Appendix A

WRDP Process Calculations

APPENDIX A

WRDP Process Calculations

Water Quality Analysis From Effluent

MIAMI-DADE WATER AND SEWER DEPARTMENT SOUTH DISTRICT WASTEWATER TREATMENT PLANT WATER QUALITY ANALYSIS FROM EFFLUENT

	1			г			1	Г	W	ATER QUALITY AN	ALYSIS FROM	M EFFLUENT	-			1	1	1	1			1			
	-	TDS,	Sulfate,	Chlorid	es,	TKN,	NH3,	Fecal Coliform, #	Cond	uctivity,	Те	mp,	Temp,	рН		Alkalinity	TP,	тос,	т	ss	N03	N02	N03+	Total N	CBOD
Date	mg/L	Daily Summary sheet 3 mg/L	Daily Summary Sheet 3 mg/L mg/L	Daily Summa sheet mg/L mg/L	ry Summar 2 Sheet 3	-	mg/L	Col/100ml	Micomho/cm	Daily Summary Sheet Micomho/cm	с	Daily Summary Sheet 3 C		Daily	Daily / Summary Sheet 3	Daily Summary Sheet 3 mg CaCO3/L	mg/L	mg/L	mg/L	Daily Summary Sheet 2 mg/L	- mg/L	mg/L	N02 mg/L		Daily Summart Sheet 2 mg/L
Jan-01	252	iiig/∟	20	72	iiig/L	24.41	21.24	7,200,000	755	WICOIIII0/CIII	25	C	78	6.8 Sileet 2	Sheet 3	Ing CacO3/L	1.46	11.2	19.2	iiig/∟	0.08	iiig/∟	iiig/L	liig/∟	5.16
Feb-01	360		31	86		19.70	21.06	360,000	785		27		81	6.9			0.52	11.1	8.4		0.39		i t		3.39
Mar-01	392		34	101		21.75	18.96	360,000	804		28		82	6.5			1.22	13.3	11.6		0.09		i t		6.57
Apr-01	752		51	290		19.30	15.84	11,100,000	1 ,436		29		83	6.6			2.14	20.7	42.4		0.00		i		8.08
May-01	904		100	369		21.38	17.79	8,400,000	1,695		28		82	6.4			1.48	13.6	17.6		0.00				7.41
Jun-01	344		29	77		28.94	25.86	1,122,130	754		30		85	6.8			1.99	10.3	4.8		0.00				3.17
Jul-01	344		37	77		17.55	15.43	8,667	694		28		83	6.7			1.11	11.7	7.2		0.18		┌────┤]	3.68
Aug-01	284		14 18	53 63	_	16.07 14.98	13.41	4,150 24,000	620 657		28 30		83	6.9 6.7			1.5 2.29	10.7	19.2 5.2		0.12		┌──── ┤		4.45 4.14
Sep-01 Oct-01	360 308		20	53		7.73	12.83 5.26	45,000	579		27		86 81	6.5			0.85	11.5 9.13	17.2		0.28		ł		4.14
Nov-01	352		23	54		20.25	16.41	40,000	730		26		79	6.7			1.09	12.2	10		0.11		i — – †		4.53
Dec-01	324		21	66		15.19	12.53	40,000	661		26		79	6.9			0.53	11.4	9.2		0.07				4.24
Jan-02	360		22	64		21.30	19.18	47,000	697		23		73	6.7			2.24	11.9	11.2		0.79		ł		5.32
Feb-02	340		26	63		20.76	20.11	6,300	719		25		78	6.7			1.84	10.3	8.4		0.73		i t		4.50
Mar-02	360		26	76		27.03	24.49	32,000	791		27		80	6.6			1.94	10.4	6.8		0.12		i		5.15
Apr-02	360		31	77		20.92	15.67	24,000	715		26		79	6.5			0.99	11.6	6.4		0.15		1		4.55
May-02	392		29	86		20.53	18.97	6,800	714		28		83	7			1.1	12.2	8.8		0.3		1		5.77
Jun-02	252		22	53		12.53	10.87	49,000	600		28		82	6.8			0.45	9.92	11.6		1.5				5.02
Jul-02	376		20	85		12.12	10.38	76,000	805		28		82	6.5			1.9	9.68	9.6		0.01		└─── ┤]	4.84
Aug-02	324		22	86		18.25	13.42	7,800	713		29		85	7			0.91	10	7.2		0.17		┌────┤]	5.24
Sep-02	392 356		25 26	73		16.49 18.16	14.49	20 500	686 727		28 28		83	6.7			0.62	8.67	9.2		0.1		ł		4.79 3.76
Oct-02 Nov-02	328	-	20	72 85		17.48	13.53 15.93	30,500 25,000	721	ł – – ł	28	-	83 80	6.6 7.6			0.97	9.22 10.2	9.6 6.5		0.14		rł		3.76 5.76
Dec-02	320		20	68		14.61	12.30	24,000	649		26		80	6.6			0.75	10.2	9		0.14				5.81
Jan-03	356		25	73		19.63	20.12	28,000	713		22		71	6.7			0.96	11.6	14.4		0.08		ł		5.38
Feb-03	364		25	80		20.73	19.99	69,000	741		25		77	6.9			1.04	10.3	17.7		0				5.36
Mar-03	360		30	86		20.11	18.30	51 ,000	742		28		82	6.9			1.09	8.76	4		0.1		i l		4.38
Apr-03	328		27	77		28.30	27.99	26,000	798		27		80	6.7			1.22	9.71	7.2		0.13		1		5.95
May-03	352		21	69		19.02	17.91	60,000	695		28		82	6.7			2.15	9.46	7.6		0.3				3.80
Jun-03	316		21	68		12.49	11.63	61,000	644		30		85	6.6			0.71	10.1	4		0.14				3.64
Jul-03	300		21	59		10.54	8.80	38,000	597		28		82	6.8			0.56	8.76	5.6		0.41		┌────┤]	3.30
Aug-03 Sep-03	336 292	_	21 23	64 63	_	11.90 10.38	10.63 8.83	22,000 8,000	630 634	╞────┝	30 31		86 87	7.3 6.5			0.52	9.14 9.58	2.5		0.68		ł		4.04
Oct-03	368	+	23	63 72		10.38	8.83	5,400	634 705	╂────┼	29	<u> </u>	87	6.6	+		2.33	9.58	10.8		0.44		┌───┤		6.01 3.94
Nov-03	356		12	75		17.71	17.21	4,900	710	<u>├</u>	29	<u> </u>	83	6.8	1		2.33	10.8	9	1	0.7		it		5.01
Dec-03	300		22	77		4.50	20.54	26,500	720		26		78	6.9			0.47	10.9	6	1	0.47		<u> </u>		4.98
Jan-04	296		22	72		17.30	16.31	35,500	660		27		80	6.5		206	0.09	12.2	5.6		0.23				3.77
Feb-04	392		22	79		25.43	26.09	58,000	737	┞─────	28		82	6.7		220	2.43	1,1.50	7.20		0.12		├─── ┤]	5.11
Mar-04	412		30	73		21.07	21.46	3,600,000	757	┟────┟	25		78	6.6		204	2.00	12.10	13.60		0.20		┢───┤]	4.86
Apr-04 May-04	312 340		25 22	67 71		24.41 17.40	20.38 16.80	5,700,000 590,000	696 669	<u>├</u>	26 28		78 82	6.9 6.7		192	1.64 1.08	11.50 11.9	10.80 6.4		0.12		ł		5.09 4.75
Jun-04	340	-	26	78		17.40	15.60	250,000	704	┼───┼	30	-	86	6.1		192	1.08	11.9	6.4		0.3		ł		4.75 5.81
Jul-04	356	420	29 27.29	76	70	20.40	18.40	4,000,000	819	<u>∤</u>	31	30.79	87	6.5	6.48	188	2.04	12.9	6		0.47	2.25	3.11	23.5	5.00
Aug-04	420	392	24 26.6	49	65.5	16.00	13.10	6,000,000	631		29	29.5	84	6.5	6.56	204	1.42	12.7	18	1	0.53	0.2	0.73	16.7	4.78
Sep-04	332	334	27 25.36	69	62.2	16.10	17.10		727		31	29.37	87	6.5	6.51	194	1.72	10.7	9.6		0.29	2.27	2.56	18.7	4.06
Oct-04	368	361	26 27.65	66	64.75		17.10	4,700,000	752		30	27.37	86	6.6	6.59	202.6	1.54	10.4	5		0.38	1.1	1.48	21.1	3.95
Nov-04	364	372	27 27.95	73	71	22.70	21.50	53,000	760	↓	27	27.5	81	6.6	6.51	211.6	1.33	10.8	6.4	1	0.1	0.43	0.53	23.2	4.03
Dec-04	362	362	30 29.97	76.8	76.8	24.85	23.28	75,431	791.6	\downarrow	26.6	26.34	79.4	6.48	6.49	226.3	1.61	12.25	7.88		0.1	0.27	┍───┤]	5.04
		1					1		L			L	<u> </u>		1	l	I	I	1	I	I]	

	-	DS.	6.	ulfate.		Chlorides		TKN.	NH3.	Fecal Coliform. #	Cand	uctivity.	Та	emp.	Temp.		рH		Alkalinity	TP.	тос.	т	SS	N03	N02	N03+	Total N	СВОД
Date	1	Daily Summary sheet 3	51	Daily Summary Sheet 3		Daily Summary sheet 2	Daily Summary	I'NN,	ΝПЗ,	recar conform, #	Condi	Daily Summary Sheet	Te	Daily Summary Sheet 3	Temp,		Daily	Daily	Daily Summary Sheet 3	18,	100,		Daily Summary Sheet 2	NUS	NUZ	N02		Daily Summart Sheet 2
	ma/L	mg/L	mg/L	mg/L	ma/L	mg/L	mg/L	mg/L	mg/L	Col/100ml	Micomho/cm	Micomho/cm	с	с			-	Summary Sheet 3	mg CaCO3/L	mg/L	mg/L	ma/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Jan-05	364	372	27	29.69	73	75.6	77	22.70	21.50	53,000	760	771	27	25.79	81	6.6	7.1	6.49	226.5	1.33	10.8	6.4	10.8	0.1	0.43	0.53	23.2	4.64
Feb-05	364	394	26	30.33	73	70.8	75.25	20.00	25.10	200.000	2.000	769	26	25.4	78	6.5	7.2	6.49	227	2.22	11.5	6.4	10.9	0.17	0.47	0.64	20.6	5.15
Mar-05	364	380.8	30	32.05	73	73	74.4	26.70	29.10	200,000	760	759	23	25.71	74	6.4	7.3	6.5	222	2.38	13.2	6.4	10.5	0.41	0.35	0.76	27.5	6.00
Apr-05	364	391	27	30.13	73	73	71.25	25.20	25.20	250,000	760	760	29	27.35	84	6.5	7.2	6.51	226	2.3	11.9	6.4	12.7	0.14	0.35	0.5	25.66	5.76
May-05	364	383	27	31.25	73	72	74.5	29.10	29.40	210,000	760	755	28	28.1	83	6.7	7.3	6.57	228	1.87	11	6.4	10.9	0.19	0.41	0.6	29.68	5.85
Jun-05	364	362.4	24	26.23	73	58	59.4	17.00	17.90	98,182	760	639	29	28.5	83	6.6	7.4	6.68	214.4	1.28	8.9	6.4	12	0.2	0.31	0.51	17.5	5.32
Jul-05	364	344	24	27.07	73	60.25	63.25	23.10	20.90	94,545	760	680	30	29.36	86	6.6	7.3	6.56	214.5	1.44	10.6	6.4	6.5	0.32	0.44	0.76	23.9	4.28
Aug-05	364	358.4		27.39	73	44	59.6	14.70	15.20	57,000	760	481	30	29.8	87	6.4	5.4	6.64	208	0.97	8.3	6.4	4.1	0.45	0.51	0.96	15.6	2.17
Sep-05	364	374	24	27.77	67	64	66.75	18.12	16.86	40,000	711	679	30	29.5	85	6.4	7.0	6.6	208.5	1.46	11	5.6	7.7	0.3	0.63			4.29
Oct-05	364	332	26	27.3	73	60.29	74	17.60	15.80	48,000	760	680	30	29.3	86	6.3	6.8	6.3	208.5	1.35	11	6.4	8.6	0.21	0.94	1.15	18.7	5.38
Nov-05	364	394.4	33	26.4	73	73	74.8	28.70	24.70	9,819	760	743	29	28.1	85	6.2	7.2	6.26	228	1.71	14.4	6.4	8.3	0.34	1.12	1.46	30.2	4.82
Dec-05	364	388	24	28.25	73	66	65.3	22.70	20.40	4,800	760	705	27	26.4	80	6.5	7.2	6.42	213	1.93	10.5	6.4	8.2	0.21	0.85	1.06	23.8	4.86
																											L	
Jan-06	396	417	27.2	27.2	72		69	22.50	22.00	80,000	786		27	26	81	6.6		6.5	233.5	1.8	11.3	18.7		0.25	0.31	0.56	23.1	
Feb-06	352	368	24	27.25	68		72.75	23.70	15.90	436,363	746		25	25.73	77	6.8		6.6	216.0	1.7	11.5	17.6		0.13	0.11	0.24	23.9	
Mar-06	424	436.8	29	33.05	89		101.2	28.80	23.10	14,414	862		26	26.3	79	6.9		6.68	224.0	2.66	12.1	8.8		0.2	0.17	0.37	29.2	
Apr-06	448	441	34	36.16	115		114.25	26.00	24.40	60,630	1,007		27	27	81	6.7		6.69	221	2.17	11.4	10.4		0.73	0.19	0.92	26.9	
May-06	496	478.4	35	40.37	126		132.4	32.70	27.40	380,000	890		28	27.86	83	6.5		6.58	233.2	2.63	15	14		0.26	0.16	0.42	33.1	<u> </u>
Jun-06		414		36			107							29				6.77	211.50									+
Jul-06		381		31.6			81.25							29		ļ		7.08	207									4
Aug-06		368		32.32			78.8							31				6.6	203.8								<u> </u>	4
Sep-06		405.3		+			86.7							29				6.63	198								<u> </u>	4
																	1	1									L	

