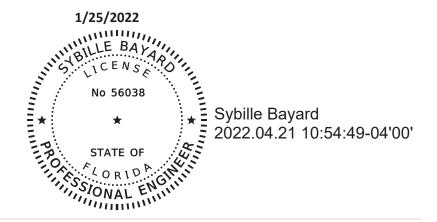
APPENDIX "E" TO SPECIAL PROVISIONS STRUCTURES DESIGN CALCULATIONS STRUCTURES DESIGN CALCULATIONS

FOR

Project Number:

PW Project No. 20200315, EDP-MT-20200315


Rehabilitation Design

For

Matheson Hammock Park Road (Bridge No.874294) over Matheson Hammock Canal

MIAMI-DADE

DEPARTMENT OF TRANSPORTATION AND PUBLIC WORKS

Table of Contents

1.0	LRFR BRIDGE CONDITION EVALUATION	3
1.1	LOAD RATING ANALYSIS APPROACH	
1.2	SUMMARY OF LOAD RATING PARAMETERS	
1.3	LRFR LOAD RATING ANALYSIS INPUT	
1.4	SUMMARY OF LRFR LOAD RATING ANALYSIS RESULTS	167
2.0	SONOVOID SLAB UNIT STRENGTHENING - CFRP WRAPS EVALUATION	273
3.0	REQUIRED FORCE AND PRESTRESSING STRAND FOR REPLACEMENT OF EXISTING POST-TENSIONING	-
WIRE		292
4.0	COLUMN LOADS FOR TEMPORARY SHORING	298
	COLUMN LOADS FOR TEMPORARY SHORING	
APPEND		322
APPEND APPE	DICES	322
APPENE APPE APPE APPE	DICES ENDIX A – AS-BUILT BRIDGE PLANS ENDIX B – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS ENDIX C – HANNA ET. AL, "TRANSVERSE POST-TENSIONING DESIGN AND DETAILING OF PRECAST,	322 323 337
APPENE APPE APPE APPE	DICES ENDIX A – AS-BUILT BRIDGE PLANS ENDIX B – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS	322 323 337
APPENE APPE APPE APPE PRES	DICES ENDIX A – AS-BUILT BRIDGE PLANS ENDIX B – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS ENDIX C – HANNA ET. AL, "TRANSVERSE POST-TENSIONING DESIGN AND DETAILING OF PRECAST,	322 323 337 501

1.0 LRFR BRIDGE CONDITION EVALUATION

1.1 LOAD RATING ANALYSIS APPROACH

Introduction

Bridge 874294, constructed in 1967, carries Matheson Hammock Road over Matheson Hammock Canal in Miami-Dade County. According to the the latest NBIS inspection report dated 04/06/2020 and subsequent interim reports, the ADT for this section of roadway is around 736 vehicles per day with a truck percentage of 1%.

Purpose and Need

The purpose of this analysis is to assess the existing bridge conditions and determine the added capacity required to restore the bridge to a non-posted state and able to load rate for anticipated construction vehicles for an upcoming park sea-level improvement project and able to safely maintain current traffic until the complete bridge replacement.

Bridge Configuration

The bridge superstructure consists of three simply-supported prestressed concrete $17^{\circ}x36^{\circ}$ sonovoid slab units. There is evidence at the bridge site of reflective longitudinal cracks in the asphalt wearing surface across the bridge indicating that the slab units are acting independently due to possible deterioration or broken transverse post-tensioned cables. The span configuration is 30.0 feet – 40.0 feet – 30.0 feet, with 11 prestressed slab units in each span. A variable asphalt wearing surface is present along the bridge spans.

Analysis Approach

This current load rating was performed using Load and Resistance Factor Rating (LRFR) methodology from the AASHTOWare Bridge Rating (Version 6.8.4) software. The previous load rating was performed on January 13, 2020 using LRFR methodology and Smart Bridge Suite Version 3.1 software. Since the most recent inspection (performed on 4/26/2021 by Marlin Engineering, Inc.) rated the deck and superstructure as "3 Serious", and the substructure as "4 Poor", this current load rating was performed using a Condition Factor of 0.85 for significantly deteriorated prestressed slab units, and a Condition Factor of 0.90 for non-deteriorated prestressed slab units per AASHTO MBE Table 6A.4.2.3-1.

Moreover, given the damage sustained by the controlling interior slab units 2-8 and 2-9 in span no. 2 (severed strand), and as per the 2007 Revision to Publication 238 Bridge Safety Inspection Manual from the Pennsylvania Department of Transportation, under section 6.6.3.3.11, the following conservative assumptions were considered in the analysis:

"Load ratings of beams with deteriorated and/or damaged prestressing strands are to be based on the following procedures:

- Visually observed strands + 25% Deduct 100% of all exposed strands plus an additional 25% (125% of the total area of the exposed strands) from capacity calculations.
- Strands adjacent to or intersecting a crack shall be considered ineffective in the region immediately adjacent to the crack.
- If significant strand loss is noted (>20%), especially for fascia beams, contact BQAD for further instructions.
- For beams with no exposed strands but which appear to have internal damage (as evidenced by bottom flange cracking with rust and/or delamination), contact BQAD for further instructions.

- For fascia beams with Capacity/Dead Load < 1.5 or an Operating Rating < 1.5 based on a conventional analysis, an analysis that considers biaxial stresses will be performed by BQAD.
- These analysis methods may also be applicable to other pre-stressed box beam bridges"

Therefore, a load rating analysis was performed to evaluate the existing capacity of the slab units within all three spans and provide recommendations for repair and strengthening as needed.

Evaluation of Existing Bridge (Current Conditions)

As stated above, the intent of the load rating analysis is to restore the bridge to a non-posted state able to safely carry the anticipated construction loads and the continuing traffic loading for a period not to exceed five years after the repairs, until the bridge is replaced. As such, only the Florida legal loads (SU2, SU3, SU4, C3, C4, C5 and ST5) were considered in this evaluation to provide a minimum rating factor of 1.0. The bridge does not carry interstate traffic nor is it State-owned or lying within 1 mile driving distance of an interstate interchange. Therefore, no Emergency Vehicles were investigated for this analysis (EV2 and EV3 were omitted). Load and Resistance Factor Rating (LRFR) was used for this assessment, as the preferred method for bridge rehabilitation per the FDOT Load Rating Manual.

