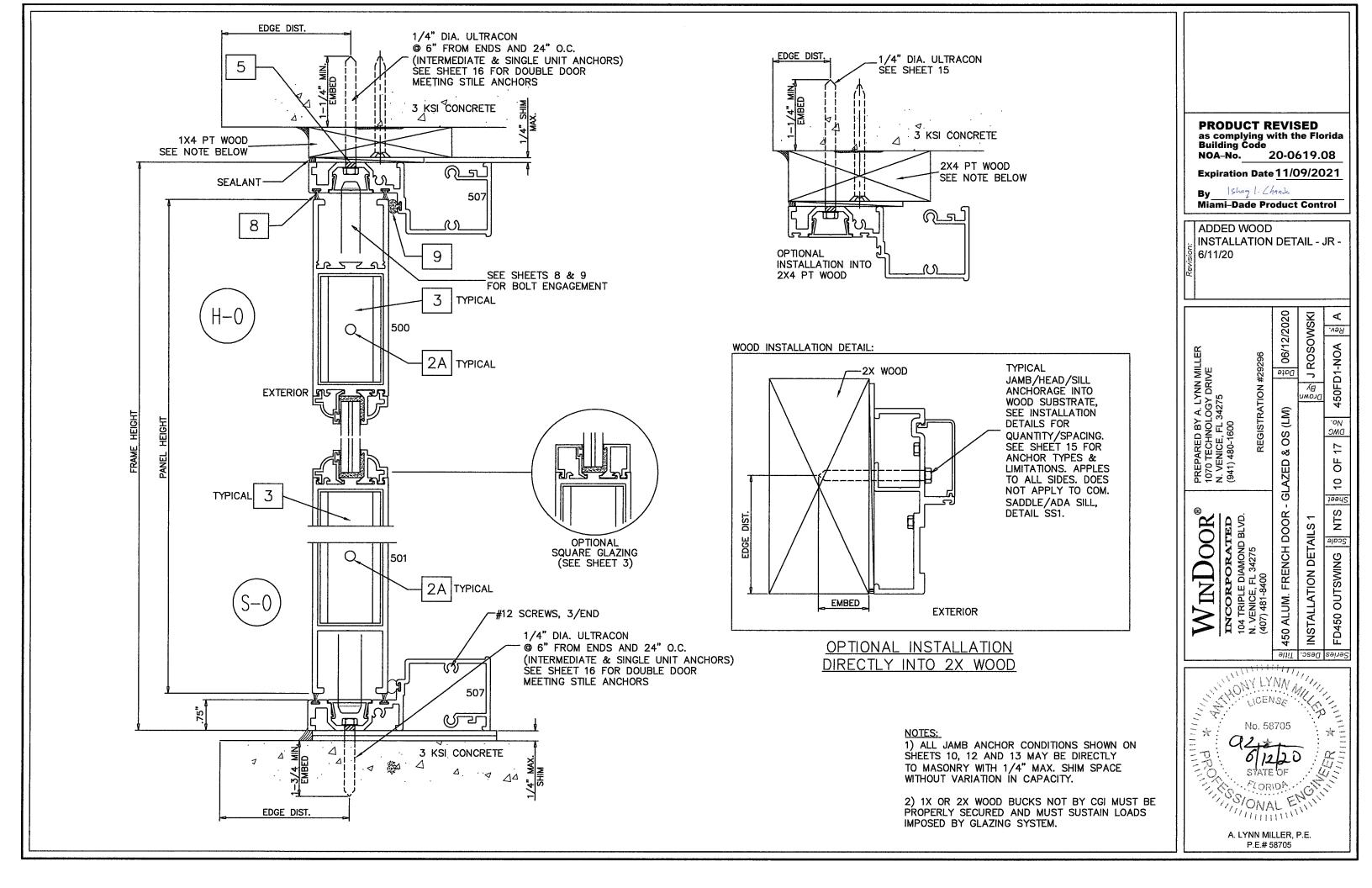


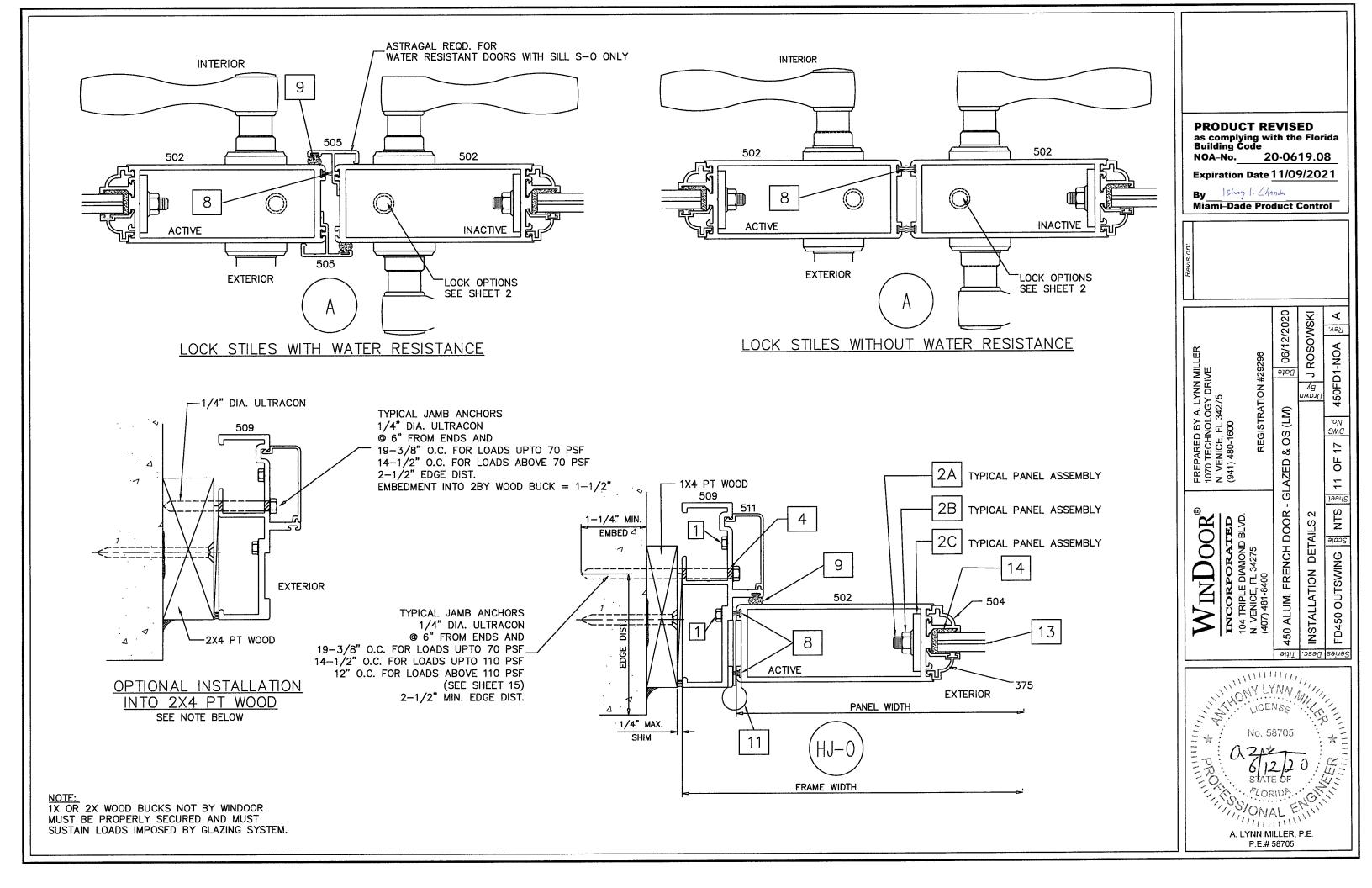


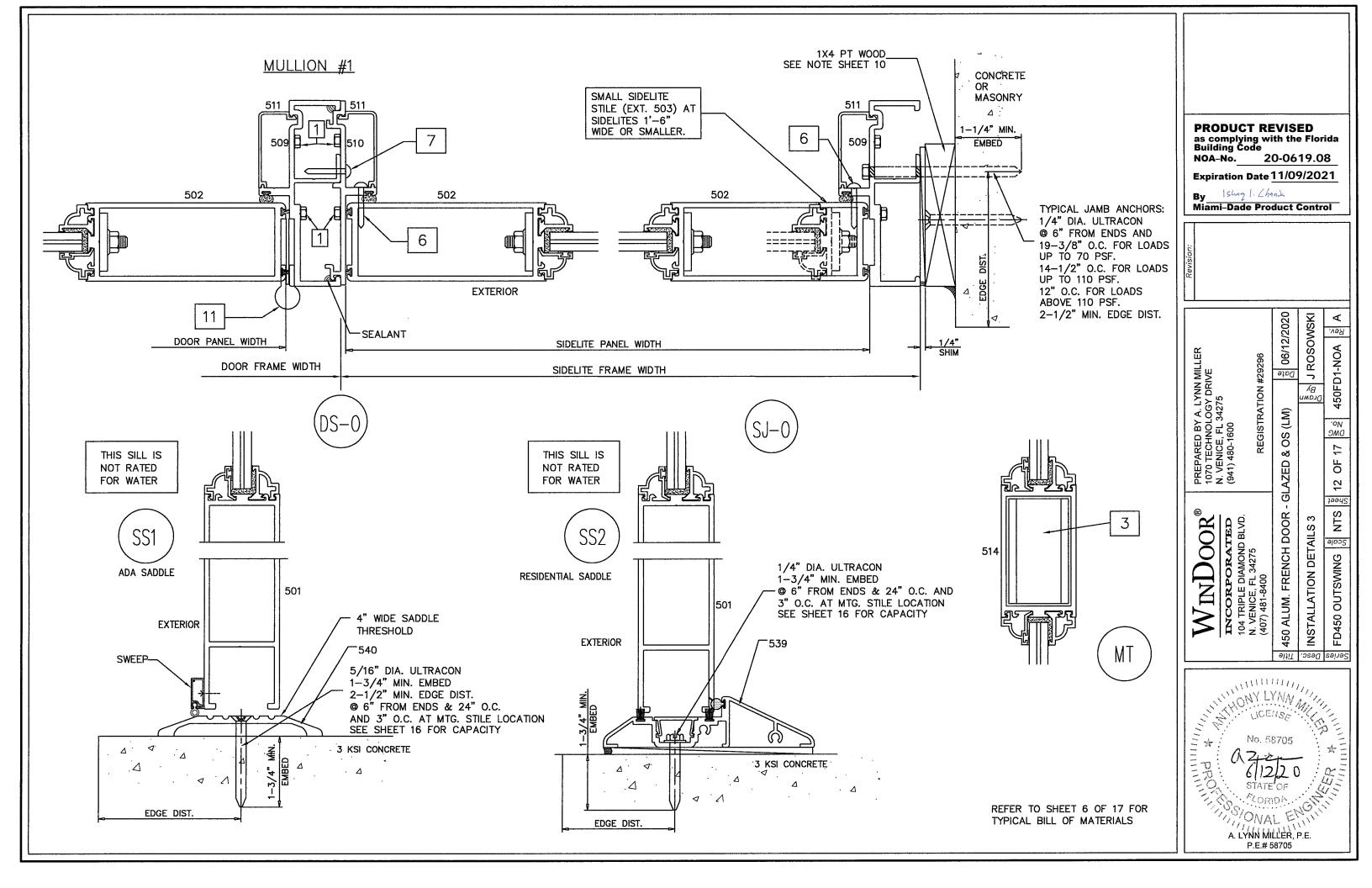


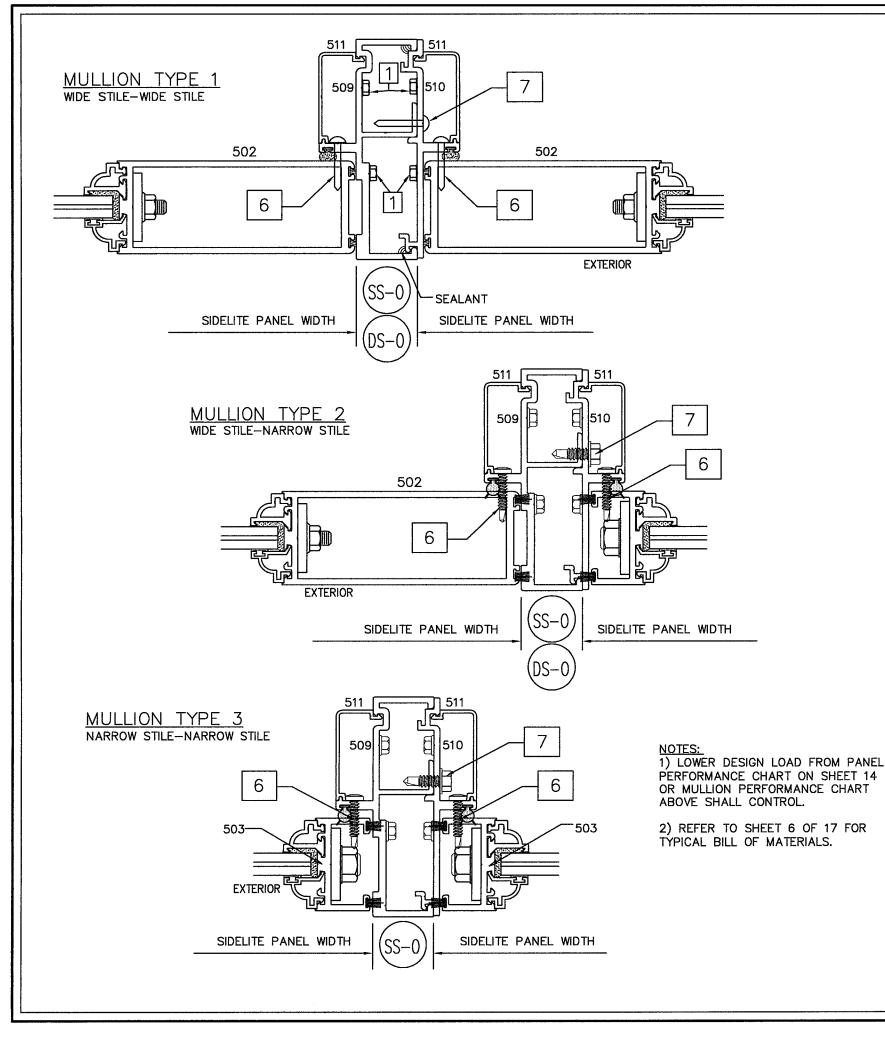

ITEM	DESCRIPTION	BILL OF M	MATERIALS
1 2A 2B	#12 X 1 1/4" HEX HEAD S 3/8–16 FULLY THREADED 3/8–16 HEX NUT	S/S SMS (3 PER CORNER CONNECTION) CONTINUOUS ROD	CGI 4-1/2" X 4" HINGE IN ALUMINUM [11] SECURED WITH (8) $\#12-24 \times 1/2$ " F.H. M.S. (3 PER PANEL UP TO 7'-6 3/4" HIGH) (4 PER PANEL OVER 7'-6 3/4")
2C 3	1 1/2" X 1 1/2" X 3/16" SHEAR CLIP (EXT. NO. 506		CGI FLUSHBOLT AT TOP & BOTTOM OF INACTIVE LEAF 12 TO PANEL STILE WITH #10 X 3/4" PH SMS, ACTIVATO #8 X 1/2" PH SMS.
4	DOUBLE 9/32" DIA. JAMB 6" FROM ENDS & 24" O.C 9/32" DIA. HEAD & SILL I 6" FROM ENDS, 3 @ CENT	: MAX. INSTLL. HOLES AT ER OF PAIRS	13SEE SHEET 3 FOR GLAZING OPTIONS14SILICONES: GE-1200, DOW 791, 899, 983, OR 995171/2" X 1/2" CONTINUOUS CLOSED CELL FOAM17TAPE WITH ONE SIDE ADHESIVE
6	SPACED 6" O.C. & 24" O. #10 X 1" PH-PH-SS TEKS FROM ENDS & 19-3/8" C	S SCREW, @ 3" & 7" D.C. MAX.	18 PLASTIC WEEP BAFFLE 19 7/8" X 5" X 1/8" THK. CONTINUOUS ALUMINUM SILL
