Traffic Impact Study

Keep the Bleau Green

Fontainebleau Boulevard, west of Park Boulevard Unincorporated Miami-Dade, Florida

December 23th, 2014

Richard Garcia & Associates, Inc.

Engineer's Certification

I, Richard Garcia, P.E. # 54886, certify that I currently hold an active Professional Engineers License in the State of Florida and am competent through education and experience to provide engineering services in the civil and traffic engineering disciplines contained in this report. In addition, the firm Richard Garcia & Associates, Inc. holds a Certificate of Authorization # 9592 in the State of Florida. I further certify that this report was prepared by me or under my responsible charge as defined in Chapter 61G15-18.001 F.A.C. and that all statements, conclusions and recommendations made herein are true and correct to the best of my knowledge and ability.

Project Description:

Keep the Bleau Green - Traffic Impact Study

Project Location:

Fontainebleau Boulevard, west of Park Boulevard Unincorporated Miami-Dade, Florida

Table of Contents

Engineer's Certification	1
Executive Summary	4
Introduction	8
Project Location / Description	8
Existing Condition (2014)	9
Intersection Turning Movement Counts (TMC's)	9
Level of Service (LOS)	10
Project Traffic	12
Trip Generation	12
Trip Distribution	14
Trip Assignment	15
Future Condition with Project Traffic (2017)	17
Background Traffic Growth	17
Future Intersection Volumes	17
Level of Service (LOS)	19
Traffic Concurrency	20
Roadway Level of Service (LOS) Analysis	21
Existing Condition (2014)	21
Future Short-Term LOS (2018)	21
Future Long-Term LOS (2030)	22
Conclusion	23

List of Figures

Figure 1: Aerial with Project's Location	8
Figure 2: Existing Seasonally Adjusted TMC's - AM Peak Hour	9
Figure 3: Existing Seasonally Adjusted TMC's - PM Peak Hour	.10
Figure 4: Traffic Analysis Zone Map	.14
Figure 5: Project Traffic - AM Peak Hour	16
Figure 6: Project Traffic - PM Peak Hour	16
Figure 7: Future Intersection Volumes - AM Peak Hour	.18
Figure 8: Future Intersection Volumes - PM Peak Hour	.18

List of Tables

Table 1: Existing Level of Service	11
Table 2: Trip Generation - AM & PM Peak Hour	13
Table 3: Directional Trip Distribution Percentages	15
Table 4: Directional Trip Assignment	15
Table 5: Future Level of Service	19
Table 6: Traffic Concurrency Summary	20
Table 7: Roadway LOS - 2014 & 2018	22
Table 8: Roadway LOS - 2030	22

List of Appendices

Appendix A: Trip Generation	.А
Appendix B: Trip Distribution / Assignment	. В
Appendix C: Signal Timing, Background Growth & Adjustment Factor	. C
Appendix D: Traffic Counts (TMC's & ATR's)	.D
Appendix E: Level of Service (LOS) & Traffic Concurrency	. Е

Executive Summary

This report was prepared to determine and evaluate the traffic impacts associated with the subject project. The subject property consists of approximately 5 acres of land located east of theoretical NW 92nd Avenue, north of Fontainebleau Boulevard, south of theoretical NW 7th Street and west of NW 87th Avenue in Unincorporated Miami-Dade County, Florida. The subject site currently has a park and is intended to be developed as a mixed-use project to include a **charter school** and a **recreational community center** with 3,500 square feet. The charter school will have 1,200 students in grades Kindergarten through Twelfth. The project build-out year is slated for 2017.

The trip generation analysis for the subject project was prepared using published data from <u>ITE's Trip Generation Manual</u>, 9th Edition as per the Miami-Dade County requirements. This analysis was performed for the AM and PM peak hour. Moreover, the trip generation calculations were performed using the existing and proposed land uses as well as the maximum allowed density under the requested land use redesignation. The following land uses, as identified by the Institute of Transportation Engineers (ITE), most closely resemble the subject project. Since ITE does not have data for charter schools, trip generation calculations were performed using ITE data for private school K-12 and public school (i.e. elementary, middle and high school). The resulting trips were compared and the most conservative trip generation result was utilized in subsequent analyses. The land uses (LU) are as follows:

Existing

• LU 412: County Park with 5.2 Acres

Proposed

- LU 495: Recreational Community Center with 3,500 Square Feet
- LU 536: Private School K-12 with 1,200 Students

OR

- LU 520: Elementary School with 400 Students
- LU 522: Middle School / Junior High School with 400 Students
- LU 530: High School with 400 Students

Maximum Allowed (under land use redesignation)

- LU 220: Apartment with 130 Dwelling Units
 OR
- LU 230: Residential Townhouse with 130 Dwelling Units

The trip generation calculations for the AM peak hour yielded 979 vehicle trips (598 trips-in & 381 trips-out) and the PM peak hour resulted in 213 vehicle trips (90 trips-in & 123 trips-out). These vehicle trips are likely to be reduced based on the rate and extent of internalization, transit and pedestrian usage, since neither of these reductions were utilized in the analysis as a conservative approach. Also, it is noteworthy to indicate that a trip is defined as a one-direction vehicle movement crossing a driveway. Therefore, one vehicle may generate two trips by entering and exiting the site.

The subject project is located within the Traffic Analysis Zone (TAZ) 808 as assigned by the Metropolitan Planning Organization's (MPO) on the Miami-Dade Transportation Plan (to the Year 2035) Directional Trips Distribution Report, October 2009. The traffic distribution percentages between the 2005 TAZ and 2035 TAZ data were utilized to determine the distribution percentages for the project build-out year in 2017. As such, the AM and PM peak hour trips were distributed consistent with the resulting distribution percentages.

Manual Turning Movement Counts (TMC's) were taken at the intersection of **Fontainebleau Boulevard and Park Boulevard.** These counts were performed on Thursday, December 18th, 2014 during the roadway's AM peak period of 7:00 AM to 9:00 AM and PM peak period of 4:00 PM to 6:00 PM. Subsequently, the AM and PM peak hour volumes were determined, adjusted for seasonal variations by using the applicable Florida Department of Transportation Seasonal Factor and utilized in the operational analysis for the **existing condition**. As a result, the intersection of **Fontainebleau Boulevard and Park Boulevard** is operating at **LOS B** during the **AM** and **PM peak hour**.

Moreover, the existing turning movement counts for the AM and PM peak hour were augmented with a compounded background growth rate and project traffic to develop the volumes for the proposed condition with project in 2017. The proposed intersection volumes were utilized to perform an operational analysis and to determine the future Level of Service at the most impacted intersection. As a result, the intersection of **Fontainebleau Boulevard and Park Boulevard** yielded **LOS B** for the **AM** and **PM peak hour**. In fact, the subject intersection will maintain the existing LOS B for the proposed future condition with project traffic in 2017. Lastly, the project's driveways were also evaluated and resulted in overall LOS A. The following table summarizes the intersection LOS results for the AM and PM peak hour.

					Existing	Condition		Pro	posed Condit	tion with Pro	oject				
	Location	Intersection	Approach	AM Pe	ak Hour	PM Pe	ak Hour	AM Pe	ak Hour	PM Pe	ak Hour				
		Control		LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)				
s			EB	-	-	-	-	-	-	-	-				
tersection	Fontainable au Baulayard		WB	Α	7.6	В	11.8	Α	7.8	В	11.5				
	& Park Boulevard	Traffic Signal	NB	С	23.7	В	19.4	С	31.1	С	21.4				
	d l'alle boulevalu		SB	В	11.2	В	17.1	В	15.7	В	18.6				
-			Overall	В	13.9	В	15.5	В	18.1	В	16.5				
	Fantaina blann Baulaunad	Two-Way Stop		EB	-	-	-	-	А	0.0	А	0.0			
			WB	-	-	-	-	Α	0.0	А	0.0				
	& Driveway 1 (DW1)		NB	-	-	-	-	-	-	-	-				
s,	d billeway (bwl)		SB	-	-	-	-	D	27.1*	В	14.4 *				
wa)			Overall	-	-	-	-	Α	3.2	Α	0.7				
ive			EB	-	-	-	-	А	0.0	А	0.0				
õ	Fontainable au Baulayard	Turo May	WB	-	-	-	-	Α	0.0	Α	0.0				
	& Driveway 2 (DW2)	Stop	NB	-	-	-	-	-	-	-	-				
		Stop	Stop	Ctop	Ctop	Стор	SB	-	-	-	-	В	10.7 *	В	12.3 *
			Overall	-	-	-	-	Α	0.0	Α	0.0				

* TWSC Critical Approach

In addition, a traffic concurrency evaluation was performed consistent with the Miami-Dade County requirements. As such, four (4) count stations were identified and evaluated to determine whether sufficient roadway capacity exists to support the project traffic. The information for each count station was obtained from the Miami-Dade County Concurrency Traffic Count lists.

Moreover, the concurrency tables contain traffic counts for the peak hour period (PHP) which is the average two-way roadway volume of the two highest consecutive hours during the day (i.e. roadway's PM peak). As such, the PM peak hour trips (i.e. 213 vehicle trips) for the subject project were assigned to the closest count stations. It is important to note that some of the project trips may not reach the concurrency count stations due to the trip length and large number of residential development nearby the subject project. Therefore, our evaluation has applied some trip attenuation to account for project trips that may not reach the studied count stations.

Based on our concurrency evaluation, the four (4) count stations will have available trips to support the subject project. Therefore, the subject project **meets traffic concurrency**.

Consistent with the Miami-Dade County requirements, the traffic impacts on the roadway network adjacent to and in the vicinity of the subject project were evaluated for Level of Service (LOS). The LOS analysis was performed for the existing condition, future condition in 2018 (i.e. short-term) and future condition in 2030 (i.e. long-term).

Fontainebleau Boulevard and Park Boulevard were identified as the roadways most impacted by the subject project. As such, these roadways were evaluated to determine the available capacity and Level of Service (LOS). Automatic Traffic Recorder (ATR's) counts were collected for 48 consecutive hours from December 17th through December 18th, 2014 at Fontainebleau Boulevard, west of Park Boulevard and Park Boulevard, east of Fontainebleau Boulevard. The traffic data was utilized to identify the Peak-period (PHP) which means the average of the two highest consecutive hours of traffic volume during a weekday. Using the PHP traffic volumes, each roadway was analyzed utilizing the generalized Table 4 of the 2013 FDOT Quality / Level of Service Handbook. Based on our analysis, both **Fontainebleau Boulevard** and **Park Boulevard** operate at **LOS D**.

Additionally, a short-term traffic analysis was performed to evaluate the roadway Level of Service with and without project traffic in 2018. The future volumes were developed by augmenting the existing peak-period volumes with a compounded background traffic growth rate of 1.00 percent and project traffic. Our analysis revealed that both **Fontainebleau Boulevard** and **Park Boulevard** will have **LOS D** for the future condition with and without the project traffic in 2018.

Similarly, a long-term traffic analysis was performed to evaluate the roadway Level of Service with and without project traffic in 2030. Based on our analysis, both **Fontainebleau Boulevard** and **Park Boulevard** will operate at **LOS D** for the future condition with and without project traffic in 2030. The resulting LOS is considered acceptable and within the County's LOS standard.

In conclusion, the intersection most impacted by the subject project will operate at LOS B for the proposed future condition with project traffic in 2017. In fact, the intersection will maintain the existing LOS. Also, our concurrency evaluation revealed the subject project **meets traffic concurrency**. Therefore, the vehicle trips generated by this project will not adversely affect the traffic operations within the study area.

Lastly, our roadway analysis revealed that Fontainebleau Boulevard and Park Boulevard will have available roadway capacity in the year 2018 (i.e. short-term) and 2030 (i.e. long-term).

Introduction

The objective of this study is to determine and evaluate the traffic impacts associated with the subject project. The analysis documented in this report evaluates the existing traffic condition and future condition with project traffic during the roadway's AM and PM peak hour. Lastly, this report was prepared consistent with the Miami-Dade County Traffic Study requirements.

Project Location / Description

The subject property consists of approximately 5 acres of land located east of theoretical NW 92nd Avenue, north of Fontainebleau Boulevard, south of theoretical NW 7th Street and west of NW 87th Avenue in Unincorporated Miami-Dade County, Florida. The subject site currently has a park and is intended to be developed as a mixed-use project to include a **charter school** and a **recreational community center** with 3,500 square feet. The charter school will have 1,200 students in grades Kindergarten through Twelfth. The project build-out year is slated for 2017. The subject project will provide vehicular access via two (2) driveways on Fontainebleau Boulevard and both driveways will operate as right-in and right-out only. Figure 1 is an aerial illustration of the project's location.

Figure 1: Aerial with Project's Location

Existing Condition (2014)

This section of the report identifies operational and geometric characteristics of the most impacted intersection within the study area. The purpose of this section is to provide a basis of comparison to future conditions.

Intersection Turning Movement Counts (TMC's)

Manual Turning Movement Counts (TMC's) were taken at the intersection of **Fontainebleau Boulevard and Park Boulevard.** These counts were performed on Thursday, December 18th, 2014 during the roadway's AM peak period of 7:00 AM to 9:00 AM and PM peak period of 4:00 PM to 6:00 PM. Subsequently, the AM and PM peak hour traffic volumes were determined and adjusted for seasonal variations utilizing the Florida Department of Transportation (FDOT) Seasonal Factor of 1.03. The seasonally adjusted traffic volumes were utilized in the operational analysis for the subject intersection. Figures 2 and 3 are graphical representations of the existing seasonally adjusted AM and PM peak hour turning movement counts (TMC's), respectively.

Figure 2: Existing Seasonally Adjusted TMC's - AM Peak Hour

Figure 3: Existing Seasonally Adjusted TMC's - PM Peak Hour

Level of Service (LOS)

As previously mentioned, an operational analysis was performed for the intersection of Fontainebleau Boulevard and Park Boulevard using the seasonally adjusted turning movement counts for the AM and PM peak hour. This analysis evaluates the traffic operations at the intersection and provides outputs such Level of Service (LOS), vehicular delay and queue lengths. Moreover, the operational analysis was performed consistent with the current operational traffic characteristics (i.e. lane geometry, traffic control, etc.) and following the Highway Capacity Manual (HCM) methodology by using the Synchro 8 software.

Based on our analysis, the intersection of Fontainebleau Boulevard and Park Boulevard is operating at LOS B during the AM and PM peak hour. Table 1 summarizes the LOS results and vehicular delay while Appendix E contains the supporting documentation.

Table 1: Existing Level of Service

		Index and the second		Existing Condition						
Location		Control	Approach	AM Pe	ak Hour	PM Peak Hour				
		Control		LOS	Delay (s)	LOS	Delay (s)			
าร		Traffic Signal	EB	-	-	-	-			
tion	Fontainableau Baulayard		WB	А	7.6	В	11.8			
sect	& Park Boulevard		NB	С	23.7	В	19.4			
Iters			SB	В	11.2	В	17.1			
In			Overall	В	13.9	В	15.5			

Project Traffic

This section describes the analysis for estimating the traffic associated with the subject project. The trip generation analysis summarized below was performed consistent with the methodology described in the <u>Institute of Transportation</u> <u>Engineers (ITE) Trip Generation Handbook, 2nd Edition</u>.

Trip Generation

The trip generation analysis for the subject project was prepared using published data from **ITE's Trip Generation Manual**, **9**th **Edition** as per the Miami-Dade County requirements. This analysis was performed for the AM and PM peak hour. Moreover, the trip generation calculations were performed for the existing and proposed uses as well as the maximum allowed density under the requested land use redesignation.

The following land uses, as identified by the Institute of Transportation Engineers (ITE), most closely resemble the subject project. Since ITE does not have data for charter schools, trip generation calculations were performed using ITE data for private school K-12 and public school (i.e. elementary, middle and high school). The resulting trips were compared and the most conservative trip generation result was utilized in subsequent analyses. The land uses (LU) are as follows:

Existing

• LU 412: County Park with 5.2 Acres

Proposed

- LU 495: Recreational Community Center with 3,500 Square Feet
- LU 536: Private School K-12 with 1,200 Students

OR

- LU 520: Elementary School with 400 Students
- LU 522: Middle School / Junior High School with 400 Students
- LU 530: High School with 400 Students

Maximum Allowed (under land use redesignation)

• LU 220: Apartment with 130 Dwelling Units

OR

• LU 230: Residential Townhouse with 130 Dwelling Units

The trip generation calculations for the AM peak hour yielded 979 vehicle trips (598 trips-in & 381 trips-out) and the PM peak hour resulted in 213 vehicle trips (90 trips-in & 123 trips-out). These vehicle trips are likely to be reduced based on the rate and extent of internalization, transit and pedestrian usage, since neither of these reductions were utilized in the analysis as a conservative approach. Also, it is noteworthy to indicate that a trip is defined as a one-direction vehicle movement crossing a driveway. Therefore, one vehicle may generate two trips by entering and exiting the site.

Table 2 below summarizes the Trip Generation results for the AM and PM peak hour. Appendix A contains the ITE's published data and trip generation calculations.

		ITE LU	PEAK	ITE TRIP	AM / F	PM PEAK HOUR	TRIPS
LAND USE (LU)	UNITS	CODE	HOUR	GENERATION RATE / EQUATION	IN	OUT	TOTAL
Existing							
County Dorl	5 2 Aoroo	410	AM	0.02	0	0	0
	5.2 Acres	412	PM	0.09	1	0	1
Max Allowed							
	130 D H	220	AM	T=0.49(X)+3.73	13	54	67
Aparament	150 D.0.	220	PM	T=0.55(X)+17.65	58	31	89
OR							
Residential Townhouse	130 D U	230	AM	Ln(T)=0.80Ln(X)+0.26	11	53	64
	100 0.0.	200	PM	Ln(T)=0.82Ln(X)+0.32	50	25	75
Proposed							
Elementary School	400 Students	520	AM	0.45	99	81	180
Elementary conten			PM	0.15	29	31	60
Middle School / Junier High School	400 Students	522	AM	0.54	119	97	216
Middle School / Junior High School	400 Students	522	PM	0.16	31	33	64
High School	400 Students	530	AM	0.43	117	55	172
Tigh School		550	PM	0.13	24	28	52
Total (ES / MS / HS)	1 200 Students	_	AM	-	335	233	568
10101 (2071107110)	1,200 Siddeniis		PM	-	85	91	176
OR							
Drivato School K 12	1 200 Students	536	AM	0.81	593	379	972
		550	PM	0.17	86	118	204
AND							
Degraptional Community Contar		405	AM	2.05	5	2	7
Recreational Community Center	3.500 M.Sq.Ft.	495	PM	2.74	5	5	10
Net Externel Vehicle Trine () Me					13	54	67
Net External venicle Trips (w/ Ma	ix Allowed)				57	31	88
Not External Vahiala Trina () Dr					598	381	979
iver External vehicle Trips (W/ Pr	oposea nevelop	menty			90	123	213

Table 2: Trip Generation - AM & PM Peak Hour

Notes:

Sources: ITE Trip Generation, 9th Edition & ITE Trip Generation Handbook, 2nd Edition.

Although the proposed school is expected to be a charter school, trips were estimated using private and public school since ITE does not have data for charter school. D.U. = Dwelling Units; Th.Sq.Ft. = Thousand Square Feet or 1 = 1,000 Square Feet

AM Peak Hour Trips utilized in the analysis.

PM Peak Hour Trips utilized in the analysis

Trip Distribution

The subject project is located within the Traffic Analysis Zone (TAZ) 808 as assigned by the Metropolitan Planning Organization's (MPO) on the Miami-Dade Transportation Plan (to the Year 2035) Directional Trips Distribution Report, October 2009. The traffic distribution percentages between the 2005 TAZ and 2035 TAZ data were utilized to determine the distribution percentages for the project build-out year in 2017. As such, the AM and PM peak hour trips were distributed consistent with the resulting distribution percentages. Figure 4 below depicts the TAZ map for the study area.

Lastly, the traffic distribution percentages being assigned to the eight (8) cardinal directions are outlined in Table 3 below. This TAZ distribution was based on interpolation of the 2005 and 2035 Directional Trip Distribution Report from the Miami-Dade 2035 Long Range Transportation Plan for the design year of 2017. Appendix B includes the supporting documentation.

Figure 4: Traffic Analysis Zone Map

	DISTRIB	UTION PERCENT	AGES (%)		
DIRECTION	MIAMI-DADE LR	DESIGN YEAR			
	2005	2035	2017		
NNE	19.48	33.28	25.00		
ENE	20.94	22.35	21.50 13.73		
ESE	17.22	8.50			
SSE	9.87	4.76	7.83		
SSW	9.21	4.88	7.48		
WSW	12.36	10.10	11.46		
WNW	4.77	6.24	5.36		
NNW	6.15	9.89	7.65		
TOTAL	100.00	100.00	100.00		

Table 3: Directional Trip Distribution Percentages

Trip Assignment

The peak hour trips generated by the subject project have been further distributed into the four quadrants. Table 4 includes the traffic distribution with the corresponding assignments to the North, South, East and West. Lastly, Figures 5 and 6 depict the vehicle trips distributed to the most impacted intersection and assigned to the project's driveways for the AM and PM peak hour, respectively.

Table 4: Directional Trip Assignment

DIRECTION	DISTRIBUTION	AM	PEAK HO	UR	PM PEAK HOUR			
DIRECTION	DIGITABOTION	IN	OUT	TOTAL	IN	OUT	TOTAL	
NORTH	32.65%	195	124	319	30	40	70	
EAST	35.24%	211	134	345	31	43	74	
SOUTH	15.30%	92	59	151	14	19	33	
WEST	16.81%	100	64	164	15	21	36	
	100.00%	598	381	979	90	123	213	

Figure 5: Project Traffic - AM Peak Hour

Figure 6: Project Traffic - PM Peak Hour

Future Condition with Project Traffic (2017)

The following sections describe the parameters utilized to evaluate the proposed future condition with project traffic. The future condition analysis includes background traffic growth trends and the project traffic. The project build-out year is slated for 2017.

Background Traffic Growth

Using the 2013 Historical AADT Report data from the Florida Department of Transportation's Count Station 1142 (SR 986), a regression analysis was performed using the last ten years of the available historical data and resulted in negative growth rate (-0.39 percent). Additionally, a growth rate was calculated using published data from two (2) of the closest Miami-Dade County count stations and resulted in negative growth rate. However, a conservative 1.00 percent growth rate was compounded and applied to the existing counts to account for any background traffic growth that may or may not materialize within the project's vicinity. Appendix C contains the growth rate calculations.