			_																				_			N03+		
Date	TD	os,	Su	fate,		Chlorides,		TKN,	NH3,	Fecal Coliform, #	Condu	ictivity,	Tei	mp,	Temp,		рН		Alkalinity	TP,	TOC,	TS	S	N03	N02		N	CBOD
2410																										N02		
	mg/L	mg/L	mg/L	mg/L	mg	g/L	mg/L	mg/L	mg/L	Col/100ml	Micom	nho/cm	С	С	F				mg CaCO3/L	mg/L	mg/L	mg/	/L	mg/L	mg/L	mg/L	mg/L	mg/L
2001	415		33		113			19.28	16.39	2,391,996	794		28		82	6.70				1.35	12.24	14.33		0.00				4.97
2002	347		25		74			18.35	15.78	29,855	711		27		81	6.78				1.22	10.42	8.69		0.33				5.04
2003	336		23		72			15.77	16.65	31,709	694		28		81	6.78				1.16	9.93	7.48		0.35				4.65
2004	359	373	26	27	71		68	20.35	18.93	2,278,357	725		28	28	83	6.56		6.52	203.73	1.51	11.76	8.57		0.26	1.09	1.68	20.64	4.69
2005	364	373	27	29	73	66	70	23.09	21.84	105,446	859	702	28	28	83	6.48	7.03	6.50	218.70	1.69	11.09	6.33	9.27	0.25	0.57	0.81	23.30	4.88
2006	423	412	30	33	94		94	26.74	22.56	194,281	858		27	28	80	6.70		6.68	216.44	2.19	12.26	13.90		0.31	0.19	0.50	27.24	
Average	374	386	27.11	29.70	82.78	65.83	77.24	20.60	18.69	838607.24	773.71	701.75	27.55	28.04	81.55	6.67	7.03	6.57	212.96	1.52	11.28	9.89	9.27	0.25	0.61	1.00	23.73	4.85

Notes: 1. Samples from effluent wells taken one day per week, Composite Samples 2. Samples taken daily (From daily summary plant data - SDWWTP DataCDM.AB.xls). 3. Sample data summary taken from - Effluent data060929.XLS

Meeting Minutes

Memorandum

To:	File
From:	Carmen Yee-Batista
Date:	August 21, 2006
Subject:	Coastal Wetland Reuse Rehydration Demonstration Pilot Project - Coordination meeting with Hazen and Sawyer

A meeting was conducted on Thursday, July 27, 2006 with MDWASD, H&S, and CDM staff to discuss the High Level Disinfection (HLD) project and the Wastewater Reuse Pilot Plant (WRPP) as part of the Coastal Wetland Reuse Rehydration Demonstration Pilot Project.

Attendees:

- MDWASD: Bertha Goldenberg, Joe Mazzerese, Jim Ferguson, and Steve Kronheim
- Hazen and Sawyer: Rick Cisterna
- CDM: Victor Pujals, Carmen Yee-Batista, and Andrew Lynn (phone)

The agenda for this meeting included the following discussion points:

- 1. Presentation
- 2. Understanding HLD project and other expansion projects
- 3. Proposed pilot plant process
- 4. Tentative/conceptual size of pilot plant
- 5. Potential locations
- 6. Coordination to connect to existing facility
- 7. Long term implications to design full scale plant

Memorandum August 21, 2006 Page 2

This memorandum provides a summary of the major points discussed at this meeting:

- Rick Cisterna provided a summary of the improvements that are currently being design to provide HLD facilities at the South District WWTP. The improvements include one oxygenation train, four secondary clarifiers, deep bed filters, UV system, and chlorination and feed facility. The facilities are design to treat a peak flow of 285 MGD and annual average flow of 112.5 MGD. Facilities required for the 131 MGD AAD were also discussed, however, these facilities are not being designed.
- Joe Mazzarese mentioned that the current reuse facility has a capacity of 1 MGD and can be available for the pilot plant. He mentioned that we might be able to tab in to the reuse effluent instead of the secondary effluent. Steve Kronheim mentioned the plant is chlorinated every month for a period of four hours. The group did not think that was a problem because the pilot plant can be shut down during that time. Joe also mentioned that the pipeline (8-inch) that feeds secondary effluent to the existing reuse plant can be used to feed the WRPP.
- Other options for the pilot plant location were discussed. Some of the locations are illustrated on Figure 1. Potential locations outside the plant and close to the Lennar Flow Way were discussed; however, land acquisition, security, power supply, and location being to far for operators are some of the disadvantage of locating the plant outside the fence. The west area of the plant has space constraints due to future contractor trailers. Joe Mazzarese mentioned that he would like to stay east of the plant.
- Hazen & Sawyer mentioned that a copy of the staging plant for construction of the HLD project will be provided to CDM.
- The property appraisal website of Miami-Dade County might have land description of the land in proximity to the Lennar Flow Way.
- The group discussed potential modification of HLD plant to provide nutrient removal to comply with stringent regulations. Nitrification with Biological Aerated Filters is a potential option that the CERP report supported. The deep filters might be appropriate for denitrification if denitrification is required only during the dry season. Filters are design to a HLR of 6 gpm/sf at peak flow. The loading during annual average flow is about 2 gpm/sf which is typical hydraulic rate for denitrification. It is not clear by the group if the water rehydration project would operate only during dry season.
- UV disinfection or a combination of UV with chlorine disinfection is being evaluated as part of the HLD project. UV can be modified to provide also treatment for

Memorandum August 21, 2006 Page 3

contaminants of concerns with the addition of hydrogen peroxide if required in the future by regulators.

- Total phosphorus level in the effluent at SDWWT is approximately 1 mg/L. Data is from water quality analysis from effluent. Bertha Goldenberg provided five year of monthly data.
- The group discussed the addition of actiflow for phosphorus removal in the 1-MGD WRPP instead of using one secondary clarifier to remove bulk P.
- MDWASD mentioned to look at other plant process schematic, such as Tampa Bay. He also mentioned that it is important that the pilot plant represent a realistic scenario of potential modifications at SDWWTP.

CYB/pd

File:

Attachment

- SDWWTP Plant site layout
- Schematic
- WRPP site layout
- Water quality analysis from effluent

Memorandum

То:	Steve Kronheim (MDWASD)
From:	Carmen Yee-Batista
Date:	September 10, 2006
Subject:	Coastal Wetland Rehydration Reuse Demonstration Project – Site Visit

A site visit and meeting was held on September 7, 2006 at the South District Wastewater Treatment (SDWWTP) to discuss potential locations for the wastewater reuse demonstration plant (WRDP), the constructed wetland, and discharge point for the constructed wetland effluent. The meeting was attended by Steve Kronheim (MDWASD), Manuel Moncholi (MDWASD), Fernando Craveiro (CH2MHill), Randy Bushey (CH2MHill), Juan Jurado (MSA), Carmen Yee-Batista (CDM), and Ken Caban (CDM). The following is a summary of the major points discussed at the meeting.

- CDM indicated that a foot print of 300 ft x 100 ft might be required for the 1-MGD WRDP based on preliminary calculations conducted during the proposal phase.
- A site between final clarifiers no. 6 and no. 3 was presented as a potential option for the WRDP. However, because of space constraint and existing yard piping, the group did not think this will be a good option.
- The existing location of the existing wastewater reuse plant was also discussed as a possible site for the WRDP. To use this site, the existing wastewater reuse plant will need to be eliminated. MDWASD did not think that will be possible with FDEP. In addition, a chlorine storage and feed facility will be constructed close to the area limiting the space available for the WRDP.
- Another site next to oxygenation tank No. 7 was presented as a potential option for the WRDP. The group agreed that this site could be a potential location for the WRDP. Secondary effluent to feed the WRDP can come from injection well I-7. Steve Kronheim mentioned that the injection well is chlorinated once every month for a period of three hours. The group did not think this will be a problem for the operation of the demonstration plant. The injection well concrete pad can not be used for the WRDP.