7 8 9			EXTRUSION LIST: 500A, 501, 502, 503, 504, 507, 509, 5 515, 519, 539, & 540 ALL EXTRUSIONS ARE 6063—T6. 375, 396, 505, 508, 511 EXTRUSIONS ARE 6063—T5.
10 10 104	CGI CUSTOM 3 POINT LOCK END BOLTS (TOP & BOTTO (1) CGI CUSTOM INTERIOR I (1) DEADBOLT BY COPPER CGI CUSTOM 3 POINT LOCK END BOLTS (TOP & BOTTO (1) CGI CUSTOM INTERIOR I	CREEEK SERIES E MODEL D82410. (4503PL, CONSISTING OF (2) CGI CUSTOM M), ATTACHED WITH #10 X 3/4" PH SMS,	Building Code NOA-No. 20-0619.0 Expiration Date <u>11/09/20</u> By Istra I. China
	 	THREE POINT LOCK MECHANISM WITH MORTIS	Material #14 Steel Screw, Gr 5
		ADBOLT BY COPPER CREEK SERIES D82410. TOUCHBAR PANIC EXIT DEVICE WITH SEE SHEET 5.	1/4" Elco UltraCon 1/4" DeWalt UltraCon+ 5/16" Elco UltraCon 5/16" DeWalt UltraCon+ 6063-T5 Aluminum
10	DE JACKSON 20 SERIES PANIC EXIT DEVICE SEE SHEET 5.	EXIT WITH 2085/2086 CONCEALED VERTICAL NTED SLIDE BOLTS WITH CGI END BOLTS AT . BALDWIN SERIES 8200 DEAD BOLT.	AL ROD A36 Steel Gr. 33 Steel Stud

