INSTRUCTION PAGE

COMPLETE THE NECESSARY SECTIONS OF THE UNIFORM ROOFING PERMIT APPLICATION FORM AND ATTACH THE REQUIRED DOCUMENTS AS NOTED BELOW:

<table>
<thead>
<tr>
<th>Roof System</th>
<th>Required Sections of the Permit Application Form</th>
<th>Attachments Required See List Below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Slope Application</td>
<td>A,B,C</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Prescriptive BUR-RAS 150</td>
<td>A,B,C</td>
<td>4,5,6,7</td>
</tr>
<tr>
<td>Asphalitic Shingles</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Concrete or Clay Tile</td>
<td>A,B,D,E</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Metal Roofs</td>
<td>A,B,D</td>
<td>1,2,3,4,5,6,7</td>
</tr>
<tr>
<td>Wood Shingles and Shakes</td>
<td>A,B,D</td>
<td>1,2,4,5,6,7</td>
</tr>
<tr>
<td>Other</td>
<td>As Applicable</td>
<td>1,2,3,4,5,6,7</td>
</tr>
</tbody>
</table>

ATTACHMENTS REQUIRED:

1. Fire Directory Listing Page

2. From Notice of Acceptance:
   - Front Page
   - Specific System Description
   - Specific System Limitations
   - General Limitations
   - Applicable Detail Drawings

3. Design Calculations per Chapter 16, or If Applicable, RAS 127 or RAS 128

4. Other Component Notice of Acceptances

5. Municipal Permit Application

6. Owners Notification for Roofing Considerations (Re-Roofing Only)

7. Any Required Roof Testing/Calculation Documentation
Section A (General Information)

Master Permit No. ____________________ Process No. ____________________

Contractor's Name ____________________

Job Address ____________________

ROOF CATEGORY

☐ Low Slope ☐ Mechanically Fastened Tile ☐ Mortar/Adhesive Set Tile
☐ Asphalitic Shingles ☐ Metal Panel/Shingles ☐ Wood Shingles/Shakes

☐ Prescriptive BUR-RAS 150

ROOF TYPE

☐ New Roof ☐ Re-Roofing ☐ Recovering ☐ Repair ☐ Maintenance

ROOF SYSTEM INFORMATION

Low Slope Roof Area (SF) __________ Steep Sloped Roof Area (SF) __________ Total (SF) __________

Section B (Roof Plan)

Sketch Roof Plan: Illustrate all levels and sections, roof drains, scuppers, overflow scuppers and overflow drains. Include dimensions of sections and levels, clearly identify dimensions of elevated pressure zones and location of parapets.
Section C (Low Sloped Roof System)

Fill in Specific Roof Assembly Components and Identify Manufacturer
(If a component is not used, identify as "NA")

System Manufacturer: ____________________________

NOA No.: ____________________________

Design Wind Pressures, From RAS 128 or Calculations:

Pmax1: _______ Pmax2: _______ Pmax3: _______

Max. Design Pressure, From the Specific NOA System: _______

Deck:

Type: ____________________________

Gauge/Thickness: ____________________________

Slope: ____________________________

Anchor/Base Sheet & No. of Ply(s): ____________________________

Anchor/Base Sheet Fastener/Bonding Material: ____________________________

Insulation Base Layer: ____________________________

Base Insulation Size and Thickness: ____________________________

Base Insulation Fastener/Bonding Material: ____________________________

Top Insulation Layer: ____________________________

Top Insulation Size and Thickness: ____________________________

Top Insulation Fastener/Bonding Material: ____________________________

Base Sheet(s) & No. of Ply(s): ____________________________

Base Sheet Fastener/Bonding Material: ____________________________

Ply Sheet(s) & No. of Ply(s): ____________________________

Ply Sheet Fastener/Bonding Material: ____________________________

Top Ply: ____________________________

Top Ply Fastener/ Bonding Material: ____________________________

Surfacing: ____________________________

Fastener Spacing for Anchor/Base Sheet Attachment

Field: _______ "oc @ Lap, # Rows ______ @ ______" oc

Perimeter: _______ "oc @ Lap, # Rows ______ @ ______" oc

Corner: _______ "oc @ Lap, # Rows ______ @ ______" oc

Number of Fasteners Per Insulation Board

Field _______ Perimeter _______ Corner _______

Illustrate Components Noted and Details as Applicable:

Woodblocking, Gutter, Edge Termination, Stripping, Flashing, Continuous Cleat, Cant Strip, Base Flashing, Counter- Flashing, Coping, Etc. 