Future Intersection Volumes

The existing turning movement counts for the AM and PM peak hour were augmented with a compounded background growth rate and project traffic to develop the volumes for the proposed condition with project. The calculations for the specific movements at each intersection are contained in Appendix D. Figures 7 and 8 depict the future intersection volumes and driveway volumes for the AM and PM peak hour, respectively.

Ν

Figure 7: Future Intersection Volumes - AM Peak Hour

Figure 8: Future Intersection Volumes - PM Peak Hour

Level of Service (LOS)

Using the future intersection volumes from the figures above, an operational analysis was performed to evaluate the future condition with project traffic. As a result, the intersection of **Fontainebleau Boulevard and Park Boulevard** yielded **LOS B** for the **AM** and **PM peak hour**. Based on our analysis, the subject intersection will maintain the existing LOS B for the proposed future condition with project traffic in 2017.

Lastly, the project's driveways were also evaluated and resulted in overall LOS A. Table 5 summarizes the LOS results for the AM and PM peak hour while Appendix E includes the Synchro software sheets with other outputs such as queue lengths and volume to capacity (v/c) ratio.

		I		Proposed Condition with Project						
	Location	Control	Approach	AM Pe	ak Hour	PM Pea	ak Hour			
		Control		LOS	Delay (s)	LOS	Delay (s)			
S			EB	-	-	-	-			
tion	Fontainableau Baulavard		WB	А	7.8	В	11.5			
sect	& Park Boulevard	Traffic Signal	NB	С	31.1	С	21.4			
ter			SB	В	15.7	В	18.6			
<u>-</u>			Overall	В	18.1	В	16.5			
Ī	Fontainableau Paulavard	Two-Way Stop	EB	А	0.0	А	0.0			
			WB	А	0.0	А	0.0			
	& Driveway 1 (DW1)		NB	-	-	-	-			
s/			SB	D	27.1 *	В	14.4 *			
way			Overall	Α	3.2	Α	0.7			
rive			EB	А	0.0	А	0.0			
ā	Fontainableau Baulavard		WB	А	0.0	А	0.0			
	& Driveway 2 (DW2)	Stop	NB	-	-	-	-			
		Стор	SB	В	10.7 *	В	12.3 *			
			Overall	Α	0.0	Α	0.0			

Table 5: Future Level of Service

* TWSC Critical Approach

Traffic Concurrency

A traffic concurrency evaluation was performed consistent with the Miami-Dade County requirements. As such, four (4) count stations were identified and evaluated to determine whether sufficient roadway capacity exists to support the project traffic. The information for each count station was obtained from the Miami-Dade County Concurrency Traffic Count lists.

Moreover, the concurrency tables contain traffic counts for the peak hour period (PHP) which is the average two-way roadway volume of the two highest consecutive hours during the day (i.e. roadway's PM peak). As such, the PM peak hour trips (i.e. 213 vehicle trips) for the subject project were assigned to the closest count stations. It is important to note that some of the project trips may not reach the concurrency count stations due to the trip length and large number of residential development nearby the subject project. Therefore, our evaluation has applied some trip attenuation to account for project trips that may not reach the studied count stations.

Based on our concurrency evaluation, the four (4) count stations will have available trips to support the subject project. Therefore, the subject project **meets traffic concurrency**. Table 6 below summarizes the traffic concurrency evaluation while Appendix E contains the supporting documentation.

			DIR %	PROJECT	ATTE	ATTENUATION		GNED TO	TRIPS LEFT AT COUNT
	and non		CONV.		N .	TRIPS	%	TRIPS	STATION
NORTH	3494	975	33%	69	25%	53	8%	17	958
EAST	1141	760	35%	75	15%	31	20%	43	717
SOUTH	9154	2,803	15%	33	5%	11	10%	22	2,781
WEST	9156	3,676	17%	36	10%	21	7%	15	3,661

Table 6: Traffic Concurrency Summary

Notes: Peak hour trips for the subject project were obtained utilizing ITE data.

Trip Attenuation was applied based on trip length and large number of residential development nearby the subject project. (Not all the trips will reach the count stations)

 $20 \bigcirc$

Roadway Level of Service (LOS) Analysis

Consistent with the Miami-Dade County requirements, the traffic impacts on the roadway network adjacent to and in the vicinity of the subject project were evaluated for Level of Service (LOS). The LOS analysis was performed for the existing condition, future condition in 2018 (i.e. short-term) and future condition in 2030 (i.e. long-term).

Existing Condition (2014)

Fontainebleau Boulevard and Park Boulevard were identified as the roadways most impacted by the subject project. As such, these roadways were evaluated to determine the available capacity and Level of Service (LOS).

Automatic Traffic Recorder (ATR's) counts were collected for 48 consecutive hours from December 17th through December 18th, 2014 at Fontainebleau Boulevard, west of Park Boulevard and Park Boulevard, east of Fontainebleau Boulevard. The traffic data was utilized to identify the Peak-period (PHP) which means the average of the two highest consecutive hours of traffic volume during a weekday. Using the PHP traffic volumes, each roadway was analyzed utilizing the generalized Table 4 of the 2013 FDOT Quality / Level of Service Handbook.

Based on our analysis, both **Fontainebleau Boulevard** and **Park Boulevard** operate at **LOS D.** The resulting LOS is considered acceptable and within the County's LOS standard. Table 7 summarizes the roadway volumes and LOS results. Appendix E contains the supporting documentation.

Future Short-Term LOS (2018)

Additionally, a short-term traffic analysis was performed to evaluate the roadway Level of Service with and without project traffic in 2018. The future volumes were developed by augmenting the existing peak-period volumes with a compounded background traffic growth rate of 1.00 percent and project traffic. Our analysis revealed that both **Fontainebleau Boulevard** and **Park Boulevard** will have **LOS D** for the future condition with and without the project traffic in 2018. Table 7 summarizes the LOS results.

Table 7: Roadway LOS - 2014 & 2018

ROADWAY	DIR	EXISTING PHP VOLUME	AVAILABLE CAPACITY	LOS	BACKGROUND GROWTH @ 1.00% FOR 4 YRS (2018)	FUTURE PHP VOLUME (2018) W/O PROJECT	AVAILABLE CAPACITY	LOS	PROJECT TRIPS	FUTURE PHP VOLUME (2018) W/ PROJECT	AVAILABLE CAPACITY	LOS
Fontainebleau Boulevard	TWO- WAY	2,335	705	D	95	2,430	610	D	80	2,510	530	D
Park Boulevard	TWO- WAY	1,576	1,465	D	64	1,639	1,401	D	198	1,837	1,203	D

Future Long-Term LOS (2030)

Similarly, a long-term traffic analysis was performed to evaluate the roadway Level of Service with and without project traffic in 2030. The future volumes were developed by augmenting the existing peak-period volumes with a compounded background traffic growth rate of 1.00 percent and project traffic. Based on our analysis, both Fontainebleau Boulevard and Park Boulevard will operate at LOS D for the future condition with and without project traffic in 2030. Table 8 summarizes the LOS results.

Table 8: Roadway LOS - 2030

ROADWAY	DIR	EXISTING PHP VOLUME	AVAILABLE CAPACITY	LOS	BACKGROUND GROWTH @ 1.00% FOR 16 YRS (2030)	FUTURE PHP VOLUME (2030) W/O PROJECT	AVAILABLE CAPACITY	LOS	PROJECT TRIPS	FUTURE PHP VOLUME (2030) W/ PROJECT	AVAILABLE CAPACITY	LOS
Fontainebleau Boulevard	TWO- WAY	2,335	705	D	403	2,738	302	D	80	2,818	222	D
Park Boulevard	TWO- WAY	1,576	1,465	D	272	1,847	1,193	D	198	2,045	995	D

Conclusion

In conclusion, the most impacted intersection by the subject project is operating at LOS B during the AM and PM peak hour and will maintain the existing for the future condition with project traffic in 2017 (i.e. opening year). Also, our concurrency evaluation revealed the subject project **meets traffic concurrency**. Therefore, the trips generated by the subject project will not pose a negative traffic impact within the study area.

Lastly, our roadway analysis revealed that Fontainebleau Boulevard and Park Boulevard will have available roadway capacity in the year 2018 (i.e. short-term) and 2030 (i.e. long-term).

Appendix A: Trip Generation

Keep the Bleau Green Development TABLE: A1

TRIP GENERATION ANALYSIS - AM & PM PEAK HOUR

				ITE TRIP		AM / PM	I PEAK HOUF	RIPS	
LAND USE (LU)	UNITS	CODE	HOUR	GENERATION RATE / EQUATION	%	Z	%	OUT	TOTAL
Existing			AM	0.02	61%	0	39%	0	0
County Park	5.2 Acres	412	РМ	60.0	61%	-	39%	0	-
Max Allowed						_			/
Apartment	130 D.U.	220	AM PM	T=0.49(X)+3.73 T=0.55(X)+17.65	20% 65%	13	35%	31	67 89
OR Residential Townhouse	130 D.U.	230	AM PM	Ln(T)=0.80Ln(X)+0.26 Ln(T)=0.82Ln(X)+0.32	17% 67%	11 50	83% 33%	53 25	64 75
Proposed								2	100
Elementary School	400 Students	520	AM PM	0.45 0.15	55% 49%	53	51%	31	00
Middle School / Junior High School	400 Students	522	AM PM	0.54 0.16	55% 49%	31	45% 51%	97 33	216 64
High School	400 Students	530	AM PM	0.43 0.13	68% 47%	24	32%	55 28	172
	1 000 Childrafe		AM	1	59%	335	41%	233	568
l otal (ES / MS / HS)	1,200 Students		ΡM	e.	48%	85	52%	91	176
OR			AM	0.81	61%	593	39%	379	972
Private School K-12	1,200 Students	536	PM	0.17	42%	86	58%	118	204
AND			VIV	2 DF	66%	2	34%	2	7
Recreational Community Center	3.500 Th.Sq.Ft.	495	MM	2.74	49%	2	51%	2	10
Net External Vehicle Trips (w/ Max	(Allowed)				20% 65%	13 57	80% 35%	54 31	67 88
Net External Vehicle Trips (w/ Pro	posed Developm	lent)			61% 42%	598 90	39% 58%	381 123	979 213
Notes:									

Sources:

ITE Trip Generation, 9th Edition & ITE Trip Generation Handbook, 2nd Edition. Although the proposed school is expected to be a charter school, trips were estimated using private and public school since ITE does not have data for charter school. D. U = Dwelling Units, Th.Sq.Ft = Thousand Square Feet or 1 = 1,000 Square Feet AM Peak Hour Trips utilized in the analysis. PM Peak Hour Trips utilized in the analysis.

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Apartment (220)

Number of Studies:78Avg. Number of Dwelling Units:235Directional Distribution:20% entering, 80% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	T Standard Deviation
0.51	0.10 - 1.02	0.73

Data Plot and Equation

334

Apartment (220) Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. Number of Studies: 90 Avg. Number of Dwelling Units: 233 Directional Distribution: 65% entering, 35% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.62	0.10 - 1.64	0.82

Residential Condominium/Townhouse

(230)

Average Vehicle Trip Ends vs: On a:	Dwelling Units Weekday, Peak Hour of Adjacent Street Traffic
	One Hour Between 7 and 9 a.m.

Number of Studies:59Avg. Number of Dwelling Units:213Directional Distribution:17% entering, 83% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates /	Standard Deviation
0.44	0.15 - 1.61	0.69

Residential Condominium/Townhouse

(230)

Average Vehicle Trip Ends vs: Dwelling Units On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies:62Avg. Number of Dwelling Units:205Directional Distribution:67% entering, 33% exiting

Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.52	0.18 - 1.24	0.75

Data Plot and Equation

Trip Generation, 9th Edition • Institute of Transportation Engineers

698

Recreational Community Center

(495)

Average Vehicle Trip Ends vs: 1000 Sq. Feet Gross Floor Area On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m.

Number of Studies: 6 Average 1000 Sq. Feet GFA: 74 Directional Distribution: 66% entering, 34% exiting

Trip Generation per 1000 Sq. Feet Gross Floor Area

Average Rate	Range of Rates	Standard Deviation
2.05	1.08 - 3.18	1.62

Recreational Community Center (495)					
Average Vehicle Trip Ends vs: On a:	1000 Sq. Feet Gross Floor Area Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.				
Number of Studies: Average 1000 Sq. Feet GFA: Directional Distribution:	7 72 49% entering, 51% exiting				

		d.	
Average Rate	Range of Rates	Standard Deviation	
2.74	1.05 - 5.37	2.32	

Data Plot and Equation

Elementary School (520)

Average Vehicle Trip Ends vs: Students On a: Weekday, A.M. Peak Hour

Number of Studies:49Average Number of Students:630Directional Distribution:55% entering, 45% exiting

Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation		
0.45	0.11 - 0.92	0.70		
0.45	0			

Data Plot and Equation

980 Trip Generation, 9th Edition • Institute of Transportation Engineers

Elementary School (520)

Average Vehicle Trip Ends vs: Students On a: Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Number of Studies: 21

Average Number of Students: 684

Directional Distribution: 49% entering, 51% exiting

Trip Generation per Student

Average Rate	į.	Range of Rates	Standard Deviation
0.15	11	0.05 - 0.37	0.40

Data Plot and Equation

Middle School/Junior High School (522)

Average Vehicle Trip Ends vs: Students On a: Weekday, A.M. Peak Hour

Number of Studies: 25 Average Number of Students: 876 Directional Distribution: 55% entering, 45% exiting

Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.54	0.14 - 1.29	0.80

Data Plot and Equation

(522)				
Average Vehicle Trip Ends vs: On a:	Students Weekday, Peak Hour of Adjacent Street Traffic One Hour Between 4 and 6 p.m.			
Number of Studies: Average Number of Students: Directional Distribution:	16 982 49% entering, 51% exiting			

Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.16	0.06 - 0.36	0.40

Data Plot and Equation

994 Trip Generation, 9th Edition • Institute of Transportation Engineers

High School (530)

Average Vehicle Trip Ends vs: Students On a: Weekday, A.M. Peak Hour

Number of Studies:75Average Number of Students:1,231Directional Distribution:68% entering, 32% exiting

Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.43	0.14 - 1.15	0.69

Data Plot and Equation

1006 Trip Generation, 9th Edition • Institute of Transportation Engineers

High	School
(5	30)
Average Vehicle Trip Ends vs: On a:	Students Weekday, Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.
Number of Studies:	40
Average Number of Students:	1,352
Directional Distribution:	47% entering, 53% exiting

Trip Generation per Student

Trip Generation per Student	1 1 1	
Average Rate	Range of Rates	Standard Deviation
0.13	0.03 - 0.38	0.37

Data Plot and Equation

Private School (K-12) (536)

Average Vehicle Trip Ends vs: Students On a: Weekday, A.M. Peak Hour

Number of Studies: 5

Average Number of Students: 460 Directional Distribution: 61% entering, 39% exiting

Trip Generation per Student

Average Rate	Range of Rates	Standard Deviation
0.81	0.52 - 0.96	0.91

Caution - Use Carefully - Small Sample Size

Trip Generation, 9th Edition • Institute of Transportation Engineers

1040

Appendix B: Trip Distribution / Assignment

Site Traffic - AM Peak Hour

Keep the Bleau Green

Site Traffic - PM Peak Hour

TABLE: A2

Keep the Bleau Green Development

Project Quadrant Distribution (AM Peak Hour)

(TAZ 808)

	DISTRIBUTION (%)	DIRECTION		AM PEAK HOUR		
DIRECTION	DESIGN YEAR	DIRECTION	DISTRIBUTION	IN	OUT	TOTAL
NNE	25.00 21.50	NORTH	32.65%	195	124	319
ESE	13.73 7.83	EAST	35.24%	211	134	345
SSW WSW	7.48	SOUTH	15.30%	92	59	151
WNW NNW	5.36 7.65	WEST	16.81%	100	64	164
TOTAL	100.00		100.00%	598	381	979

TABLE: A2-1

Keep the Bleau Green Development

Project Cardinal Distribution (AM Peak Hour)

(TAZ 808)

	DISTRIBUTION PERCENTAGES (%)		GES (%)	AM PEAK HOUR			
DIRECTION	MIAMI-DADE LRTP MODEL YEAR		DESIGN YEAR	IN	OUT	τοται	
	2005	2035	2017	IN	001	TOTAL	
NNE	19.48	33.28	25.00	149	95	244	
ENE	20.94	22.35	21.50	129	82	211	
ESE	17.22	8.50	13.73	82	52	134	
SSE	9.87	4.76	7.83	47	30	77	
SSW	9.21	4.88	7.48	45	29	74	
WSW	12.36	10.10	11.46	68	44	112	
WNW	4.77	6.24	5.36	32	20	52	
NNW	6.15	9.89	7.65	46	29	75	
TOTAL	100.00	100.00	100.00	598	381	979	

Note:

Based on Miami-Dade Transportation Plan (to the Year 2035) Directional Trip Distribution Report, October 2009. Since the current data is only available for the model years 2005 and 2035, the eight (8) cardinal directions were interpolated to the design year of 2017.

TABLE: A2-2

AM PEAK HOUR	IN	OUT	TOTAL
VOLUME:	598	381	979
PERCENT:	61.04%	38.96%	(Calculated)

DIRECTION	DISTRIBUTION 97	INGRESS		EGRE	SS	τοτοι
DIRECTION	DISTRIBUTION %	CALCULATED	USED	CALCULATED	USED	IOTAL
NNE	25.00	149.398	149	95.370	95	244
ENE	21.50	128.506	129	82.033	82	211
ESE	13.73	82.061	82	52.385	52	134
SSE	7.83	46.768	47	29.855	30	77
SSW	7.48	44.688	45	28.527	29	74
WSW	11.46	68.460	68	43.702	44	112
WNW	5.36	32.019	32	20.440	20	52
NNW	7.65	45.692	46	29.168	29	75
TOTAL	100.00	597.592	598	381.479	381	979

TABLE: A3

Keep the Bleau Green Development

Project Quadrant Distribution (PM Peak Hour)

(TAZ 808)

	DISTRIBUTION (%)	DIRECTION DISTRIBUTION	PM PEAK HOUR			
DIRECTION	DESIGN YEAR		DISTRIBUTION	IN	OUT	TOTAL
NNE	25.00 21.50	NORTH	32.65%	30	40	70
ESE SSE	13.73 7.83	EAST	35.24%	31	43	74
SSW WSW	7.48	SOUTH	15.30%	14	19	33
WNW	5.36 7.65	WEST	16.81%	15	21	36
τοται	100.00		100.00%	90	123	213

TABLE: A3-1

Keep the Bleau Green Development Project Cardinal Distribution (PM Peak Hour)

(TAZ 808)

	DISTRIB	UTION PERCENTA	PM PEAK HOUR					
DIRECTION	MIAMI-DADE LRT	P MODEL YEAR	DESIGN YEAR	IN	OUT	ΤΟΤΑΙ		
2005 2035 2017	IN							
NNE	19.48	33.28	25.00	23	31	54		
ENE	20.94	22.35	21.50	19	26	45		
ESE	17.22	8.50	13.73	12	17	29		
SSE	9.87	4.76	7.83	7	10	17		
SSW	9.21	4.88	7.48	7	9	16		
WSW	12.36	10.10	11.46	10	14	24		
WNW	4.77	6.24	5.36	5	7	12		
NNW	6.15	9.89	7.65	7	9	16		
TOTAL	100.00	100.00	100.00	90	123	213		

Note:

Based on Miami-Dade Transportation Plan (to the Year 2035) Directional Trip Distribution Report, October 2009. Since the current data is only available for the model years 2005 and 2035, the eight (8) cardinal directions were interpolated to the design year of 2017.