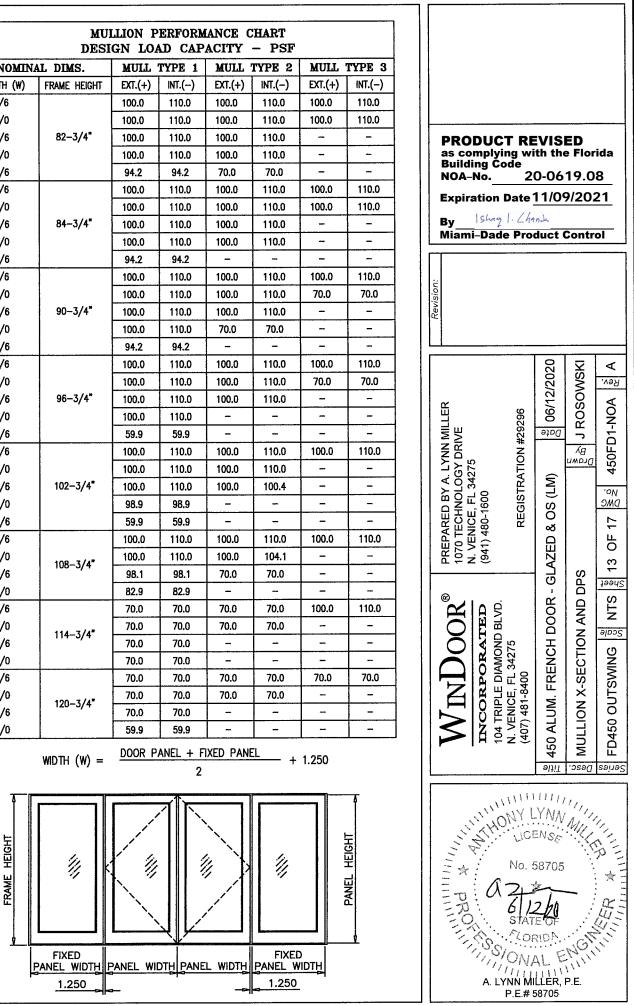

DUS ALUMINUM SILL ANGLE ADAPTER D3, 504, 507, 509, 510, 514, S ARE 6063-T5. PRODUCT REVISED Bas complying with the Florida Building Code NOA-No. 20-0619.08 Expiration Date 11/09/2021 By Iskag I: Chank Material Min. Fy #14 Steel Screw, Gr 5 81 ksi 1/4" Elco UltraCon 155 ksi 1/4" Elco UltraCon+ 156 ksi 1/4" Elco UltraCon+ 156 ksi 6063-T5. 177 ksi #14 Steel Screw, Gr 5 81 ksi 1/4" Elco UltraCon+ 155 ksi 1/4" Elco UltraCon+ 155 ksi 6063-T5. 177 ksi 5/16" DeWalt UltraCon+ 155 ksi 6063-T5. 177 ksi 6063-T5. 105 ksi 1/4" Elco UltraCon 155 ksi 1/4" Elco UltraCon+ 156 ksi 8 38 ksi 603-T5 Aluminum 166 ksi A36 Steel 36 ksi 58 ksi Gr. 33 Steel Stud 33 ksi 45 ksi	LID BRASS OR STAINL NUM "F.H. M.S. HIGH) M OF INACTIVE LEAF, " PH SMS, ACTIVATO NS 9, 983, OR 995 D CELL FOAM	, HOUSIN	IG ATTACHED	1 1	ED B/ ES - JF				
MaterialMin. FyMin. Fu#14 Steel Screw, Gr 581 ksi105 ksi1/4" Elco UltraCon155 ksi177 ksi1/4" DeWalt UltraCon+148 ksi164 ksi5/16" Elco UltraCon155 ksi177 ksi5/16" DeWalt UltraCon+155 ksi177 ksi6063-T5 Aluminum16 ksi22 ksiA36 Steel36 ksi58 ksiGr. 33 Steel Stud33 ksi45 ksi	93, 504, 507, 509, 57 S ARE 6063—T6. ARE 6063—T5. PRODUCT REVISED as complying with the Florid Building Code NOA-No. 20-0619.03 Expiration Date 11/09/202	10, 514, ida <u>8</u>	DAPTER	DODR [®] PREPARED BY A. LYNN MILLER 1070 TECHNOLOGY DRIVE N VENICE ET 34775	(941) 480-1600		- GLAZED & OS (LM)	λg Drown	S_{CGI}^{e} NTS S_{SGI}^{e} 6 OF 17 S_{SGI}^{O} 450FD1-NOA S_{SGI}^{O}
#14 Steel Screw, Gr 581 ksi105 ksi1/4" Elco UltraCon155 ksi177 ksi1/4" DeWalt UltraCon+148 ksi164 ksi5/16" Elco UltraCon155 ksi177 ksi5/16" DeWalt UltraCon+155 ksi177 ksi6063-T5 Aluminum16 ksi22 ksiA36 Steel36 ksi58 ksiGr. 33 Steel Stud33 ksi45 ksiA LYNN MILLER, P.E.A LYNN MILLER, P.E.	Miami-Dade Product Contro		Min	WinI	INCORPC 104 TRIPLE DI	N. VENICE, FL (407) 481-8400	-		
1/4" DeWalt UltraCon+148 ksi164 ksi5/16" Elco UltraCon155 ksi177 ksi5/16" DeWalt UltraCon+155 ksi177 ksi6063-T5 Aluminum16 ksi22 ksiA36 Steel36 ksi58 ksiGr. 33 Steel Stud33 ksi45 ksiA LYNN MILLER, P.E.					<i><i>¹</i>¹¹</i> ¹	1117 1117	LYN/	V /.	1,