Assumptions used in the analysis:

- 1) Assume independent action of the slab units: slab units are considered non-composite and the following criteria was used in the distribution of live loads for moment and shear applications:
 - a. Interior slab units assumed a wheel load distribution factor = 1.0 (no wheel load distribution between units assuming that the transverse post-tensioning system is ineffective).
 - Exterior (fascia) slab units located underneath the sidewalk assumed a wheel load distribution factor = 0.0 due to location of sidewalk curb directly above the units and no transfer of live from the adjacent units.
- Assume a condition factor of 0.9, conservatively, to account for the age-related deterioration of the non-deteriorated units (units with minor or no deterioration identified in the most current interim inspection report).
- 3) Assume a condition factor of 0.85, conservatively, to account for the severe deterioration noted in the most current interim inspection report (Slab Units 1-6, 1-8, 2-8, 2-9).
- 4) For Slab Units 2-8 and 2-9 assume 100% section loss of a total of 7 strands in addition to the condition factor of 0.85.

Evaluation of Rehabilitated Bridge (Repaired Condition)

Additional analysis was conducted to evaluate the existing slab units assuming the replacement of the transverse post-tensioning system and the repair of cracks, delamination and spalls noted in the inspection report. The slab units were analyzed as integral, assuming a live load distribution factor in accordance with the AASHTO LRFD, Section 4.6.2.2.

The following assumptions were made:

1. Assume a condition factor of 0.9 for all slab units.

For Slab Units 2-8 and 2-9 assume 100% section loss of a total of 7 strands in addition to the condition factor of 0.9.

References

This current load rating was performed in accordance with the following manuals, specifications, and software:

- FDOT Structures Manual, January 2021 (SM) (Volume 1 Structures Design Guidelines (SDG))
- AASHTO LRFD Bridge Design Specifications, 9th Edition (AASHTO)
- FDOT Bridge Load Rating Manual, January 2021 (BLRM)
- The Manual for Bridge Evaluation, 3rd Edition 2018 (MBE) with 2019 Interims
- PCI Design Handbook, 8th Edition (PCI)
- AASHTOWare Bridge Rating, Version 6.8.4.

- Commonwealth of Pennsylvania Department of Transportation, Revision to Publication 238 Bridge Safety Inspection Manual, 2007.

It should be noted that the 2021 BLRM uses the 9th Edition of the AASHTO LRFD design specifications, and that AASHTOWare Bridge Rating Version 6.8.4 uses the 8th Edition of the AASHTO LRFD design specifications. However, since this bridge uses normal weight concrete and does not have prestressed slab units subjected to significant torsion, the applicable portions of the design codes have not changed between the two editions. Therefore, the software still meets the BLRM requirements for evaluating flexure and shear.

Summary of Results

Existing Bridge (Current Conditions)

The complete evaluation of all non-deteriorated and deteriorated slab units is shown in Sections 1.2 through 1.4 of the report. Given that no distribution is assumed between slab units, the exterior slab units were not evaluated for vehicular live loads and therefore do not control the results. By observations, the SU4 legal truck is the controlling live load; the resulting LRFR rating factors are summarized in the table below.

;	SUMMARY O	F LRFR LOAD	RATING	RESUL	TS - SONOVOID S	LAB UNITS (E	xisting Condition	on)
Vehicle	Condition Factor	Member Condition	Live Load Type	Limit State	Controlling Member	Controlling Location (% Span)	Controlling Limit State	Rating Factor
	0.90	Non- Deteriorated			Interior Unit (Span 1)	50.0	STRENGTH- I Concrete Flexure	0.684
SU 4	0.90	Non- Deteriorated	Axle		Interior Unit (Span 2)	50.0	STRENGTH- I Concrete Flexure	0.624
50 4	0.95	Deteriorated	Load	Legal	Interior Unit (Unit 1-6 or 1-8)	50.0	STRENGTH- I Concrete Flexure	0.634
	0.85	Deteriorated			Interior Unit (Unit 2-8 or 2-9)	30.0	STRENGTH- I Concrete Shear	0.324

Figure 1-4.1 Summary of LRFR Load Rating Results for Existing Sonovoid Slab Units under Current Conditions.

As indicated in the table above, none of the slab units present an acceptable rating factor which would satisfy the demand for the anticipated construction loads. As such, re-establishing the post-tensioning of the existing non-deteriorated slabs and deteriorated slab units is required.

Rehabilitated Bridge (Repaired Condition)

The complete evaluation of all non-deteriorated slab units and repaired deteriorated slab units is shown in Sections 1.2 through 1.4 of the report. The interior and exterior slab units were both evaluated for vehicular live loads. By observations, the SU4 legal truck is the controlling live load; the resulting LRFR rating factors are summarized in the table below.

	SON				LOAD RATING RI		Restored)	
Vehicle	Condition Factor	Member Condition	Live Load Type	Limit State	Controlling Member	Controlling Location (% Span)	Controlling Limit State	Rating Factor
		Non- Deteriorated			Interior Unit (Span 1)	50.0	STRENGTH-I Concrete Flexure	1.387
<u>011</u> 4	0.00	Non- Deteriorated	Axle		Interior Unit (Span 2)	50.0	STRENGTH-I Concrete Flexure	1.461
SU 4	0.90	Deteriorated (repaired)	Load	Legal	Interior Unit (Unit 1-6 or 1-8)	50.0	STRENGTH-I Concrete Flexure	1.387
		Deteriorated (repaired)			Interior Unit (Unit 2-8 or 2-9)	50.0	STRENGTH-I Concrete Flexure	0.931

Figure 1-4.2 Summary of LRFR Load Rating Results for Rehabilitated Sonovoid Slab Units with Concrete Repairs completed, and Post Tensioning restored.

As indicated above, the deteriorated slab units in Span 2 (2-8 & 2-9) did not achieve a minimum rating factor of 1.0 even when analyzed as integral. Consequently, the remaining capacity that is required to satisfy a minimum LRFR legal rating of 1.0 was computed as a final step in the evaluation process to determine the level of strengthening required to restore the bridge to a non-posted stated, as shown in the table below.

		LOAD RATING SUM	MARY - (Assuming	Post Tensioning)	
		Span 2 - INT	ERIOR Unit 2-8 (LRI	FR) - SU4	
Location	Condition Factor	Existing Flexural Capacity (kip-ft) **	Existing Shear Capacity (kip) **	Required Flexural Capacity (kip-ft) *	Required Shear Capacity (kip) *
0.00		135.08	-	-	-
1.12]	-	94.16	-	-
1.48		293.46	89.01	-	-
3.85		344.64	70.05	-	-
7.7		344.64	70.05	-	-
11.55]	344.64	49.78	-	-
15.4		344.64	38.99	359.34	-
19.25	0.90	344.64	-38.35	368.62	-
23.1		344.64	-38.99	359.34	-
26.95		362.07	-53.70	-	-
30.8		344.64	-70.05	-	-
34.65		344.64	-70.05	-	-
37.02		293.46	-89.01	-	-
37.39		-	-94.28	-	-
38.5	1	108.44	-	-	-

* Minimum Required capacity to meet a minimum Inventory Rating Factor of 1.1, conservatively.

** Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

Figure 1-4.3 Required Capacity of Rehabilitated Slab Units to satisfy LRFR Legal Rating.

1.2 SUMMARY OF LOAD RATING PARAMETERS

1 of 1	Page:		n Hammock Park	Matheson	Feature Carried:
9/24/2021	Date:	HGD	Checked by:	874294	Bridge No.:
9/21/2021	Date:	YRA	Calculated by:	D210107FL.00	Project No:

SUMMARY OF DEFICIENCIES

SONOVOID SLABS (UNDERSIDE) - SPAN 1

BEAM NO.	LOCATION	DEFICIENCY
1-1	EB1	Outward location with 1/4" height difference to top of cap
	9-ft from EB1	15" x 6" x 1/2" - spall w/ exposed rebar / minor section loss
1-6	EB1 / East	5'L x 6"W delamination with associated 1/16" cracks
	Pier 2 / East	9'L x 12"W delamination with associated 1/16" cracks
5	EB1 / East	24"L x 12"W spall/delamination with associated 1/32" cracks
/-T	Pier 2 / East	7'L x 4"W delamination with associated 1/16" cracks
	EB1 / West	15'L x 15"W delamination with associated 1/4" cracks
1 0	9" from EB1 / West	4' x 6'' x 2'' - spall
0-T	Pier 2 / East	4'L x 15"W delamination with associated 1/32" cracks
	Pier 2	8'L x 3'W delamination with associated 1/16" cracks
1_9	EB1	36"L x 24"W x 2.5" spall/delamination with exposed stirrup (no loss)
1	Pier 2 / West	9'L x 10"W delamination with associated 1/16" cracks

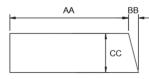
SONOVOID SLABS (UNDERSIDE) - SPAN 2

BEAM NO.	LOCATION	DEFICIENCY
2-6	Pier 2 / East	30"L x 4"W delamination
r (Pier 2 / West	24"L x 4"W delamination
1-7	full length	16"W delamination with associated 1/4" cracks
	Pier 2	36"L x full width with associated cracks
	Pier 2 / West	15' x 18"W (average) delamination with associated 1/4" cracks
2_8		15'x34"x4" with 7 exposed and corroded transverse rebars w/ 60%
0	Midspan	section remaining and 5 exposed and corroded strands (3 broken
		strands) - 0% section remaining
	Pier 3 / West	15' x 18"W (average) delamination with associated 1/4" cracks
	Pier 2 / West	5'L x 5" delamination with associated 1/4" cracks
2-9	11:0000	15'x12"x2" spall/delamination with 2 strands and 7 transverse rebars
	INIUSpari	having up to 90% section remaining

JUNUVUID JLAL	JUNUVUID JEADJ (UNDENJIDE) - JEAN J	
BEAM NO.	LOCATION	DEFICIENCY
2 6	Pier 3 / East	24"L x 6"W delamination with associated 1/16" crack
0-0	~10' from EB 4 / East	42"L x 8" W with associated 1/16" cracks
	Pier 3	8'L x 15"W delamination with associated cracks
3-7	Midspan	3'L x 30" W
	EB 4	12'L x 36"W unsound repair / hollow sounding
	Pier 3	8'L x 3'W x 1" with associated cracks
c r		
ο-ο ο	EB4	42 ^m x 30 ^m W unsound repair/ delamination with associated 1/16 ^m cracks
	5.5' from EB 4	74"' x 36"W unsound repair/ delamination with associated 1/16" cracks

SONOVOID SLABS (UNDERSIDE) - SPAN 3

SUBSTRUCTURE


SUBSERUCEURE		
COMPONENT	LOCATION	DEFICIENCY
	PIER 2 / South Face	48"L X 17" H X 3/4" Spall / Delamination over column 2-2
	PIER 2 / North Face	20"L x 12" H delamination over column 2-2
PIER CAPS		2^{\sim} 30"L x 24"W unsound repairs with 1/64" associated cracks between
	דובה 2 / טטננטווו / ואטו נוו ז	columns 3-1 and 3-2.
	PIER 3 / top & Bottom / I	PIER 3 / top & Bottom / $1/3$ 'L x 16" delamination between columns 3-1 and 3-2
		55"H x 32"W x 4"D spall delamination with exposed longitudinal rebars
		and 5 stirrups (up to 80% remaining)
COLUMNS		Delamination (entire column height / circumference) with associated
		1/4" cracks
	Columns 2-1, 3-1, 3-2	Delamination (entire length) with associated 1/16" cracks (full height)

SPAN 1 OR 3 - SUPPLEMENTAL CALCULATIONS - LOADING PARAMETERS

Bridge Type: Standard Drawing: Number of Spans = Structure Length = Brgto-Brg. Span Length = Analyzed Span Length = Clear Roadway Width = <u>Wearing Surface:</u>	100 ft. 28.2917 ft. (Assumed a 30.00 ft. 26.00 ft. Yes A 1.0-inch we	nit - 17"x36" at Centerline of 1/4"x6" w aring surface is present a surface dead loads are cal Thickness 1.00 in	t the supports, and 1.5-i	Bridgr ads) in present at midspar		1.248 k/ft 0.000 k/ft
	Mid Span End Span	1.50 in 1.00 in				
Bridge Railing/Guardrail: Curb/Sidewalk: Parapet: Attached Utilities:	Yes A curbs or sid No No parapets a	ad Rating guidance, guard ewalks are present. See b				
Rail 1 Type:	Other 10 lb/ft	Metal Posts and Pipes - A	ssume 10 lb/ft per SDG	Table 2.2-1, Bullet R	ailing	0.010 k/ft
<u>Rail 2 Type:</u>	Rect. Conc. Beam 125 lb/ft	Rectangular Concrete Be	am Guardrail			0.125 k/ft
Rail Post:	Concrete	Quantity	Length/Height	Shape	Area (Standard shapes per AISC 7-14)	0.013 k/ft
	150 pcf 150 pcf	3 / span 2 / span	0.83 ft 0.83 ft	Rect. 10x10 Rect. 8x10	100.00 in ² 80.00 in ²	
<u>Rail Blockout:</u> <u>Curb/Sidewalk:</u> (South End)	AA 29.0 in BB 1.0 in CC 10.563 in - Superstructure is modele	d withouth the sidewalk	overhang that is remove	ing the additional 6"	of overhang	0.325 k/ft
	- To account for the actual rectangulan sidewalk with	weight of curb/sidewalk,	-	-	-	
Equiv. Width of Sidewalk =	0	(Equivalent width of rect	angular sidewalk inpute	d in AASHTOWare so	ftware)	
Equiv. CC =	12.9831 in	(Equivalent thickness of r	ectangular sidewalk inp	outed in AASHTOWar	e software)	
	Typical Curb/Sidewalk Sect	BB CC				
<u>Curb/Sidewalk:</u> (North End)	AA 77.0 in BB 1.0 in CC 11.4 in					0.923 k/ft

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hamn	nock Road		Page:	1 of 4
 Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hamn	nock Road		Page:	2 of 4

Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.
 The 1-ft utility opening will be neglected, leaving 1-ft of additional solid sidewalk material assumed to account for the weight of utilities and attachements at the opening. The resulting width of sidewalk to be inputed in the sofware shall be:

(Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

Equiv. Width of Sidewalk =

- No information is available on the utilities and attachements along the North side of the bridge.