TABLE: A3-2

PM PEAK HOUR	IN	OUT	TOTAL
VOLUME:	90	123	213
PERCENT:	42.19%	57.62%	(Calculated)

DIRECTION DISTRIBUTION % ING		INGRE	SS	EGRE	SS	TOTAL	
		CALCULATED	USED	CALCULATED	USED		
NNE	25.00	22.425	23	30.625	31	54	
ENE	21.50	19.289	19	26.343	26	45	
ESE	13.73	12.317	12	16.822	17	29	
SSE	7.83	7.020	7	9.587	10	17	
SSW	7.48	6.708	7	9.161	9	16	
WSW	11.46	10.276	10	14.034	14	24	
WNW	5.36	4.806	5	6.564	7	12	
NNW	7.65	6.858	7	9.366	9	16	
TOTAL	100.00	89.699	90	122.501	123	213	

Miami-Dade 2035 Long Range Transportation Plan

Directional Trip Distribution Report

Prepared by: **Gannett Fleming** In association with: Advanced Transportation Engineering Consultants AECOM Consult Charesse Chester and Associates Citilabs

Metropolitan Center at Florida International University Strategy Solutions

I-DADE 2005 D	IRECTIONAL DISTRIBUT	ION SUMMA	RY			a and the second			Truck and	and the second second	
ORIGI	IN ZONE		CARDINA	DIRECTION	NS	State Charles					
County TAZ	Regional TAZ		NNE	ENE E	SE S	SSE S	sw v	vsw w		INW T	TOTAL
781	3481	TRIPS	366	687	331	501	305	322	411	546	3,46
101		PERCENT	10.55	19.8	9.54	14.44	8.79	9.28	11.85	15.74	
702	3/82	TRIPS	1120	1190	1056	1036	879	1277	1216	968	8,74
102	J+02	DEDCENT	12.01	13.61	12.08	11.85	10.05	14.61	13.91	11.07	
	0.400	PERCENT	12.01	15.01	1500	1251	1001	1147	1371	1078	10.42
783	3483	TRIPS	1390	1303	1000	12.51	10.47	11	12.15	10.34	
		PERCENT	13.39	15.18	14.47	12	10.47	11	15.15	10.54	2 71
784	3484	TRIPS	454	711	443	363	405	424	453	460	5,71
		PERCENT	12.23	19.15	11.93	9.78	10.91	11.42	12.2	12.39	
785	3485	TRIPS	688	902	574	364	594	613	582	582	4,89
		PERCENT	14.04	18.41	11.72	7.43	12.12	12.51	11.88	11.88	
786	3486	TRIPS	324	576	337	258	340	453	431	463	3,18
100		PERCENT	10.18	18.1	10.59	8.11	10.69	14.24	13.54	14.55	
707	3/97	TRIPS	1056	1510	1254	846	1325	1434	1048	1135	9,6
/8/	5407	DEDCENIT	10.00	15 72	13.05	8.81	13 79	14 93	10.91	11.81	
		PERCENT	10.99	15.72	10.00	10.0	2102	2102	967	13/15	12.3
788	3488	TRIPS	113/	1670	1909	1045	2195	17.74	7.00	10.99	12,5
		PERCENT	9.2	13.51	15.45	8,46	17.75	17.74	7.02	10.88	
789	3489	TRIPS	337	571	629	431	750	800	369	533	4,4
		PERCENT	7.62	12.92	14.23	9.75	16.97	18.1	8.35	12.06	
790	3490	TRIPS	278	661	551	305	281	345	335	416	3,1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		PERCENT	8.76	20.84	17.37	9.62	8.86	10.88	10.56	13.11	
701	2/01	TRIDS	31/	632	343	243	238	259	276	435	2,7
/91	5491	TRIPS	11.40	22.07	12 52	0.07	9.69	9.45	10.07	15.88	
		PERCENT	11.40	23.07	12.52	0.07	6.05	602	10.07	710	1 5
792	3492	TRIPS	388	8 892	4/1	351	691	12.22	447	15.0	4,5
		PERCENT	8.52	2 19.6	10.35	7.71	15.18	13.22	9.82	15.6	
793	3493	TRIPS	166	5 327	166	166	172	193	136	302	1,6
		PERCENT	10.3	2 20.09	10.2	10.2	10.57	11.86	8.35	18.55	
794	3494	TRIPS	19	5 276	164	103	170	232	130	225	1,4
		PERCENT	13.	1 18.45	10.96	6.89	11.36	15.51	8.69	15.04	
705	240	TRIDS	15	278	198	128	167	200	154	276	1,5
/95	545.	DEDCENIT	10.1	17 02	12.7	0.21	10.71	12.83	9.88	17.7	
		PERCENT	10.1	5 17.05	12.7	0.21	10.71	62	C1	116	
796	349	TRIPS	6	0 101	84	30	40	02	10	20.04	
		PERCENT	10.8	3 18.23	15.16	5.42	7.22	11.19	11.01	20.94	
797	349	7 TRIPS	22	0 466	431	190	197	278	292	553	2,6
		PERCENT	8.3	7 17.74	16.41	7.23	7.5	10.58	11.12	21.05	
798	349	BITRIPS	30	0 520	495	245	661	619	297	529	3,
750	5.15	DERCENT	8.1	8 14.18	13.5	6.68	18.03	16.88	8.1	14.43	
700	240	TRIDE	E2	1 505	677	381	886	817	350	678	4.
799	349	9 I RIPS	55	1 333	12.77	7 75	10.02	16.62	7 1 2	13.70	1
		PERCENT	10.	8 12.11	13.77	1.75	10.05	10.02	7.12	15.75	
800	350	OTRIPS	50	0 541	529	380	/15	690	249	597	4,
		PERCENT	11.	9 12.88	12.59	9.05	17.02	16.42	5.93	14.23	
801	350	1 TRIPS	44	1 507	360	332	770	703	410	407	7 3,
		PERCENT	11.2	2 12.9	9.16	8.45	19.59	17.89	10.43	10.36	5
803	350	2 TRIPS	90	6 1114	539	417	929	884	700	77	3 6,
002	550	DEDCENT	15.6	8 17 54	8.4	6 56	14.62	13.91	11.02	12.2	5
		PERCENT	15.0	11.34	0.42	712	1597	1368	592	105	2 8
803	350	3 TRIPS	93	1194	690	0.54	10.04	16.41	7.1	12.5	
		PERCENT	11.2	14.32	10.75	8.54	19.04	10.41	7.1	12.5	10
804	350	4 TRIPS	248	36 1935	1778	8 1136	1392	1351	599	151	8 12,
		PERCENT	20.3	15.87	14.5	8 9.32	11.41	11.08	4.91	12.4	5
805	350	5 TRIPS	88	616	91	3 526	1204	992	388	62	2 6
		PERCENT	14.4	1 10.02	14.8	5 8.56	19.59	16.14	6.31	10.1	2
806	350	6 TRIPS	38	33 296	38	2 220	513	367	168	3 25	2 2
800	550	DERCENT	14.1	34 11.47	14	8 8 52	19.88	14.22	6.51	9.7	6
0.07	25	TOIDE	124	010	64	8 403	470	575	474	1 52	2 5
807	350	17 TRIPS	120	910	12.4	2 772	0.10	11.02	0.00	10.0	1
		PERCENT	23,	12 17.44	12.4	2 1.12	9.10	11.02	5.03	10.0	1 17
808	35	08 TRIPS	26	93 2895	238	1 1364	1 127:	1/09	655	3 85	0 13
		PERCENT	19.	48 20.94	1 17.2	2 9.87	7 9.21	12.36	4.77	7 6.1	5
809	35	9 TRIPS	15	91 1723	3 90	8 655	638	3 744	423	3 51	7 7
		PERCENT	22	.1 23.9	3 12.6	1 9.1	1 8.86	5 10.33	5.8	8 7.1	8
010	25	IN TRIPS	0	91 02	75	4 390	48	510	22	2 38	6 4
810	35	DEDCEMIT	31	22 10.00	16.1	5 9 21	5 10.20	10.97	47	5 87	7
		PERCENT	Z1.	15 19.90	10.1	0.0	4 100	10.32	20	Q AC	7 0
811	35	11 TRIPS	17	15 1569	94	834	4 1094	+ 1355	36	49	2
		PERCENT	20.	48 18.74	4 11.2	9.9	6 13.0	/ 16.18	4.	4 5.9	4
				0.0 1.00	71	7 45	al 70	580	1 15	71 57	6
812	35	12 TRIPS	11	08 168.	2 /1	43	10.	2		-	-
812	35	12 TRIPS PERCENT	11	3.5 28.0	8 11.9	7 7.6	6 11.7	2 9.83	2.6	2 9.6	52

MIAMI-DADE 2035 DI	RECTIONAL DISTRIBL	TION SUMMARY				Light and				The star	
			STREET, D		C	ARDINAL D	IRECTIONS	an an an			
ORIGIN ZONE		Statistics 78	NNE	ENE E	SE	SSE S	SW M	/SW V	VNW N	NW 1	TOTAL
703	2402	PERCENT	13.62	20.03	17.81	13.52	9.13	1394	2383	1726	13 214
783	3483	PERCENT	16.83	14.42	9.69	10.03	7.39	10.55	18.03	13.06	13,214
784	3484	TRIPS	761	1194	754	505	493	459	500	551	5,217
		PERCENT	14.59	22.89	14.45	9.68	9.45	8.8	9.58	10.56	
785	3485	TRIPS	793	1392	764	590	671	588	564	835	6,197
		PERCENT	12.8	22.46	12.33	9.52	10.83	9.49	9.1	13.47	3 058
786	3486		35/	16.98	13.47	11.02	15 36	14.15	9.78	10.23	5,950
787	3487	TRIPS	679	1506	2080	1269	2646	2435	1173	1071	12,859
/0/		PERCENT	5.28	11.71	16.18	9.87	20.58	18.94	9.12	8.33	
788	3488	TRIPS	1417	2656	3050	2027	2474	2771	1336	1317	17,048
		PERCENT	8.31	15.58	17.89	11.89	14.51	16.25	7.84	7.73	5 790
789	3489	TRIPS	4/1	925	9.76	7 24	13.51	18.67	13.07	13.64	5,790
700	3490	TRIPS	502	994	423	311	328	382	448	893	4,281
790	5490	PERCENT	11.73	23.22	9.88	7.26	7.66	8.92	10.46	20.86	
791	3491	TRIPS	359	971	484	264	282	266	277	679	3,582
		PERCENT	10.02	27.11	13.51	7.37	7.87	7.43	7.73	18.96	5 000
792	3492	TRIPS	603	1197	710	520	761	646	413	953	5,803
703	2402	PERCENT	10.35	20.63	12.24	8.90	278	242	152	427	2,200
/93	3493	PERCENT	14.91	17.95	12.27	7.18	10.36	11	6.91	19.41	21200
794	3494	TRIPS	361	439	260	188	307	348	324	602	2,829
		PERCENT	12.76	5 15.52	9.19	6.65	10.85	12.3	11.45	21.28	
795	3495	TRIPS	308	3 383	307	136	291	363	284	564	2,636
		PERCENT	11.68	3 14.53	11.65	5.16	11.04	13.77	10.77	21.4	066
796	3496	TRIPS	7.5	1 10 12	104	33	43	9.7	14 78	252	000
707	3/07	TRIDS	7.5	7 896	676	305	316	584	569	1200	4,923
197	5497	PERCENT	7.6	6 18.2	13.73	6.2	6.42	11.86	11.56	24.38	
798	3498	TRIPS	51	8 739	824	398	1135	977	496	709	5,796
		PERCENT	8.9	4 12.75	14.22	6.87	19.58	16.86	8.56	12.23	
799	3499	TRIPS	71	6 966	676	515	1089	1291	578	12.50	6,671
	2500	PERCENT	10.7	3 14.48	10.13	/./2	025	19.35	415	815	5.818
800	3500	DERCENT	14.3	5 16.86	9.21	7.17	15.9	15.37	7.13	14.01	5,010
801	3501	TRIPS	113	6 872	368	401	1054	987	821	972	6,611
		PERCENT	17.1	8 13.19	5.57	6.07	15.94	14.93	12.42	14.7	
802	3502	TRIPS	124	5 1254	855	612	1809	2651	423	1967	10,816
		PERCENT	11.5	1 11.59	7.9	5.66	16.73	24.51	3.91	18.19	15.681
803	350:		16.4	3 105/	10.09	10.87	18.93	21.15	3.68	8.32	15,001
804	3504	1 TRIPS	273	6 2221	2296	10.07	1833	2299	1633	3626	17,737
		PERCENT	15.4	3 12.52	12.94	6.16	10.33	12.96	9.21	20.44	
805	350	5 TRIPS	102	3 1091	1083	3 741	1689	1613	453	715	8,408
		PERCENT	12.1	7 12.98	12.88	8.81	20.09	19,18	5.39	8.5	2.249
806	350	5 TRIPS	69	432	26.	2 211	468	18.93	195	11 39	3,240
907	350	7 TRIPS	212	2070	91	595	656	685	195	397	7,643
807	550	PERCENT	27.8	27.08	12.0	2 7.78	8.58	8.96	2.55	5.19	
808	350	8 TRIPS	789	94 5302	201	5 1128	1157	2397	1481	2346	23,721
		PERCENT	33.2	28 22.35	8.	5 4.76	4.88	10.1	6.24	9.89	
809	350	9 TRIPS	364	1712	71	1 453	672	1486	1081	1608	11,368
	251	PERCENT	32.0	15.06	6.2	5 3.98	430	13.07	9.51	336	6 3 0 3
810	351	DERCENT	31.4	15 23.93	10.1	2 7.2	6.82	12.64	2.51	5.33	0,505
811	351	1 TRIPS	364	45 3039	135	3 1043	2207	1591	284	888	14,050
		PERCENT	25.9	21.63	9.6	3 7.42	2 15.71	11.32	2.02	6.32	2
812	2 351	2 TRIPS	23	16 2169	83	2 660	1801	1106	402	702	9,988
		PERCENT	23.	19 21.72	8.3	3 6.61	18.03	11.07	4.02	7.03	7.01
813	3 351	3 TRIPS	16	70 1964	115	/ 75	798	960	104	299	/,681
01	4 261	A TRIPS	12	74 25.57 36 1299	15.0	9 63	5 1447	1170	116	508	7.410
814	351	PERCENT	18	03 17.52	12.1	3 8.5	3 19.53	15.79	1.57	6.86	5
81	5 351	5 TRIPS	13	68 2002	136	5 53	5 1298	596	233	440	7,838
		PERCENT	17.	45 25.54	17.4	2 6.8	1 16.56	7.6	2.97	5.61	1
81	6 351	6 TRIPS	12	60 1727	136	9 101	5 1660	640	69	382	8,123

Appendix C

Appendix C: Signal Timing, Background Growth & Adjustment Factor

MIAMI-DADE ATMS SIGNAL DATA SHEET

Signal Asset ID:5258Signal Location:Fontainebleau Blud & Park BludAnalysis Period:AM/PM (Circle One) SAME FOR BOTH PERIODSLocal Time of Day Schedule:Free PlanLocal Time of Day Function:-_____ Setting (Blank or Number#)

Signal Settings: Free Phase Bank 1, Max 1 (i.e. Blank, Plan #1 – Phase Bank 1, Max 1)

Cycle Length:	68	seconds
Offset:	-	seconds

PHASE:	Φ1	Ф2	Ф3	
	N.S.	K	K	
WALK	0	7	٦	
DON'TWALK	G	19	17	
MIN INITIAL	5	7	٦	
VEH EXT	2		2.5	
GREEN	15	25	15	
YELLOW	3	4	4	
RED	0	X	X.	
SPLIT	18	30	20	

	it Time: 00 PM	<u>tive</u> imum ax 0								ით
	Prin 6:	- <u>Ac</u> nk <u>Max</u> Ma								W Th F
		<u>Active</u> PhaseBa 0					unknown		<u>12345678</u> -2567- 	Su M T Su M T
		<u>TOD</u> Setting N/A					In Service Date:	mitted Dhaces	ault ernal Permit 0 ernal Permit 1 ernal Permit 2 al TOD Schedule	0 Free
		<u>Offset</u> 0					Last			053
		Cycle 0					Red		Offset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	ark Blvd						Yellow		O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Report	Blvd&Pe	A					Max 2	2 3	Ring C	
chedule	ebleau	<u>Plan #</u> N		8	0		nit	3 1	T = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TOD S	Fontair			H	0		Max Lin	1 2	0 - 0 25 - 0 0 - 0 0 - 0 15 - 15 15 - 9 0 - 0 0 - 0 0 - 0	
	or 5258:	Op Mode		TWS	0	\rightarrow	Ext	3	5 - 2.	
	fc	<u>DD</u> edule V-7		PH 6 NWT	0	-	Veh E	1 2	0 - 0 - 0 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	
		II Schie	ts	<u>PH 5</u> SBL	0		Min Initial	1 2 3	2 0 0 0 0 7 - 6 - 6 0 - 0 - 0 0 - 0 - 0 7 - 7 - 7 7 - 7 - 7 2 - 0 - 0 0 - 0 - 0	
		irk Blvd	Spli	<u>PH 4</u>	0		valk M	3	- 0 - 0 - 19 9 - 19 0 - 0 - 0 - 117 7 - 117 - 0 - 0 - 0 - 117	
		rsection J Blvd&Pa		<u>H3</u>	0		<u>Don't V</u>	1 2	O - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	_
		Inter -ontainebleau		PH 2 P	0	-	walk PI	hase Bank	Plan	
	Print Date: 8/17/2013	Asset 5258 F		I HI	0	-	Active Phase Ba		1 - 1 2 SET 7 3 - 0 3 - 0 4 - 0 5 SBL 0 6 NWT 7 7 SWT 7 8 - 0 Current TOD Schedule	

* Settings		ings * Day of Week Blank - FREE - Phase Bank 1, Max 1	SuM T W ThF S 0000 TOD OUTPUTS SuM T W ThF S Blank - Plan - Phase Bank 1, Max 2	2 - Phase Bank 2, Max 2	3 - Phase Bank 3, Max 1	4 - Phase Bank 3, Max 2	5 - EXTERNAL PERMIT 1	6 - EXTERNAL PERMIT 2	7 - X-PED OMIT	8 - TBA			efined/Enabled	efined/Enabled
:	Function	Settings * Day of	JTS SuMTV										No Calendar Defined/Enab	No Calendar Defined/Enabl
	Current Time of Day	Time Function	0000 TOD OUTPL											

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2013 HISTORICAL AADT REPORT

- MIAMI-DADE COUNTY: 87

87 AV 200' E NW SR 968/FLAGLER ST, 1 SITE: 1142

YEAR	AADT	DI	RECTION 1	DIR	ECTION 2	*K FACTOR	D FACTOR	T FACTOR
	18500	1 [1	25500	M	23000	9.00	58.90	4.00
0 T 0 T 0		16	28000	IM	24500	9.00	59.70	3.50
7107		1 0		TAT	01000	00 0	58.20	4.10
2011	48500 C	ц	C 4 2 U U	M	44000) C) C] C	
2010	55500 C	뇌	28500	M	27000	1.0.1	17.80	4 · L O
0000	55500 C	[1]	27000	M	28500	7.98	59.96	4.10
		1 [1	27500	M	26000	8.07	66.31	6.60
		16	000 00 00 00 00	13	28000	7.90	63.12	5.50
1002) NNCCC	1	21200	M) C	22 02	UM CL
2006	56500 C	[1]	29000	M	27500	1.14	001	00.71
		[r	28500	M	27000	7.70	65.70	N.1.U
1000		1 6		IM	26500	8.20	67.10	7.10
2004	0 000 FC	1	20002	~ ~			00 00	010
2003	54000 C	L	28500	M	25500	0.1.0 0.1.0	00.27	
0000	50500 0	[1]	25500	M	25000	9.20	68.00	0.40
		I La	24500	M	28000	8.20	53.50	5.20
TOOP	> > > > > > > > > > > > > > > > > > > >	1				0000	53 10	07 00
2000	47000 C	T	25000	3	72000	. 0		0.0
1999	50500 C	[1]	26500	M	24000	u. IO	01.20	00100
1998	53500 C	Ы	28000	Μ	25500	9.30	52./0	Z.1U

1998

: C = COMPUTED; E = MANUAL ESTIMATE; F = FIRST YEAR ESTIMATE S = SECOND YEAR ESTIMATE; T = THIRD YEAR ESTIMATE; F = FOURTH YEAR ESTIMATE V = FIFTH YEAR ESTIMATE; 6 = SIXTH YEAR ESTIMATE; X = UNKNOWN STARTING WITH YEAR 2011 IS STANDARDK, PRIOR YEARS ARE K30 VALUES AADT FLAGS: FACTOR: *K

Keep the Bleau Green Development

Growth Rate Calculations Based on published data from Miami-Dade County

ω
0
0
2
9
ŵ
Print Date:

MIAMI - DADE COUNTY TRAFFIC COUNT STATIONS *BASED ON 2007 TRAFFIC COUNTS

Page : 2

UPDATED	8/6/2008 E	8/6/2008 €	8/6/2008 €	8/6/2008 €	8/6/2008 8	8/6/2008 £	8/6/2008 €	8/6/2008 8	8/6/2008 €	8/6/2008 €	8/6/2008 £	8/6/2008 €	8/6/2008 €	8/6/2008 €	8/6/2008 ε	8/6/2008 8	8/6/2008 8
CONCURRENCY LOS	D	υ	Q	U	۵	۵	۵	Q	U	Ľ	ш	۵	ш	Ľ	٥	υ	O
ADOPTED LOS	E+20	ш	Ш	믭.	Ë	Ш	D	EE	۵	SUMA	EE	D	ш	ш	E+50	۵	ш
5%	z	z	z	z	z	z	~	z	z	~	z	z	~	~	z	z	z
AVAIL	813	612	1194	3517	2762	2636	176	2632	281	-14	195	901	-175	-411	3923	2422	460
DOS	0	0	107	46	120	463	275	114	72	26	87	82	58	2	222	257	4
START	813	612	1301	3563	2882	3099	451	2746	353	12	282	983	-117	-409	4145	2679	464
dHd	2007	1578	4447	3109	2938	2157	4169	3554	2917	1838	846	897	1737	1559	4540	3151	646
MAX	2820	2190	5748	6672	5820	5256	4620	6300	3270	1850	1128	1880	1620	1150	8685	5830	1110
CL	4	4	A 6	A 6	9	Q	A 6	A 6	A 6	A 2	2	4	2	A 2	A 6	A 6	2
LOCATION	S/O 21 ST BET OKEECHOBEE RD-E 25 ST	S/O OKEECHOBEE RD TO POINCIANA BLVD	W/O NW/SW 87 AVE TO NW 97 AVE	W/O NW/SW 97 AVE TO NW 107 AVE	W/0 107 AVE FROM NW 107 AVE TO NW 114 AVE	W/O HEFT FROM NW 114 AVE TO NW 118 AVE	N/O NW 12 ST TO NW 25 ST	N/O NW 25 ST TO NW 36 ST EXT	N/O NW 36 ST TO NW 58 ST	S/O KENDALL DR/SW 88 ST TO SW 112 ST	S/O SW 184 ST FROM SW 184 ST TO SW 232 ST	S/O SW 88 ST TO SW 104 ST	S/O NE 203 ST TO NE 186 ST	E/O LE JEUNE RD BET MCFARLAND-SW 42 AVE	W/O NE 22 AVE FROM I-95 TO BISCAYNE BLVD	E/O N MIAMI AVE/NW 2 AVE TO SAN SIMEON WAY	W/O OLD CUTLER RD TO SW 57 AVE
ROADWAY	NW 47 AVE/E 4 AVE HLH.	EAST DR	W FLAGLER ST	W FLAGLER ST	FLAGLER ST	FLAGLER ST	NW 87 AVE/GALLOWAY RD	NW 87 AVE/GALLOWAY RD	NW 87 AVE/GALLOWAY RD	GALLOWAY RD/SW 87 AVE	GALLOWAY RD/SW 87 AVE	HAMMOCKS BLVD	HIGHLAND LAKES BLVD	INGRAHAM HWY (SR 936)	IVES DAIRY RD/NE 203 ST	IVES DAIRY RD/NE 203 ST	KENDALL DR/SW 88 ST
-										1000							

2013 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: ALL CATEGORY: 8700 MIAMI-DADE NORTH MOCE: 0.97