5/16" Elco UltraCon 155 ksi 177 ksi 5/16" DeWalt UltraCon+ 155 ksi 177 ksi 6063-T5 Aluminum 16 ksi 22 ksi A36 Steel 36 ksi 58 ksi Gr. 33 Steel Stud 33 ksi 45 ksi ALLYNN MILLER, P.E. ALLYNN MILLER, P.E.					ZU,		SENSE	MIL	
A36 Steel 36 ksi 58 ksi Gr. 33 Steel Stud 33 ksi 45 ksi A. LYNN MILLER, P.E. A. LYNN MILLER, P.E.				111	L.	No	5270	5	やま
A36 Steel 36 ksi 58 ksi Gr. 33 Steel Stud 33 ksi 45 ksi A. LYNN MILLER, P.E. A. LYNN MILLER, P.E.				1	$\cdot \cap$	1		0	: *E
A36 Steel 36 ksi 58 ksi Gr. 33 Steel Stud 33 ksi 45 ksi A. LYNN MILLER, P.E. A. LYNN MILLER, P.E.				Ē	U	21	675	0	T c F
A. LYNN MILLER, P.E.		· · · · · · · · · · · · · · · · · · ·		==	5	ST/	TE OF		: #J
A. LYNN MILLER, P.E.				1		.FL(ORIDA	, C	159
A. LYNN MILLER, P.E.					100	VON	VAL	EN	
P.E.# 58705					A. LYI	NN MI	ILLER,	P.E.	

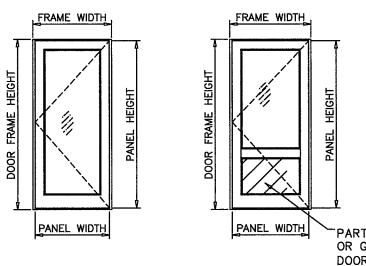


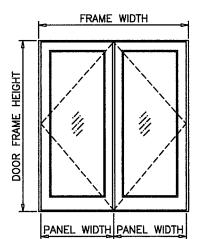












NOMINA WIDTH (W) 1/6 2/0 2/6	AL DIMS.	GN LOA		r
1/6 2/0	FRAME HEIGHT		TYPE 1]
2/0		EXT.(+)	INT.()	E
		100.0	110.0	1
2/6		100.0	110.0	•
	82-3/4"	100.0	110.0	
3/0		100.0	110.0	Γ
3/6		94.2	94.2	Γ
1/6		100.0	110.0	
2/0		100.0	110.0	
2/6	84-3/4"	100.0	110.0	
3/0		100.0	110.0	
3/6		94.2	94.2	
1/6		100.0	110.0	
2/0		100.0	110.0	
2/6	90-3/4"	100.0	110.0	
3/0		100.0	110.0	
3/6		94.2	94.2	
1/6		100.0	110.0	
2/0		100.0	110.0	
2/6	96-3/4"	100.0	110.0	
3/0		100.0	110.0	
3/6		59. 9	59.9	
1/6		100.0	110.0	
2/0		100.0	110.0	L
2/6	102-3/4"	100.0	110.0	
3/0		98.9	98.9	
3/6		59.9	59.9	L
1/6		100.0	110.0	L
2/0	108-3/4"	100.0	110.0	
2/6		98.1	98.1	
3/0	ļ	82.9	82.9	
1/6		70.0	70.0	Ļ
2/0	114-3/4"	70.0	70.0	
2/6		70.0	70.0	Ļ
3/0		70.0	70.0	╞
1/6		70.0	70.0	┡
2/0	120-3/4"	70.0	70.0	1
2/6		70.0	70.0	┡
3/0	<u> </u>	59.9	59.9	L
	WIDTH (W) =	DOOR P	ANEL + F 2	X

PARTIAL COMPOSITE PANEL OR GLASS APPLICABLE TO DOOR/SIDELITE

NOTES: 1) FOR SINGLE OR DOUBLE LEAF DOORS AND SINGLE SIDELITES CAPACITY SEE

CHART ON THIS SHEET.

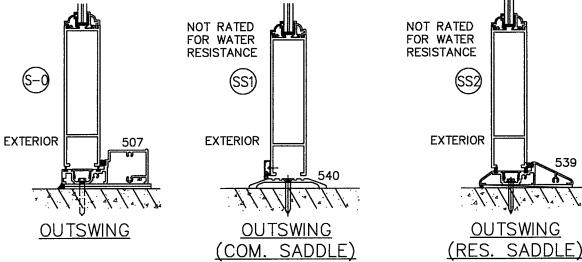
2) SEE BELOW FOR THRESHOLD TYPES.

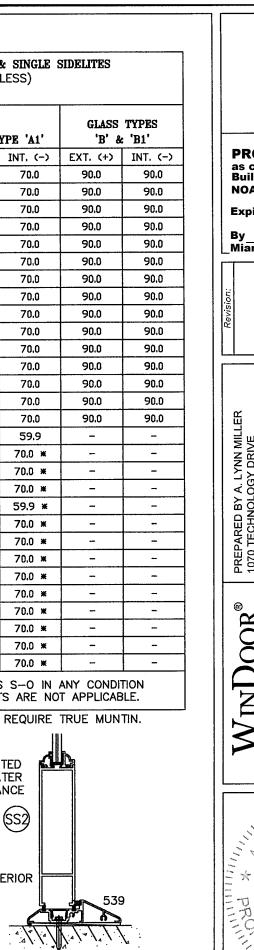
3) SEE SHEET 2 FOR LOCK CAPACITIES FOR SINGLE AND DOUBLE DOORS.