- The Concrete sidewalk will be assumed to be solid at the location of the utility opening to account for the weight of the utilities and attachments, conservatively.

- Assume weight of sidewalk taken by the exterior slab units.

60 in

Diaphragm:		
Width of Slab Unit =	36	in
Depth of Slab Unit =	17	in
No. of Voids =	2.0000	
Diameter of Voids =	10.0000	in

	Begin Span					
	Start Dist.					
	From Left	Diaphragm		Width/	Diaphragm	
	End*	Spacing	No. of	Thickness	Weight	
	(FT)	(FT)	Spaces	(IN)	(KIP)	
Span 1, Begin	0.00	1.00	1	24.0	0.3272	
Span 1, 1/4 Point	1.00	6.25	1	12.0	0.1636	
Span 1, 3/4 Point	7.25	15.00	1	12.0	0.1636	
Span 1, End	22.25	6.25	1	24.0	0.3272	
Span 3, Begin	0.00	1.00	1	24.0	0.3272	
Span 3, 1/4 Point	1.00	6.25	1	12.0	0.1636	
Span 3, 3/4 Point	7.25	15.00	1	12.0	0.1636	
Span 3, End	22.25	6.25	1	24.0	0.3272	

 LLDF (Post-Tensioned - LFD):
 (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

 For Interior/Exterior Slab Units:
 (Moment & Shear)
 [AASHTO LFD 3.23.4.3]

	Exterior bras	011103. (11101	
S =	3.0	ft.	(Width of precast member)
W =	34.0	ft.	(Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk)
L =	28.291667	ft.	(Brgto-Brg. Span Length - Span 2)
NL =	2.0		(Number of traffic lanes)
Nb =	11.0		(Number of concrete slab units)
μ=	0.2		(Assumed Poisson's Ratio for concrete slab units)
=	13330.10	in ⁴	(Moment of Inertia of Slab Unit - from BrM software)
J =	14593.77	in ⁴	(Saint-Venant Torsion constant - from BrM software)
		•	

	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hamn	nock Road		Page:	1 of 4
-	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hamn		MAI	Page:	3 of 4
•••••••••	Feature Carried:	Watneson Hamm	IOCK KOdu		Page:	3 01 4

 $K = [(1 + \mu) \cdot I/J]^{1/2} = 1.04694$

$$C = if\left[\frac{W}{L} < 1, K\left(\frac{W}{L}\right), K\right] = 1.04694$$

 $D = (5.75 - 0.5N_L) + 0.7N_L(1 - 0.2C)^2 = 5.6251$

LLDF (INT-M) = S/D = 0.5333 (Live Load Distribution Fraction for Moment)

LLDF (Post-Tensioned - LRFR): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

(LLDF for One lane loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in LLDF(INT - OneLane) = 0.296 accordance with AASHTO LRFD Tables 4.6.2.2.2b-1 and 4.6.2.2.2d-1) (LLDF for Multi lanes loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in LLDF(INT - MultiLane) = 0.273 accordance with AASHTO LRFD Tables 4.6.2.2.2b-1 and 4.6.2.2.2d-1) For Exterior Slab Units: (Moment) [AASHTO LRFD Table 4.6.2.2.2d-1] (Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck $d_{e,G11} =$ -1.0 ft. level to interior edge of curb or traffic barrier) - (Ext.web = 5"; outboard of curb) - limited to -1.0 since de computed is = 1.8' per AASHTO LRFD 4.6.2.2.2d. (Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext. web = 5"; outboard of curb) - limited to -1.0 since d_e computed d_{e,G1} = -1.0 ft. is = 4.8' per AASHTO LRFD 4.6.2.2.2d. - One Design Lane Loaded: $e_{OneLane_G1} = 1.125 + \frac{d_{e,G1}}{30} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G1) $e_{OneLane_G11} = 1.125 + \frac{d_{e,G11}}{30} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G11) LLDF (EXT.G1- $M_{OneLane}$) = $e \cdot LLDF(INT - M)$ = 0.2960 (Live Load Distribution Fraction for Moment for One lane Loaded - Unit G1) LLDF (EXT.G11- $M_{OneLane}$) = $e \cdot LLDF(INT - M)$ = 0.2960 (Live Load Distribution Fraction for Moment for One lane Loaded - Unit G11) - Two or More Design Lanes Loaded: $e_{OneLane_G1} = 1.04 + \frac{d_{e,G1}}{25} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G1) $e_{OneLane_G11} = 1.04 + \frac{d_{e,G11}}{25} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G11) LLDF (EXT.-M_{MultiLane}) = $e \cdot LLDF(INT - M)$ = 0.2730 (Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G1) LLDF (EXT.-M_{MultiLane}) = $e \cdot LLDF(INT - M)$ = 0.2730 (Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G11)

	N	CONSOR
--	----------	--------

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021	
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021	
Feature Carried:	Matheson Hammock Road			Page:	1 of 4	

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/	21/202	1
Bridge No.:	874294	Checked by: MAP		Date:	12/29/2021		21
Feature Carried:	Matheson Hammock Road			Page:	4	of	4