WEEK	DATES	SF	PSCF
WEEK ====== 2 3 4 5 6 7 8 9 0 111 * 12 * 14 * 15 * 112 * 14 * 16 * 112 * 114 * 115 * 112 * 112 * 112 * 120 *	DATES 01/01/2013 - 01/05/2013 01/06/2013 - 01/12/2013 01/13/2013 - 01/19/2013 01/20/2013 - 01/26/2013 01/27/2013 - 02/02/2013 02/03/2013 - 02/09/2013 02/10/2013 - 02/16/2013 02/17/2013 - 02/23/2013 03/03/2013 - 03/02/2013 03/03/2013 - 03/09/2013 03/10/2013 - 03/16/2013 03/17/2013 - 03/23/2013 03/24/2013 - 03/30/2013 03/24/2013 - 03/30/2013 03/31/2013 - 04/06/2013 04/07/2013 - 04/13/2013 04/07/2013 - 04/20/2013 04/21/2013 - 04/27/2013 04/21/2013 - 05/04/2013 05/05/2013 - 05/11/2013 05/12/2013 - 05/18/2013	SF 1.03 1.03 1.03 1.01 1.00 0.99 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.99 0.99 1.00	PSCF 1.06 1.06 1.06 1.04 1.03 1.02 1.00 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.03
201223 22425 227890 33233 35670 35670	05/12/2013 - 05/18/2013 05/12/2013 - 05/25/2013 05/26/2013 - 06/01/2013 06/02/2013 - 06/08/2013 06/09/2013 - 06/15/2013 06/16/2013 - 06/22/2013 06/23/2013 - 06/29/2013 06/30/2013 - 07/06/2013 07/07/2013 - 07/13/2013 07/14/2013 - 07/20/2013 07/21/2013 - 07/27/2013 07/28/2013 - 08/03/2013 08/04/2013 - 08/10/2013 08/11/2013 - 08/17/2013 08/18/2013 - 08/21/2013 08/25/2013 - 08/31/2013 09/01/2013 - 09/07/2013 09/08/2013 - 09/14/2013 09/08/2013 - 09/21/2013	1.00 1.00 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.03 1.04 1.05 1.04 1.05 1.04 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.04 1.03 1.02 1.02 1.02 1.03 1.04 1.03 1.02 1.02 1.02 1.02 1.04 1.03 1.02 1.02 1.02 1.02 1.04 1.03 1.02	1.03 1.03 1.03 1.04 1.04 1.05 1.05 1.06 1.07 1.06 1.07 1.06 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.05 1.06 1.05 1.05 1.06 1.05 1.05 1.05 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.05 1.06 1.05 1.05 1.05 1.05 1.06 1.05 1.06 1.05 1.05 1.06 1.05 1.06 1.05 1.06 1.05 1.05 1.05 1.06 1.05 1.05 1.05 1.06 1.05 1
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	09/15/2013 - 09/21/2013 09/22/2013 - 09/28/2013 09/29/2013 - 10/05/2013 10/06/2013 - 10/12/2013 10/13/2013 - 10/19/2013 10/20/2013 - 10/26/2013 10/27/2013 - 11/02/2013 11/03/2013 - 11/09/2013 11/10/2013 - 11/23/2013 11/24/2013 - 11/30/2013 12/01/2013 - 12/07/2013 12/08/2013 - 12/14/2013 12/22/2013 - 12/28/2013 12/22/2013 - 12/28/2013 12/29/2013 - 12/31/2013	1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03	1.05 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.06 1.06

* PEAK SEASON

18-FEB-2014 08:46:31

830UPD 6_8700_PKSEASON.TXT

Appendix D: Traffic Counts (TMC's & ATR's)

TABLE: A4

Keep the Bleau Green Development

INTERSECTION APPROACH VOLUMES - AM PEAK HOUR

$ \label{eq:relation} \eqref{eq:relation} \eq$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
NorTHBOUND SBK SBL 73 53 73 53 73 53 73 53 73 53 73 54 65 843 56
SOUTHBOUND SBI (73) 84.7 25 86.7 120 987 TOTAL 1,550 1,550 1,550 1,550 1,550 1,650 1,650 1,650 1,83 WESTBOUND WBT 0 1,550 1,550 1,03 291 9 300 260 1,630 WESTBOUND WBL 1 103 20 1 20 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
WBK Cos WBF Cos WBF Cos 0 WEU 375 NDRL 0 103 366 120 376 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
EBR 0 1.03 0
EASTBOUND EBT 0 1.03 0
EASTBOUND EBL 0 1.03 0 0 0 0 TOTAL 0 0 0 0 0 0 0 TOTAL 0 0 0 0 0 0 0
TOTAL 0
2,648 585 3,233

Notes:

1 Intersection Name

2 Intersection Approach

3 Intersection Approach Movement 4 TMC data provided by RGA, Inc.

5 Date of Count 6 Peak Hour Factor

8 Seasonally Adjusted TMC = Count * SF (Existing Condition).

7 Seasonal Factor obtained from FDOT

9 A 1.00 percent background growth was utilized with a project build-out of 2017.
10 Proposed Traffic w/o Project = Seasonally Adjusted TMC + Backgound
11 Site traffic assignment.
12 Total Traffic = Net Traffic w/o Project + Site Traffic (Proposed Condition with Project)

TABLE: A5

Keep the Bleau Green Development

INTERSECTION APPROACH VOLUMES - PM PEAK HOUR

12	TOTAL TRAFFIC (VPH) (PROPOSED) (2017)	0	487	572	1,059	993	0	98	5	1,096	105	511	0	23	640	0	0	0	0	2,794
11	SITE TRAFFIC (VPH)	0	20	40	60	40	0	0	0	40	0	20	0	0	20	0	0	0	0	120
10	NET TRAFFIC W/O PROJECT	0	467	532	666	953	0	98	5	1,056	105	491	0	23	620	0	0	0	0	2,674
5	BACKGROUND GROWTH @ 1.00% FOR PROJECT BUILD-OUT OF 2017 (3 YEAR GROWTH)	0	14	16	29	28	0	0	0	31	3	14	0	F	18	0	0	0	0	79
8	PM PEAK SEASONALLY ADJUSTED (EXISTING)	0	453	516	969	925	0	95	5	1.025	102	477	0	23	602	0	0	0	0	2,596
7	R	1 03	1 03	1 03	2	1 03	1 03	1 03	1 03		1 03	1 03	1 03	1 03	-	1 03	1 03	1 03	00	
9	PHF									0.	46	0								
5	DATE OF COUNT					Þ1(50	<u>8</u> 1	19	qu	rec	эQ	۸' ا	eps	sın	Ч⊥				
4	PM PEAK HR COUNT	c	110	440 F04	100	808	000	00	7	DOF	000	33	007	22	584	100				2.520
ო	MOVEMENT	000	Lac	SBI	201	101AL	TOW	Idivi		V POL	IUIAL	NBK		NDL	TOTAL	LUIAL	LOI	EBI	TOTAL	ICIAL
2	APPROACH			SOUTHBOUND					MESIBOOND									EASTBOUND		TOTAL
-	INTERSECTION NAME										Fontainebleau Boulevard	& Park Boulevard								
	ои иоітэагаати	11							_		+	-								t

Notes:

1 Intersection Name

2 Intersection Approach

3 Intersection Approach Movement

TMC data provided by RGA, Inc.
 Date of Count
 Peak Hour Factor

7 Seasonal Factor obtained from FDOT

8 Seasonally Adjusted TMC = Count * SF (Existing Condition).

9 A 1.00 percent background growth was utilized with a project build-out of 2017.
10 Proposed Traffic w/o Project = Seasonally Adjusted TMC + Backgound
11 Site traffic assignment.
12 Total Traffic = Net Traffic w/o Project + Site Traffic (Proposed Condition with Project)

8065 NW 98th Street Hialeah Gardens, FL 33016 Phone: 305-362-0677 Fax: 305-675-6474

Groups Printed- Cars - Trucks

File Name : Fontainebleau Blvd_Park Blvd_AM Site Code : 00000000 Start Date : 12/18/2014 Page No : 1

	FON	NTAIN So	UEBLE	EAU E	BLVD		PAR	K BL West	VD boun	d		FC	NTA	NEBL	EAU	BLVI	D	P	ARK	BLVD	und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	Peds	App Total	Int. Total
07:00 AM	0	171	142	0	313	41	0	2	2	0	45	31	60	0	0	0	91	0	0	0	1	1	450
07:15 AM	0	172	172	0	344	60	0	4	1	0	65	41	78	0	1	0	120	0	0	0	0	0	529
07:30 AM	0	186	181	0	367	74	0	8	1	0	83	67	75	0	1	0	143	0	0	0	2	2	595
07.45 AM	0	209	224	0	433	72	0	4	2	0	78	72	100	0	0	4	176	0	0	0	1	1	688
Total	0	738	719	0	1457	247	0	18	6	0	271	211	313	0	2	4	530	0	0	0	4	4	2262
08:00 AM	0	190	179	3	372	78	0	6	3	0	87	61	100	0	1	0	162	0	0	0	3	3	624
08:15 AM	0	161	198	1	360	69	0	4	1	0	74	59	80	0	0	0	139	0	0	0	0	0	573
08:30 AM	0	173	216	0	389	64	0	5	2	0	71	67	95	0	0	1	163	0	0	0	0	0	623
08:45 AM	0	161	175	1	337	80	0	7	2	0	89	54	100	0	2	0	156	0	0	0	1	1	583
Total	0	685	768	5	1458	291	0	22	8	0	321	241	375	0	3	1	620	0	0	0	4	4	2403
Grand Total	0	1423	1487	5	2915	538	0	40	14	0	592	452	688	0	5	5	1150	0	0	0	8	8	4665
Apprch %	0	48.8	51	0.2		90.9	0	6.8	2.4	0		39.3	59.8	0	0.4	0.4		0	0	0	100		
Total %	0	30.5	31.9	0.1	62.5	11.5	0	0.9	0.3	0	12.7	9.7	14.7	0	0.1	0.1	24.7	0	0	0	0.2	0.2	
Cars	0	1408	1479	5	2892	515	0	40	14	0	569	449	676	0	5	5	1135	0	0	0	8	8	4604
% Cars	0	98.9	99.5	100	99.2	95.7	0	100	100	0	96.1	99.3	98.3	0	100	100	98.7	0	0	0	100	100	98.7
Trucks	0	15	8	0	23	23	0	0	0	0	23	3	12	0	0	0	15	0	0	0	0	0	61
% Trucks	0	1.1	0.5	0	0.8	4.3	0	0	0	0	3.9	0.7	1.7	0	0	0	1.3	0	0	0	0	0	1.3

8065 NW 98th Street Hialeah Gardens, FL 33016 Phone: 305-362-0677 Fax: 305-675-6474

> File Name : Fontainebleau Blvd_Park Blvd_AM Site Code : 00000000 Start Date : 12/18/2014 Page No : 2

	FON	So	IEBLE	EAU E	BLVD		PAR	K BL West	VD boun	d		FC	NTA	NEBL North	EAU	BLV	D	P	ARK	BLVD	und		
Start Time	Right	Thru	Left	Peds	App Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	Peds	App Total	Int. Total
Peak Hour	Analy	sis Fr	om 07	:00 A	M to 08	:45 A	M - Pe	eak 1	of 1														
Peak Hour	for En	tire In	tersed	ction E	Begins	at 07:4	45 AN	1															
07:45 AM	0	209	224	0	433	72	0	4	2	0	78	72	100	0	0	4	176	0	0	0	1	1	688
08:00 AM	0	190	179	3	372	78	0	6	3	0	87	61	100	0	1	0	162	0	0	0	3	3	624
08:15 AM	0	161	198	1	360	69	0	4	1	0	74	59	80	0	0	0	139	0	0	0	0	0	573
08:30 AM	0	173	216	0	389	64	0	5	2	0	71	67	95	0	0	1	163	0	0	0	0	0	623
Total Volume	0	733	817	4	1554	283	0	19	8	0	310	259	375	0	1	5	640	0	0	0	4	4	2508
% App. Total	0	47.2	52.6	0.3		91.3	0	6.1	2.6	0		40.5	58.6	0	0.2	0.8		0	0	0	100		
PHF	.000	.877	.912	.333	.897	.907	.000	.792	.667	.000	.891	.899	.938	.000	.250	.313	.909	.000	.000	.000	.333	.333	.911

8065 NW 98th Street Hialeah Gardens, FL 33016 Phone: 305-362-0677 Fax: 305-675-6474

> File Name : Fontainebleau Blvd_Park Blvd_PM Site Code : 00000000 Start Date : 12/18/2014 Page No : 1

									Grou	ips P	rinted-	Cars	- Tru	cks									
	FON	TAIN	IEBLI	EAU E	BLVD			PARK West	BLV	D d		F	ONT	AINEE North	BLEA	U BL\ id	VD		PA Ea	RK B stbo	LVD und		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	Peds	App Total	Int. Total
04:00 PM	0	99	133	0	232	180	0	30	2	0	212	29	95	0	2	0	126	0	0	0	0	0	570
04:15 PM	0	93	129	0	222	162	0	22	0	0	184	25	110	0	5	1	141	0	0	0	0	0	547
04:30 PM	0	100	143	1	244	171	0	21	6	0	198	27	111	0	6	2	146	0	0	0	0	0	588
04.45 PM	0	88	101	2	191	206	0	27	1	0	234	23	90	0	1	0	114	0	0	0	0	0	539
Total	0	380	506	3	889	719	0	100	9	0	828	104	406	0	14	3	527	0	0	0	0	0	2244
05:00 PM	0	109	123	3	235	198	0	19	0	1	218	36	120	0	11	3	170	0	0	0	0	0	623
05:15 PM	0	97	131	1	229	239	0	28	0	0	267	20	112	0	2	5	139	0	0	0	0	0	635
05:30 PM	0	116	125	4	245	240	0	17	2	0	259	29	115	0	5	1	150	0	0	0	0	0	654
05:45 PM	0	118	122	0	240	221	0	28	3	0	252	14	116	0	4	0	134	0	0	0	0	0	626
Total	0	440	501	8	949	898	0	92	5	1	996	99	463	0	22	9	593	0	0	0	0	0	2538
Grand Total	0	820	1007	11	1838	1617	0	192	14	1	1824	203	869	0	36	12	1120	0	0	0	0	0	4782
Apprch %	0	44.6	54.8	0.6		88.7	0	10.5	0.8	0.1		18.1	77.6	0	3.2	1.1		0	0	0	0		
Total %	0	17.1	21.1	0.2	38.4	33.8	0	4	0.3	0	38.1	4.2	18.2	0	0.8	0.3	23.4	0	0	0	0	0	
Cars	0	807	1001	11	1819	1603	0	191	14	1	1809	202	856	0	36	12	1106	0	0	0	0	0	4734
% Cars	0	98.4	99.4	100	99	99.1	0	99.5	100	100	99.2	99.5	98.5	0	100	100	98.8	0	0	0	0	0	99
Trucks	0	13	6	0	19	14	0	1	0	0	15	1	13	0	0	0	14	0	0	0	0	0	48
% Trucks	0	1.6	0.6	0	1	0.9	0	0.5	0	0	0.8	0.5	1.5	0	0	0	1.2	0	0	0	0	0	1

8065 NW 98th Street Hialeah Gardens, FL 33016 Phone: 305-362-0677 Fax: 305-675-6474

> File Name : Fontainebleau Blvd_Park Blvd_PM Site Code : 00000000 Start Date : 12/18/2014 Page No : 2

	FON	NTAIN So	EBLE	EAU E	BLVD		I	PARM West	BLV	D d		F	ONT	AINEE	BLEA	U BL\ d	VD		PA Ea	RK B stbo	LVD		
Start Time	Right	Thru	Left	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App. Total	Right	Thru	Left	U-turns	Peds	App Totai	Right	Thru	Left	Peds	App Total	Int. Total
Peak Hour	Analy	sis Fr	om 04	:00 PI	M to 05	5:45 P	M - Pe	eak 1	of 1														
Peak Hour	for En	ntire In	tersed	ction E	Begins	at 05:0	00 PN	1															0.020202
05:00 PM	0	109	123	3	235	198	0	19	0	1	218	36	120	0	11	3	170	0	0	0	0	0	623
05:15 PM	0	97	131	1	229	239	0	28	0	0	267	20	112	0	2	5	139	0	0	0	0	0	635
05:30 PM	0	116	125	4	245	240	0	17	2	0	259	29	115	0	5	1	150	0	0	0	0	0	654
05:45 PM	0	118	122	0	240	221	0	28	3	0	252	14	116	0	4	0	134	0	0	0	0	0	626
Total Volume	0	440	501	8	949	898	0	92	5	1	996	99	463	0	22	9	593	0	0	0	0	0	2538
% App. Total	0	46.4	52.8	0.8		90.2	0	9.2	0.5	0.1		16.7	78.1	0	3.7	1.5		0	0	0	0		
PHF	000	.932	.956	.500	.968	.935	.000	.821	.417	.250	.933	.688	.965	.000	.500	.450	.872	.000	.000	.000	.000	.000	.970

Richard Garcia & Associates, Inc. 8065 NW 98th Street

8065 NW 98th Street Hialeah Gardens, FL 33016 PH: 305-362-0677 FAX: 305-675-6474

Site Code: 00000000000 Station ID: 13919 FONTAINEBLEAU BOULEVARD WEST OF PARK BOULEVARD Latitude: 0' 0.0000 Undefined