4) SEE SHEET 13 FOR MULLION TYPES AND DESIGN LOAD CAPACITY.

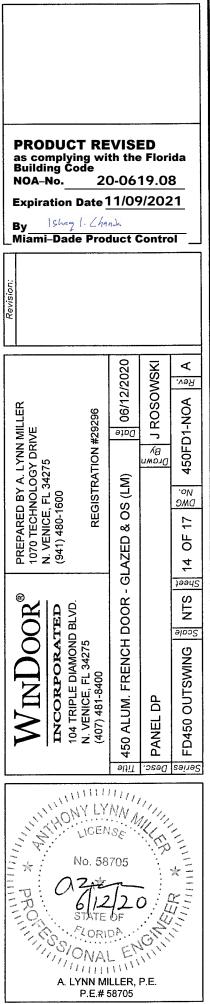
5) SEE CHART ON SHEET 15 FOR MULLION ANCHORS CAPACITY.

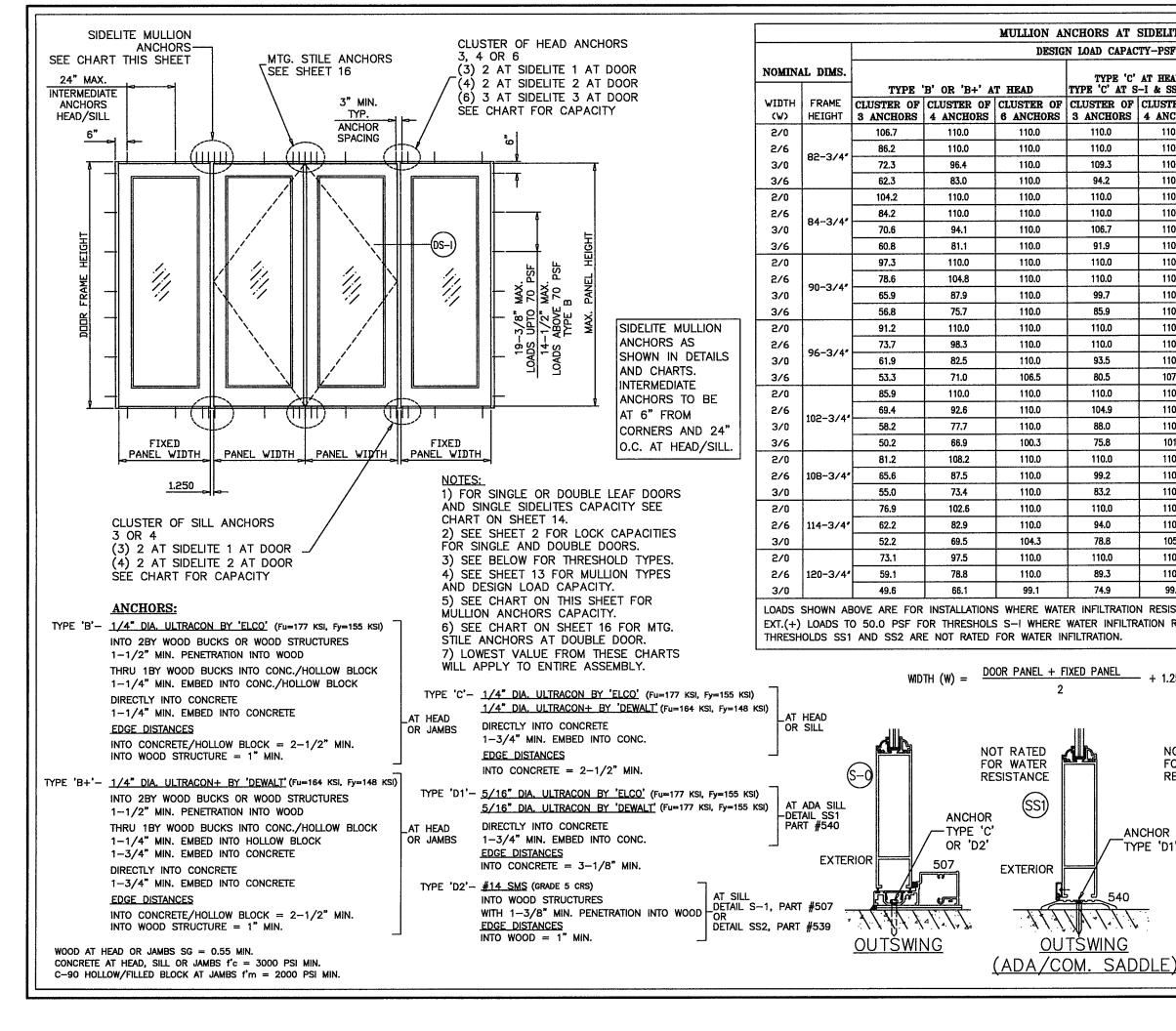
6) SEE CHART ON SHEET 16 FOR MTG. STILE ANCHORS AT DOUBLE DOOR.

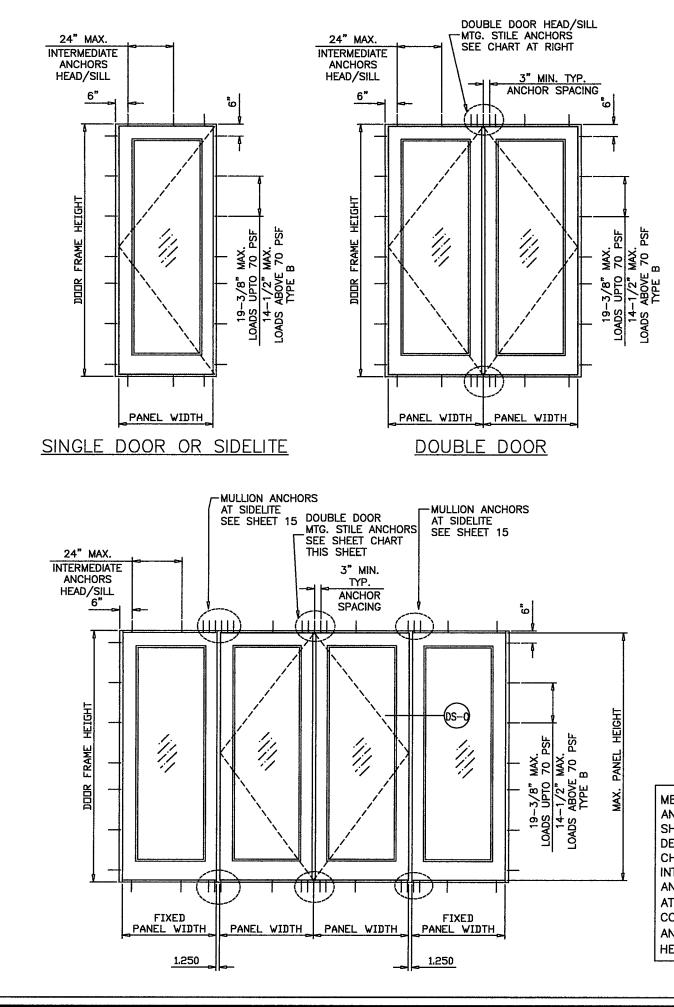

7) LOWEST VALUE FROM THESE CHARTS WILL APPLY TO ENTIRE ASSEMBLY.