Steve Kronheim September 12, 2006 Page 2

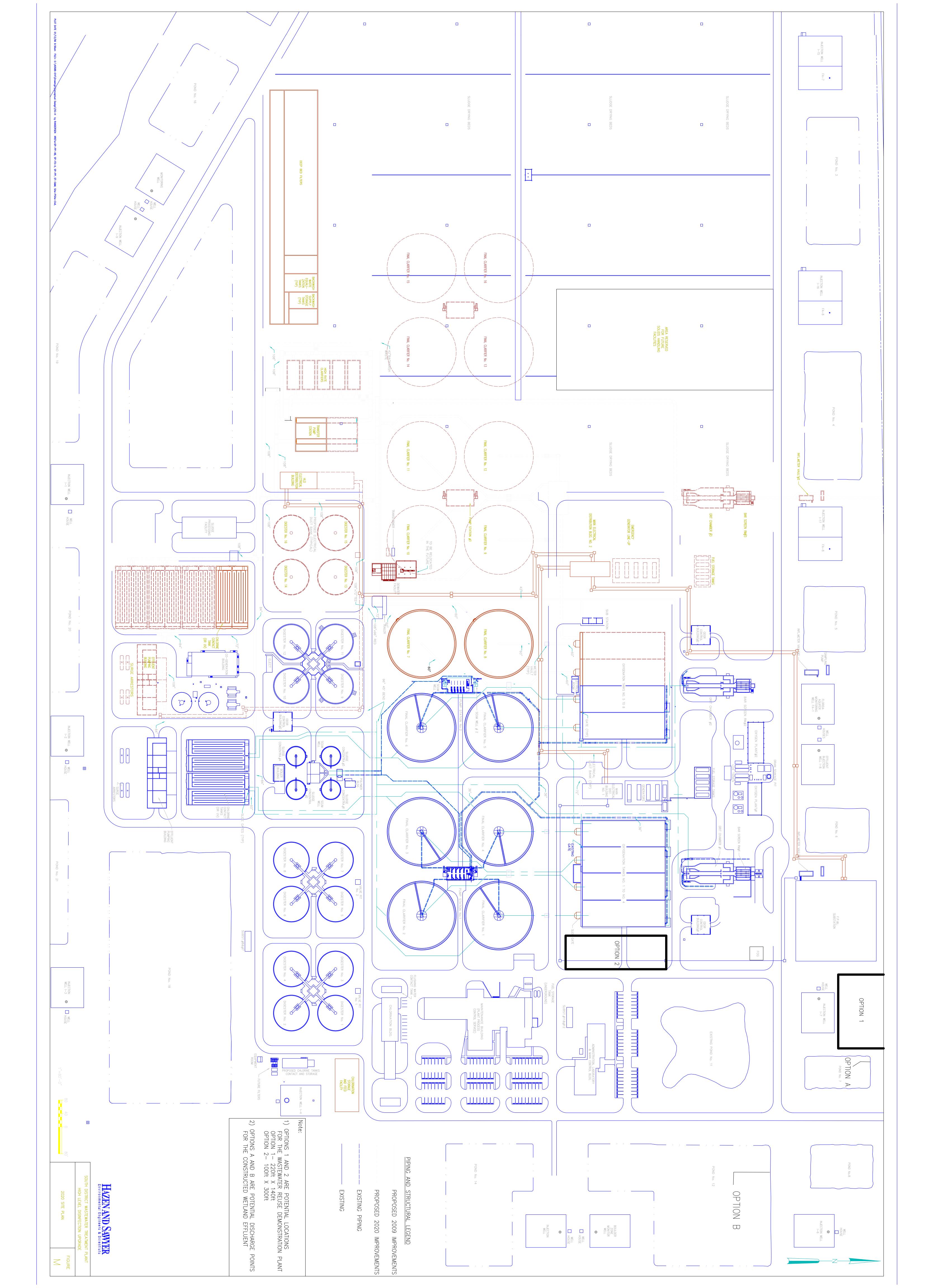
- A site located next to the FPL substation and the injection well I-7 was presented as a potential location for the WRDP. This site is close to both the source water (injection well I-7) and the site where the constructed wetland will be constructed. The site is located in a flooding area, therefore, filling the site should be considered. FPL will soon begin upgrades to the substation. MDWASD recommended leaving approximately 40 to 50 feet between the substation and the demonstration plant. The area available at this site is approximately 220 ft x 140 ft.
- The group decided that the best two sites to locate the WRDP are: Option 1 next to the FPL substation and injection well I-7 and Option 2 next to the oxygenation tank No. 1. The attached drawing indicates the location of these two sites.
- The group also discussed where to discharge the effluent of the constructed wetland. Two options were presented. One option is to take the constructed wetland effluent to the head of the plant through a sanitary sewer and the other option was to discharge to a holding pond. Holding ponds at the plant are used for emergency overflow. The holding ponds considered were pond no. 7 and pond no. 12 indicated as Option A and Option B, respectively in the attached drawings. There is a culvert discharging to Pond 12 coming from SW 87 Ave. This culvert could be used to connect the constructed wetland effluent to Pond No. 12.
- MDWASD indicated the entire plant was recently surveyed for the High Level Disinfection (HLD) project. CDM should contact Jim Ferguson (MDWAS) to obtain the survey information. Drawings of the potential sites were shown to the group. The drawings come from Contract No. S133 A. CDM will be requesting these drawings to MDWASD.
- MDWASD indicated that laboratory analysis for the WRDP will need to be contracted out. During the design phase, a refrigerated area to store samples should be considered by the design engineer.
- MDWASD recommended installing a Ted's shed with an air conditioning window unit designed for hurricane protection to locate the control panels for the demonstration plant. A similar construction was used for the HLD pilot plant.
- A visit to the sites indicated above was conducted after the meeting.

Attachment

File: 6430-53684 -058.DN Series 200 (Correspondence)

cc: Attendees

Potential Location – Looking North East


Potential Location – Looking North East

Looking South - Injection Well I-7

Looking West - FPL Substation

Preliminary Motor List

MIAMI DADE WATER AND SEWER DEPARTMENT 1 MGD DEMONSTRATION COASTAL WETLAND REUSE PROJECT AT SDWWTP PRELIMINARY MOTOR LIST (12/13/06)

Process Component / Item	Service		ber Units	Estimated U	U nit Power		nted Total ted Power	Motor size /unit	Other
		Duty	Standby	HP	KW	HP	KW	HP	
Strainers	Eaton filtration	1	0					1/3	
SAF	Severn Trent Services	2	0						
Process Air Blowers		2	1	14	10	40.8	30	25	
Sump Pumps		1	1					0.5	
Denitrification Filters	Severn Trent Services	3	0						
Backwash Blowers		1	1	19.03	7.23	38.1	28	50	
Backwash Pumps		1	1	7.55	5.63	15.1	11	10	
Methanol Feed Pumps		1	1	0.01		0.0		0.01	
Analyzer Sample Pumps		1	1	0.75		1.5	1	0.75	
Ballasted Flocculation	Kruiger								
Coagulatin Tank		2	0	1.00		2.0	1	1	
Injection Tank		2	0	1.00		2.0	1	1	
Maturation Tank		2	0	1.50		3.0	2	1.5	
Settling Tank		2	0	0.50		1.0	1	0.5	
Manual Microsand Recycle Circuits		2	2	3		12.0	9	3	
Polymer Transfer Power									
Polymer Metering Pumps		2	2	5		20.0	15	5	
Ferric Chloride Transfer Pumps		1	1	1.5		3.0	2	1.5	
Ferric Chloride Metering Pumps		1	1	1/3		0.7		1/3	
Ultrafiltration	Zenon					0.0			
Membrane Aeration Blower		2	1	15		45.0	34	15	
Permeate/Backpulse pump		3	1	30		120.0	90	30	
Air Compressor c/w Motor & receiver		2	2	7.5		30.0	22	7.5	
Air Drier		2	0						0.02 KWh/day
Air Ejector		3	1						0.21 KWh/day
Zenon Control Power		1	0						60.27 KWh/day
UV process	Aquionics	2	0	72.00		144.0	107		54KW
RO Membrane Trailer (Pilot)	-			15.00		15.0	11		480 V, 60 A
O3 + H2O2(HiPOX) (Pilot)	Applied Process Technology	1	0	3.00		3.0	2	3	
Building Area (1152 sq.ft) (2 Watt/sf)						2.30	1.72		
Total						498.46	371.47		

Total power, kw	371
Power coeficient	0.8
Total power requirements, KVA	464

Operation and Maintenance Costs

PLANT: 1-MGD DEMONSTRATION PLANT

PROCESS: STRAINER, SAF, DN FILTERS, BALLASTED FLOCCULATION, LOW-PRESSURE MEMBRANES AND UV SYSTEM

O&M cost includes power, chemicals, and spare parts

ASSUMPTION	NS	VALUE	UNITS
Power			
	Power cost, \$/kw-hour	0.10	\$/kw-hr
Chemicals			
	Methanol	1.15	\$/gallon
	Ferric Chloride	275	\$/ton
	Polymer Cost, \$/lb	2	\$/lb
	Sodium Hypochlorite (10.8 %) 55 gal drums	4.70	\$/gallon
	Microsand	1.43	\$/lb
	Citric Acid	0.71	\$/lb
Spare Part Repl	acement		
	Not included - assume 5 years operation and warranty		
Assume 5 years	operation		
POWER COS	IS		
	0 POWER FOR STRAINER		
	D POWER FOR SAF		
	0 POWER FOR DENITE FILTERS		
	0 POWER FOR BALLASTED FLOCCULATION		
	OPOWER FOR UV SYSTEM		
	STAINER		
-	Motor power	hp	0.33
	Daily operating time	hours	24
	Total	hp-hrs/day	8
	10001	np-m3/day	0
	ANNUAL POWER	kwh/year	2,178
	ANNUAL POWER COST	Kwii/ yeu	\$ 2 ,178
			*
	SAF PROCESS BLOWERS	1	27
	Motor power	hp	27
	Daily operating time	hours	24
	Total	hp-hrs/day	649
	ANNUAL POWER	kwh/year	176,676
	ANNUAL POWER COST	, ,	\$17,668
			+1.,500
-	DENITRIFICATION FILTERS BACKWASH BLOWERS	•	10.0
	Motor power	hp	40.0
	Daily operating time	hours/day	0.67
,	Total	hp-hrs/day	27
	ANNUAL POWER	kwh/year	7,293

Motor power	hp	9
Daily operating time	hours/day	2.41
Total	hp-hrs/day	22
ANNUAL POWER	kwh/year	5,899
ANNUAL POWER COST		\$590
BALLASTED FLOCCULATION		
Motor power	hp	10
Daily operating time	hours	24
Total	hp-hrs/day	252
ANNUAL POWER	kwh/year	68,535
ANNUAL POWER COST		\$6,854
MEMBRANE		
Total power consumption per system	kwh/day	587
Total	kwh/day	1174
ANNUAL POWER =	kwh/year	428,438
ANNUAL POWER COST =		\$42,844
UV DISINFECTION		
POWER USAGE	kw	86
Daily operating time	hrs/day	24.00
Total	kwh/day	2,064
ANNUAL POWER =	kwh/year	753,360
ANNUAL POWER COST =	,	\$75,336
SSPP		
RO		\$25,000
Other sidestream	kw	20.00
Daily operating time	hrs/day	24.00
Total	kwh/day	480
ANNUAL POWER =	kwh/year	175,200
ANNUAL POWER COST =	-	\$17,520
TOTAL ANNUAL POWER COSTS =		\$186,758

CHEMICAL COSTS

Methanol Ferric Chloride Polymer Sodium Hypochlorite Citric Acid Cost

METHANOL SYSTEM

Average consumption	gpd	116
Methanol consumption	gal/year	42,423

METHANOL COST PER YEAR	\$	48,787
FERRIC CHLORIDE		
Average consumption	ppd	143
Ferric Chloride consumption	lb/year	52,304
FERRIC CHLORIDE COST PER YEAR	\$	7,192
MICROSAND		
Average Consumption	ppd	10
Microsand Annual Average Consumption	lb/year	3,670
MICROSAND COST PER YEAR	\$	5,249
POLYMER		
Average Consumption	ppd	10
Polymer Annual Average Consumption	lb/year	3,487
POLYMER COST PER YEAR	\$	6,974
MEMBRANE CLEANING CHEMICALS CONSUMPTIO	DN (per Zenon)	
SODIUM HYPOCHLORITE		
Maintenance/recovery Cleaning		
Strength	%	10.8%
Chemical required	gal/year	3,900
Cost	\$/yr	\$18,000
CITRIC ACID		
Maintenance/recovery Cleaning		
Strength		50%
Specific gravity		1.3
Chemical required	gal/year	115
Chemical required	lb/year	1,247
Cost	\$/yr	\$885
TOTAL CHEMICAL COST		\$87,087
ACEMENT PARTS		
EQUIPMENT COST		3,500,000
Annual Replacement Parts (1% of equipment cost)	\$	\$35,000
MEMBRANE REPLACEMENT		
Total number of modules		108
Module Replacement Price	\$/module	811
Membrane Life	years	10
Based on 5-year analysis, assume 20% of membranes will nee		22
Membrane Replacement (5 years)	\$	\$17,518
ANNUAL MEMBRANE REPLACEMENT COST	ф \$/vear	\$17,518 3 504

\$/year

3,504

ANNUAL MEMBRANE REPLACEMENT COST

UV SYSTEM		
Lamps (based on ADF)	\$/year	9,750
Wiper rings (based on ADF)	\$/year	360
Quartz Sleeves (based on ADF)	\$/year	600
Quartz Sleeve Seals (based on ADF)	\$/year	80
TOTAL ANNUAL COST	\$/year	\$10,790
WATER QUALITY MONITORING		
Laboratory Analysis	\$	\$70,000
ANNUAL O&M COST SUMMARY		
Power cost		186,758
i ower cost)
Chemicals		\$87,087

Treatment Plant Classification and Staffing

Treatment Plant Classification and Staffing

Source: DEP 200, Section 62-699.310 Classification and Staffing of Plants

For Demonstration Plant assume the following:

Unit Processes	Category	Plant Classification	Operator	Hours/day	days/week	Total Hours
SAF + Denite Filters	(3) (a) Category I	Class B	С	16	7	112
Ballasted Flocculation + Membrane + UV	(4) (b) Category II	Class B	С	16	7	112
Total hours						224

Assume:

2 additional operators * Other staff needs by existing plant personnel

40 hours/week

	160	64					
			1 MGD plant				
Position Description	Hourly Rate	Annual	Number of Positions	hours/day*	days/week	Total Budget	Total no of Positions
Engineers		60,000	0			0	0
Instrumentation/Electrical	30	62,790	0	8	5	0	0
Operator -Class C	26	54,600	2	8	5	109,200	2
Mechanic	26	54,600	0	8	5	0	0

* Salary rates based on FWPCOA Job Bank Web Site

\$20.92/hr for a Class C Operator.