Time Wead Morning Afternoon Mo	Start	17-Dec-14	E	В	Hour	Totals	V	/B	Hour	Totals	Combin	ed Totals
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time	Wed	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12:00		38	213			95	171				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12:15		46	228		1 10 7000	62	207				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12:30		37	239			67	196				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12:45		24	210	145	890	50	172	274	746	419	1636
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	01:00		28	229	110	000	59	216				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01:15		17	238			39	188		-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	01.10		15	200			30	194				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	01.30		15	220	75	001	30	104	140	760	224	1662
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	01:45		15	206	15	901	21	1/4	149	102	224	1003
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	02:00		24	215			21	211				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02:15		14	232			30	215				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02:30		19	243		1000000	21	239				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	02:45		17	179	74	869	16	242	88	907	162	1776
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03:00		12	228			15	228				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03:15		15	200			20	248				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03:30		15	271			16	230				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	03:45		18	226	60	925	17	237	68	943	128	1868
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04:00		14	209	00	020	11	229	00	0.10	120	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04:15		24	203			11	267				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04.15		34	201			20	207				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04:30		35	205	4.47	007	20	290	70	4000	407	1005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	04:45		34	232	117	897	28	276	70	1068	187	1965
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05:00		45	237			22	307				
06:30 91 229 304 951 42 236 120 1351 424 2302 06:15 175 257 63 334 199 334 314 267 307 333 1904 1922 2363 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 333 344 192 212 414 198 414 198 4147 309 344 1470 394 394 393 194 393 194 393 194	05:15		65	255			27	360				
05.45 103 230 304 951 42 236 120 1351 424 2302 06:00 128 273 55 333 100 344 333 100 344 2302 312 1340 1120 2383 06:30 265 263 100 344 332 312 1340 1120 2383 07:30 334 199 131 267 307 312 1340 1904 1922 07:30 334 199 1331 819 174 262 573 1103 1904 1922 08:00 396 190 1331 819 174 262 573 1103 1904 1922 08:05 303 366 162 165 216 165 216 165 216 170 182 671 808 2128 1470 09:00 267 140 146 194 144 185 155 173 1550 1281 09:01 <td< td=""><td>05:30</td><td></td><td>91</td><td>229</td><td></td><td></td><td>29</td><td>358</td><td></td><td></td><td></td><td>-</td></td<>	05:30		91	229			29	358				-
06:00 128 273 55 331 06:15 175 257 63 333 06:30 265 263 100 334 06:45 240 230 808 1023 94 332 312 1340 1120 2383 07:00 266 221 141 267 307 103 199 131 267 307 103 1904 1922 07:30 334 199 1331 819 144 198 1103 1904 1922 08:00 3394 164 192 212 1457 662 170 182 671 808 2128 1470 09:00 267 140 1457 662 170 182 671 808 2128 1470 09:30 264 1457 662 170 182 551 734 150 1281 10:30 210 109	05:45		103	230	304	951	42	326	120	1351	424	2302
06:15 175 257 63 333 100 344 232 312 1340 1120 2363 06:30 2265 223 808 1023 127 307 312 1340 1120 2363 07:00 296 221 131 267 307 333 199 131 267 313 1904 1922 07:45 396 190 1331 819 174 262 573 1103 1904 1922 08:00 394 180 144 198 165 216 1470 1904 1922 08:45 322 152 1457 662 139 194 180 1470 09:00 267 140 146 144 187 150 1281 09:45 234 114 999 547 142 159 551 734 1550 1281 10:00 204 73 <td>06:00</td> <td></td> <td>128</td> <td>273</td> <td></td> <td>a standard</td> <td>55</td> <td>331</td> <td></td> <td>0.000</td> <td></td> <td></td>	06:00		128	273		a standard	55	331		0.000		
OG:30 265 263 100 344 234 234 235 06:45 240 230 808 1023 94 332 312 1340 1120 2363 07:00 296 221 307 100 141 267 773 1103 1904 1922 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 264 147 999 551 734 1550 1281 10:015 208 108 144 155 146 144 155 141 11120 1281 11111	06:15		175	257		1 - 12	63	333				
00:35 240 230 808 1023 94 332 312 1340 1120 2363 07:00 296 221 141 267 307 141 267 307 141 267 307 141 267 307 103 1904 1922 1103 1904 1922 1103 1904 1922 1103 1904 1922 1103 1904 1922 1103 1904 1922 192 1103 1904 1922 192 1103 1904 1922 1103 1904 1922 192 1103 1904 1922 192 1103 1904 1922 1103 1904 1922 192 1103 1904 1922 1103 1904 1922 1103 1904 1922 1103 1904 1922 1103 1904 1923 146 1103 1904 1124 1114 1104 1124 1114 1104 1124 1114 </td <td>06:30</td> <td></td> <td>265</td> <td>263</td> <td></td> <td></td> <td>100</td> <td>344</td> <td></td> <td></td> <td></td> <td></td>	06:30		265	263			100	344				
00:43 240 250 606 102.5 94 352 512 130 1125 200 07:15 305 209 141 267 307 141 267 07:30 334 199 1331 819 131 267 103 1904 1922 08:00 394 181 144 198 573 1103 1904 1922 08:15 408 164 146 216 165 216 100 1922 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 267 140 146 194 999 547 124 187 150 1281 09:45 234 146 146 194 150 1281 10:0 238 111 999 547 136 162 160 1281 10:00 204 73 155 116 124 187 155 116 122 142 199 <td>06:45</td> <td></td> <td>240</td> <td>220</td> <td>808</td> <td>1022</td> <td>04</td> <td>332</td> <td>312</td> <td>1340</td> <td>1120</td> <td>2363</td>	06:45		240	220	808	1022	04	332	312	1340	1120	2363
07:00 256 221 141 267 07:30 334 199 131 267 07:45 396 190 1331 819 174 262 573 1103 1904 1922 07:45 396 190 1331 819 174 262 573 1103 1904 1922 08:00 394 181 165 216 192 170 182 671 808 2128 1470 08:30 333 165 1457 662 170 182 671 808 2128 1470 09:00 267 140 146 194 199 133 199 194 150 1281 1000 238 111 136 162 144 155 160 1121 1000 233 54 177 155 161 1124 1990 1111 155 216 147 190 101 1124 <td>00.43</td> <td></td> <td>240</td> <td>200</td> <td>000</td> <td>1025</td> <td>107</td> <td>207</td> <td>512</td> <td>1540</td> <td>1120</td> <td>2000</td>	00.43		240	200	000	1025	107	207	512	1540	1120	2000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07.00		290	221			121	307				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07:15		305	209			141	267				
07:45 396 190 1331 819 174 262 573 1103 1904 1922 08:00 394 181 144 198 144 198 1103 1904 1922 08:00 333 165 408 164 165 216 192 212 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 264 147 662 170 182 671 808 2128 1470 09:00 264 144 199 547 142 159 551 734 1550 1281 10:00 238 111 999 547 142 159 551 734 1550 1281 10:00 208 108 1144 155 116 1123 1474 142 149 144 155 10:00 204 73 150 1124 1123 150 1281 11:10 208 <t< td=""><td>07:30</td><td></td><td>334</td><td>199</td><td></td><td></td><td>131</td><td>267</td><td></td><td></td><td></td><td></td></t<>	07:30		334	199			131	267				
08:00 394 181 144 198 08:15 408 164 165 216 08:30 333 165 192 212 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 267 140 139 194 192 217 182 671 808 2128 1470 09:00 264 147 139 194 124 187 1550 1281 09:45 234 114 999 547 142 159 551 734 1550 1281 10:00 238 111 917 89 853 417 173 123 575 582 1428 999 10:30 210 109 1144 1054 1124 199 11:30 233 54 197 198 99 690 410 1569 657	07:45	Station 17	396	190	1331	819	174	262	573	1103	1904	1922
08:15 408 164 165 216 08:30 333 165 192 212 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 267 140 146 194 671 808 2128 1470 09:15 234 146 146 194 671 808 2128 1470 09:45 234 144 199 547 142 159 551 734 1550 1281 10:00 238 111 999 547 142 155 16 734 1550 1281 10:015 208 108 144 155 116 122 1428 999 11:00 204 73 147 94 144 155 1428 999 11:00 204 73 147 94 11243 19900 11243	08:00		394	181			144	198				
08:30 333 165 192 212 08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 267 140 139 194 671 808 2128 1470 09:00 267 140 139 194 671 808 2128 1470 09:15 234 146 194 146 194 146 194 150 1281 09:45 234 114 999 547 142 159 551 734 1550 1281 10:00 238 111 136 162 144 155 145 144 155 1428 999 10:30 210 109 1122 142 144 155 1428 999 11:00 204 73 155 116 11243 1990 101 11243 1990 111 11243 1990 660 410 1569 657 Total 7102	08:15	8	408	164			165	216				
08:45 322 152 1457 662 170 182 671 808 2128 1470 09:00 267 140 139 194 146 194 1470 09:15 234 146 146 194 146 194 1470 09:30 264 147 124 187 124 187 1550 1281 10:00 238 111 999 547 142 159 551 734 1550 1281 10:00 238 111 136 162 144 155 142 159 144 155 144 155 144 155 142 144 155 144 155 1428 999 11:00 204 73 123 575 582 1428 999 11:00 204 73 155 116 11243 1900 111:145 11243 1990 111:43 1990 660 410 1569 657 Total 7102 9148 4141	08:30		333	165			192	212				
09:00 267 140 139 194 09:00 264 146 146 194 09:30 264 147 124 187 09:45 234 114 999 547 142 159 551 734 1550 1281 10:00 238 111 136 162 111 1165 1281 10:15 208 108 144 155 116 1122 142 110 111	08:45		322	152	1457	662	170	182	671	808	2128	1470
09:15 234 146 146 194 09:30 264 147 124 187 09:45 234 114 999 547 142 159 551 734 1550 1281 10:00 238 111 136 162 101 162	09.00		267	140			139	194		1.000		
09:13 264 140 124 187 09:30 264 147 999 547 142 159 551 734 1550 1281 10:00 238 111 999 547 142 159 551 734 1550 1281 10:15 208 108 144 155 144 155 142 144 1551 1428 999 10:30 210 109 122 142 164 155 116 147 94 11100 204 73 11100 11115 224 73 147 94 11130 155 116 111115 111115 111115 1111115 1111111 1111111 111111 111111 111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 11111111 11111111 11111111 11111111 111111111 11111111111 11111111111 1111111111111111	00:15		234	146		10	146	194		1		
09:45 204 147 999 547 142 167 551 734 150 1281 10:00 238 111 999 547 142 159 551 734 150 1281 10:00 238 101 136 162 161	00:20		264	147			124	187				
109:45 234 114 999 547 142 135 551 734 150 1281 10:00 238 111 136 162 144 155 100 142 144 155 116 1122 142 1122 142 1122 142 1122 142 999 1100 204 73 122 142 113 114 113 114 113 113 113 113 113 113 113 113 113 113 113 113 114	09.30		204	147	000	E 47	142	150	551	724	1550	1001
10:00 238 111 130 162 10:15 208 108 144 155 10:30 210 109 122 142 10:45 197 89 853 417 173 123 575 582 1428 999 11:00 204 73 1155 116 111	09.45		234	114	999	347	142	109	001	7.54	1550	1201
10:15 208 108 144 155 10:30 210 109 122 142 10:45 197 89 853 417 173 123 575 582 1428 999 11:00 204 73 155 116 111 112 147 94 1130 233 54 147 94 1130 1569 657 650 657 Total 7102 9148 477 879 247 198 99 690 410 1569 657 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - - - - - Vol. - 1532 - - - 690 -<	10:00		238	111			136	162				
10:30 210 109 122 142 142 10:45 197 89 853 417 173 123 575 582 1428 999 11:00 204 73 73 155 116 16 1428 999 11:15 224 73 755 582 1428 999 11:30 233 54 190 101 16 160 160 160 160 160 160 160 170 190 101 11243 19902 1900 101 11243 19902 1902 1902 11243 19902 1902 11243 19902 1902 11243 19902 11243 19902 1902 11243 19902 160 11243 19902 1902 160 11243 19902 160 11243 19902 160 11243 19902 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 160 1	10:15		208	108		s (; =2 =2.	144	155				
10:45 197 89 853 417 173 123 575 582 1428 999 11:00 204 73 155 116 16 1428 999 11:15 224 73 147 94 99 101 1123 575 582 1428 999 11:30 233 54 147 94 99 101 11243 1569 657 11:45 218 47 879 247 198 99 690 410 1569 657 Total 7102 9148 4141 10754 11243 19902 AM Peak - 07:30 - - 11:00 -	10:30		210	109			122	142			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
11:00 204 73 155 116 11:15 224 73 147 94 11:30 233 54 190 101 11:45 218 47 879 247 198 99 690 410 1569 657 Total 7102 9148 4141 10754 11243 19902 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - 11:00 - - - - Vol. - 1532 - - 690 - - - - - PH.F. 0.939 0.871 0.871 - <t< td=""><td>10:45</td><td></td><td>197</td><td>89</td><td>853</td><td>417</td><td>173</td><td>123</td><td>575</td><td>582</td><td>1428</td><td>999</td></t<>	10:45		197	89	853	417	173	123	575	582	1428	999
11:15 224 73 147 94 11:30 233 54 190 101 11:45 218 47 879 247 198 99 690 410 1569 657 Total 7102 9148 4141 10754 11243 19902 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - - - - - Vol. - 1532 - - 690 - - - - - P.H.F. 0.939 0.871 0.871 - <	11:00		204	73			155	116				
11:30 233 54 190 101 11:45 218 47 879 247 198 99 690 410 1569 657 Total 7102 9148 4141 10754 11243 19902 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - - 11:00 - - - - Vol. - 1532 - - - 690 -	11:15		224	73	×		147	94		18		
11:45 218 47 879 247 198 99 690 410 1569 657 Total 7102 9148 4141 10754 11243 19902 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - - - - Vol. - 1532 - - 690 - - - P.H.F. 0.939 0.871 0.871 - - - - PM Peak - - 05:45 - - 0.871 - - PM Peak - - 1023 - - 1375 - - - P.H.F. 0.937 0.937 0.955 - - - - - -	11:30		233	54			190	101				
Total 7102 9148 4141 10754 11243 19902 Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07:30 - - - 11:00 - - - Vol. - 1532 - - - 690 - - - - P.H.F. 0.939 0.871 0.871 - - - - - PM Peak - - 05:45 - - - 05:15 - - Vol. - - 1023 - - - 1375 - - P.H.F. 0.937 0.955 - - - - -	11:45		218	47	879	247	198	99	690	410	1569	657
Percent 43.7% 56.3% 27.8% 72.2% 36.1% 63.9% AM Peak - 07.30 - - 11:00 - - - - - - - 10:02 - - - 10:02 - - - 10:02 - - - 10:02 - - - 10:02 - - - 10:02 - - - 10:02 - - - 10:02 - - - - - - 10:02 - <td>Total</td> <td></td> <td>7102</td> <td>9148</td> <td>0.0</td> <td></td> <td>4141</td> <td>10754</td> <td>000</td> <td></td> <td>11243</td> <td>19902</td>	Total		7102	9148	0.0		4141	10754	000		11243	19902
AM Peak - 07:30 - - 11:00 -	Percent		13 70/	56 304			27 804	72 204			36 1%	63 0%
ANT Feak - 07.50 - <t< td=""><td>AM Deck</td><td></td><td>40.770</td><td>50.570</td><td>52.</td><td></td><td>11:00</td><td>12.270</td><td>0.41</td><td>2.9</td><td>50.176</td><td>00.970</td></t<>	AM Deck		40.770	50.570	52.		11:00	12.270	0.41	2.9	50.176	00.970
Vol. - 1532 - - 690 -	Alvi Peak		07.50	-	7	-	11.00	7	-	-	-	-
P.H.F. 0.939 0.871 PM Peak - - 05:45 - <td>Vol.</td> <td>-</td> <td>1532</td> <td>-</td> <td>-</td> <td>-</td> <td>690</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>	Vol.	-	1532	-	-	-	690	-	-	-	-	
PM Peak - - 05:45 - - 05:15 -	P.H.F.		0.939				0.871					
Vol. - - 1023 - - 1375 -	PM Peak	-	-	05:45	-	-		05:15	-			5
P.H.F. 0.937 0.955	Vol.		-	1023	-	-	×	1375	-	-	-	÷ +
11010 10000	P.H.F.			0.937				0.955				
l otal 11243 19902	Total										11243	19902

Page 1

RGA

Richard Garcia & Associates, Inc. 8065 NW 98th Street

8065 NW 98th Street Hialeah Gardens, FL 33016 PH: 305-362-0677 FAX: 305-675-6474

Site Code: 00000000000 Station ID: 13919 FONTAINEBLEAU BOULEVARD WEST OF PARK BOULEVARD Latitude: 0' 0.0000 Undefined

Start	18-Dec-14	E	В	Hour	Totals	V	/B	Hour	Totals	Combine	ed Totals
Time	Thu	Morning	Afternoon								
12:00		51	201			73	176				
12:15		38	236			60	173				
12:30		25	197			50	164				
12:45		24	191	138	825	40	213	223	726	361	1551
12.45		10	226	100	020	34	191				
01:00		10	220			30	202				
01:15		18	234			39	174				
01:30		14	216	50	004	20	1/4	101	762	197	1644
01:45		6	205	56	881	32	196	131	103	107	1044
02:00		15	233			24	228				
02:15		12	218		8	20	221				
02:30		11	221			20	221				
02.45		20	224	58	896	17	263	81	933	139	1829
03:00		9	252			15	242				
03:15		16	216			13	244				
03.15		17	245			12	260				
03:30		17	245	60	044	0	277	49	1023	111	1967
03:45		20	231	02	944	10	207	40	1020		1007
04:00		15	251			12	207				
04:15		30	220			12	280				
04:30		32	250			17	273				
04:45		29	199	106	920	26	281	67	1121	173	2041
05.00		37	229			17	306				
05:15		60	238			33	337				
05:30		88	261			30	355				
05.50		102	250	287	987	47	328	127	1326	414	2313
05:45		102	209	207	507	58	265	121	.020		
06:00		146	202			50	305				
06:15		182	254			59	343				
06:30		239	232		10000	83	368				0004
06:45		259	228	826	976	116	307	316	1385	1142	2361
07:00		306	251			119	308				
07.15		333	216			150	275				
07:30		377	219			158	287				
07:45		111	231	1430	917	180	262	607	1132	2037	2049
07.45		975	102	1400	011	170	248				
08:00		375	192			113	220				
08:15		377	221			142	202				
08:30		371	169			159	194	074	004	2140	1507
08:45		354	151	1477	733	191	190	671	864	2148	1597
09:00		291	146			156	188				
09:15		228	140			135	171				
09.30		274	138			125	166				
09:45		212	107	1005	531	125	164	541	689	1546	1220
10:00		207	132			141	184				
10.00		212	102			137	156			S = 110	
10.15		212	121			1/3	130				
10:30		215	112	000	461	145	125	566	505	1305	1056
10:45		195	96	829	401	145	120	500	090	1000	1000
11:00		210	92			15/	121				
11:15		182	71			141	96				
11:30)	188	62			172	99		3 2300	1000000	
11:45	5	180	63	760	288	160	93	630	409	1390	697
Tota		7034	9359			4009	10966			11043	20325
Percent	t	42.9%	57.1%			26.8%	73.2%			35.2%	64.8%
AM Deal	-	07:30	-		-	08:00	-	-			
AN Fear		1543	12			671	-				
VOI	-	0.020	-			0.878					
P.H.F		0.932	05.00			0.070	05:45				
PM Peak		-	05:30				1406				
Vol		-	1036	1.			1406				
P.H.F			0.989				0.955			110.0	00000
Tota								-		11043	20325
Tota		14136	6 18507	7		815	0 21720	0		2228	6 40227
Percen	t	43.3%	6 56.7%	0		27.39	% 72.7%	6		35.79	64.3%
1 010011	2.5			5							

ADT

ADT 31,256

AADT 31,256

Richard Garcia & Associates, Inc. 8065 NW 98th Street Hialeah Gardens, FL 33016 PH: 305-362-0677 FAX: 305-675-6474

Site Code: Station ID: 20813 PARK BOULEVARD EAST OF FONTAINEBLEAU BOULEVARD Latitude: 0' 0.0000 Undefined

Start	17-Dec-14	E	В	Hour	Totals	V	/B	Hour	Totals	Combine	ed Totals
Time	Wed	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
12:00		35	135			66	122				
12:15		25	184			50	150				
12:30		19	160			43	144				
12.45		12	166	91	645	35	122	194	538	285	1183
01:00		19	156			42	157				
01:15		16	163			28	136				
01:30		11	173			19	131				
01.30		8	150	54	642	18	122	107	546	161	1188
01.45		17	120	54	042	16	166	107	010	101	1100
02:00		17	139			10	153				
02:15		14	163			25	103				
02:30		12	152			15	137	00	045	101	1100
02:45		15	129	58	583	10	159	66	615	124	1198
03:00		9	156			9	162				
03:15		11	127			11	172				
03:30		10	153			9	145				
03:45		12	155	42	591	11	188	40	667	82	1258
04.00		12	135			8	176				
04:15		21	140			7	182				
04:30		27	131			13	229				
04.30		29	147	88	553	14	211	42	798	130	1351
04.45		20	147	00	555	14	227	72	100	100	1001
05:00		37	133			15	207				
05:15		40	149			9	202				
05:30		64	143			18	2/5	50	1000	070	4550
05:45		72	128	213	553	17	232	59	1006	272	1559
06:00		79	157			19	260				
06:15		103	162			33	244				
06:30		171	148			49	244				
06:45		164	141	517	608	45	245	146	993	663	1601
07:00		160	102		and the second	60	230				
07:15		206	141			66	188				
07.10		220	130			58	184				
07.30		223	136	964	400	86	206	270	808	1134	1307
07.45		209	07	004	433	94	130	210	000	1101	1001
08:00		210	87			04	139				
08:15		273	90			07	145				
08:30		197	88			86	146	0.40	550	1107	010
08:45		192	87	818	352	92	128	349	558	1167	910
09:00		180	74			61	132				
09:15		151	88			87	121				
09:30		153	72	1. 20-0.00e1		62	125				
09:45		174	70	658	304	90	99	300	477	958	781
10.00		160	73			84	106				
10:15		151	56		1.22	91	99				
10:30		145	63			97	78				
10.30		150	52	606	244	128	83	400	366	1006	610
10.45		100	34	000	2-74	00	77	400	000		010
11:00		138	34			147	EA.				
11:15		161	39			117	64				
11:30		156	20			129	46	105	0.47	1001	001
11:45		164	24	619	117	131	60	465	247	1084	364
Total		4628	5691			2438	7619			7066	13310
Percent	t	44.8%	55.2%			24.2%	75.8%			34.7%	65.3%
AM Peak	-	07:30	-	-	-	11:00	-	2		5	-
Vol	-	927	-	12		465	-	-	-	-	-
PHF		0.862				0.887					
PM Peak	-	-	00:15	-	-	-	05:15	-	-	-	-
Vol	_	-	666	-		-	1029	-	2	2	-
PHE			0 905				0.935				
Toto			0.505				0.000			7066	13310
Tota	1									,000	10010

Page 1
RGA

Richard Garcia & Associates, Inc. 8065 NW 98th Street

8065 NW 98th Street Hialeah Gardens, FL 33016 PH: 305-362-0677 FAX: 305-675-6474

Site Code: Station ID: 20813 PARK BOULEVARD EAST OF FONTAINEBLEAU BOULEVARD Latitude: 0' 0.0000 Undefined

Sta	art	18-Dec-14	E	В	Hour	Totals	V	VB	Hour	Totals	Combine	ed Totals
Tim	ne	Thu	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon	Morning	Afternoon
	12:00		31	144			49	125				
	12:15		30	166			34	118				
	12.30		15	142			33	113				
	12:45		14	116	90	568	26	145	142	501	232	1069
(01.00		13	168	00	000	23	145				
	01.00		10	140			37	135				
(01.15		10	149			10	100				
(01:30		13	138		504	18	133	100	500	100	4454
(01:45		3	136	39	591	22	147	100	560	139	1151
(02:00		5	158			14	160				
(02:15		8	157			21	145				
(02:30		6	141			14	150				
(02:45		9	144	28	600	8	178	57	633	85	1233
(03.00		7	144		10000	12	166				
	03.15		11	152			11	160				
	03.30		10	148			10	167				
	03.30		15	140	EQ	507	6	210	20	711	07	1209
	03:45		21	153	00	291	0	210	29	111	97	1500
	04:00		8	162			9	218				
	04:15		14	142			9	186				
	04:30		33	156			9	202				
	04:45		20	126	75	586	10	226	37	832	112	1418
13	05:00		34	154			12	213				
	05:15		42	150			14	256				
	05:30		70	154			11	273				
	05:45		69	131	215	589	16	250	53	992	268	1581
	00.40		00	159	210	000	26	250	00	OOL	200	
	00.00		115	100			20	270				
	06:15		115	137			21	270				
	06:30		133	130	500	550	42	260	101	1000	057	4504
	06:45		186	133	526	558	42	214	131	1003	657	1561
	07:00		164	139			49	199				
	07:15		205	129			65	204				
	07:30		237	117			81	220				
	07:45		270	153	876	538	79	180	274	803	1150	1341
	08.00		227	117			90	167				
	08.15		247	125			77	157				
	00.10		245	03			74	143				
	00.30		240	95	007	410	01	120	222	606	1250	1025
	08:45		208	84	927	419	91	159	332	000	1259	1025
	09:00		187	61			92	121				
	09:15		173	87			67	107				
	09:30		159	85		1. ANA 1. A	67	123				
	09:45		155	70	674	303	71	93	297	444	971	747
	10:00		148	79			91	128				
	10:15		141	77			78	96				
	10:30		143	57			82	79				
	10:45		132	51	564	264	88	77	339	380	903	644
	11:00		147	51	004	201	01	86	000	000		0.11
	11.00		147	14			05	00				
	11.15		113	44			35	40				
	11:30		117	23		450	107	62	110	0.40	005	200
	11:45		145	32	522	150	120	50	413	246	935	396
	Total		4594	5763			2214	7711			6808	13474
P	ercent		44.4%	55.6%			22.3%	77.7%			33.6%	66.4%
AM	1 Peak		07:45	-	.7	-	11:00	17.1	07.		-	-
	Vol.	-	989	-	-	2040	413	-	-	Ξ.	-	-
3	P.H.F		0.916				0.860					
PM	1 Peak	-		03:15	-	-	-	05:30	-	-		-
1 10	Vol	2		615	_			1052	_	-	-	
01	DHE	5		0 0 0 0				0.963				
	Tetel			0.549				0.000			6909	12/7/
	Total		0000		6		465	0 45000			1207	1 26704
-	Iotal		9222	11454			405.	/ 70.70	,		130/4	E 00/
P	rcent		44.6%	55.4%			23.39	0 /0./%			34.1%	05.9%