8) GLASS CAPACITIES ON THIS SHEET ARE BASED ON ASTM E1300-09 (3 SEC. GUSTS) AND FLORIDA BUILDING COMMISSION DECLARATORY STATEMENT.

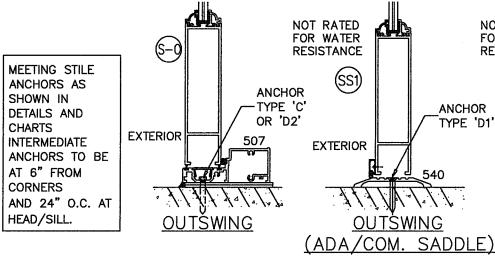
			HART FOR SIN			
		•	SIGN LOAD			
	MINAL DIMS		7/16" COMP(TYPE 'A' DSITE PANELS ITE PANELS	GLASS T	VDI
FRAME WIDTH F	RAME WIDTH	FRAME HEIGHT	EXT. (+)	IIE FANELS	EXT. (+)	
26-9/16*	50-1/2"		100.0	110.0	70.0	<u> </u>
32-9/16*	62-1/2"		100.0	110.0	70.0	<u> </u>
38-9/16*	74-1/2"	82-3/4″	100.0	110.0	70.0	
44-9/16*	86-1/2"		94.2	94.2	70.0	
26-9/16*	50-1/2"		100.0	110.0	70.0	
32-9/16*	62-1/2"		100.0	110.0	70.0	
38-9/16*	74-1/2*	84-3/4″	100.0	110.0	70.0	
44-9/16*	86-1/2"	:	94.2	94.2	70.0	
26-9/16*	50-1/2"		100.0	110.0	70.0	
32-9/16*	62-1/2"		100.0	110.0	70.0	
38-9/16*	74-1/2"	90-3/4"	100.0	110.0	70.0	
44-9/16*	86-1/2"		94.2	94.2	70.0	Γ
26-9/16*	50-1/2"		100.0	110.0	70.0	Γ
32-9/16*	62-1/2"	00.044	100.0	110.0	70.0	
38-9/16*	74-1/2"	96-3/4″	100.0	110.0	70.0	
44-9/16*	86-1/2"		59.9	59.9	59.9	
26-9/16*	50-1/2"		100.0	110.0	70.0 *	
32-9/16*	62-1/2*	102 2 (44	100.0	110.0	70.0 *	
38-9/16*	74-1/2"	102-3/4"	100.0	110.0	70.0 ×	
44-9/16"	86-1/2"		59.9	59.9	59,9 *	
26-9/16*	50-1/2"		100.0	110.0	70,0 *	
32-9/16*	62-1/2"	108-3/4*	100.0	110.0	70,0 *	
38-9/16*	74-1/2"		100.0	110.0	70.0 *	
26-9/16*	50-1/2"		70.0	70.0	70.0 *	
32-9/16*	62-1/2*	114-3/4"	70.0	70.0	70.0 *	
38-9/16*	74-1/2"		70.0	70.0	70.0 *	
26-9/16*	50-1/2"		70.0	70.0	70.0 *	
32-9/16*	62-1/2"	120-3/4*	70.0	70,0	70.0 *	
38-9/16*	74-1/2*		70.0	70.0	70,0 *	

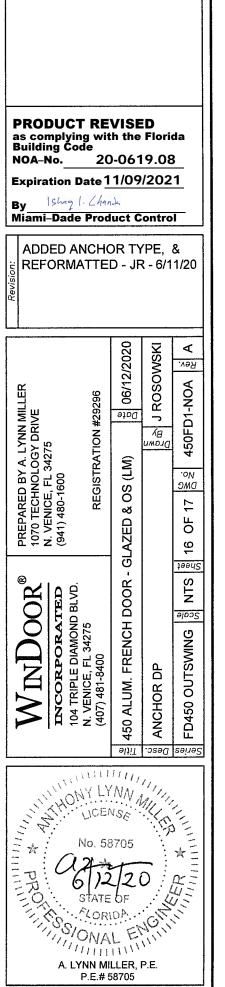

LOADS SHOWN ABOVE ARE FOR DOORS USING THRESHOLDS S-O IN ANY CONDITION AND SS1 & SS2 WHERE WATER INFILTRATION REQUIREMENTS ARE NOT APPLICABLE.


* GLASS LIMITED TO 8/0 DAYLITE OPENING. PANEL SIZES ABOVE 8/0 REQUIRE TRUE MUNTIN.