Additional 25 percent included for benefits

Engineer salary based on 2005 NACWA financial survey

Appendix

Side Stream Pilot Plant

Equipment Manufacturer's Cut Sheets And Descriptive Literature GRANULAR ACTIVATED CARBON

EB-1035-09/99

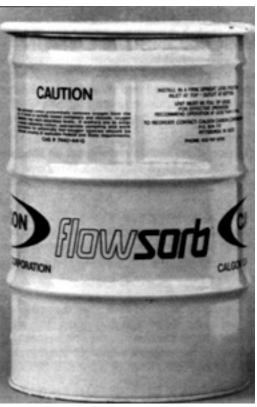
Equipment Bulletin

FLOWSORB®

General Description

Designed for low-flow water treatment applications, prefabricated 55-gallon Flowsorb[®] canisters contain all the operating elements found in a full-scale adsorption system. These small, economical treatment systems hold 165 pounds of granular activated carbon for applications including:

- Small wastewater streams
- Groundwater remediation
- Underground storage tank leaks
- Well pump tests
- Product purification or de-colorization
- Tank cleaning water treatment
- Batch water or product treatment
- Carbon adsorption pilot testing
- Emergency spill treatment
- Monitoring well water treatment


Features

Flowsorb offers several features and benefits to industrial, commercial and municipal users including:

- Sturdy 16 gauge steel construction
- Low cost per unit makes carbontreatment economical
- Simple installation and operation
- Space above carbon bed facilitates flow distribution or back-flushing
- Flexibility to be used in series or parallel operation
- Supplied with virgin or reactivated carbon
- Practical disposal option, as pre-approved spent
- carbon canisters may be returned to Calgon Carbon Corporation for safe carbon reactivation
- Continuous treatment at varying flow rates and concentrations

Flowsorb Specifications

Vessel Open head 16 gauge steel canister Max Operating Pressure 5 psig Cover Removable steel cover, 12 gauge bolt ring with butyl rubber sponge gasket Internal Coating Heat cured phenolic epoxy Baked enamel (gray) **External Coating** 150°F (65.6°C) continuous350°F (176.7°C) intermittent **Temperature Limit** Inlet 2" FNPT Nylon fitting 2" FNPT Galvanized steel coupling; 304 stainless steel Outlet collector in nylon drum fitting 165 pounds granular activated carbon: Specify Filtrasorb Carbon 300 or reactivated grade Ship Weight 232 pounds (105 kg) Identification Sequentially numbered for traceability

CALGON

Visit our website at **www.calgoncarbon.com**, or call **1-800-4-CARBON** to learn more about our complete range of products and services, and local contact information.

Typical Flowsorb Operating Parameters

Flow Rate Contact Time Pressure Drop Operating Pressures

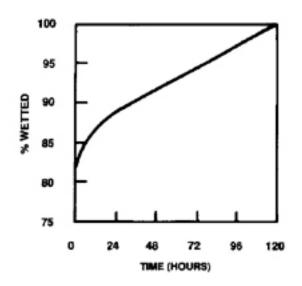
Flowsorb Installation

Flowsorb canisters are shipped with dry activated carbon; the carbon must be wetted and de-aerated prior to use. This procedure displaces air from the internal structure of the carbon granule, thus assuring that the liquid to be treated is in contact with the carbon surface.

Prior to operation, each canister must be filled with clean water; the water should be introduced into the bottom outlet connection. The unit should set for approximately 48 hours - this allows most of the carbon's internal surface to become wetted, as shown on the wetting curve below.

After wetting, the carbon bed can be de-aerated by draining the canister and again filling the canister upflow with clean water. This procedure will eliminate any

air pockets which may have formed between the carbon granules. The Flowsorb is now ready for operation.


Canisters should be set on a flat, level surface and piped as recommended in the installation illustration. The influent pipe connection should be attached to the unit by using a flexible connection, as some minor deflection of the lid may occur if pressure builds due to filtration or other flow blockage downstream.

10 gpm (37.8 l/m)

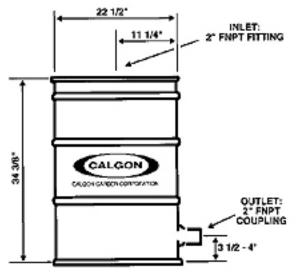
< 1 psi (clean water and carbon)

Recommend operation at less than5 psig, but higher pressures, up to12 psig, possible with tight cover closure

4.5 minutes

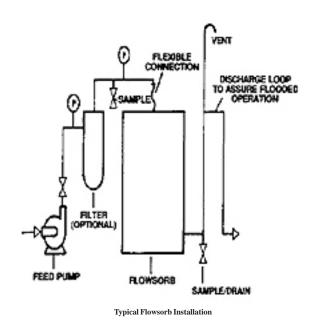
Flowsorb discharge piping should include an elevated piping loop to assure that the canister remains flooded with water at all times. In addition to the piping loop, a drain connection is recommended on the discharge piping; this allows drainage of the unit prior to disconnection or temporary shutdown.

A filter should be installed if the liquid to be treated contains substantial amounts of suspended solids. A simple cartridge or screen filter helps prevent pressure buildup in the carbon bed.


Safety Message

Wet activated carbon preferentially removes oxygen from air. In closed or partially closed containers and vessels, oxygen depletion may reach hazardous levels. If workers are to enter a vessel containing carbon, appropriate sampling and work procedures for potentially low oxygen spaces should be followed, including all applicable federal and state requirements.

Calgon Carbon Corporation P.O. Box 717 Pittsburgh, Pa 15230 Chemviron Carbon Zoning Industriel C B-7181 Feluy, Belgium


Flowsorb Dimensions

Flowsorb Operation

Flowsorb canisters should be full of clean water before treatment begins. Flow rate to the canister should be determined based on required contact time between the liquid and the carbon media. In ground-water treatment applications, the recommended contact time is typically 8-10 minutes with a resultant flow of approximately 5 gpm. Consult you Calgon Carbon Corporation Technical Sales Representative for advice about proper contact time for your application.

Flowsorbs can be manifolded in parallel operation for higher flow rates. For series operation, two Flowsorbs can be piped together sequentially, as normal pressure drop will not exceed the recommended operating pressure.

These canisters have space for bed expansion and can be back flushed by introducing clean water or liquid at approximately 20-25 gpm to the outlet and taking backflush water from the inlet.

If the operating pressure is expected to exceed 5 psig, an application of adhesive caulk at the lid gasket is recommended to prevent leakage. With all surfaces dry, apply the adhesive caulk to the lid recess and lip of the drum per the manufacturer's procedure and set the Flowsorb gasket into the lid recess. After allowing the caulk to set, install the drum lid and tighten the bolt ring.

Theoretical Flowsorb Treatment Capacity for Typical Cases

1110010						
	Case 1	1	Case	e2	Case	3
	Conc.	Gallons	Conc	Gallons	Conc	Gallons
Benzene Toluene	20 ppb 40ppb	1,600,000	200 ppb 400 ppb	400,000	2ppm 4ppm	85,000
Xylene	40ppb		400 ppb		4ppm	
	Case 4	1	Case	e 5	Case	6
	Conc	Gallons	Conc	Gallons	Conc	Gallons
TCE	50 ppb		500 ppb		5 ppm	
PCE	50 ppb	1,900,000	500 ppb	550,000	4 ppm	125,000
	Case 7	•	Case	e 8	Case	9
	Case 7 Conc	Gallons	Conc	e 8 Gallons	Conc	9 Gallons
Phenol Total SOC	Conc 1ppm					-

Each case represents a groundwater or wastewater stream that contains the combination of contaminants listed. The treatment capacity indicates the total gallons of that particular water that may be treated before any of the specific contaminants are present in the treated water as noted. Theoretical capacity based on 5 gpm, water at 70°F or less and 165 pounds of Filtrasorb 300. Background TOC is less than 1 ppm except phenol cases as noted. Contaminants reduced to < 5 ppb, except phenol case which is for 95% phenol reduction.

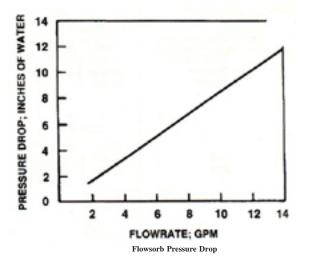
How to Estimate Flowsorb Life

The treatment table on this page lists the volume of water that can be purified by the Flowsorb for typical contamination situations. However, most applications involve a unique mixture of organic chemical contaminants including some chemicals that adsorb at different capacities or strengths. Please consult with you Calgon Carbon Technical Sales Representative for more information about carbon usage rates.

Visit our website at **www.calgoncarbon.com**, or call **1-800-4-CARBON** to learn more about our complete range of products and services, and local contact information.

TECHNOLOGIES FOR PURIFICATION, SEPARATION, RECOVERY AND SYNTHESIS

Return of Flowsorbs


Arrangements should be made at the time of purchase regarding the future return of canisters containing spent carbon. Calgon Carbon will provide instructions on how to sample the spent carbon and arrange for carbon acceptance testing. The spent carbon is reactivated by Calgon Carbon and all of the contaminants are thermally destroyed. The company will not accept Flowsorbs for landfill, incineration or other means of disposal.lowsorbs cannot be returned to Calgon Carbon unless the carbon acceptance procedure has been completed, an acceptance number provided, and the return labels (included with the units at the time of purchase) are attached.Flowsorbs must be drained - and inlet/outlet connections must be plugged - prior to return to Calgon Carbon.

Safety Considerations

It is unlikely that a worker would be able to physically enter a Flowsorb canister. However, the following information and precautions apply to a partially closed canister or situations where carbon is to be removed from the canister and stored elsewhere. Wet or dry activated carbon preferentially removes oxygen from air. In closed or partially closed containers, oxygen depletion may reach hazardous levels. If workers must enter a vessel containing carbon, appropriate sampling and work procedures should be followed for potentially low-oxygen spaces - including all applicable federal and state requirements.