ADT ADT 20,329

AADT 20,329

Page 2

Appendix E: Level of Service (LOS) & Traffic Concurrency

TABLE: A6

Keep the Bleau Green Development

Level of Service (LOS) Summary - AM & PM Peak Hour

									tibuo Condit	ion with Droi	ort
					Existing C	condition		21	iniino nasodo		100
	location	Intersection	Approach	AM Pe	ak Hour	PM Pe	ak Hour	AM Pe	ak Hour	PM Pea	ik Hour
		Control		LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)	LOS	Delay (s)
1			EB	1	,	ī	1	E	T	1	1
suo			WB	A	7.6	В	11.8	A	7.8	В	11.5
itos	Fontainebleau Boulevard	Traffic Signal	RBN NBN	U	23.7	В	19.4	S	31.1	U	21.4
LSE	& Park Boulevard			8	11.2	В	17.1	8	15.7	В	18.6
əţu			Overall		13.9	8	15.5	8	18.1	В	16.5
			L L L		,	ŗ	1	A	0.0	A	0.0
			WB		1	3	1	A	0.0	A	0.0
	Fontainebleau Boulevard	Two-Way		1	1	1	1	ı	.1	а	ł
	& Driveway 1 (DW1)	Stop			1	1		0	27.1*	В	14.4 *
sys			Overall		,		,	A	3.2	A	0.7
MƏ			EB		1	1	,	A	0.0	A	0.0
vinC			WB	1	1	ı	1	A	0.0	A	0.0
1	Fontainebleau Boulevard	Two-Way	NB	t	I	1	1	1	I	ı	1
	& Driveway 2 (DW2)	Stop	SB		1		1	в	10.7 *	В	12.3 *
			Overall	,	1			A	0.0	A	0.0

* TWSC Critical Approach

Existing Condition - AM Peak Hour

Keep the Bleau Green

HCM Signalized Intersection Capacity Analysis 1: Fontainebleau Blvd & Park Blvd

	F	*	*	₹I	٦	1	\searrow	7		
Movement	WBU	WBL	WBR	NBU	NBL	NBR	SEL	SER		and the state of the second
Lane Configurations		5	77		74		ሻሻ	77		
Volume (vph)	8	20	291	1	386	267	842	755		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		5.0	5.0		5.0		3.0	5.0		
Lane Util. Factor		1.00	0.88		0.97		0.97	0.88		
Frt		1.00	0.85		0.94		1.00	0.85		
FIt Protected		0.95	1.00		0.97		0.95	1.00		
Satd, Flow (prot)		1792	2814		3328		3467	2814		
Flt Permitted		0.43	1.00		0.95		0.95	1.00		
Satd. Flow (perm)		820	2814		3268		3467	2814		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91		
Adi, Flow (vph)	9	22	320	1	424	293	925	830		
RTOR Reduction (vph)	0	0	126	0	210	0	0	234		
Lane Group Flow (vph)	0	31	194	0	508	0	925	596		
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%	1%	1%		
Turn Type	Perm	Prot	pt+ov	Perm	Prot		Prot	Prot		
Protected Phases		3	81		2		1	6		
Permitted Phases	3			2						
Actuated Green, G (s)		9.2	41.3		18.7		27.1	48.8		
Effective Green, g (s)		9.2	41.3		18.7		27.1	48.8		
Actuated g/C Ratio		0.14	0.61		0.27		0.40	0.72		
Clearance Time (s)		5.0			5.0		3.0	5.0		
Vehicle Extension (s)		2.5			1.0		2.0	1.0		
Lane Gro Cap (vph)	NAL PROPERTY.	110	1709		898		1381	2019		
v/s Ratio Prot			0.07				c0.27	0.21		
v/s Ratio Perm		c0.04			c0.16					
v/c Ratio		0.28	0.11		0.57		0.67	0.30		
Uniform Delay, d1		26.4	5.6		21.2		16.8	3.4		
Progression Factor		1.00	1.00		1.00		1.00	1.00		
Incremental Delay, d2		1.0	0.0		2.6		1.0	0.4		
Delay (s)		27.5	5.7		23.7		17.7	3.8		
Level of Service		С	А		С		В	А		
Approach Delay (s)		7.6			23.7		11.2			
Approach LOS		А			С		В			
Intersection Summary					and the second					
HCM 2000 Control Delay			13.9		HCM 2000	Level of	Service		В	
HCM 2000 Volume to Capa	acity ratio		0.57							
Actuated Cycle Length (s)			68.0		Sum of los	st time (s)			13.0	
Intersection Capacity Utiliza	ation		61.0%		ICU Level	of Service	е		В	
Analysis Period (min)			15							

c Critical Lane Group

Timings 1: Fontainebleau Blvd & Park Blvd

	F	4	*	₽	٦	\$	\mathbf{i}		
Lane Group	WBU	WBL	WBR	NBU	NBL	SEL	SER	ø8	
Lane Configurations		۳	**		744	ሻሻ	**		
Volume (vph)	8	20	291	1	386	842	755		
Turn Type	Perm	Prot	pt+ov	Perm	Prot	Prot	Prot		
Protected Phases		3	81		2	1	6	8	
Permitted Phases	3			2					
Detector Phase	3	3	81	2	2	1	6		
Switch Phase									
Minimum Initial (s)	7.0	7.0		7.0	7.0	5.0	7.0	7.0	
Minimum Split (s)	20.0	20.0		30.0	30.0	8.0	31.0	20.0	
Total Split (s)	20.0	20.0		30.0	30.0	18.0	48.0	20.0	
Total Split (%)	29.4%	29.4%		44.1%	44.1%	26.5%	70.6%	29%	
Yellow Time (s)	4.0	4.0		4.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	0.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0		
Total Lost Time (s)		5.0			5.0	3.0	5.0		
Lead/Lag				Lag	Lag	Lead			
Lead-Lag Optimize?				Yes	Yes	Yes			
Recall Mode	None	None		C-Min	C-Min	None	C-Min	None	
Act Effct Green (s)		9.4	39.3		18.7	27.1	48.8		
Actuated g/C Ratio		0.14	0.58		0.28	0.40	0.72		
v/c Ratio		0.27	0.18		0.65	0.67	0.37		
Control Delay		31.0	1.2		15.5	21.3	0.9		
Queue Delay		0.0	0.0		0.0	0.0	0.0		
Total Delay		31.0	1.2		15.5	21.3	0.9		
LOS		С	А		В	С	A		
Approach Delay		3.8			15.5	11.6			
Approach LOS		А			В	В			
Intersection Summary		1919						ALC: NO	
Cycle Length: 68									•
Actuated Cycle Length: 68									
Offset: 0 (0%), Referenced	to phase 2	2:NBL and	6:SER,	Start of Y	ellow				
Natural Cycle: 70	EX SECTION								
Control Type: Actuated-Co	oordinated								
Maximum v/c Ratio: 0.67									
Intersection Signal Delay:	11.7				Intersection	on LOS: E	3		
Intersection Capacity Utiliz	zation 61.0%	%			ICU Leve	l of Servic	e B		
Analysis Period (min) 15									

Splits and Phases: 1: Fontainebleau Blvd & Park Blvd

₩ ₀₁	1 o2 (R)	▼ p3
18 s	30 s	20 s
♦ ø6 (R)		08
48 s		20 s

Queues 1: Fontainebleau Blvd & Park Blvd

	*	*_	٦	1	+		
Lane Group	WBL	WBR	NBL	SEL	SER		
Lane Group Flow (vph)	31	320	718	925	830		
v/c Ratio	0.27	0.18	0.65	0.67	0.37		
Control Delay	31.0	1.2	15.5	21.3	0.9		
Queue Delay	0.0	0.0	0.0	0.0	0.0		
Total Delay	31.0	1.2	15.5	21.3	0.9		
Queue Length 50th (ft)	12	0	70	163	0		
Queue Length 95th (ft)	33	15	129	#279	17		
Internal Link Dist (ft)	1046		568	477			
Turn Bay Length (ft)	210			250			
Base Capacity (vph)	181	1725	1384	1382	2255		
Starvation Cap Reductn	0	0	0	0	0		
Spillback Cap Reductn	0	0	0	0	0		
Storage Cap Reductn	0	0	0	0	0		
Reduced v/c Ratio	0.17	0.19	0.52	0.67	0.37		
Intersection Summary		TT Bask		The State	144 M	State of the	-

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Keep the Bleau Green

HCM Signalized Intersection Capacity Analysis 1: Fontainebleau Blvd & Park Blvd

	F	*	*_	₽	٦	r	\searrow	\rightarrow			
Movement	WBU	WBL	WBR	NBU	NBL	NBR	SEL	SER			
Lane Configurations		5	11		774		ኻኻ	11			
Volume (vph)	5	95	925	23	477	102	516	453			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		5.0	5.0	Rendert Ret	5.0	CALCULATION OF	3.0	5.0			
Lane Util, Eactor		1.00	0.88		0.97		0.97	0.88			
Frt		1.00	0.85		0.97		1.00	0.85			
Flt Protected		0.95	1.00		0.96		0.95	1.00			
Satd Flow (prot)		1788	2814		3416		3467	2814			
Elt Permitted		0.46	1.00		0.92		0.95	1.00			
Satd, Flow (perm)		864	2814		3286		3467	2814			
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97			
Adi, Flow (vph)	5	98	954	24	492	105	532	467			
RTOR Reduction (vph)	0	0	155	0	27	0	0	182			
Lane Group Flow (vph)	0	103	799	0	594	0	532	285			
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%	1%	1%			
Turn Type	Perm	Prot	pt+ov	Perm	Prot	Historia	Prot	Prot			
Protected Phases	1 01111	3	81	1 01111	2		1	6			
Permitted Phases	3	SI DA		2							
Actuated Green, G (s)		16.5	36.4		23.6		14.9	41.5			
Effective Green, g (s)		16.5	36.4		23.6		14.9	41.5			
Actuated g/C Ratio		0.24	0.54		0.35		0.22	0.61			
Clearance Time (s)		5.0			5.0		3.0	5.0			
Vehicle Extension (s)		2.5			1.0		2.0	1.0			
Lane Grp Cap (vph)		209	1506		1140		759	1717			
v/s Ratio Prot			c0.28				c0.15	0.10			
v/s Ratio Perm		0.12			c0.18						
v/c Ratio		0.49	0.53		0.52		0.70	0.17			
Uniform Delay, d1		22.2	10.3		17.7		24.5	5.7			
Progression Factor		1.00	1.00		1.00		1.00	1.00			
Incremental Delay, d2		1.3	0.3		1.7		2.4	0.2			
Delay (s)		23.5	10.5		19.4		26.9	6.0			
Level of Service		С	В		В		С	А			
Approach Delay (s)		11.8			19.4		17.1				
Approach LOS		В			В		В				
Intersection Summary			Statistics .	State State	and the second	1	State State State		No.		
HCM 2000 Control Delay			15.5	ł	HCM 2000	Level of	Service		В		
HCM 2000 Volume to Capa	city ratio		0.60								
Actuated Cycle Length (s)	THE ST		68.0	\$	Sum of los	t time (s)			13.0		
Intersection Capacity Utiliza	ation		49.7%		CU Level	of Service	е		A		
Analysis Period (min)			15								
a Oritical Lana Crown											

c Critical Lane Group

Timings 1: Fontainebleau Blvd & Park Blvd

	چ	1	*_	₹Ĩ	٦	\searrow	\mathbf{i}		
Lane Group	WBU	WBL	WBR	NBU	NBL	SEL	SER	ø8	
Lane Configurations		۲	77		54	ሻሻ	**		
Volume (vph)	5	95	925	23	477	516	453		
Turn Type	Perm	Prot	pt+ov	Perm	Prot	Prot	Prot		
Protected Phases		3	81		2	1	6	8	
Permitted Phases	3			2					
Detector Phase	3	3	81	2	2	1	6		
Switch Phase									
Minimum Initial (s)	7.0	7.0		7.0	7.0	5.0	7.0	7.0	
Minimum Split (s)	20.0	20.0		30.0	30.0	8.0	31.0	20.0	
Total Split (s)	20.0	20.0		30.0	30.0	18.0	48.0	20.0	
Total Split (%)	29.4%	29.4%		44.1%	44.1%	26.5%	70.6%	29%	
Yellow Time (s)	4.0	4.0		4.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	0.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0		
Total Lost Time (s)		5.0			5.0	3.0	5.0		
Lead/Lag				Lag	Lag	Lead			
Lead-Lag Optimize?				Yes	Yes	Yes			
Recall Mode	None	None		C-Min	C-Min	None	C-Min	None	
Act Effct Green (s)		15.6	34.4		23.6	14.9	41.5		
Actuated g/C Ratio		0.23	0.51		0.35	0.22	0.61		
v/c Ratio		0.52	0.60		0.53	0.70	0.25		
Control Delay		31.6	8.6		19.7	29.8	1.1		
Queue Delay		0.0	0.0		0.0	0.0	0.0		
Total Delay		31.6	8.6		19.7	29.8	1.1		
LOS		С	A		В	С	А		
Approach Delay		10.8			19.7	16.4			
Approach LOS		В			В	В			
Intersection Summary							AX ANA		
Cycle Length: 68									
Actuated Cycle Length: 68									
Offset: 0 (0%), Referenced	to phase 2	2:NBL and	6:SER, 3	Start of Y	ellow				
Natural Cycle: 60									
Control Type: Actuated-Co	ordinated								
Maximum v/c Ratio: 0.70									
Intersection Signal Delay: 1	15.0				Intersection	on LOS: E	3		
Intersection Capacity Utilization	ation 49.7%	10			ICU Leve	l of Servic	ce A		
Analysis Period (min) 15									

Splits and Phases: 1: Fontainebleau Blvd & Park Blvd

V ₀₁	92 (R)	₽ √ p3	
18 s	30 s	20 s	
€ ø6 (R)		Ø8	
48 5		20 s	

Queues 1: Fontainebleau Blvd & Park Blvd

	*	*	٦	\.	\mathbf{i}
Lane Group	WBL	WBR	NBL	SEL	SER
Lane Group Flow (vph)	103	954	621	532	467
v/c Ratio	0.52	0.60	0.53	0.70	0.25
Control Delay	31.6	8.6	19.7	29.8	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	31.6	8.6	19.7	29.8	1.1
Queue Length 50th (ft)	36	81	103	103	0
Queue Length 95th (ft)	79	134	152	154	18
Internal Link Dist (ft)	1046		568	477	
Turn Bay Length (ft)	210			250	
Base Capacity (vph)	218	1615	1312	813	1974
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.47	0.59	0.47	0.65	0.24
Intersection Summary	State Barries	A Barris	S.R. Lange		A CONTRACT

Keep the Bleau Green

Proposed Condition w/ Project - AM Peak Hour

HCM Signalized Intersection Capacity Analysis 1: Fontainebleau Blvd & Park Blvd

	4	*	*_	₽	٦	1	\searrow	\mathbf{F}		
Movement	WBU	WBL	WBR	NBU	NBL	NBR	SEL	SER		
Lane Configurations		٦	77		*		ሻሻ	**		
Volume (vph)	8	20	560	1	538	275	987	843		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		5.0	5.0		5.0		3.0	5.0		
Lane Util. Factor		1.00	0.88		0.97		0.97	0.88		
Frt		1.00	0.85		0.95		1.00	0.85		
Flt Protected		0.95	1.00		0.97		0.95	1.00		
Satd. Flow (prot)		1792	2814		3354		3467	2814		
Flt Permitted		0.38	1.00		0.95		0.95	1.00		
Satd. Flow (perm)		712	2814	1976日 - 24	3305		3467	2814		
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91		
Adj. Flow (vph)	9	22	615	1	591	302	1085	926		
RTOR Reduction (vph)	0	0	93	0	114	0	0	281		
Lane Group Flow (vph)	0	31	522	0	780	0	1085	645		
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%	1%	1%		
Turn Type	Perm	Prot	pt+ov	Perm	Prot		Prot	Prot		
Protected Phases		3	81		2		1	6		
Permitted Phases	3			2						
Actuated Green, G (s)		10.6	40.6		19.4		25.0	47.4		
Effective Green, g (s)		10.6	40.6		19.4		25.0	47.4		
Actuated g/C Ratio		0.16	0.60		0.29		0.37	0.70		
Clearance Time (s)		5.0			5.0		3.0	5.0		
Vehicle Extension (s)		2.5			1.0		2.0	1.0		
Lane Grp Cap (vph)	No. Contraction	110	1680		942		1274	1961		
v/s Ratio Prot			c0.19				c0.31	0.23		
v/s Ratio Perm		0.04			c0.24					
v/c Ratio		0.28	0.31		0.83		0.85	0.33		
Uniform Delay, d1		25.3	6.8		22.7		19.8	4.0		
Progression Factor		1.00	1.00		1.00		1.00	1.00		
Incremental Delay, d2		1.0	0.1		8.3		5.5	0.4		
Delay (s)		26.4	6.9		31.1		25.3	4.5		
Level of Service		С	А		С		С	A		
Approach Delay (s)		7.8			31.1		15.7			
Approach LOS		А			С		В			
Intersection Summary	Personal States	er het in her					Pro Th		Real Street Barry	
HCM 2000 Control Delay			18.1	1	HCM 2000) Level of	Service		В	
HCM 2000 Volume to Capa	acity ratio		0.75							
Actuated Cycle Length (s)			68.0		Sum of los	st time (s)			13.0	
Intersection Capacity Utilization	ation		69.7%		ICU Level	of Servic	e		С	
Analysis Period (min)			15							

c Critical Lane Group

Timings 1: Fontainebleau Blvd & Park Blvd

	F	*	*	₹Ĩ	٦.	\searrow	\rightarrow		
Lane Group	WBU	WBL	WBR	NBU	NBL	SEL	SER	ø8	
Lane Configurations		ሻ	**		TY.	ኻኻ	**		
Volume (vph)	8	20	560	1	538	987	843		
Turn Type	Perm	Prot	pt+ov	Perm	Prot	Prot	Prot		
Protected Phases		3	81		2	1	6	8	
Permitted Phases	3			2					
Detector Phase	3	3	81	2	2	1	6		
Switch Phase									
Minimum Initial (s)	7.0	7.0		7.0	7.0	5.0	7.0	7.0	
Minimum Split (s)	20.0	20.0		30.0	30.0	8.0	31.0	20.0	
Total Split (s)	20.0	20.0		30.0	30.0	18.0	48.0	20.0	
Total Split (%)	29.4%	29.4%		44.1%	44.1%	26.5%	70.6%	29%	
Yellow Time (s)	4.0	4.0		4.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	0.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0		
Total Lost Time (s)		5.0			5.0	3.0	5.0		
Lead/Lag				Lag	Lag	Lead			
Lead-Lag Optimize?				Yes	Yes	Yes			
Recall Mode	None	None		C-Min	C-Min	None	C-Min	None	
Act Effct Green (s)		10.1	38.5		19.5	25.0	47.4		
Actuated g/C Ratio		0.15	0.57		0.29	0.37	0.70		
v/c Ratio		0.30	0.36		0.84	0.85	0.41		
Control Delay		31.6	6.2		26.4	32.5	1.0		
Queue Delay		0.0	0.0		0.0	0.0	0.0		
Total Delay		31.6	6.2		26.4	32.5	1.0		
LOS		С	А		С	С	A		
Approach Delay		7.4			26.4	18.0			
Approach LOS		А			С	В			
Intersection Summary	and the second								
Cycle Length: 68									
Actuated Cycle Length: 68									
Offset: 0 (0%), Referenced	to phase 2	2:NBL and	6:SER, 3	Start of Y	ellow				
Natural Cycle: 75									
Control Type: Actuated-Coo	ordinated								
Maximum v/c Ratio: 0.85									
Intersection Signal Delay: 1	8.2				Intersection	on LOS: E	3		
Intersection Capacity Utiliza	ation 69.7%	6			ICU Leve	of Servic	ce C		
Analysis Period (min) 15									
Splits and Phases: 1: Fo	ntaineblea	u Blvd & I	Park Blvd						

V ₀₁	7 ø2 (R)	♥ √ ø3	
18 s	30 s	20 s	
≱ ø6 (R)		Ø8	
48 5		20 s	

Queues 1: Fontainebleau Blvd & Park Blvd

	*	*	٦	\	\mathbf{i}
Lane Group	WBL	WBR	NBL	SEL	SER
Lane Group Flow (vph)	31	615	894	1085	926
v/c Ratio	0.30	0.36	0.84	0.85	0.41
Control Delay	31.6	6.2	26.4	32.5	1.0
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	31.6	6.2	26.4	32.5	1.0
Queue Length 50th (ft)	12	41	147	208	0
Queue Length 95th (ft)	33	88	189	#435	19
Internal Link Dist (ft)	1046		568	477	
Turn Bay Length (ft)	210			250	
Base Capacity (vph)	156	1675	1315	1272	2243
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.20	0.37	0.68	0.85	0.41
Intersection Summary	AND AND AND				

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

MovementEBLEBTWBTWBRSBLSBRLane Configurations
Lane Configurations ↑↑ ↑↓ ↑ Volume (veh/h) 0 1580 688 593 0 379 Sign Control Free Free Stop Grade 0% 0% Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92
Volume (veh/h) 0 1580 688 593 0 379 Sign Control Free Free Stop Grade 0% 0% 0% 0% 0% Peak Hour Factor 0.92
Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 0 1717 748 645 0 412 Pedestrians Image: Constraint of the stress Image: Cons
Grade 0% 0% Peak Hour Factor 0.92
Peak Hour Factor 0.92 <th0.92< th=""> 0.92 0.92</th0.92<>
Hourly flow rate (vph) 0 1717 748 645 0 412 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Kenter (veh)
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Walking Speed (ft/s) Percent Blockage Right turn flare (veh)
Percent Blockage Right turn flare (veh)
Right turn flare (veh)
J 1
Median type None None
Median storage veh)
Upstream signal (ft) 557
pX, platoon unblocked
vC, conflicting volume 1392 1643 696
vC1, stage 1 conf vol
vC2, stage 2 conf vol
vCu, unblocked vol 1392 1643 696
tC, single (s) 4.1 6.8 *5.0
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 100 27
cM capacity (veh/h) 492 93 561
Direction, Lane # EB 1 EB 2 EB 3 WB 1 WB 2 SB 1
Volume Total 572 572 572 499 894 412
Volume Left 0 0 0 0 0 0
Volume Right 0 0 0 0 645 412
cSH 1700 1700 1700 1700 1700 561
Volume to Capacity 0.34 0.34 0.34 0.29 0.53 0.73
Queue Lenath 95th (ft) 0 0 0 0 155
Control Delay (s) 0.0 0.0 0.0 0.0 0.0 27.1
Lane LOS D
Approach Delay (s) 0.0 0.0 27.1
Approach LOS D
Intersection Summary
Average Delay 3.2
Intersection Capacity Utilization 68.2% ICU Level of Service
Analysis Period (min) 15