For Exterior	Slab Units: (Shear)	[AASHTO LRFD Table 4.6.2.2.3b-1]
d _{e,G1} =	-1.0 ft.	(Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext. web = 5"; outboard of curb) - limited to -1.0 since d _e computed is = 4.8' per AASHTO LRFD 4.6.2.2.2d.
$d_{e,G11} =$	-1.0 ft.	(Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext.web = 5"; outboard of curb)
b =	36.0 in.	(Width of precast member)
- One Design	n Lane Loaded:	
e _{OneLane_G1} =	$1.25 + \frac{d_{e,G1}}{20} \ge 1.0$	= 1.000 (Correction factor for LL distribution on exterior slab unit G1)
e _{OneLane_G11} =	$1.25 + \frac{d_{e,G11}}{20} \ge 1.0$	= 1.000 (Correction factor for LL distribution on exterior slab unit G11)
LLDF (EXT.G1-M _{OneLane}) =	e _{OneLane_G1} · LLDF(IN	(Live Load Distribution Fraction for Shear for One lane Loaded - Unit G1)
LLDF (EXT.G11- $M_{OneLane}$) =	e _{OneLane_G11} · LLDF(II	VT, V) = 0.2960 (Live Load Distribution Fraction for Shear for One lane Loaded - Unit G11)
	re Design Lanes Loaded:	
e _{MultiLane_G1} =	$1.0 + \left(\frac{d_{e,G1} + \frac{b}{12} - 4}{40}\right)$	$\frac{2.0}{1.0} = 1.000$ (Correction factor for LL distribution on exterior slab unit G1)
e _{Multilane_G11} =	$1.0 + \left(\frac{d_{e,G11} + \frac{b}{12}}{40}\right)$	$\left(\frac{1}{2}-2.0\right)^{0.5} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G11)
LLDF (EXTM _{MultiLane}) =	$e_{MultiLane_{G1}} \cdot LLDF(I)$	VT, V) = 0.2730 (Live Load Distribution Fraction for Shear for Multi-Lanes Loaded - Unit G1)
LLDF (EXTM _{MultiLane}) =	$e_{MultiLane_{G11}} \cdot LLDF(I)$	<i>NT</i> , <i>V</i>) = 0.2730 (Live Load Distribution Fraction for Shear for Multi-Lanes Loaded - Unit G11)
LLDF (Exist.Condition - LFD):	(Assuming Slab Member	s acting independently - no effective post tensioning)
S = W =	3.0 ft. 34.0 ft.	(Width of precast member) (Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk)
L =	28.291667 ft.	(Brgto-Brg. Span Length - Span 2)
NL = Nb =	2.0 11.0	(Number of traffic lanes) (Number of concrete slab units)
D =	3.0000	(Assumed equal to Precast member width since slab unit will behave indepedently. Therefore, individual unit can be assumed to take on the full wheel load)
LLDF (INT - LFD) =	S/D = 1.0000	(Live Load Distribution Fraction for Moment and Shear)
LLDF (Exist.Condition - LRFR):	(Assuming Slab units act	ing independently - no effective post tensioning)
LLDF (INT - OneLane - LRFR) =	0.5 x Axle = 0.5000	(Live Load Distribution Fraction for Moment and Shear - Half of Axle Load)
LLDF (INT - OneLane - LRFR) =	0.5 x 1.2 x Axle	= 0.6000 (Live Load Distribution Fraction for Moment and Shear - Half of Axle Load)
	- Case 1: Run model to a	e Load Rating, the following Cases were assumed for AASHTOWare BrR runs: ccount for the condition where the slab units have been rehabilitated with Post Tensioning. ccount for the existing condition without repairs.
	- West edge of slab unit i	report, the following are assumed in the analysis to account for the deterioration of the slab unit 1-8: ntermittently delaminated with efflorescence and corrosion bleed-out and associated spalling. or of 0.85 to account for the analysis of the worst case deteriorated slab unit from spans 1 & 3.

	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hamm	ock Road		Page:	1 of 4

SPAN 2 - SUPPLEMENTAL CALCULATIONS - LOADING PARAMETERS

Bridge Type:	Prestressed Voided Slab Un	it - 17"x36"			Total Superimposed Dead Load:	1.395 k/ft
Standard Drawing:				Brid	dge Railing/ Guardrail Dead Load:	0.147 k/ft
					Curb/Sidewalk Dead Load:	1.248 k/ft
					Attached Utility Dead Load:	0.000 k/ft
					Asphalt W.S. Dead Load (DW):	0.420 k/ft
				Asphalt W	.S. Dead Load per Slab Unit (DW):	0.038 k/ft
Number of Spans:	3					,
Number of Sonovoids:	11					
Structure Length:	100 ft.					
Brgto-Brg. Span Length:		at Contorling of 1///"v6"	wide asbestos graphite pa	ude)		
Analyzed Span Length:	40.00 ft.		while aspestos graphine pa	103)		
Clear Roadway Width:	26.00 ft.					
Slab Unit Width:						
	36.00 in.		at the surgest and 1.070			
Wearing Surface:		•	at the supports, and 1.875		ban.	
	The wearing s	urface dead loads are ca	alculated by BrR and inclue	ded in the analysis.		
	Location	Thickness	Average Thickness			
	Begin span	1.00 in	1.292 in			
	Mid Span	1.88 in				
	End Span	1.00 in	J			
Bridge Railing/Guardrail:	Yes Bridge Railing	is present				
Strange manning/ Guararan	* *		rdrail dead loads are appli	ed only to fascia be	ams	
Curb/Sidewalk:			below for curb/sidewalk c			
Parapet:	No No parapets a		Sciow for curb/sidewdik t			
Attached Utilities:		dead load calculations.				
Attached Othities.	Tes See below for					
Rail 1 Type:	Other	Metal Posts and Pipes -	Assume 10 lb/ft per SDG	Table 2.2-1, Bullet F	Railing	0.010 k/ft
	10 lb/ft					
		-				
Rail 2 Type:	Rect. Conc. Beam	Rectangular Concrete E	Beam Guardrail			0.125 k/ft
	125 lb/ft					
					Area (Standard shapes per	
Rail Post:	Concrete	Quantity	Length/Height	Shape	AISC 7-14)	0.012 k/ft
	150 pcf	4 / span	0.83 ft	Rect. 10x10	100.00 in ²	
	150 pcf	2 / span	0.83 ft	Rect. 8x10	80.00 in ²	
Pail Plackout:	none					
Rail Blockout:	none					
Curb/Sidewalk:	AA 29.0 in	1				0.325 k/ft
(South End)	BB 1.0 in					0.010
(South Lind)						
	CC 10.6 in	J				
	- Superstructure is modeled	withouth the sidewalk o	werhang that is removing	the additional 6" of	overbang	
					corresponding to a rectangulan	
quiv. Width of Sidewalk =		-	ctangular sidewalk inputer			
quiv. Wiuth of Sidewark –	24 111				Jitware)	
Fauity CC -	13.0831 in	(Fauivalant thickness o	f rostongular sidowalk inn	uted in AACUTOWar	a coftwara)	
Equiv. CC =	12.9831 in		f rectangular sidewalk inp		e suitwalej	
	Typical Curb/Sidewalk Section	n				
	, AA	BB				
		[
	I I					
		cc \				
	Lł	y				

CONSOR

Curb/Sidewalk:	AA	77.0 in
(North End)	BB	1.0 in
	CC	11.4 in

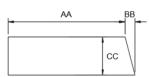
12/29/2021 874294 Checked by: MAP Bridge No.: Date: Feature Carried: Matheson Hammock Road Page: of 1 D210107FL.00 Calculated by: YRA 9/21/2021 Project No: Date: Bridge No.: 874294 Checked by: MAP Date: 12/29/2021 Feature Carried: Matheson Hammock Road Page: of 2 4

Calculated by:

YRA

Date:

0.923 k/ft


9/21/2021

- Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.