Calgon Carbon Liquid Purification System

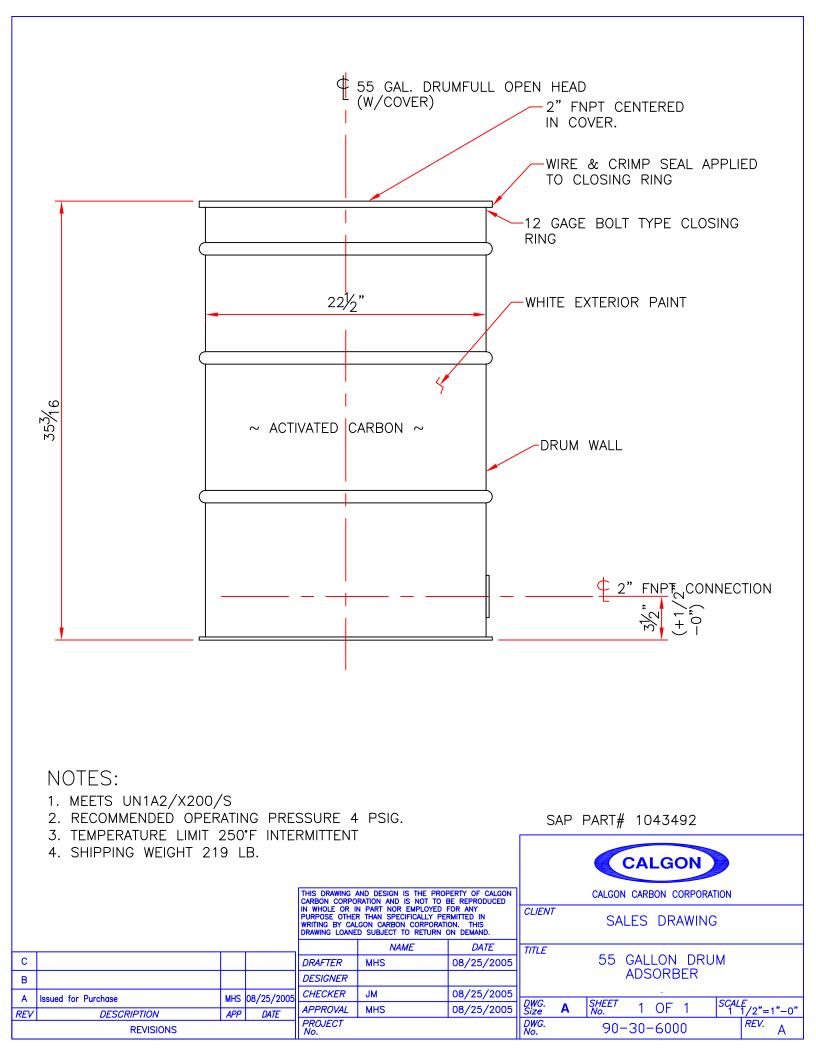
Flowsorb is a unit specifically designed for a variety of small flow applications. Calgon Carbon Corporation offers a wide range of carbon adsorption systems and services for a greater range of flow rates and carbon usages to meet specific applications.

Warranty

There are no expressed or implied warranties - or any warranty of merchantability or fitness - for a particular purpose associated with the sale of this product.

Limitation of Liability

The Purchaser's exclusive remedy for any cause of action arising out of purchase and use of the Flowsorb, including but not limited to breach of warranty, negligence and/or indemnifications, is expressly limited to a maximum of the purchase price of the Flowsorb unit as sold. All claims of whatsoever nature shall be deemed waived unless made in writing within forty-five (45) days of the occurrence giving rise to the claim. In no event shall Calgon Carbon Corporation for any reason be liable for incidental or


consequential damages, in excess of the purchase price of the Flowsorb unit, loss of profits or fines imposed by governmental agencies.

For information regarding incidents involving human and environmental exposure, please call (412) 787-6700 and ask for the Regulatory and Trade Affairs Department. **Application information provided in this bulletin is based upon theoretical data. Calgon Carbon Corporation assumes no responsibility for the use of the information in this product bulletin.** If at any time our products or services do not meet your requirements or expectations, or if you would like to suggest any ideas for improvement, please call us at 1-800-548-1999. From outside the U.S. please call +1-412-787-6700.

Calgon Carbon Corporation P.O. Box 717 Pittsburgh, Pa 15230 Chemviron Carbon Zoning Industriel C B-7181 Feluy, Belgium

Chemviron Carbon

ION EXCHANGE

TONKA EQUIPMENT COMPANY

P.O. BOX 41126, PLYMOUTH, MN 55441-0126 13305 WATER TOWER CIRCLE, PLYMOUTH, MN 55441 PH: 763-55WATER PH: 763-559-2837 FAX: 763-559-1925

November 14, 2006

Harikiran Sirivooru, CDM 800 Brickell Avenue, Suite 710 Miami, FL 33131

Re: 10 gpm pilot unit for water reuse demonstration plant

Dear Mr. Sirivooru:

In accordance with our understanding of the above project, Tonka Equipment is pleased to provide budgetary pricing for pilot ion exchange equipment. We propose a dual-stage system described below.

Each ion exchange unit is designed for a flow of 10 gpm, running in series. The first unit would be designed for organic scavenging and the second unit would be designed for nitrate removal. This system does not include a bypass/blend system, as it is our understanding that the intent is to treat the entire 10 gpm flow. We have quoted a custom-designed pilot unit and the below price represents a "sale" price.

Included with this system are the following:

Two (2) 1'-6" diameter ion exchange vessels including:

- Ion exchange resin (organic scavenging and nitrate selective) Tonka underdrain nozzles PVC header/lateral overdrain and underdrain systems Hydraulic diaphragm valves PVC facepiping Sample taps Brine dilution system Gauges and meters Automatic control system, allowing for complete, stand-alone automatic regeneration of ion exchange columns
- Services include freight.
- Factory training and start up services are <u>not</u> included.

The budgetary price for this system is

\$40,000

Tonka requires 6 weeks notice for manufacture after receipt of acceptable order. Start-up and technical services are available for \$750/day plus travel and living expenses.

Note: the ion exchange resin may produce trace amounts of NDMA in the presence of chlorine. For this reason Tonka strongly recommends maintaining UV treatment downstream of this system to reduce the concentration of NDMA in the effluent, and to destroy other trace organics that may be endemic to this effluent.

We look forward to working with you on this water treatment project. If you have any questions, please feel free to call me at (763) 559-2837.

Sincerely,

Thomas D. Davis, P.E

Thomas D. Davis, PE

cc: Chuck Hlavach, Envirosales

FL_SD WWTP_IEX pilot budget_11-14-06.doc

REVERSE OSMOSIS (RO)

TECHNICAL DATA SHEET RO PILOT

ITEM	<u>UNITS</u>	REQUIREMENT
ROSKID		
NO OF SKIDS (TRAINS)		1
PRODUCTION	GPM	30
NO VESSELS		6
MEMBRANES PER VESSEL		7
ARRAY		4:2
AVERAGE FLUX	GFD	12
NOMINAL PRODUCTION PER ELEMENT	GPD	1020
RECOVERY STAGES 1 & 2	%	75%
PRODUCT QUALITY	PPM TDS	
FRAME MATERIAL		CS PAINTED
FRAME HEIGHT - MAX	FT	5

PRESSURE VESSELS

MANUFACTURER		PENTAIR OR PROTEC
DIAMETER	IN	4
LENGTH	IN	287
PORTS - FEED/CONCENTRATE	IN	1" IPS
PORTS - PERMEATE	IN	3/4" FPT
MAXIMUM WORKING PRESSURE RATING	PSIG	300
SHELL MATERIAL		FRP ASME SECT X
COLOR		WHITE
		PVC COATED
END PLATE MATERIAL		ALUMINUM

MEMBRANES

		HYDRANAUTICS,
		FILMTEC, KOCH OR
MANUFACTURER		APPROVED EQUAL
NUMBER		42
TYPE		LOW FOULING
NOMINAL DIAMETER	IN	4
NOMINAL LENGTH	IN	40
AREA PER ELEMENT	FT2	85
		POYAMIDE (THIN
MATERIAL		FILM COMPOSITE)
TYPE		SPIRAL WOUND
DESIGN MEMBRANE FLUX AVG.	GFD	12
AREA PER ELEMENT	FT2	85
MAXIMUM FEED PRESSURE	PSI	250

TECHNICAL DATA SHEET RO PILOT

ITEM	<u>UNITS</u>	REQUIREMENT
HIGH PRESSURE FEED PUMP		
MANUFACTURER		GRUNDFOS
MODEL		
TYPE		CENTRIFUGAL
NUMBER		1
CAPACITY	GPM	40
SPEED	RPM	3450
MINIMUM SUCTION HEAD	FT	23
TDH	FT	554
EFFICIENCY	%	65%
HYDRAULIC HP		8.6
RECOMMENDED MOTOR	HP	10.0
NUMBER OF STAGES		
DRIVE TYPE		VFD
MATERIAL- BOWLS		316 SS
MATERIAL- IMPELLERS		316 SS
MATERIAL-SHAFT		329 SS

PUMP DRIVER

MOTOR TYPE		TEFC
MOTOR HP	HI	P 10
VOLTS	VOLTS	š 480
PHASE		3
RPM		3600
SERVICE FACTOR		1.15
		NEMA MG1 - 1993 Rev 1
APPLICATION RATING		Part 31
INSULATION		В

VARIABLE SPEED DRIVE

MANUFACTURER		ALLEN BRADLEY, ABB, SQUARE D, MITSUBISHI
MODEL NUMBER		
POWER RATING	HP	10
ENCLOSURE		IN POWER PANEL
		WIRED OR DEVICE
PLC INTERFACE		NET

TECHNICAL DATA SHEET RO PILOT

ITEM	<u>UNITS</u>	REQUIREMENT
ACID DOSING		
		1 PLUS 1
NUMBER OF PUMPS		UNINSTALLED SPARE
MANUFACTURER		PROMINENT OR LMI
MODEL NUMBER		GAMMA/4B
CAPACITY	GPH	0.45
DISCHARGE PRESSURE	PSI	174.0
PUMP HEAD		PTFE
SUCTION/DISCHARGE VALVES		PTFE
VALVE BALLS		PTFE
VALVE SPRINGS		HAST C
INJECTION CHECK VALVE		PTFE
FOOT VALVE & STRAINER		PTFE
CONTROL SIGNAL		4-20MA
ELECTRICAL		120 V
TANK CAPACITY	GAL	15
TANK MATERIAL		STD
PIPING MATERIALS		PTFE TUBING

ANTISCALANT DOSING

		1 PLUS 1
NUMBER OF PUMPS		UNINSTALLED SPARE
MANUFACTURER		PROMINENT OR LM
MODEL NUMBER		GAMMA/4B
CAPACITY	GPH	0.45
DISCHARGE PRESSURE	PSI	174.0
PUMP HEAD		ACRYLIC
SUCTION/DISCHARGE VALVES		PVC
VALVE BALLS		PVC
VALVE SPRINGS		316 SS
INJECTION CHECK VALVE		PVC
FOOT VALVE & STRAINER		PVC
CONTROL SIGNAL		4-20MA
ELECTRICAL		120 V
DAY TANK CAPACITY	GAL	30
PIPING MATERIALS		POLYPROPYLENE

ITEM	<u>UNITS</u>	REQUIREMENT
ANING PUMP		
MANUFACTURER		GRUNDFOS
MODEL		CRN 8-30
TYPE		CENTRIFUGAL
NUMBER		1
CAPACITY	GPM	40
SPEED	RPM	3450
TDH	FT	116
EFFICIENCY	%	66%
NUMBER OF STAGES		3
MATERIAL- BOWLS		316 SS
MATERIAL- IMPELLERS		316 SS
MATERIAL-SHAFT		329 SS
MOTOR TYPE		TEFC
MOTOR HP		3
VOLTS		480
PHASE		3
RPM		3600
SERVICE FACTOR		1.15
MOTOR INSULATION		В