* User Entered Value

HCM Unsignalized Intersection Capacity Analysis 3: Fontainebleau Blvd & DW2

	٠	-	-	*	1	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		***	↑ ₽			7
Volume (veh/h)	0	1580	1062	5	0	2
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	1717	1154	5	0	2
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)			707			
nX. platoon unblocked						
vC. conflicting volume	1160				1730	580
vC1_stage 1 conf vol						
vC2_stage 2 conf vol						
vCu, unblocked vol	1160				1730	580
tC single (s)	4.1				6.8	*5.0
tC 2 stage (s)						
tF (s)	2.2				3.5	3.3
n0 queue free %	100				100	100
cM canacity (veh/h)	610				81	629
Direction Long #	FR 1	FR 2	FB.3	WB 1	WB 2	SB 1
Volumo Total	572	572	572	770	390	2
Volume Loft	012	0	0	0	0	0
Volume Dight	0	0	0	0	5	2
	1700	1700	1700	1700	1700	629
COR Volume to Consoitu	0.34	0.34	0.34	0.45	0.23	0.00
Ourse Length OFth (ft)	0.04	0.04	0.04	0.40	0.20	0.00
Queue Length 95th (It)	00	0.0	0.0	0.0	0.0	10.7
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	B
Lane LUS	0.0			0.0		10.7
Approach Delay (s)	0.0			0.0		R
Approach LOS						0
Intersection Summary	and the first of the second				-	
Average Delay			0.0			
Intersection Capacity Utiliza	ation		39.5%	1	CU Level	of Service
Analysis Period (min)			15			
President and the second s						

* User Entered Value

Keep the Bleau Green

Proposed Condition w/ Project - PM Peak Hour

HCM Signalized Intersection Capacity Analysis 1: Fontainebleau Blvd & Park Blvd

	F	*	*	₹Ĩ	٦	1	\$	\rightarrow				
Movement	WBU	WBL	WBR	NBU	NBL	NBR	SEL	SER			5 11 2 1 K	
Lane Configurations		5	11		54		ሻሻ	**				
Volume (vph)	5	98	993	23	511	105	572	487				
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900				
Total Lost time (s)		5.0	5.0		5.0		3.0	5.0				
Lane Util, Factor		1.00	0.88		0.97		0.97	0.88				
Frt		1.00	0.85		0.98		1.00	0.85				
Fit Protected		0.95	1.00		0.96		0.95	1.00				
Satd, Flow (prot)		1788	2814		3418		3467	2814				
Flt Permitted		0.43	1.00		0.92		0.95	1.00				
Satd, Flow (perm)		818	2814		3285		3467	2814		dig 1		
Peak-hour factor, PHF	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97				
Adi, Flow (vph)	5	101	1024	24	527	108	590	502				
RTOR Reduction (vph)	0	0	130	0	26	0	0	204				
Lane Group Flow (vph)	0	106	894	0	633	0	590	298				
Heavy Vehicles (%)	0%	1%	1%	0%	1%	1%	1%	1%				
Turn Type	Perm	Prot	pt+ov	Perm	Prot		Prot	Prot				
Protected Phases		3	81		2		1	6				
Permitted Phases	3			2								
Actuated Green, G (s)		17.6	37.7		22.3		15.1	40.4				
Effective Green, g (s)		17.6	37.7		22.3		15.1	40.4				
Actuated g/C Ratio		0.26	0.55		0.33		0.22	0.59				
Clearance Time (s)		5.0			5.0		3.0	5.0				
Vehicle Extension (s)		2.5			1.0		2.0	1.0				
Lane Grp Cap (vph)		211	1560		1077		769	1671				
v/s Ratio Prot			c0.32				c0.17	0.11				
v/s Ratio Perm		0.13			c0.19							
v/c Ratio		0.50	0.57		0.59		0.77	0.18				
Uniform Delay, d1		21.5	9.9		19.0		24.8	6.3				
Progression Factor		1.00	1.00		1.00		1.00	1.00				
Incremental Delay, d2		1.4	0.4		2.4		4.2	0.2				
Delay (s)		22.8	10.3		21.4		29.0	6.5				
Level of Service		С	В		С		С	А				
Approach Delay (s)		11.5			21.4		18.6					
Approach LOS		В			С		В					
Intersection Summary	A CONTRACT	ALC: NO										and and
HCM 2000 Control Delay			16.5		HCM 2000) Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.66									
Actuated Cycle Length (s)			68.0		Sum of los	st time (s)		13.0			
Intersection Capacity Utilization	ation		52.3%		ICU Level	of Servic	e		A			
Analysis Period (min)			15									

c Critical Lane Group

Timings 1: Fontainebleau Blvd & Park Blvd

48 5

	F	*	*_	₹ 1	٦	\searrow	4		
Lane Group	WBU	WBL	WBR	NBU	NBL	SEL	SER	ø8	
Lane Configurations		٣	11		54	ኻኻ	77		
Volume (vph)	5	98	993	23	511	572	487		
Turn Type	Perm	Prot	pt+ov	Perm	Prot	Prot	Prot		
Protected Phases		3	81		2	1	6	8	
Permitted Phases	3			2					
Detector Phase	3	3	81	2	2	1	6		
Switch Phase									
Minimum Initial (s)	7.0	7.0		7.0	7.0	5.0	7.0	7.0	
Minimum Split (s)	20.0	20.0		30.0	30.0	8.0	31.0	20.0	
Total Split (s)	20.0	20.0		30.0	30.0	18.0	48.0	20.0	
Total Split (%)	29.4%	29.4%		44.1%	44.1%	26.5%	70.6%	29%	
Yellow Time (s)	4.0	4.0		4.0	4.0	3.0	4.0	4.0	
All-Red Time (s)	1.0	1.0		1.0	1.0	0.0	1.0	1.0	
Lost Time Adjust (s)		0.0			0.0	0.0	0.0		
Total Lost Time (s)		5.0			5.0	3.0	5.0		
Lead/Lag				Lag	Lag	Lead			
Lead-Lag Optimize?				Yes	Yes	Yes			
Recall Mode	None	None		C-Min	C-Min	None	C-Min	None	
Act Effct Green (s)		16.4	35.6		22.4	15.1	40.4		
Actuated g/C Ratio		0.24	0.52		0.33	0.22	0.59		
v/c Ratio		0.54	0.63		0.60	0.77	0.27		
Control Delay		32.3	9.7		21.3	32.8	1.1		
Queue Delay		0.0	0.0		0.0	0.0	0.0		
Total Delay		32.3	9.7		21.3	32.8	1.1		
LOS		С	А		С	С	A		
Approach Delay		11.8			21.3	18.2			
Approach LOS		В			С	В			
Intersection Summary									
Cycle Length: 68									
Actuated Cycle Length: 68	3								
Offset: 0 (0%), Reference	d to phase 2	2:NBL and	6:SER,	Start of Y	ellow				
Natural Cycle: 65									
Control Type: Actuated-Co	oordinated								
Maximum v/c Ratio: 0.77									
Intersection Signal Delay:	16.4				Intersection	on LOS: E	3		
Intersection Capacity Utili	zation 52.3°	%			ICU Leve	l of Servic	ce A		
Analysis Period (min) 15									
Cality and Dhassay 4. 5	ontoinchlor	n Blud 8	Dark Blue	4					

Splits and Phases: 1: Fontainebleau Blvd & Park Blvd 5.01 € ø3 20 s 1 ø2 (R) Ų 30 s 18 s *-€ ø6 (R) ø8

20 s

Queues

1: Fontainebleau Blvd & Park Blvd

	*	*	٦	\searrow	7
Lane Group	WBL	WBR	NBL	SEL	SER
Lane Group Flow (vph)	106	1024	659	590	502
v/c Ratio	0.54	0.63	0.60	0.77	0.27
Control Delay	32.3	9.7	21.3	32.8	1.1
Queue Delay	0.0	0.0	0.0	0.0	0.0
Total Delay	32.3	9.7	21.3	32.8	1.1
Queue Length 50th (ft)	36	91	120	113	0
Queue Length 95th (ft)	84	169	160	#188	17
Internal Link Dist (ft)	1046		568	477	
Turn Bay Length (ft)	210			250	
Base Capacity (vph)	215	1612	1277	797	1977
Starvation Cap Reductn	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0
Reduced v/c Ratio	0.49	0.64	0.52	0.74	0.25

Intersection Summary

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	-	-	×.	1	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		***	≜ î≽			7
Volume (veh/h)	0	998	1379	85	0	118
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	1085	1499	92	0	128
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Lipstream signal (ft)			557			
nX platoon unblocked						
vC. conflicting volume	1591				1907	796
vC1_stage 1 conf vol						
vC2_stage 2 conf vol						
vCu, unblocked vol	1591				1907	796
tC single (s)	4.1				6.8	*5.0
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
n queue free %	100				100	75
cM capacity (veh/h)	413				62	509
Direction Long #	ER 1	ER 2	EB 3	WR 1	WR 2	SB 1
Direction, Lane #	262	262	362	000	502	128
Volume I otal	302	0	0	000	0.02	0
Volume Lett	0	0	0	0	92	128
volume Right	1700	1700	1700	1700	1700	509
CSH Multi- la Casacita	0.01	0.21	0.21	0.50	0.35	0.25
Volume to Capacity	0.21	0.21	0.21	0.09	0.00	25
Queue Length 95th (IT)	0	0	00	00	0.0	11.1
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	14.4 R
Lane LOS	0.0			0.0		111
Approach Delay (s)	0.0			0.0		14.4 D
Approach LOS						D
Intersection Summary		The second				
Average Delay			0.7			
Intersection Capacity Uti	lization		54.8%	1	CU Level	of Service
Analysis Period (min)			15			
and the second						

* User Entered Value

	٠	-	-	×.	1	4	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	State State
_ane Configurations		***	↑ î»			7	
Volume (veh/h)	0	998	1492	6	0	5	
Sian Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	0	1085	1622	7	0	5	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		None	None				
Median storage veh)							
Upstream signal (ft)			707				
pX, platoon unblocked							
vC, conflicting volume	1628				1987	814	
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	1628				1987	814	
tC, single (s)	4.1				6.8	*5.0	
tC, 2 stage (s)							
tF (s)	2.2				3.5	3.3	
p0 queue free %	100				100	99	
cM capacity (veh/h)	404				55	500	
Direction, Lane #	EB 1	EB 2	EB 3	WB 1	WB 2	SB 1	
Volume Total	362	362	362	1081	547	5	
Volume Left	0	0	0	0	0	0	
Volume Right	0	0	0	0	7	5	
cSH	1700	1700	1700	1700	1700	500	
Volume to Capacity	0.21	0.21	0.21	0.64	0.32	0.01	
Queue Length 95th (ft)	0	0	0	0	0	1	
Control Delay (s)	0.0	0.0	0.0	0.0	0.0	12.3	
Lane LOS						В	
Approach Delay (s)	0.0			0.0		12.3	
Approach LOS						В	
Intersection Summary	A STATE				-		
Average Delay			0.0				
Intersection Capacity Utiliz	ation		51.4%	10	CU Level	of Service	
Analysis Period (min)			15				

* User Entered Value

TABLE: A7

Traffic Concurrency Evaluation

Project Name: Project Location:

NNW

7.65%

Keep the Bleau Green Fontainebleau Boulevard, west of Park Boulevard

	COUNT	AVAILABLE	DIR %	PROJECT	ATTE	NUATION	ASSI ST	GNED TO ATION	TRIPS LEFT AT COUNT
	STATION	TRIFS		TRIP 5	%	TRIPS	%	TRIPS	STATION
NORTH	9494	975	33%	69	25%	53	8%	17	958
EAST	1141	760	35%	75	15%	31	20%	43	717
SOUTH	9154	2,803	15%	33	5%	11	10%	22	2,781
WEST	9156	3,676	17%	36	10%	21	7%	15	3,661

SSW

SSE

Notes: Peak hour trips for the subject project were obtained utilizing ITE data.

Trip Attenuation was applied based on trip length and large number of residential development nearby the subject project. (Not all the trips will reach the count stations)

Count station information was obtained from the available published data (source: Miami-Dade County).

	IOCATION	CL MA	HH SOT X	START DOS TR	IPS AVAILAE	BLE TRIPS EXISTING LOS	ADOPTED LOS	CONCURRENCY LOS	UPDATED
STATION			1011	, or	c	484 E	E+50	E+12%	7/2/2013 11.23
9458 NW 67 AVE	S/O NW 74 ST CONNECTOR TO OKEECHOBEE RU	4	1830 1400	404	5			~	20-11 21001017
9460 NW 62 AVE	S/O NW 138 ST TO NW 122 ST	2	2550 999	1551	0	1551 C	E+50	2 0	7/2/2013 11-23
9462 NW 62 ST	W/O I-95 FROM NW 2 AVE TO NW 7 AVE	4	2520 1166	1354	0	1354 D	E+20		C7.11 C107/711
TS C9 MN 6940	W/O NW 12 AVE FROM NW 7 AVE TO NW 17 AVE	4	4476 1287	3189	74	3115 C	E+20	0	7/2/2013 11:23
	E/O NW 27 AVE TO NW 17 AVE	4	3696 822	2874	21	2853 C	E+20	С	7/2/2013 11:23
9466 NW 62 ST		4	4212 840	3372	10	3362 C	E+20	c	7/2/2013 11:23
9468 NW 62 ST	W/O W/ 27 AVE TO WW 37 AVE		984 593	391	0	391 E	E+20	ш	7/2/2013 11:23
9470 NW 71 ST	VV/O F35 FROM IN MIMMI AVE TO INV 12 AVE	6	640 400	675	8	667 D	E+20	D	7/2/2013 11:23
9472 NW 71 ST	W/U NW Z/ AVE TO NW 42 AVE	*	5430 2000	3340	. 0	3340 D	E+50	۵	7/2/2013 11:23
9474 NW 72 AVE/W 16 AVE	S/O NW 103 ST TO OKEECHOBEE KU	t (1740 GEF	1075	0	1075 E	E+50	E	7/2/2013 11:23
9476 NW 72 AVE	S/O NW 138 ST TO NW 114 SI	чч	6070 3078	0000		2684 E	E+50	ш	7/2/2013 11:23
9478 NW 74 ST CONNECTOR	W/O NW 67 AVE FRO NW 62 AVE TO SK 826	0	0170 D/RC	7607		d oooc	c	œ	7/2/2013 11:23
9481 NW 74 ST	W/O NW 77 CT PALMETTO EXPWY TO NW 87 AVE	4	4470 2366	2104	0	O RROZ	2	1	50-11 61001012
9482 NW 79 AVE	N/O NW 36 ST EXT TO NW 58 ST	4	2170 1105	1065	0	1065 D	0	0	7/2/2013 11:23
9484 NW 79 AVE	S/O NW 36 ST EXT TO NW 25 ST	4	2860 956	1904	0	1904 C	D	0	1/2/2013 11:23
9486 NW 79 ST	W/O I-95 NW 7 AVE TO NW 13 CT	4	2544 1371	1173	12	1161 D	E+20	a	//2/2015 11:25
9488 NW 81 ST (ONE-WAY WB)	W/O I-95 FROM NW 7 AVE TO NW 13 CT	4	1920 680	1240	0	1240 C	E+20	C	//2/2013 11:23
0402 NW 95 ST	W/O 27 AVE TO NW 36 AVE	2	610 315	295	168	127 D	ш	0	7/2/2013 11:23
DADA NIN 97 AVE	S/O NW 25 ST TO NW 12 ST	4	3080 1986	1094	119	975 B	۵	8	//2/2013 11:23
	S/0 NW 41 ST TO NW 25 ST	4	4090 1784	2220	0	2220 NULL	٥	U	9/3/2009 11:35
DEDU NY DI VAL	W/O W 4 AVE TO SR 826	9	3200 2767	433	0	433 E	w	Ш	7/2/2013 11:23
0000 M 40 0100 000	W/O SR 826 TO NW 87 AVE	4	2060 3148	-1088	0	-1088 F	HE	ш	7/2/2013 11:23
DEDE MIN 100 CT	E/O HEFT TO NW 107 AVE	9	3640 1952	1688	3	1685 B	D	8	7/2/2013 11:23
THE OUT WIN OUCS	N/O NW 12 ST TO NW 25 ST	9	4880 2855	2025	0	2025 C	D	C	7/2/2013 11:23
9510 NW 10/ AVE	MO NW 25 ST TO NW 41 ST	4	3380 2424	956	0	956 D	D	D	7/2/2013 11:23
9512 NW 10/ AVE	NUO NIM 41 ST TO NW 58 ST	4	3000 1972	1028	0	1028 C	۵	C	7/2/2013 11:23
9513 NW 10/ AVE	WICH WAT OF TO MAN 27 AVE TO NW 37 AVE	8	7120 3286	3834	69	3765 C	E	C	7/2/2013 11:23
9517 NW 119 ST/GRATIGNY RD	W/U NW Z/ AVE NW Z/ AVE TO NW 3/ AVE		4680 609	4071	0	4071 B	ш	В	7/2/2013 11:23
9518 NW 119 ST	W/U NW 5/ AVE TO NW 5/ AVE	4	2400 1756	RAA	0	644 D	E	D	7/2/2013 11:23
9520 NW 122 ST	W/O NW 57 AVE TO SR 826	t c	0011 0042 0013	4458	, co	4453 A	ш	A	7/2/2013 11:23
9526 NW 135 ST (ONE-WAY EB)	W/01-95 TO NW 17 AVE	· ·	200 0210	3300		3390 B	ш	8	7/2/2013 11:23
9528 NW 138 ST (SR 916)	E/O NW 57 AVE TO NW 42 AVE	+ c	0071 0001	301		391 C	0	0	7/2/2013 11:23
9532 NW 138 ST	W/O SR 826 TO NW 87 AVE	7	774 0036	2142	0	3143 B	D	8	7/2/2013 11:23
9534 NW 138 ST	S/W OF OKEECHOBEE RD TO NW 10/ AVE	• •	1500 774	96.2	•	724 C	Ш	D	7/2/2013 11:23
9542 NW 151 ST	W/O NW 27 AVE TO NW 37 AVE	t •	ACAE ONAC	120 A	0	-1284 F	D	Ľ	7/2/2013 11:23
9544 NW 154 ST	E/O NW 79 AVE SR 826 10 NW 84 AVE	ŧ ¢	710 210	500	0 0	500 C	D	U	7/2/2013 11:23
9546 NW 154 ST	W/O NW 87 AVE TO NW 92 AVE	ч .	010 210	1038		1038 C	D	C	7/2/2013 11:23
9550 NW 169 ST	E/O NW 77 CT TO NW 67 AVE	4	2141 0162	1038		U CPC		0	7/2/2013 11:23
9552 NW 170 ST	E/O NW 87 AVE TO NW 77 AVE	7	1130 / 88	242		0 4 10 0 4 10 0 4 10	G	8	7/2/2013 11:23
9554 NW 199 ST/HONEY HILL DR	E/O HEFT FROM FLA TURNPIKE TO NW 2 AVE	4	4780 1944	2836		0 0007	a c		7/2/2013 11:23
9556 NW 199 ST/HONEY HILL DR	E/O NW 27 AVE TO FLA TURNPIKE	9	1680 1187	493		433 U			7/2/2013 11:23
9558 NW 199 ST/HONEY HILL DR	W/O NW 27 AVE TO NW 37 AVE	4	5088 1576	3512	0	0.012 D	1 0		7/2/2013 11:23
9560 NW 199 ST/HONEY HILL DR	W/O NW 37 AVE TO NW 57 AVE	4	2640 1518	1122	0	0 2211		0 0	5C-11 210CICIT
9562 NW 202 ST	W/O NW 57 AVE TO 67 AVE	2	1350 1082	268	0	268 C	D	c	AND 1 AL OCTIVIT
9576 OKEECHOBEE RD (US 27)	SE/O NW 74 ST FROM NW 62 AVE TO NW 67 AVE	0	4450 4444	9	0	6 E	ш	ш	7/2/2013 11:23
	S BU ST TO SW BB ST	2	950 1486	-536	2	-538 F	E	F	7/2/2013 11:23
	SWID SW 88 ST TO SW 57 AVE	2	1190 1304	-114	0	-114 F	Ш	ш	7/2/2013 11:23
200t CLC (C-LL) 20									