Project No:

- The 1-ft utility opening will be neglected, leaving 1-ft of additional solid sidewalk material assumed to account for the weight of utilities and Equiv. Width of Sidewalk = 60 in (Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

D210107FL.00

- No information is available on the utilities and attachements along the North side of the bridge.

- The Concrete sidewalk will be assumed to be solid at the location of the utility opening to account for the weight of the utilities and attachments, conservatively.

- Assume weight of sidewalk taken by the exterior slab units.

Diaphragm:		
Width of Slab Unit =	36	in
Depth of Slab Unit =	17	in
No. of Voids =	2.0000	
Diameter of Voids =	10.0000	in

		Begin Span						
	Start Dist.							
	From Left	Diaphragm		Width/	Diaphragm			
	End*	Spacing	No. of	Thickness	Weight			
	(FT)	(FT)	Spaces	(FT)	(KIP)			
Span 2, Begin	0.00	1.00	1	2.0	0.3272			
Span 2, 1/4 Point	1.00	8.96	1	1.0	0.1636			
Span 2, 3/4 Point	9.96	20.00	1	1.0	0.1636			
Span 2, End	29.9583	8.96	1	2.0	0.3272			

LLDF (Post-Tensioned - LFD): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning) For Interior Slab Units: [AASHTO LRFD Table 4.6.2.2.2b-1]

micino	i blub olints.		
S =	3.0	ft.	(Width of precast member)
W =	34.0	ft.	(Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk)
L =	38.5	ft.	(Brgto-Brg. Span Length - Span 2)
NL =	2.0		(Number of traffic lanes)
Nb =	11.0		(Number of concrete slab units)
μ=	0.2		(Assumed Poisson's Ratio for concrete slab units)
=	13330.10	in ⁴	(Moment of Inertia of Slab Unit - from BrM software)
J =	14593.77	in ⁴	(Saint-Venant Torsion constant - from BrM software)
K =	$[(1 + \mu) \cdot I/2]$	$[J]^{1/2}$	= 1.04694

	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hammo	ock Road		Page:	1 of 4
	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hammo	ock Road		Page:	3 of 4
$C = if \left[\frac{W}{L} < 1, K\left(\frac{W}{L}\right), K\right] = 0.92457$ $D = (5.75 - 0.5N_L) + 0.7N_L(1 - 0.2C)^2$	= 5.6801					
LLDF (INT - LFD) = S/D = 0.5282 (Live Load	l Distribution Fraction for M	oment and Shear)				
For Exterior Slab Units: $d_e = 3.0$ ft. (Width of	precast member)	[AASHTO LRFD Table	4.6.2.2.2d-1]			
LLDF (Post-Tensioned - LRFR): (Assuming Members are sufficiently co	onnected to act as a unit, me	eaning accounting for e	effective post tension	ing)		
	One lane loaded for Momen Multi lanes loaded for Mome					
	al distance from centerline c	of exterior web of exter	rior slab unit along th	e south er	nd at deck lev	rel to
<u>- One Design Lane Loaded:</u> $e_{OneLane_{G1}} = 1.125 + \frac{d_{e,G1}}{30} \ge 1.0 = 1.000$	(Correction factor for LL dis	stribution on exterior s	lab unit G1)			
$e_{OneLane_{G11}} = 1.125 + \frac{d_{e,G11}}{30} \ge 1.0 = 1.000$	$e_{OneLane_{G11}} = 1.125 + \frac{d_{e,G11}}{30} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G11)					
LLDF (EXT.G1-M _{OneLane}) = $e_{OneLane_G1} \cdot LLDF(INT, M)$ =	0.2540 (Live Load Dist	tribution Fraction for N	Noment for One lane	Loaded - l	Jnit G1)	
LLDF (EXT.G11- $M_{OneLane}$) = $e_{OneLane_G11} \cdot LLDF(INT, M)$ = 0.2540 (Live Load Distribution Fraction for Moment for One lane Loaded - Unit G11)						
- Two or More Design Lanes Loaded:						
$e_{MultiLane_G1} = 1.04 + \frac{d_{e,G1}}{25} \ge 1.0 = 1.000$	(Correction factor for LL dis	stribution on exterior s	lab unit G1)			
$e_{MultiLane_{G11}} = 1.04 + \frac{d_{e,G11}}{25} \ge 1.0 = 1.000$	(Correction factor for LL dis	stribution on exterior s	lab unit G11)			
LLDF (EXT $M_{MultiLane}$) = $e_{MultiLane_G1} \cdot LLDF(INT, M)$ =	0.2560 (Live Load Dist	tribution Fraction for N	Noment for Multi-Lan	es Loadec	l - Unit G1)	
LLDF (EXT $M_{Multilane}$) = $e_{MultiLane_{G11}} \cdot LLDF(INT, M)$ =	0.2560 (Live Load Dist	tribution Fraction for N	Noment for Multi-Lan	es Loadec	l - Unit G11)	