CARTRIDGE FILTERS

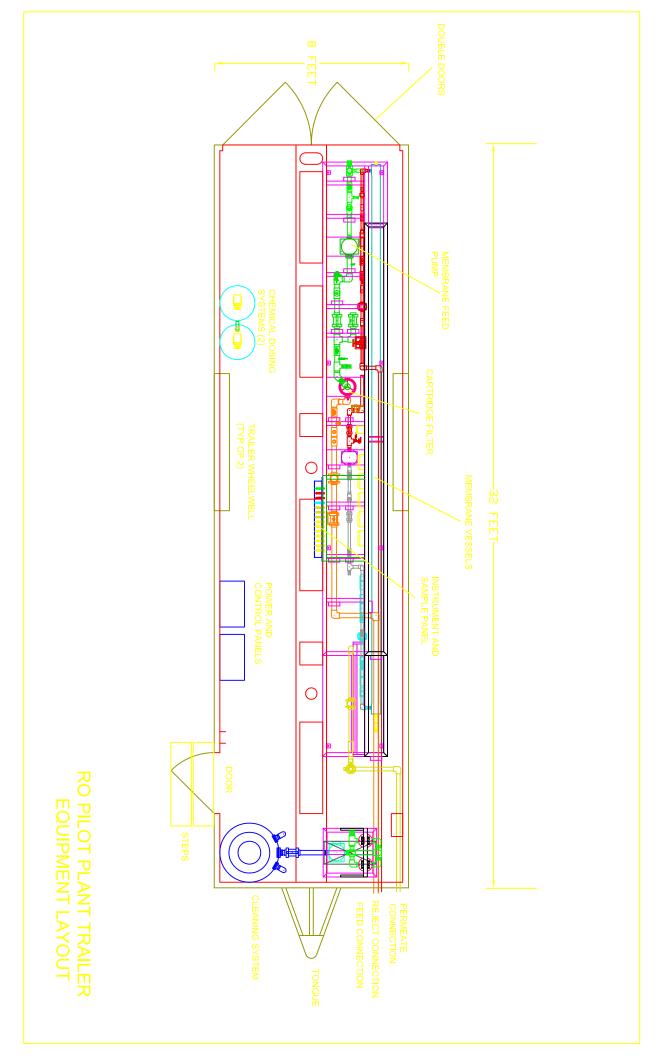
NUMBER OF FILTER VESSELS		1
FLOW	GPM	44
MANUFACTURER		PARKER
MODEL		FH55530-L
CARTRIDGE MANUFACTURERS		PARKER,CUNO
CARTRIDGE TYPE		HFT 5M 30A/TX/N
MATERIAL		POLYPROPYLENE
RATING	MICRON	5
CARTRIDGE NOMINAL LENGTH	IN	30
NO. OF CARTRIDGES/VESSEL		6
SHELL MATERIAL		RTR
FILTER MATERIAL		POLYPROPYLENE
MAX. LOADING PER CARTRIDGE	GPM	3.5
VESSEL DESIGN PRESSURE	PSIG	100

ITEM	<u>UNITS</u>	REQUIREMENT
PIPING		
FEED(LOW PRESSURE)		SCHED 80 PVC
FEED(HIGH PRESSURE)		SCHED 80 PVC
CONCENTRATE: (HP)		SCHED 80 PVC
CONCENTRATE: (LP)		SCHED 80 PVC
PERMEATE:		SCHED 80 PVC
CLEANING:		NYLON HOSE
CHEMICAL	ANTISCALANT	POLYPRO TUBING
	ACID	PTFE TUBING

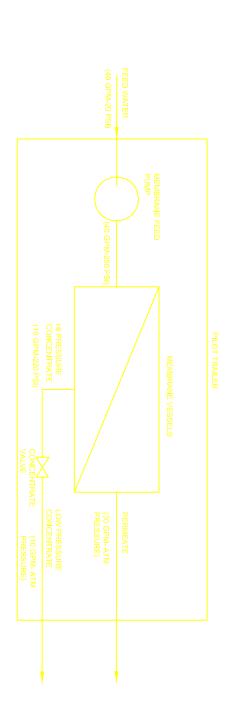
CLEANING TANK

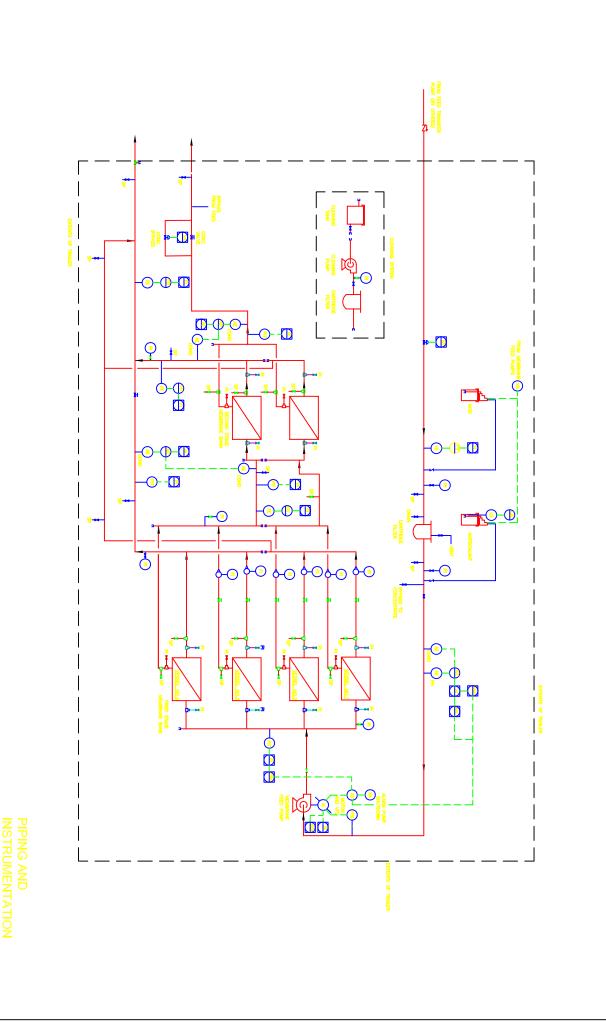
NUMBER		1
CAPACITY	GAL	100
HORIZONTAL/VERTICAL		VERTICAL
MATERIAL		HDPE
COVER & ACCESS HATCH		INCLUDED
TWO BULKHEAD FITTINGS		INCLUDED

POWER PANEL


NOMINAL SYSTEM VOLTAGE	VOLTS	480
FREQUENCY (Hz)		60
		60 AMP MAIN CIRCUIT
MAIN DISCONNECT		BREAKER
MAIN BUS CONTINUOUS RATING	AMPS	60
MAXIMUM SHORT CIRCUIT CURRENT		25K AIC (MIN)
PANEL SECONDAY VOLTAGE	VOLTS	120-240
120 V BRANCH CIRCUITS		10 @ 20 AMP MIN
CPT SIZE		5 KVA (MIN)
ENCLOSURE TYPE		NEMA 4X
MANUFACTURER		HOFFMANN
ALARM CONTACT		PHASE MONITOR
TRANSIENT VOLTAGE SURGE		120 KA PER PHASE ON
SUPRESSION		INCOMING 480V FEED

ITEM	<u>UNITS</u>	REQUIREMENT
NTROL PANEL		
MANUFACTURER		HOFFMAN
NEMA RATING		NEMA 4X
PLC MANUFACTURER		ALLEN BRADLEY
NUMBER		1
PLC MODEL		SLC 5/03
DIGITAL AC INPUT MODULES	MODS/POINTS	18 (MIN)
DIGITAL AC OUTPUT MODULES	MODS/POINTS	11 (MIN)
4-20 MA ANALOG INPUTS	NO. OF INPUTS	26 (MIN)
4-20 MA ANALOG OUTPUTS	NO. OF OUTPUTS	5 (MIN)
		COMMON TROUBLE
ALARM CONTACT		ALARM
POWER SUPPLY		120 VAC
		DELL LATITUDE OR
PC COMPUTER/HMI		EQUAL
		INDICATION ALL
		ANALOG AND
PC COMPUTER/HMI FUNCTIONS		ALARMS, ETC ALL HMI INPUTS.
		SYSTEM LOSS OF
		POWER, MOTOR
REMOTE MONITORING & CONTROL		OVERLOADS
		RSVIEW, LATEST REV,
		150 TAGS, WINDOWS
INTERFACE PROGRAM		NT COMPATIBLE
PLC PROGRAM		REV


TRAILER


		WELLS CARGO,
MANUFACTURER		CONTINENTAL or Equal
NOMINAL DIMENSIONS	LxWxH FT	32x8x8
SIDE WALLS		3/8" PLYWOOD
FRAME		8" I-BEAM
		12" OC (FLOOR), 16"
FRAMING		OC (WALLS)
ROOF		GALVANIZED STEEL
EXTERIOR		0.030" ALUMINUM
		3/4" EXTERIOR
FLOOR		PLYWOOD
CEILING		INSULATED LUAN
AXELS		TANDEM
AXEL TYPE		7000# AXLES
		"E" Rated ST225 75R15 -
TIRE SIZE/LOAD RANGE		8 LUG WHEEL
SUSPENSION (SHOCKS)		TORFLEX

ITEM	<u>UNITS</u>	REQUIREMENT
BRAKES		ELECTRIC
		BEAD FOAM
INSULATION		STYROFOAM
SIDE DOORS		32"
REAR DOORS		DOUBLE
REAR DOOR OPENING WIDTHxHEIGHT	IN	7'x5'10"
AIR CONDITIONING UNIT		2 TON
ELECTRICAL		30 AMP PANEL
		4-8' DOUBLE
LIGHTING		FLUORESCENT
LIGHTING		2-12 V INSIDE LIGHTS
TOW CONNECTION		1 5/16" BALL
ELECTRICAL OUTLETS		2 @ 110 V

PROCESS FLOW DIAGRAM

ADVANCED OXIDATION PROCESS

- UV/O3 Applied process technology
 - UV/H2O2 WEDECO
 - UV Aquionics

Applied Process Technology, Inc. Clean Water. No Waste.

HiPOx HCU Advanced Oxidation System

HCU

The HiPOx HCU is an advanced oxidation system that combines ozone and hydrogen peroxide to destroy groundwater contaminants in a continuous flow reactor. The system utilizes multiple reagent injection points and mixers to maximize contaminant destruction in a waste-free process.

The HCU is a compact skid-mounted unit with a footprint ideal for very small spaces. Low-to-medium ozone capacities make the HCU appropriate for low-flow sites with low-to-moderate contaminant concentrations.

- ✓ PLC control system provides for unattended and automated operation
- ✓ Fail-safe operation
- \checkmark Automatic paging in event of shutdown
- ✓ Operating set points adjusted via local Operator Interface Terminal (OIT) or remotely via modem with optional SCADA package

STANDARD SPECIFICATIONS

Flow Rate	3 – 160 GPM
Ozone Capacity	Up to 20 lbs/day
Dimensions	8'L x 4'6"Wx 7'6"H
Weight	Approx. 4,500 lbs
Electrical	208VAC, 3Ø or 240VAC, 1Ø, 60
Requirements	Hz, 55A maximum
Power	7-13 kW
Consumption	

SYSTEM CONFIGURATION AND FEATURES

Enclosure/Skid	Galvanized-skid platform; weather- resistant enclosure; corrosion- resistant piping; NFPA signage; power and process connections conveniently located to facilitate quick installation
Safety	Shop tested; ozone detector and destruct unit; fail-safe shutdown features; all ozone-containing piping is joint-free or (double-)contained within monitored enclosures

- ✓ Waste-Free Contaminant Destruction
- ✓ Scalable Process for Predictable Results
- ✓ Highly-Effective, Low-Cost Solution

OZONE GENERATION / DISTRIBUTION SYSTEM*

Generator Capacity	Up to 20 lbs/day**
Concentration	8% – 10% by weight
Injection Capacity	5 – 150 mg/L ozone dose
Injection Piping	PFA Teflon™

*includes rack-mounted, solid-state ozone generator(s), ozone manifold with metering and check valves, automatic pressure control and shutoff valve

**uses oxygen from liquid oxygen dewars or produced by oxygen generation system

HYDROGEN PEROXIDE SYSTEM*

Storage	25-gallon, non-metallic tank
Concentration	5% – 35% technical grade
Injection Piping	Polyethylene

*injection system included

OXYGEN SYSTEM*

Standard Supply	Liquid-oxygen Dewar cylinders	
Size	160 – 265 liters	
Concentration	99.9+%vol (Grade 6)	

Optional Supply	PSA**-enriched gas
Concentration	90+%vol (-70°F dew point)
	you word (you dow point)

**Pressure-Swing Adsorption

REACTOR SYSTEM*

Flow Rate	3 – 160 GPM	
Reactor	PVC piping with internal static mixers	
Construction		
Reagent Control	Reagent addition precisely controlled and adjusted as needed at each injector	

*includes gas/liquid separator and inlet flow meter; optional feed tank, pump and recycle valve also available

COOLING SYSTEM

Method	Refrigerated package chiller with outdoor condenser	
	outdoor condenser	

- ✓ Multiple ozone injection points maximize process efficiency and contaminant destruction
- ✓ Precision instrumentation for accurate reagent control
- ✓ One-button startup and shutdown; touchscreen control display for ease of operation

™Teflon is a registered trademark of the DuPont Co.