Indicate: Mean Roof Height, Parapet Height, Height of Base Flashing, Component Material, Material Thickness, Fastener Type, Fastener Spacing or Submit Manufacturers Details that Comply with RAS 111 and Chapter 16.
### Section D (Steep Sloped Roof System)

<table>
<thead>
<tr>
<th>Roof System Manufacturer:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Notice of Acceptance Number:</td>
<td></td>
</tr>
<tr>
<td>Minimum Design Wind Pressures, If Applicable (From RAS 127 or Calculations):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1:</td>
</tr>
<tr>
<td>Maximum Design Pressure (From the NOA Specific System):</td>
<td></td>
</tr>
<tr>
<td>Method of tile attachment:</td>
<td></td>
</tr>
</tbody>
</table>

### Steep Sloped Roof System Description

- **Deck Type:**
- **Type Underlayment:**
- **Insulation:**
- **Fire Barrier:**
- **Ridge Ventilation?:**
- **Roof Slope:** 12
- **Fastener Type & Spacing:**
- **Adhesive Type:**
- **Type Cap Sheet:**
- **Roof Covering:**
- **Type & Size Drip Edge:**
- **Mean Roof Height:**
Section E (Tile Calculations)

For Moment based tile systems, choose either Method 1 or 2. Compared the values for $M_r$ with the values from $M_r$. If the $M_r$ values are greater than or equal to the $M_r$ values, for each area of the roof, then the tile attachment method is acceptable.

**Method 1 “Moment Based Tile Calculations Per RAS 127”**

\[(P_1: \text{_____} \times \lambda \text{_____} = \text{_____}) - Mg: \text{_____} = M_{r1} \text{_____} \quad \text{NOA M}_r \text{_____} \]
\[(P_2: \text{_____} \times \lambda \text{_____} = \text{_____}) - Mg: \text{_____} = M_{r2} \text{_____} \quad \text{NOA M}_r \text{_____} \]
\[(P_3: \text{_____} \times \lambda \text{_____} = \text{_____}) - Mg: \text{_____} = M_{r3} \text{_____} \quad \text{NOA M}_r \text{_____} \]

**Method 2 “Simplified Tile Calculation Per Table Below”**

Required Moment of Resistance ($M_r$) From Table Below ________ NOA $M_r$ ______

<table>
<thead>
<tr>
<th>Mean Roof Height</th>
<th>15'</th>
<th>20'</th>
<th>25'</th>
<th>30'</th>
<th>40'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Slope 2:12</td>
<td>34.4</td>
<td>36.5</td>
<td>38.2</td>
<td>39.7</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td>32.2</td>
<td>34.4</td>
<td>36.0</td>
<td>37.4</td>
<td>39.8</td>
</tr>
<tr>
<td>4:12</td>
<td>30.4</td>
<td>32.2</td>
<td>33.8</td>
<td>35.1</td>
<td>37.3</td>
</tr>
<tr>
<td></td>
<td>28.4</td>
<td>30.1</td>
<td>31.8</td>
<td>32.8</td>
<td>34.9</td>
</tr>
<tr>
<td>6:12</td>
<td>26.4</td>
<td>28.0</td>
<td>29.4</td>
<td>30.5</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>24.4</td>
<td>25.9</td>
<td>27.1</td>
<td>28.2</td>
<td>30.0</td>
</tr>
</tbody>
</table>

*Must be used in conjunction with a list of moment based tile systems endorsed by the Broward County Board of Rules and Appeals.

For Uplift based tile systems use Method 3. Compared the values for $F'$ with the values for $F_r$. If the $F'$ values are greater than or equal to the $F_r$ values, for each area of the roof, then the tile attachment method is acceptable.

**Method 3 “Uplift Based Tile Calculations Per RAS 127”**

\[(P_1: \text{_____} \times l: \text{_____} = \text{_____} \times w: \text{_____}) - W: \text{_____} \times \cos \theta: \text{_____} = F_{r1} : \text{_____} \quad \text{NOA F}_r \text{_____} \]
\[(P_2: \text{_____} \times l: \text{_____} = \text{_____} \times w: \text{_____}) - W: \text{_____} \times \cos \theta: \text{_____} = F_{r2} : \text{_____} \quad \text{NOA F}_r \text{_____} \]
\[(P_3: \text{_____} \times l: \text{_____} = \text{_____} \times w: \text{_____}) - W: \text{_____} \times \cos \theta: \text{_____} = F_{r3} : \text{_____} \quad \text{NOA F}_r \text{_____} \]

Where to Obtain Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Where to find</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Pressure</td>
<td>P1 or P2 or P3</td>
<td>RAS 127 Table 1 or by an engineering analysis prepared by PE based on ASCE 7</td>
</tr>
<tr>
<td>Mean Roof Height</td>
<td>$H$</td>
<td>Job Site</td>
</tr>
<tr>
<td>Roof Slope</td>
<td>$\theta$</td>
<td>Job Site</td>
</tr>
<tr>
<td>Aerodynamic Multiplier</td>
<td>$\lambda$</td>
<td>NOA</td>
</tr>
<tr>
<td>Restoring Moment due to Gravity</td>
<td>$M_r$</td>
<td>NOA</td>
</tr>
<tr>
<td>Attachment Resistance</td>
<td>$M_t$</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Moment Resistance</td>
<td>$M_r$</td>
<td>Calculated</td>
</tr>
<tr>
<td>Minimum Attachment Resistance</td>
<td>$F'$</td>
<td>NOA</td>
</tr>
<tr>
<td>Required Uplift Resistance</td>
<td>$F_r$</td>
<td>Calculated</td>
</tr>
<tr>
<td>Average Tile Weight</td>
<td>$W$</td>
<td>NOA</td>
</tr>
<tr>
<td>Tile Dimensions</td>
<td>l= length, w= width</td>
<td>NOA</td>
</tr>
</tbody>
</table>

All calculations must be submitted to the Building Official at the time of permit application.