OUTSWING

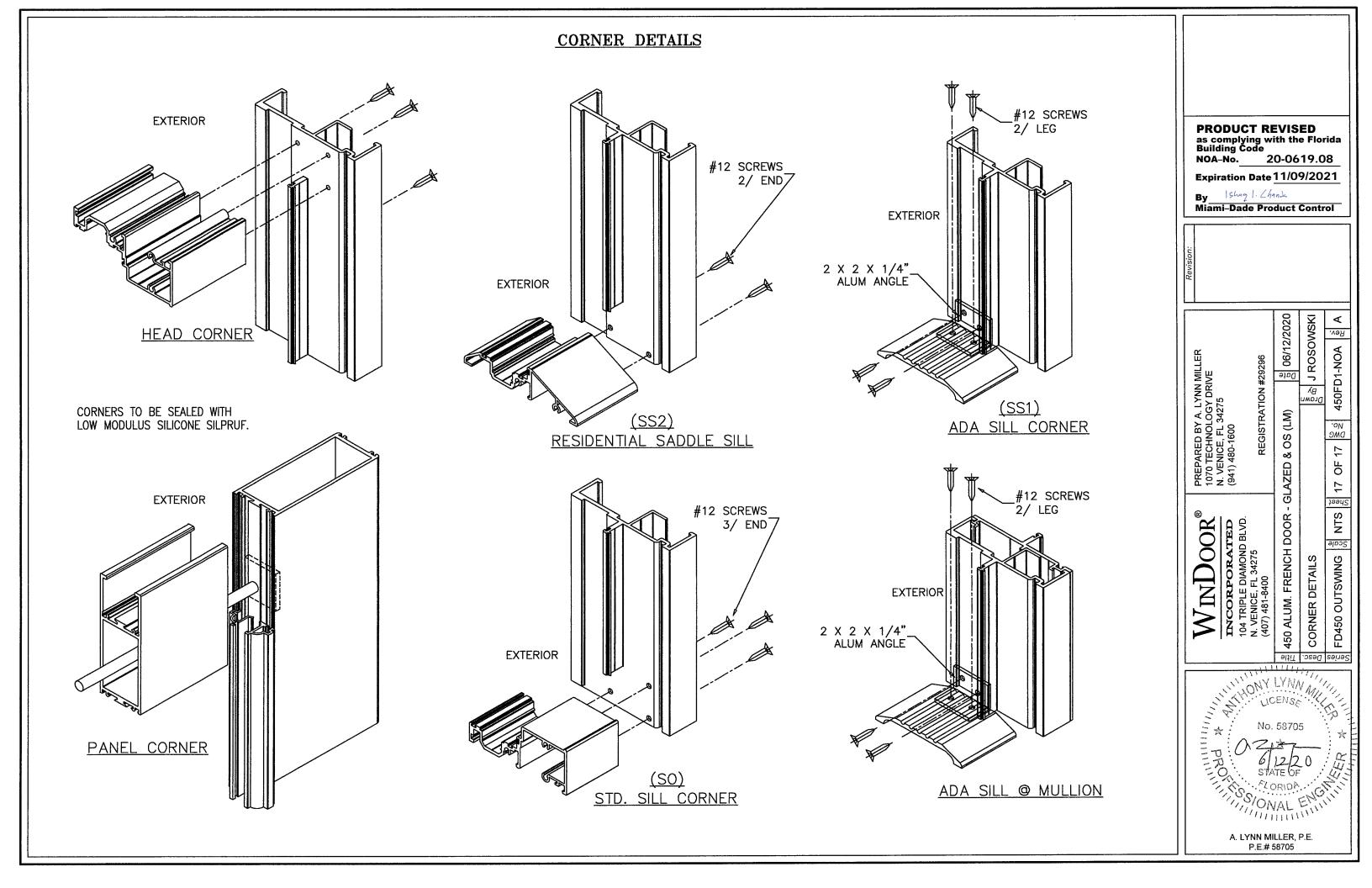




			1 [
ITES										
F										
AD SS2 SILL	TYPE 'C' TYPE 'D1' AT TYPE 'D2' AT S	SS1 SILL OR								
TER OF CHORS	CLUSTER OF 3 ANCHORS	CLUSTER OF 4 ANCHORS								
10.0	110.0	110.0								
10.0	110.0	110.0		PRO as co						chi
10.0	101.0	110.0		Buildi			le			
10.0	87.0	110.0		NOA-I	No.		20)-06 ⁻	19.0	<u>B</u>
10.0	110.0	110.0		Expira	tio	n D	ate <u>1</u>	1/09)/202	21
10.0	110.0	110.0		By	She	-91	. Lha	ndes		
10.0	98.7	110.0		Miami		+			Contro	bl
10.0	85.0	108.7		· · · · · · · · · · · · · · · · · · ·			,			
10.0	110.0	110.0		ADD	ED	AN	ICHO	DR TY	′ΡE,	&
10.0	109.8	110.0		g REF	OR	MA	TTE	D - JF	r - 6/1	1/20
10.0	92.1	110.0		KER						
10.0	79.4	101.5		Re						
10.0 10.0	110.0	110.0 110.0								
10.0	86.4	110.0								
07.4	74.4	95.2						06/12/2020	J ROSOWSKI	A
10.0	110.0	110.0						2/2	N S	.vəЯ
10.0	97.0	110.0		PREPARED BY A. LYNN MILLER 1070 TECHNOLOGY DRIVE N VIENICE EI 34375			g	6/1	SC	450FD1-NOA
10.0	81.4	104.1		ш			REGISTRATION #29296	Date Date	ц К К	Z
01.1	70.1	89.6		NNNN			1#2	0100	ر الا	À
10.0	110.0	110.0			,		ğ		Drawn	201
10.0	91.7	110.0		A.L			TAT	ŝ		4
10.0	76.9	98.3		, c y	, S		STE	IJ		.oN
10.0	107.5	110.0			j Ţ		Ē	GLAZED & OS (LM)		DMC
10.0	86.9	110.0		AR	480		R	లర		11
05.1	72.9	93.2			; [ЧO
10.0	102.2	110.0		l g t t z	6			ĮΫ		15
10.0	82.5	105.6						U U		19942
9.9	69.2	88.6		©		Ċ		Ŕ		လ
	IS NOT REQUI NCE IS REQUIR			OOR	INCORPORATED	104 TRIPLE DIAMOND BLVD	¢/;	450 ALUM. FRENCH DOOR		Scale Scale
	Hor-add			Q	POR	DIAM	N. VENICE, FL 34275 (407) 481-8400	REN		FD450 OUTSWING
250					N.	۳, ۲,	19 19 19	L L	۵	Ĕ
					8	TRIF 1	-48.	S	ANCHOR DP	ŏ
	111			\leq	Ž	5	₹ <u>6</u>	AL	풍	450
					H	÷:	ZĽ	450	AN	È
OT RA								əljiT	.ossoU	səirəZ
RESISTA					, \	117	111	144	1.	
	\sim			1	$\frac{1}{2}$	MC	(LY	NNA	11.11	,
	(SS2)			133	Ċ.		JCEN	VSE .		
		ANCHOR		24	·	s. •) ~ / \ <i>~</i>	17	11
1'		TYPE 'C' OR 'D2'		EX	/	או קרך	o. 58	orup	:	★Ξ
EVT				Eni	υ	14	12	Tar	<u>ر</u>	NE
LAI		539		= 72:		6	[12	12 C	ر : ر	ÚE I
		a r		13%	<u>.</u>	S , A	HATE	: UF ma -		13
	* **\ \ .	11/1		14	è's,	: مراج	SOR	ivi. r=t	10%	\sim
		//NI∩			17	-10	νNA	1.5	111	
	00150	<u>/ING</u>				- 1	/111	1111,		
) (<u>, RES. SA</u>	<u>, DDLE)</u>	1		А			ILLER,	P.E.	
	<u></u>			L		F	·.ヒ.#	58705		