	LOCATION	CL MAX L	AHP SO	START	DOS TRIPS	AVAILABLE TRIPS	EXISTING LOS	ADOPTED LOS
STATION ROADWAY		A G	FOR ARE	4 844	84	76	0 F	EE
1141 W FLAGLER ST (SR 968)	W/U NW/SW /2 AVE 10 NW/SW 8/ AVE		CELR 3R0	G 1612	15	159	7 D	EE
1167 NW 27 AVE (SR 817)	S/O DADE/BROWARD CO. LINE TO NW 183 SI	04		2101 0 10/05		190	19	E+50
1172 NW 36 ST (SR 948)	E/O NW 72 AVE TO NW 57 AVE	A 6	184 6880	0061 B		Lee		E+60
1173 NW 36 ST (SR 948)	E/O PALMETTO EXPWY TO NW 72 AVE	A6	3085 481	4 32/1	0	170	0	E+60
1179 NW 42 AVE/LEJEUNE RD	S/O E. 11 PL(HIALEAH) BET NW 36 ST-NW 79 S	A6	1560 256	4 1996	25	/6L		E+30
1180 NW 42 AVE/LEJEUNE RD	S/O E 23 ST(HIALEAH) BET NW 36 ST-NW 79 ST	A6	1560 235	5 2165	13	215	2 D	E+50
1181 NW 42 AVE/LEJEUNE RD	N/O NW 119 ST BET NW 103 ST-NW 135 ST	A 6	7020 173	2 5288	37	525	1 C	E+50
1189 NW 57 AVE/RED RD (SR 959)	N/O NW 7 ST TO SR 836	A6	7020 268	3 4337	190	414	7 D	E+50
1190 NW 57 AVE/RED RD (SR 823)	S/O NW 173 DR BET SR 826-MIAMI GARDENS DR	A 6	5508 473	0 778	36	74	2 F	EE
1201 NW 72 AVE/MILAM DAIRY RD	N/O W FLAGLER ST TO NW 12 ST	A6	1590 256	3 2007	15	199	2 D	Ш
1202 NW 72 AVF/MII AM DAIRY RD	N/O NW 12 ST TO NW 25 ST	A 6	1590 306	1521	19	150	12 D	ш
	S/O NW 36 ST TO NW 25 ST	A6	1590 310	11 1489	0	148	0 D	Е
1204 NW 12 AVE/WILDIN DAINT NO	SO NW 41 ST FROM NW 39 ST TO NW 58 ST	A 6	5390 283	3 2557	11	254	16 C	ш
	MONING ST BET EL AGI ER-SP 836	A6	1680 454	134	273	-13	39 E	SUMA
1211 SW 8/ AVE/GALLOWAT RD		ΑG	1590 209	2496	274	222	22 D	Ш
1214 NW 103 ST (SR 932)	E/0 NW 2/ AVE 10 1-95	94	2300 206	PCPC S	C	242	24 C	Ш
1215 NW 103 ST (SR 932)	E/O NW 42 AVE 10 NW 2/ AVE		000 0000	1220 00		232	4 D	E+20
1216 NW 103 ST (SR 932)	W/O W 16 AVE (HIALEAH) BET SR 826-W 4 AVE	A 6	0100 320	HCC2 2004		402		CLIMA
1217 NW 103 ST (SR 932)	E/O NW 87 AVE BET OKEECHOBEE RD-SR 826	A4	3100 128	30 1820	0	107		CHILD
1218 NW 107 AVE (SR 985)	N/O NW 7 ST FROM FLAGLER ST TO SR 836	A 6	4590 425	54 336	74	26	52 D	SUMA
1219 NW 119 ST/GRATIGNY DR	W/O NW 1 AVE FROM I-95 TO W DIXIE HWY	A4	3100 128	36 1814	0	181	14 D	E
1220 NW 119 ST/GRATIGNY DR	E/O NW 27 AVE TO NW 17 AVE	A 6	5390 338	32 2008	64	194	14 C	ш
1221 NIM 136 STIOPALOCKA BLVD	E/O NW 27 AVE TO NW 17 AVE (ONE WAT WEST)	A3	1610 106	543 543	4	20	39 A	ш
121 NW 130 01/01 ACOUNT 121	E/O NW 27 AVE TO NW 17 AVE (ONE WAY EAST)	A 3	1610 115	57 453	62	36	31 A	Е
	WIG NIM 27 AVE TO NIM 42 AVE	A4	3040 194	1093	43	105	50 D	E
1223 NW 135 SI (SK 916)		A A	3648 394	18 -300	4	-30	04 F	EE
1229 NW 183 ST/MIAMI GARDENS DR		A.A.	5508 33	57 2151	0	215	51 D	EE
1230 NW 183 ST/MIAMI GARDENS DR	W/O NE 2 AVE TO NE 6 AVE			204C		ACE	13	EE
1232 NW 183 ST/MIAMI GARDENS DR	W/O NW 27 AVE FROM NW 27 AVE 10 NW 37 AVE	AO				ADA	Sh C	HF.
1233 NW 183 ST/MIAMI GARDENS DR	E/O NW 57 AVE/RED RD TO NW 37 AVE	A6	6468 23	38 40/1	4	10 1		3
2002 SNAPPER CREEK EXPWY/SR 878	W/O US-1 TO DON SHULA EXPWY/SR 874	4	4296 23	195	0	196	51 C	
2023 AIRPORT EXPWY (SR 112)	E/O NW 17 AVE BET NW 27 AVE-NW 11 AVE	6 1	0815 73	07 3508	0	35(38 F	E+50
2036 1.06 /NORTH/SOLITH EXPWY	S/O NW 79 ST BET NW 62 ST-NW 103 ST	10 1	0815 161:	35 -532(6	-532	26 F	E+50
	S/O NW 95 ST BET NW 62 ST-NW 103 ST	10 1	0815 174	50 -663!	0	-96	35 F	E+50
	WIG AIM 17 AVE	9	8085 61	90 1895	9	186	39 F	E+50
ZUBU AIRPORT EAPWT (SK T12)		9	8085 67	59 1326		132	25 F	E+50
2060 AIRPORT EXHWY (SK 112)	WO NW ZI AVE TO LEDEONE NO		8085 69	36 1099	18	106	81 F	E+50
2065 AIRPORT EXPWY (SR 112)	W/O NW 32 AVE BET LEJEUNE KU-NW ZI AVE	· ·		1460		14	56 D	9
2080 NW 103 ST (SR 932)	E/O I-95 TO NE 6 AVE	A 4	3040 10	1011 40			20 E	E+60
2085 I-95 (NORTH/SOUTH EXPWY)	N/O NW 103 ST TO NW 119 ST	10	0815 170	52 -623		·70-	1 10	E · En
2095 I-95 (NORTH/SOUTH EXPWY)	S/O SR 112 TO SR 836	10	8085 146	06 -652	0	·co-	21 F	E+30
2100 I-95 (NORTH/SOUTH EXPWY)	N/O NW 125 ST BET NW 119 ST-NW 135 ST	10 1	0815 157	55 -494(0	-49	42 F	E+50
2113 PALMETTO EXPWY (SR 826)	W/O FLA TPK ENTRANCE BET NW 12 AVE-US 441	4	4296 39	54 34	5	8	42 F	E
2114 PAI METTO EXPWY (SR 826)	E/O NW 12 AVE BET NW 12 AVE-US 441	8	8652 110	82 -243(0	-24	30 F	EE
2134 1 05 (NOBTH/SOLITH EXPWY)	S/O NW 151 ST BET NW 135 ST-SR 826	8	0815 167	60 -594!	2 0	-59	45 F	E+50
	N/O GOLDEN GLADES BET SR 826-NW 183 ST	ω	8652 103	-1670	0 0	-16	70 F	EE
	NID 15-1 TO BICKENBACKER CSWY	4	5370 56	13 -24	3 0	-2,	43 F	E+50
2162 1-95 (NOKTH/SOUTH EXPWT)		ď	5390 127	99 -740		-74	11 F	D
2188 DOLPHIN EXPWY (SR 836)	E/O PALMETTO EXPWY TO NW 12 AVE	D	1000	20				

		Lot MA		START DOS	TRIPS A	VAILABLE TRIPS EXISTING LOS	ADOPTED LOS	CONCURRENCY LOS	UPDATED
STATION ROADWAY	LOCATION	CL MA	0-100 111	acac	111	2518 C	٥	C	7/2/2013 11:23
9103 SW 232 ST / SILVER PALM DR	E/O US 1 BET US 1 - SW 117 AVE	7	7030 01017	643	4	639 C	HE	C	7/2/2013 11:23
9106 SW 40 ST/BIRD RD	W/O HEFT/SR 821 TO SW 127 AVE	4 .	1200 U124	1266	500	855 C	Q	c	7/2/2013 11:23
9108 BIRD DR EXT/SW 42 ST	W/O SW 127 AVE TO SW 137 AVE	4	C002 0204	200	28	300 D	D	D	7/2/2013 11:23
9110 BIRD DR EXT/SW 42 ST	W/O SW 137 AVE TO SW 147 AVE	4	2340 2012	070	2.2	1384 R	0	8	7/2/2013 11:23
9112 BIRD DR EXT/SW 42 ST	W/O SW 147 AVE TO SW 157 AVE	4	3130 1719	1411	17	-33 E	H	F	7/2/2013 11:23
9114 CARIBBEAN BLVD	E/O HEFT TO FRANJO ROAD	2	1370 1392	77	- c	7 22	E+50	0	7/2/2013 11:23
9120 SW 24 ST/CORAL WAY	E/O SW 67 AVE BET SW 57 AVE-SR 826	4	5100 2397	2/03		U F	E	E+20%	7/2/2013 11:23
9122 SW 24 ST/CORAL WAY	W/O SR 826 TO SW 87 AVE	9	7416 7415		2	- 1	L	c	7/2/2013 11:23
9124 CORAL WAY/SW 24 ST	W/O SW 87 AVE FROM SW 87 AVE TO SW 97 AVE	4	4344 3111	1233	0	1233 D	EE	-	11-23
TO REMARKING TO SALA	W/O SW 97 AVE TO SW 107 AVE	4	6372 2720	3652	49	3603 B	EE	8	112/2013 11:23
9126 CORAL WAY/SW 24 ST	W/O SW 107 AVE BET SW 107-SW 117 AVE	4	4356 2803	1553	11	1542 D	EE	a	6711 6107/7//
9128 CORAL WAY/SW 24 SI	MIC ULETYOD \$21 BET SW 117 AVE-SW 127 AVE	4	3672 3185	487	0	487 F	EE	E+4%	7/2/2013 11:23
9130 SW 26 ST/CORAL WAY	W/O HEL I/OK 021 DEI OW 11 OW 12 OW		1000 2557	1523	2	1521 D	EE	D	7/2/2013 11:23
9132 SW 26 ST/CORAL WAY	W/O SW 127 AVE TO SW 137 AVE	t -	1007 0004	300	81	219 F	EE	E+9%	7/2/2013 11:23
9134 CORAL WAY/SW 26 ST	W/O SW 137 AVE TO SW 147 AVE	4 -	0002 0002	2386	. 0	3386 C	E+20	C	7/2/2013 11:23
9136 CRANDON BLVD-KEY BISCAYNE	N/O HARBOR DR TO BEAR CUI SW/O OKEECHOBEE RD 1 WAY SW FROM OKEE RD	t 0	3912 910	3002	0	3002 D	E+20	٥	7/2/2013 11:23
9137 CURTISS PKWY	TO NW 36 ST			2010	36	2472 F	E+50	ш	7/2/2013 11:23
9138 SOUTH DADELAND BLVD	S/O SW 88 ST TO US-1	4	3285 /88	2431	0	939 C	E	c	7/2/2013 11:23
9140 E 1 AVE	S/O 21 ST/HIALEAH TO OKEECHOBEE RD	2	107 ORLL	808		1426 C	E+20	C	7/2/2013 11:23
9144 NW 47 AVE/E 4 AVE HLH.	S/O 21 ST BET OKEECHOBEE RD-E 25 ST	4	Z904 14/8	1420		2380 C	3	c	7/2/2013 11:23
9148 EAST DR	S/O OKEECHOBEE RD TO POINCIANA BLVD	4	3090 / 01	2309	0	2803 D	Ш	0	7/2/2013 11:23
9154 W FLAGLER ST	W/O NW/SW 87 AVE TO NW 97 AVE	9	5916 29/1	G467	241	3676 D	E	D	7/2/2013 11:23
9156 W FLAGLER ST	W/O NW/SW 97 AVE TO NW 107 AVE	9	6300 2530	31/0	*D	1	1	0	7/2/2013 11-23
9158 FLAGLER ST	W/0 107 AVE FROM NW 107 AVE TO NW 114 AVE	9	6300 1842	4458	69	4389 C	Ш.	2 1	719/9042 44-93
and shall be a set of the	W/O HEET FROM NW 114 AVE TO NW 118 AVE	9	3156 1878	1278	13	1265 D	EE	0	C2.11 C102/2/1
9160 FLAGLER SI	N/O NW 12 ST TO NW 25 ST	9	4100 3113	987	0	987 D	٥	D	C2.11 C102/2//
9162 NW 8/ AVE/GALLOWAT RD	NO MIN 26 ST TO NW 36 ST FXT	9	3520 2885	635	0	635 D	Ш	D	112/2013 11 02
9164 NW 87 AVE/GALLOWAY RD	NO NW 26 ST TO NW 58 ST	4	1230 1447	-217	0	-217 E	٥	F.	7/2/2013 11:23
9166 NW 87 AVE/GALLOWAY KU	S/D KENDALL DR/SW 88 ST TO SW 112 ST	2	1670 1433	238	2	236 D	SUMA	D	1/2/2013 11:23
9172 GALEOWAY RU/SW 8/ AVE	CONCIDENT DI LOUIS DE LE	2	1176 71	459	0	459 C	EE	C	7/2/2013 11:23
9174 GALLOWAY RD/SW 87 AVE		V	22E0 58	1669	325	1344 D	D	D	7/2/2013 11:23
9178 HAMMOCKS BLVD	S/O S/W 88 ST 10 S/W 104 S1		1000 110	03	200	-107 E	ш	ш	7/2/2013 11:23
9194 INGRAHAM HWY (SR 936)	E/O LE JEUNE RD BET MCFARLAND-SW 42 AVE	7	711 0771		DE DE	2886 C	E+50	C	7/2/2013 11:23
9196 IVES DAIRY RD/NE 203 ST	W/O NE 22 AVE FROM I-95 TO BISCAYNE BLVD	9	7170 425	LLR7 6	8	- CO002		æ	7/2/2013 11:23
9200 IVES DAIRY RD/NE 203 ST	E/O N MIAMI AVE/NW 2 AVE TO SAN SIMEON WAY	9	5530 290	1 2626	24	2002 5	ט ב		7/2/2013 11:23
02003 KENDALI DR/SW 88 ST	W/O OLD CUTLER RD TO SW 57 AVE	2	3310 55	4 2756	4	2752 U		2 0	7/2/2013 11-23
acus removed brown of a	W/O SW 137 AVE TO SW 147 AVE	9	4990 407	911	0	911 D	a		
COOR VECTORE AVECOM 177 AVE	S/O SW 184 ST FROM SW 184 ST TO SW 216 ST	2	1930 147	1 459	0	459 B	C	В	7/2/2013 11:23
3200 KNOME AVEON IN THE	TS BYC MIS OF TO BOC MIS ON	2	1450 124	7 203	0	203 C	o	U	7/2/2013 11:23
9212 KROME AVE/SW 177 AVE	SW/O OKEECHOBEE RD TO NW 72 AVE (UNDER	4	1665 71	7 948	0	948 E	E+50	Ш	7/2/2013 11:23
9220 NW 74 ST (UNDER CONSTRUCTION)	CONSTRUCTION)	-	4200 164	4 2556	0	2656 C	E+50	U	7/2/2013 11:23
9222 NW 67 AVE/LUDLAM RD	S/O NW 103 ST TO NW 122 ST	4			c	2010 D	E+50	0	7/2/2013 11:23
9224 LUDLAM RD/NW 67 AVE	S/O NW 122 ST FROM NW 103 ST TO NW 122 ST	4	4890 187	1 3019	n	A BLOC			

2	ŕ	
7	2	
ú	J	
_	J	
	٥	

Keep the Bleau Green Development

ROADWAY LINK ANALYSIS; EXISTING (2014) & SHORT-TERM (2018)

	c	6	A I	5	9	7	80	6	10	1	12	13	41	2
NAY L	INK ANALYSIS	ROADWAY		EXISTING PHP	AVAILABLE	001	BACKGROUND	FUTURE PHP	AVAILABLE	LOS	PROJECT	FUTURE PHP VOLUME (2018)	AVAILABLE	SOJ
	LIMITS	CLASSIFICATION	DIR	VOLUME	CAPACITY	C2	FOR 4 YRS (2018)	W/O PROJECT	CAPACITY		TRIPS	W/ PROJECT	CAPACIT	
au	west of Park Boulevard	4-Lane Divided County Road Class II - 35 MPH	TWO- WAY	2,335	705	۵	95	2,430	610	۵	80	2,510	530	۵
ard	east of Fontainebleau Boulevard	4-Lane Divided County Road Class II - 30 MPH	TWO- WAY	1,576	1,465	۵	64	1,639	1,401	٥	198	1,837	1,203	Q

Notes:

1 Roadway Name

2 Limits

3 Roadway Classification

4 Direction

5 Existing Peak Hour Period (PHP) Volume obtained from ATR counts. PHP = average of the two highest consecutive hours.

6 Available Capacity (Existing) 7 Existing Level of Service

8 Backgroung Growth Calculation for short-term analysis 2018
9 Future PHP Volume w/o Project Traffic (Exist + Background)
10 Available Capacity (Future w/o Project))
11 Future LOS w/o Project
12 Project Trips
13 Future PHP Volume w/ Project Traffic (Exist + Background + Project)
14 Available Capacity (Future w/ Project))
15 Future LOS w/ Project Trips
16 Future LOS w/ Project Trips

TABLE: A9

Keep the Bleau Green Development

ROADWAY LINK ANALYSIS; EXISTING (2014) & LONG-TERM (2030)

000	BACKGROUND	BACKGROUND	BACKGROUND	BLE BACKGROUND	IG PHP AVAILABLE	EXISTING PHP AVAILABLE BACKGROUND	EXISTING PHP AVAILABLE BACKGROUND
20	OR 16 YRS (FOR 16 YRS (FOR 16 YRS (FOR 16 YRS (UME CAPACITY FOR 16 YRS (VOLUME CAPACITY FOR 16 YRS (VOLUME CAPACITY FOR 16 YRS (
	403	403	D 403	D 403	35 705 D 403	2,335 705 D 403	TWO- 2,335 705 D 403
	272	272	D 272	5 D 272	76 1,465 D 272	1,576 1,465 D 272	TWO- 1,576 1,465 D 272
		_					

Notes:

1 Roadway Name

Limits
 Roadway Classification
 Direction
 Existing Peak Hour Period (PHP) Volume obtained from ATR counts.

PHP = average of the two highest consecutive hours.

6 Available Capacity (Existing) 7 Existing Level of Service

 LOS Standard for 4LD Class II - Two-Way Volumes

 C
 D
 E

 1,310
 2,920
 3,040

8 Backgroung Growth Calculation for long-term analysis 2030
9 Future PHP Volume w/o Project Traffic (Exist + Background)
10 Available Capacity (Future w/o Project))
11 Future LOS w/o Project
12 Project Trips
13 Future PHP Volume w/ Project Traffic (Exist + Background + Project)
14 Available Capacity (Future w/ Project))
15 Future LOS w/ Project Trips

TABLE 4

Generalized **Peak Hour Two-Way** Volumes for Florida's **Urbanized Areas**¹

										1	12/18/12
	INTERR	UPTED FLC	W FACIL	ITIES			UNINTER	RUPTED F	LOW FAC	ILITIES	
	STATE SI	GNALIZI	ED ARTI	ERIALS				FREEW	AYS		
Lanes 2 4 6 8	Class I (40 Median Undivided Divided Divided Divided	mph or highe B * * *	r posted sp C 1,510 3,420 5,250 7,090	eed limit) D 1,600 3,580 5,390 7,210	E ** ** **	Lanes 4 6 8 10 12	B 4,120 6,130 8,230 10,330 14,450	C 5,540 8,370 11,100 14,040 18,880	6, 10, 13, 16, 22,	D 700 060 390 840 030	E 7,190 11,100 15,010 18,930 22,860
Lanes 2 4 6 8	Class II (35 Median Undivided Divided Divided Divided Non-State Si (Alte	mph or slow B * * * gnalized Ro r corresponding by the indicated Signalized Ro	er posted sp C 660 1,310 2,090 2,880 oadway A g state volum d percent.) oadways	Deed limit) D 1,330 2,920 4,500 6,060 djustmen res - 10%	E 1,410 3,040 4,590 6,130	Prese	F1 Auxiliary Lane ent in Both Dire + 1,800	reeway Adj ss ections	ustments	Ramp Metering + 5%	
Lanes 2 2 Multi Multi –	Median Divided Undivided Undivided Undivided 	& Turn La Exclusive Left Lanes Yes No - Way Facilit the correspond olumes in this	ne Adjust Exclus Right Li No No No Yes y Adjust ting two-dir table by 0.6	t ments ive Ad anes nent ectional	djustment Factors +5% -20% -5% -25% + 5%	Lanes 2 4 6 Lanes 2 Multi Multi	JNINTERR Median Undivided Divided Divided Uninterrupt Median Divided Undivided Undivided	UPTED F B 770 3,300 4,950 ted Flow Hi Exclusive Ye Ye No	C 1,530 4,660 6,990 ighway Ad left lanes is is	GHWA D 2,170 5,900 8,840 djustment Adjustmet -5 -2:	YS E 2,990 6,530 9,790 ts ent factors 5% 5%
(M dire Paved La (M dire Side	I ultiply motorized tectional roadway Shoulder/Bic une Coverage 0-49% 50-84% 85-100% PE fultiply motorize ectional roadway ewalk Coverag 0-49% 50-84% 85-100% BUS MOI	BICYCLE d vehicle volum lanes to detern volum ycle B * 190 830 CDESTRIA d vehicle volum lanes to detern volum ge B * 340 DE (Sched	MODE ² nes shown be nine two-way es.) C 260 600 1,770 N MOD nes shown be nine two-way es.) C * 150 960 uled Fixe	blow by num maximum 7 maximum 1,770 >1,770 E^2 elow by nun y maximum D 250 780 1,560 ed Route	ther of service E 1,770 >1,770 ** her of service E 850 1,420 >1,770 $)^3$	¹ Values are for the constitution planning corridor based or Capacity ² Level of of motor ³ Buses F flow. * Canne ** Not a volume been ree achieval value de	shown are presented he automobile/truck te a standard and sh ir models from whit gapplications. The t or intersection desi n planning applications of service for the bio rized vehicles, not r of service for the bio rized vehicles, not r oper hour shown are of ot be achieved using applicable for that 1 s greater than level ached. For the bicyc ble be cause there is efaults.	I as peak hour tw modes unless sp ould be used only it his table is de able and deriving gn, where more it ons of the Highw vice Manual. cycle and pedesti number of bicycl nly for the peak ho g table input value evel of service le of service D becc- le mode, the lev- no maximum ve	wo-way volume pecifically state y for general pl g computer mo refined techniq vay Capacity M rian modes in th ists or pedestria our in the single ne defaults. etter grade. For ome F because el of service let chicle volume th	s for levels of d. This table d lanning applica used for mor dels should no ues exist. Cale lanual and the his table is bas ms using the fi direction of the the automobil intersection ca ter grade (incl hreshold using	service and oes not ations. The e specific t be used for ulations are Transit ed on number acility. higher traffic e mode, apacities have ading F) is no table input
Side	(Buse ewalk Covera 0-84% 85-100%	es in peak hour ge B > 5 > 4	in peak direct C ≥ 4 ≥ 3	$\begin{array}{c} D\\ \geq 3\\ \geq 2 \end{array}$	E ≥ 2 ≥ 1	Source. Florida System <u>www.d</u>	Department of Trai s Planning Office ot.state.fl.us/planni	nsportation ng/systems/sm/le	os/default.shtm	100	