			·				
		Project No: Bridge No.:	D210107FL.00 874294	Calculated by: Checked by:	YRA MAP	Date: Date:	9/21/2021 12/29/2021
		Feature Carried:	Matheson Hammo	· 1		Page:	1 of 4
	20	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
	JK	Bridge No.: Feature Carried:	874294 Matheson Hammo	Checked by:	MAP	Date: Page:	12/29/2021 4 of 4
$d_{e,G1} = d_{e,G11} = d_{e,G11} = d_{e,G11} = d_{e,G11} = d_{e,G11} = d_{e,G11} = d_{OneLane_G11} =$	-1.0 ft. (Hor 36.0 in. (Wid gn Lane Loaded: $1.25 + \frac{d_{e,G1}}{20} \ge 1.0 = 1.0$	rizontal distance from centerline of rizontal distance from centerline of th of precast member) 000 (Correction factor for LL di 000 (Correction factor for LL di = 0.2540 (Live Load Dis = 0.2540 (Live Load Dis = 1.000 = 1.000	of exterior web of exter stribution on exterior s stribution on exterior s tribution Fraction for S	rior slab unit along the rior beam/slab unit alo lab unit G1) lab unit G11) hear for One lane Loa hear for One lane Loa	ded - Uni ded - Uni ded - Uni	nd at deck leve buth end at de t G1) t G11) o unit G1)	el to
	$e_{MultiLane_{G1}} \cdot LLDF(INT, V)$ $e_{MultiLane_{G11}} \cdot LLDF(INT, V)$		tribution Fraction for S tribution Fraction for S				
S = W = L =	3.0 ft. (Wid 34.0 ft. (Ass 38.5 ft. (Brg	pendently - no effective post tens dth of precast member) umed total width of Bridge Super to-Brg. Span Length - Span 2)		ning at the N end sidev	valk)		
NL = Nb = D =	11.0 (Nur	nber of traffic lanes) nber of concrete slab units) umed equal to Precast member v be assumed to take on the full wi		l behave indepedently	/. Therefo	re, individual	unit
LLDF (LFD) =	S/D = 1.0000 (Live	e Load Distribution Fraction for M	loment and Shear)				
LLDF (Exist.Condition - LRFR):	(Assuming Slab units acting indep	pendently - no effective post tens	ioning)				
LLDF (INT - OneLane - LRFR) =	0.5 x Axle = 0.5000 (Live	e Load Distribution Fraction for M	loment and Shear - Hall	f of Axle Load)			
LLDF (INT - OneLane - LRFR) =	0.5 x 1.2 x Axle = 0.6	(Live Load Distribution Fra	ction for Moment and S	Shear - Half of Axle Loa	ad)		
	<i>Case 1:</i> Run model for non dete <i>Case 2:</i> Run model for non-dete	iting, the following Cases were as riorated units to account for the priorated and deteriorated units t ated units to account for the conc	condition where the sla o account for the existi	ab units have been reh ng condition without i	repairs.		ave
- - -	5 exposed strands, with 3 broke Assume 50% of the adjacent stra That is: Remove 1 additional stra Assume 50% of the adjacent stra That is: Remove 1 additional stra Per recommendation from "Stru	the following are assumed in the n: Remove a total of 5 strands fro ands along the same layer have b and from the bottom layer of stra ands at the next layer have been and from the next layer of strand ictural Technologies" on 10/01/2 rcement, conservatively for the c	om the bottom layer of een affected to accoun inds. affected to account for s. 021, assume exterior st	strands. t for the potential of d the potential of dama	lamage in ge in the	the adjacent	

1.3 LRFR LOAD RATING ANALYSIS INPUT

Username: BrR Date: Wednesday, September 22, 2021 11:21:02

Bridge ID 874294D Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID (8): 874294D

Description: Rating by YRA, from As-built plans [LAST UPDATED: 9/22/2021]

DETERIORATED MODEL:

Three spans (30'-40'-30') non-composite PS Concrete voided slab unit superstructure comprised of eleven (11) 17"x36" units. Deck width is 35'-0" out-to-out with a 26'-0" clear roadway width. Wearing surface is present along the bridge with an average thickness of 1.167" along end spans 1 and 3, and 1.292" for interior span 2.

Per current inspection report, the following controlling cases apply:

- Prestressed slab unit 1-8 displaying severe cracking with corrosion stain along the bottom face of the slab unit.

- Prestressed slab unit 2-8 displaying the worst deterioration: Five (5) exposed strands with three (3) broken.

The load rating analysis for the prestressed voided slab units was initially performed using the Load and Resistance factor Rating methodology in accordance with the AASHTO LRFD Bridge Design Specifications (9th edition, 2020), the Manual for Bridge Evaluation (3rd edition with interims through 2019), and the FDOT Bridge Load Rating Manual (January 2021). However, the resulting design and legal rating factors were less than 1, which granted the need to evaluate the structure using the Load Factor Rating methodology.

Description	
Location:	Matheson Hammock Park
Total Length:	100.33 <i>(ft)</i>
Facility Carried:	Matheson Hmk Road
Route Number:	00000
Feature Intersected:	Matheson Hammock Canal
Mi Post:	0.08 <i>(mi)</i>
Units:	US Customary
Year Built:	1967
Recent ADTT:	11
District:	District 6
County:	
Owner:	County Hwy Agency
National Highway System:	0 Not on NHS
Functional Class:	09 Rural Local
Global Reference Point	
X Coordinate:	0.000 (ft)
Y Coordinate:	0.000 (ft)
Elevation:	(ft)
Longitude:	80.26 (Degrees)
Latitude:	25.68 (Degrees)

Materials

No steel materials.

Concrete

1 1	ds): of elasticity): city (Ec): asticity (Ec): rete: f elasticity (Eci): s of elasticity (Eci):	5.000 (ksi) 4.000 (ksi) 0.0000060000 (1/F) 0.150 (kcf) 0.145 (kcf) 4074.28 (ksi) 4291.19 (ksi) 0.200 0.537 (ksi) 1.000 Normal 3644.15 (ksi) 3986.55 (ksi) (ksi)	
Name:	Class A (3000)	00 nci)	
	ds): of elasticity): city (Ec): asticity (Ec): rete: f elasticity (Eci): s of elasticity (Eci):	3.000 (ksi) (ksi) 0.0000060000 (1/F) 0.150 (kcf) 0.145 (kcf) 3150.39 (ksi) 3617.02 (ksi) 0.200 0.416 (ksi) 1.000 Normal (ksi) (ksi) (ksi)	

Reinforcing Steel

Name:	Grade 40	
Description:	40 ksi reinforcing steel	
Specified yield streng	40.000 (ksi)	
Modulus of elasticity (Es):		29000.00 (ksi)
Ultimate strength (Fu):		70.000 <i>(ksi)</i>
Туре:		Plain

Prestressing Strand

Name:	7/16" (7W-250) SR
Description:	Stress relieved 7/16"/Seven Wire/fpu = 250

Specified yield strength (Fy): Ultimate Tensile strength (Fu): Modulus of elasticity (Es): Load per unit length: Cross sectional area (A): Nominal diameter (d): Transfer length (Std): Transfer length (LRFD): Type: Epoxy coated: 212.500 (ksi) 250.000 (ksi) 28500.00 (ksi) 0.367 (lb/ft) 0.108 (in^2) 0.4375 (in) 21.8750 (in) 26.2500 (in) Stress Relieved FALSE

No timber materials.

Beam Shapes

Steel Shapes

No steel shapes.

Prestressed Shapes

No prestressed I shapes.