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			MT		CHORS AT D N LOAD CAPAC		6 3	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	INAL DIMS.						TYPE 'D1' AT	SS1 SILL OR
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	CLUSTER OF	CLUSTER OF	CLUSTER OF	CLUSTER OF	CLUSTER OF	CLUSTER OF	CLUSTER OF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/2*		<u> </u>					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2							
62.3 63.0 103.8 94.2 110.0 72.8 97.0 84-3/4* 104.2 110.0 110.0 110.0 110.0 110.0 110.0 84-3/4* 84.2 110.0 110.0 110.0 110.0 110.0 110.0 70.6 94.1 110.0 106.7 110.0 88.4 110.0 70.6 94.1 110.0 106.7 110.0 88.4 110.0 60.8 81.1 101.4 91.9 110.0 110.0 110.0 90-3/4* 78.6 104.8 110.0 110.0 110.0 110.0 10.0 78.6 104.8 110.0 110.0 110.0 110.0 65.9 87.9 109.9 99.7 110.0 77.1 102.7 56.8 75.7 94.7 85.9 110.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 160.0 <td>2" 82-3/4</td> <td>·</td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td>	2" 82-3/4	·	·					
$ \begin{array}{c} \\ 84-3/4^{*} \\ 84-3/4^{*} \\ \hline \begin{array}{c} 104.2 \\ 84.2 \\ \hline \begin{array}{c} 110.0 \\ 84.2 \\ \hline \begin{array}{c} 110.0 \\ 84.2 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 84.4 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ \hline \begin{array}{c} 110.0 \\ 110.0 \\ \hline \begin{array}{c} 110.0 \\ \hline \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} $	2"	 	·		· · · · · · · · · · · · · · · · · · ·			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- /2*				<u> </u>			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2" 84-3/4	·						
$ \begin{array}{c} & 90-3/4^{\circ} \\ 90-3/4^{\circ} \\ \begin{array}{c} 90-3/4^{\circ} \\ \end{array} \\ \begin{array}{c} 90-3/4^{\circ} \\ \end{array} \\ \begin{array}{c} 90-3/4^{\circ} \\ \end{array} \\ \begin{array}{c} 96-3/4^{\circ} \\ \end{array} \\ \begin{array}{c} 85.9 \\ \hline 85.9 \\ 110.0 \\ 110$	2"	J	· · · · · ·					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/2*							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2"				<u> </u>			
56.8 75.7 94.7 85.9 110.0 66.4 88.5 96-3/4* 91.2 110.0 110.0 110.0 110.0 106.6 110.0 61.9 82.5 103.1 93.5 110.0 72.3 96.4 53.3 71.0 88.8 80.5 107.4 62.3 83.0 102-3/4* 69.4 92.6 110.0 110.0 110.0 100.4 110.0 102-3/4* 69.4 92.6 110.0 110.0 100.4 110.0 102-3/4* 65.2 77.7 97.1 88.0 110.0 88.1 90.7 50.2 66.9 83.6 75.8 101.1 58.6 78.2 108-3/4* 65.6 87.5 109.3 99.2 110.0 76.7 102.2 55.0 73.4 91.7 83.2 110.0 64.3 85.7 114-3/4* 62.2 82.9 103.6 94.0 110.0 76.7 1	2" 90-3/4"							
$ \left(\begin{array}{c} 96-3/4^{\prime} \\ 96-3/4^{\prime} \\ 96-3/4^{\prime} \\ \left(\begin{array}{c} 91.2 \\ 73.7 \\ 98.3 \\ 61.9 \\ 53.3 \\ 71.0 \\ 88.8 \\ 80.5 \\ 100.0 \\ 110.$	2"							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 "							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2"							
53.3 71.0 88.8 80.5 107.4 62.3 83.0 102-3/4* 85.9 110.0 110.0 110.0 110.0 110.0 110.0 102-3/4* 69.4 92.6 110.0 104.9 110.0 81.1 108.2 102-3/4* 58.2 77.7 97.1 88.0 110.0 68.1 90.7 50.2 66.9 83.6 75.8 101.1 58.6 78.2 108-3/4* 65.6 87.5 109.3 99.2 110.0 76.7 102.2 55.0 73.4 91.7 83.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 114-3/4* 62.2 82.9 103.6	2" 96-3/4"	· }	· · · · · · · · · · · · · · · · · · ·					
85.9 110.0	2ª							
69.4 92.6 110.0 104.9 110.0 81.1 108.2 58.2 77.7 97.1 88.0 110.0 68.1 90.7 50.2 66.9 83.6 75.8 101.1 58.6 78.2 108-3/4* 65.6 87.5 109.3 99.2 110.0 76.7 102.2 50.0 73.4 91.7 83.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 108-3/4* 65.6 87.5 109.3 99.2 110.0 64.3 85.7 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 <td>/2*</td> <td>+</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	/2 *	+						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2°							
50.2 66.9 83.6 75.8 101.1 58.6 78.2 108-3/4* 81.2 108.2 110.0 110.0 110.0 94.9 110.0 65.6 87.5 109.3 99.2 110.0 76.7 102.2 55.0 73.4 91.7 83.2 110.0 64.3 85.7 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 * 120-3/4* 73.1 97.5 110.0 110.0 85.4 110.0 * 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS. SILL	21 102-3/4							
81.2 108.2 110.0 110.0 110.0 94.9 110.0 108-3/4* 65.6 87.5 109.3 99.2 110.0 76.7 102.2 55.0 73.4 91.7 83.2 110.0 64.3 85.7 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 * 120-3/4* 73.1 97.5 110.0 110.0 89.9 92.0 * 84.5 89.3 110.0 69.0 92.0 * 78.8 98.5 89.3 100.0 69.0 92.0 * 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 78.8 98.5 89.3 110.0 69.0 92.0 * 78.8 98.5 89.3 110.0 69.0 92.0 * 78.8					4			
108-3/4* 65.6 87.5 109.3 99.2 110.0 76.7 102.2 55.0 73.4 91.7 83.2 110.0 64.3 85.7 114-3/4* 76.9 102.6 110.0 110.0 110.0 89.9 110.0 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 120-3/4* 73.1 97.5 110.0 110.0 110.0 85.4 110.0 * 73.1 97.5 110.0 110.0 110.0 85.4 110.0 * 73.1 97.5 110.0 110.0 10.0 85.4 110.0 * 73.1 97.5 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 73.4 96.6 66.1 82.6 74.9 99.9 57.9 77.2 * 50.5 70.5 80.5 89.3 110.0 69.0 92.0 <	2'							
55.0 73.4 91.7 83.2 110.0 64.3 85.7 76.9 102.6 110.0 110.0 110.0 89.9 110.0 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 73.1 97.5 110.0 110.0 110.0 85.4 110.0 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS. 30.0 30.0 30.0	2*				<u> </u>			
76.9 102.6 110.0 110.0 110.0 89.9 110.0 114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 * 120-3/4* 73.1 97.5 110.0 110.0 110.0 85.4 110.0 * 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 59.1 78.8 98.5 74.9 99.9 57.9 77.2 * SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS.					· · · · · · · · · · · · · · · · · · ·			
114-3/4* 62.2 82.9 103.6 94.0 110.0 72.6 96.9 52.2 69.5 86.9 78.8 105.1 60.9 81.3 * 73.1 97.5 110.0 110.0 110.0 85.4 110.0 * 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 * 49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS. 50.1 50.1 50.1	21							
52.2 69.5 86.9 78.8 105.1 60.9 81.3 120-3/4* 73.1 97.5 110.0 110.0 110.0 85.4 110.0 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 4 49.6 66.1 82.6 74.9 99.9 57.9 77.2	2'				+			
73.1 97.5 110.0 110.0 110.0 85.4 110.0 120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 4 49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS.		}						
120-3/4* 59.1 78.8 98.5 89.3 110.0 69.0 92.0 49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS. SILL ANCHOR OPTIONS.	2*	-						
49.6 66.1 82.6 74.9 99.9 57.9 77.2 SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS.	2'							
SHEET 15 FOR ANCHORS DESCRIPTION AND SILL ANCHOR OPTIONS.	'2" 120-3/4' '2"				h			
HART ON SHEET 14. SHEET 2 FOR LOCK CAPACITIES FOR SINGLE AND DOUBLE DOORS. SHEET 13 FOR MULLION TYPES AND DESIGN LOAD CAPACITY. CHART ON SHEET 15 FOR MULLION ANCHORS CAPACITY. CHART ON THIS SHEET FOR MTG. STILE ANCHORS AT DOUBLE DOOR. VEST VALUE FROM THESE CHARTS WILL APPLY TO ENTIRE ASSEMBLY. NOT RATED FOR WATER NOT RATED FOR WATER	E SHEET R SINGLE HART ON E SHEET E SHEET E CHART E CHART	15 FOR ANCH OR DOUBLE SHEET 14. 2 FOR LOCK 13 FOR MUL ON SHEET 15 ON THIS SHE	IORS DESCR LEAF DOORS CAPACITIES LION TYPES 5 FOR MULL ET FOR MTG	IPTION AND S, SINGLE SI FOR SINGLE AND DESIGN ION ANCHOR . STILE ANC WILL APPLY NOT RATEE	SILL ANCHOF DELITES AND AND DOUBL LOAD CAPAC S CAPACITY. HORS AT DO TO ENTIRE	COPTIONS. THRESHOLD E DOORS. CITY. UBLE DOOR. ASSEMBLY. NOT		

OR 'D2'


539

ഒ

OUTSWING

(RES. SADDLE)

EXTERIOR