Applied Process Technology, Inc. 3333 Vincent Road, Suite 222, Pleasant Hill, CA 94523 tel: 925-977-1811 · fax: 925-977-1818 · toll free: 1-888-307-2749 www.aptwater.com · info@aptwater.com

BUDGETARY PROPOSAL #1960 Prepared for CDM by Applied Process Technology, Inc. pdh November 8, 2006

TREATMENT REQUIREMENTS

Site:	Miami Dade Water and Sewer Department - South District Wastewater Treatment Plant
Overview:	HiPOx Ozone / Hydrogen Peroxide Process Demonstration
Influent Stream Containing:	Nutrients and Emerging Contaminants
Treatment Specification:	NA
Discharge:	Recycle To WWTP Influent

HIPOx TECHNOLOGY

Applied Process Technology, Inc.'s innovative HiPOx technology is a continuous, inline, at-pressure Advanced Oxidation Process (AOP) for the destruction of waterborne volatile organic compounds (VOCs). The process uses industry recognized ozone and hydrogen peroxide chemistry in a uniquely designed oxidation reactor. The reactants are injected directly into the water stream in precisely controlled ratios and locations, generating hydroxyl radicals, one of nature's most powerful oxidizers. These hydroxyl radicals attack the bonds in the organic contaminant molecules, progressively oxidizing these compounds and any resulting intermediate by-products until the basic atoms ultimately recombine into benign end-products of CO2, H2O, and salts.

HIPOX SOLUTION

To demonstrate the HiPOx ozone / hydrogen peroxide process' ability to treat wastewater, Applied proposes to provide a standard industrial system for short term lease.

The HiPOx Cabinet Unit (HCU) will be designed to treat a 6-10 gallons / minute of wastewater with up to 40 ppm of ozone and 20 ppm of hydrogen peroxide. At 10 gallons/minute flow rate, this will require approximately 4.9 lb/day ozone.

The HCU is fully pre-piped, wired and tested at Applied's Pleasant Hill, CA site.

The HiPOx HCU includes:

• One (1) each 100 gallon polyethylene equalization tank,

- One (1) each 9 gpm proprietary HiPOxTM reactor skid including plug-flow reactors, ozone and hydrogen peroxide injectors, and gas/liquid separation system,
- One (1) hydrogen peroxide storage (25 gallon) and delivery system,
- One (1) oxygen cylinder switching manifold and flow control system,
- One (1) 4.5 lb/day ozone generation with refrigerated cooling system,
- Integrated PLC based control system with modem for remote access.

The HCU system as described must be operated in an area with a non-hazardous electrical classification. The HCU should be operated and stored above freezing temperatures, and should be housed in a building or shed out of the direct sun / weather.

The HCU measures 4.5 ft wide x 8 ft long x 8 ft high and has an operating weight of approximately 4000 lb.

CUSTOMER RESPONSIBILITIES

CDM is responsible for:

- All HiPOx shipping and handling costs,
- Providing a secure, weather-protected site for the HCU System,
- All valves, regulators, booster pump(s), piping, etc. to tie the HCU System to the supply and discharge piping
- All site preparation and installation costs (including phone line),
- All building and operating permits and regulator interface,
- Suitable 208 volt / 3ph power supply,
- Ongoing oxygen (Dewars) supply,
- Hydrogen peroxide supply,
- All applicable taxes, and
- All analytical costs.

ESTIMATED UTILITY REQUIREMENTS & MONTHLY OPERATIONAL COSTS

The estimated consumables for the HiPOx HCU (at full flow and oxidant dose) are:

Power	2.1 kW
Oxygen	0.4 scfm
Hydrogen Peroxide	0.7 gal / day (35% solution)

The estimated operating cost for the HiPOx system as described is \$395 / month.

Assumptions: 95% utilization and power at \$0.10/kw-h, oxygen at \$1.00 /CCF, and hydrogen peroxide at \$3.00/gal (35% solution).

COMMERCIAL OFFERING

The HCU complete with one 5.0 lb/day ozone generator, can be leased for:

\$3200.00 per month, FOB Pleasant Hill, California, minimum six month lease period.

Payment terms are first and last month's lease required prior to shipment of HCU, subsequent payments invoiced at the beginning of the month, payable net 30 days. Lease term begins upon HCU arrival at site.

Shipping costs (to and from site) are client's responsibility. If Applied administers the shipping, all related expense will be billed at cost plus 10%, payable net 30 days.

Applied will provide installation oversight, commissioning, and training services on a Time and Material basis, budget 3-5 days at 800/day plus travel and living expenses at cost + 10%.

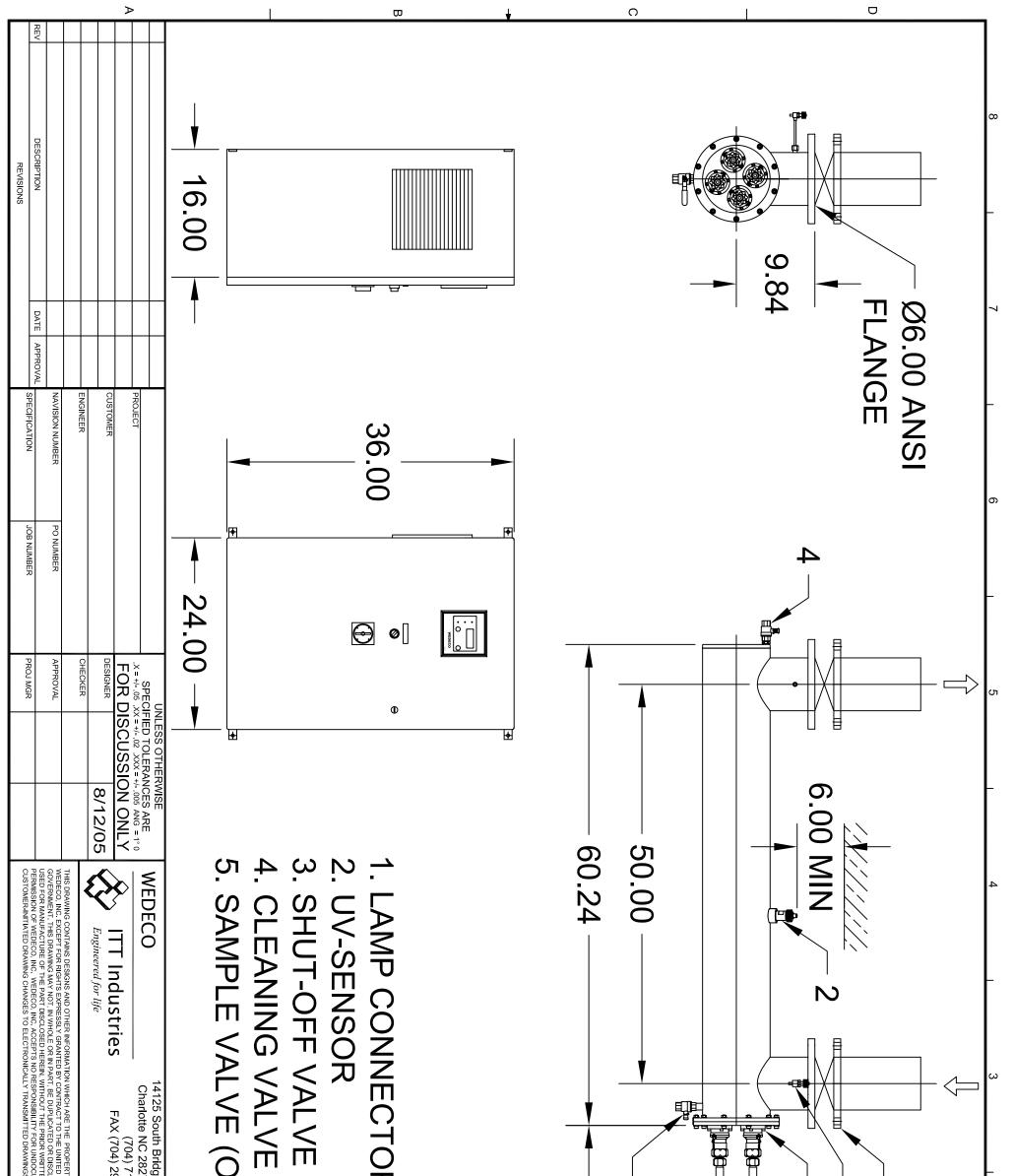
Applied is eager to participate in the Miami-Dade Water and Sewer Department's wastewater treatment demonstration. If you have any questions or require additional information, please do not hesitate to contact me at 513 476 5600.

Sincerely,

Peter Herlihy Applied Process Technology, Inc. Cc: Doug Liddie, Keel Robinson, Customer File

	Demo Plant			Side Stream
	Unit 1	Unit 2	Unit 3	Side Stream
Model	LBX400	LBX750	LBX750	LBX90
Number of lamps	16	32	32	4
Peak Flow	1 MGD			20 gpm
Dose (at peak flow)	80 mJ/cm2	160 mJ/cm2	160 mJ/cm2	600 mJ/cm2
	<10 FC / 100 ml (30-			
Disinfection Limit	day geometric mean)	N/A	N/A	N/A
Budgetary Price	Total = US\$289,000			US\$36,000

NOTES:


1.) The budgetary prices indicated do not include manufacturer's services which will be on a per diem rate.

2.) WEDECO has made the following assumptions for advanced oxidation based upon our experience involving NDMA destruction:

- EEO (beginning of lamp life) of 0.35 kWh/1000 gal

- Upstream addition of 5 mg/l H2O2

Please note that the EEO, however, is site-specific and depends upon the target organism of choice.

	MODEL NO. LBX90 SIZE DRAWING NO. RE B A A L B A SCALE WT MAT SHEET 1 of 1	OPTION aridge Circle 28273 USA 4) 716-7600 4) 295-9080 GENERAL ARRANGEMENT	OR ≡ (BY CUSTOMER)	M	4 67.00		2 1 1
--	---	--	-----------------------	---	------------	--	-------

in Ultraviolet Technology

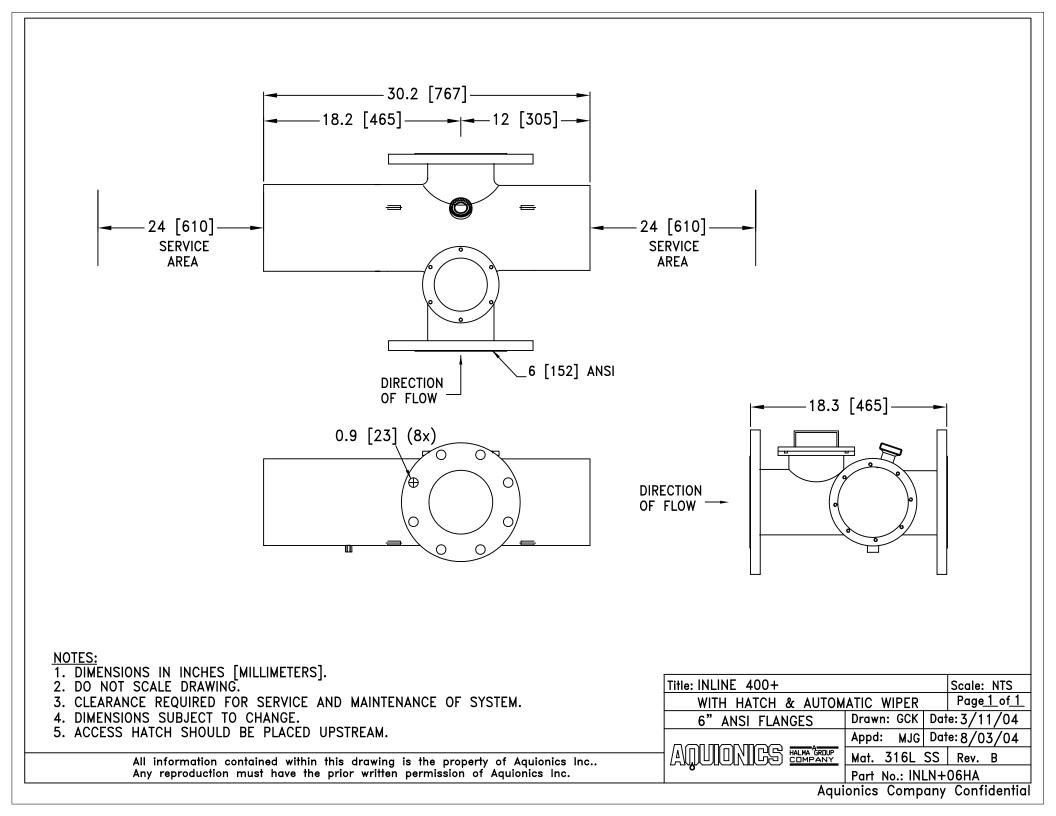
0_

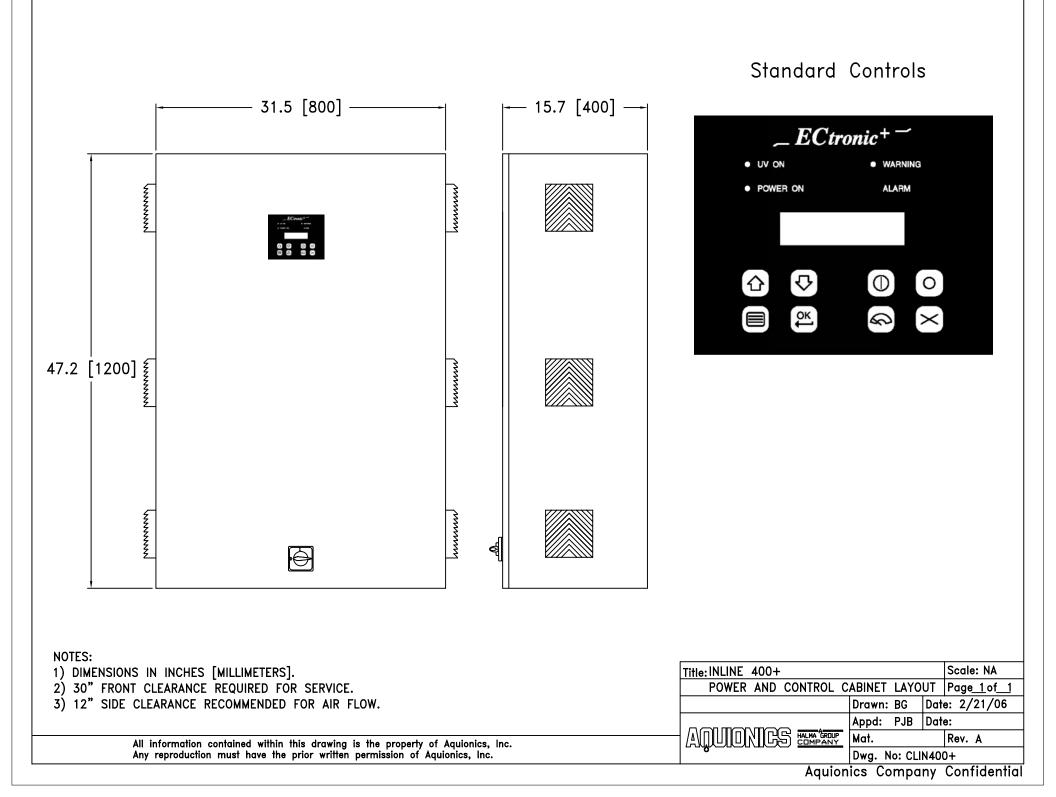
0

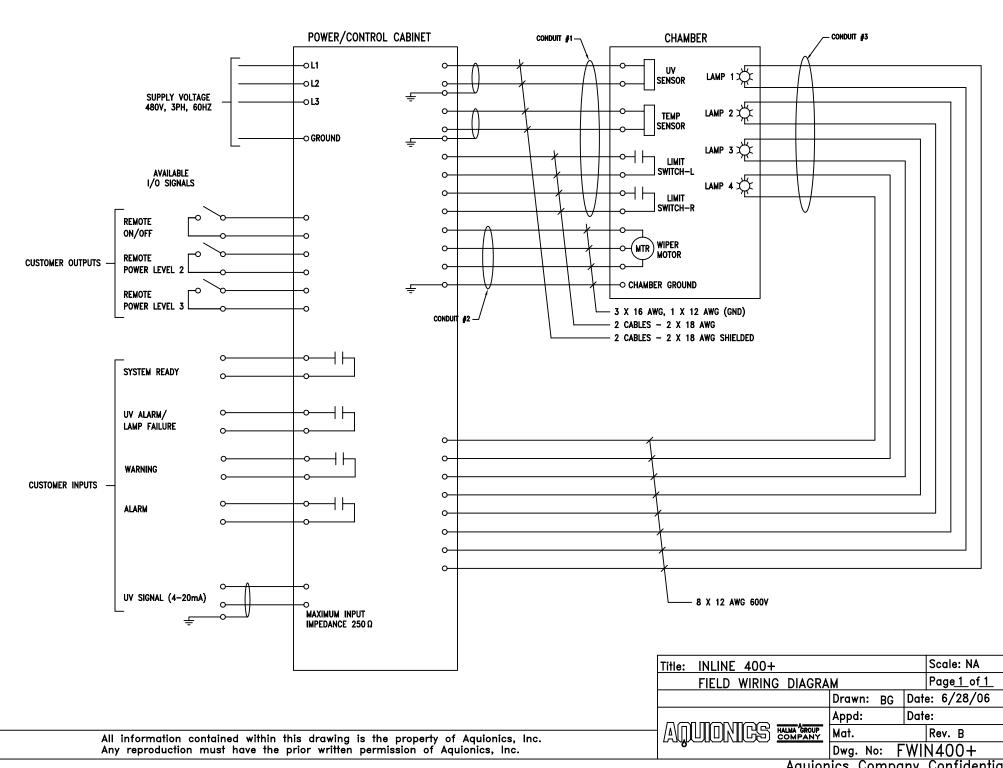
 \bigcirc

SPECS

TREATMENT CHAMBER	
Model	: Inline 400+
Drawing	: INLN+06HA
Number per system	: 1
Material	: 316L stainless steel
Dimensions	
- length	: 18.3 in (465 mm)
- width	: 30.2 in (768 mm)
Weight	
- dry	: 115 lbs (52 kg)
- wet	: 143 lbs (65 kg)
Degree of protection	: NEMA12 (IP54)
Pressure rating	
- test	: 225 psi (15 bar)
- operational	: 150 psi (10 bar)
Operational water temperature	: 32–113 °F (0–45 °C)
Storage temperature	: 32–158 °F (0–70 °C)
UV lamp type	: B2020
Lamp life	: 8000 hrs (PL1, 2, and 3)
	: 6000 hrs (PL2 and 3)
	: 4000 hrs (PL3)
Number lamps per chamber	: 4
Inlet/Outlet connections	: 6 in ANSI
Features included	
- Access hatch	- UV sensor
- Temperature detector	- Cleaning mechanism (automatic)
- Manual air release valve	- Drain port
Options available	
- Cleaning mechanism (manu	al or chemical assisted)

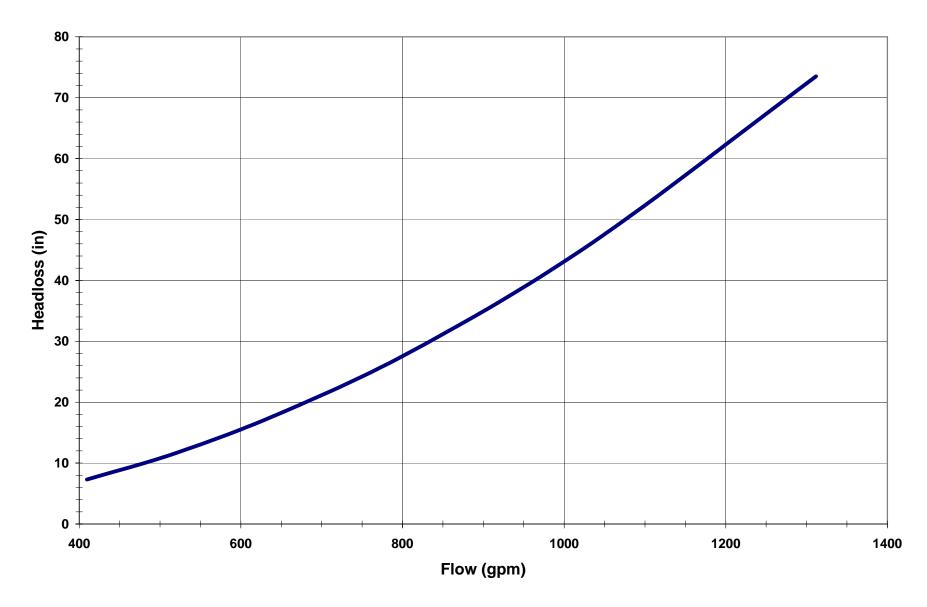

- Skid mounting


- Drain valve


POWER/CONTROL MODULE

Model	: 2020HSC4
Drawing	: CLIN400+
Number per system	: 1
Material	: Wall mounted epoxy coated ste
Dimensions	. Wan mounted epoxy couled su
- height	: 47.2 in (1200 mm)
- width	: 31.5 in (800 mm)
- depth	: 15.7 in (400 mm)
Weight	: 385 lbs (175 kg)
Degree of protection	: NEMA12 (IP54)
Operational temperature	: 32-113 °F (0-45 °C)
· ·	
Storage temperature	: 32–158 °F (0–70 °C)
Lamp power	1500 11
- level 1	: 1500 W
- level 2	: 1880 W
- level 3	: 2240 W
Power level control	: Manual
Controls	: Ectronic+
Displays	
LEDs	
- UV on	- Warning
- Power on	- Alarm
Alphanumeric Scrolling Screen Me	
- Power	- Flow (m^3/hr)
- Mode	- Total (hours)
- Language	- Lamps (hours)
- UV Int. (%)	- Wipes
- Water temp (deg C)	
Inputs	
- Remote ON/OFF	- Lamp power level
- Clear message	- Wipe
Outputs	
- Ready (PFC)	- Warning (PFC)
- UV intensity (mA)	- Alarm (PFC)
- UV failure (low intensity	or lamp failure) (PFC)
Electrical supply	
- voltage	: 480 V
- phase	: 3
- frequency	: 60 Hz
Power consumption (max.)	: 10 kW
Options available	
- NEMA 4X	

Aquionics Company Confidential



Aquionics Company Confidential

InLine 400+ UV System Headloss

Aquionics Company Confidential