Prestressed Box Shapes

Name:	17"x36" PSU	
Description:	17"x36" Prestressed Slab Un	nit for units E thru G
Туре:		Circular Void
Nominal Depth:		17.0000 <i>(in)</i>
Depth (d):		17.0000 <i>(in)</i>
Top flange width:		35.0000 <i>(in)</i>
Bottom flange width:		36.0000 <i>(in)</i>
Three-void (D1, D2,	D1) shape:	FALSE
Circular void diamate	er:	10.0000 <i>(in)</i>
Distance to CG of vo	id(s) from bottom:	9.0000 <i>(in)</i>
Number of circular v	oids:	2
Center to center dista	nce of voids:	16.0000 <i>(in)</i>
Vertical location of s	hear key:	2.0000 <i>(in)</i>
Shear key height:		6.0000 <i>(in)</i>
Shear key depth:		1.5000 <i>(in)</i>
Nominal load:		457.107 <i>(lb/ft)</i>
Cross sectional area:		438.822 <i>(in^2)</i>
Ixx:		13330.101 <i>(in^4)</i>
CG from bottom:		8.1667 <i>(in)</i>
Bottom Sxx:		1632.246 <i>(in^3)</i>
Top Sxx:		1509.078 <i>(in^3)</i>

	3.175 <i>(in)</i>
e Flexure:	(in^2)
ve Flexure:	(in^2)
tant:	14593.772 (in^4)
of Strands Vertical L	ocation Horizontal Spacing
(in)	<i>(in)</i>
2.5000	2.0000
4.5000	2.0000
14.5000	2.0000
	ve Flexure: tant: of Strands Vertical L (in) 2.5000 4.5000

No prestressed U shapes.

No prestressed tee shapes.

Timber Shapes

No timber shapes.

Appurtenances

No concrete railings.

Railings

Name:	Conc Guardrail w/	metal Post and Rail	
Description:	Conc. Post and beam	guardrail with post and tube rail mounted	
Effective Wind Height:		36.0000 <i>(in)</i>	
Railing Load:		0.166 (kip/ft)	
Distance From Edge to Centroid:		5.0000 (in)	
Width:		10.0000 <i>(in)</i>	

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Factors

Load Factors

Factors - LFD	
Name: Description: Edition, 2002	2002 AASHTO Std. Specifications AASHTO Standard Specifications for Highway Bridges, 17th

Load Group Inventory Operating	Gamma 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group Inventory Operating	SF 1.000 1.000	W 0.000 0.000	WL 0.000 0.000	LF 0.000 0.000	R+S+T 0.000 0.000	EQ 0.000 0.000	ICE 0.000 0.000
Resistance Fa Reinforced co Flexure: Reinforced co	oncrete:			0.900			
Shear:				0.850			
Prestressed co Flexure:	oncrete:			1.000			
Prestressed co	oncrete:						
Shear: Prestressed co	onorata			0.900			
Flexure in N		Compone	ents:	0.900			
Steel: Flexure:				1.000			
Steel:							
Shear: Steel:				1.000			
Bearing Stif	feners:			1.000			
Name:				2002	AASHTO	O Std. Sp	pecifications(CD=0.90)
Description:							ecifications for Highway Bridges,
17th Edition,	2002						
Load Factors							
Load Group		D	(L+I)n	(L+I)p	CF	E	В
-	Gamma		N				
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
-			N				
Inventory	1.300	1.000	1.670	0.000	1.000	1.000 1.000	1.000
Inventory Operating Load Group Inventory	1.300 1.300 SF 1.000	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group	1.300 1.300 SF	1.000 1.000 W	1.670 1.000 WL	0.000 0.000 LF	1.000 1.000 R+S+T	1.000 1.000 EQ	1.000 1.000 ICE
Inventory Operating Load Group Inventory Operating	1.300 1.300 SF 1.000 1.000	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co	1.300 1.300 SF 1.000 1.000	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co	1.300 1.300 SF 1.000 1.000 <u>actors</u> pncrete:	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000 0.810	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co Shear:	1.300 1.300 SF 1.000 1.000 actors poncrete:	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co	1.300 1.300 SF 1.000 1.000 actors poncrete:	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000 0.810	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co Shear: Prestressed co Flexure: Prestressed co	1.300 1.300 SF 1.000 1.000 actors oncrete:	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000 0.810 0.765 0.900	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co Shear: Prestressed co Flexure: Prestressed co Shear:	1.300 1.300 SF 1.000 1.000 actors oncrete: oncrete:	1.000 1.000 W 0.000	1.670 1.000 WL 0.000	0.000 0.000 LF 0.000 0.000 0.810 0.765	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000
Inventory Operating Load Group Inventory Operating <u>Resistance Fa</u> Reinforced co Flexure: Reinforced co Shear: Prestressed co Flexure: Prestressed co	1.300 1.300 SF 1.000 1.000 actors oncrete: oncrete: oncrete:	1.000 1.000 W 0.000 0.000	1.670 1.000 WL 0.000 0.000	0.000 0.000 LF 0.000 0.000 0.810 0.765 0.900	1.000 1.000 R+S+T 0.000	1.000 1.000 EQ 0.000	1.000 1.000 ICE 0.000

Steel: Flexure: Steel: Shear: Steel: Bearing Stiff Name: Description: 17th Edition,							pecifications(CD=0.85) becifications for Highway Bridges,
Load Factors Load Group Inventory Operating	Gamm 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group Inventory Operating	SF 1.000 1.000	W 0.000 0.000	WL 0.000 0.000	LF 0.000 0.000	R+S+T 0.000 0.000	EQ 0.000 0.000	ICE 0.000 0.000
Resistance Fa Reinforced co Flexure: Reinforced co	ncrete:			0.765			
Shear: Prestressed co				0.723			
Flexure: Prestressed co	oncrete:			0.850			
Shear: Prestressed co	oncrete:			0.765			
Flexure in N Steel:		Compone	ents:	0.765			
Flexure: Steel:				0.850			
Shear: Steel:				0.850			
Bearing Stiff	feners:			0.850			

No LRFD Factors specified.

Bridge Alternatives End Span 1 (or 3) - Bridge Alt.

Reference Line	
Reference Line Length:	(ft)
Starting Station:	(ft)
Bearing:	N 90^ 0' 0.00" E
Global Positioning	
Distance:	0.000 <i>(ft)</i>

Offset:	
Elevation:	

0.000 (ft) (ft)

Structures

Name: Exist. EXT Span 1(or 3) SuperStr Description:

Structure AlternativesName: Exist. END Span 1(or 3) Alt.Description:Superstructure Definition:End Span 1 (or 3) - PS Conc PSU

Bridge Alternatives INT Span 2 - Bridge Alt.

Reference Line	
Reference Line Length:	(ft)
Starting Station:	(ft)
Bearing:	N 90^ 0' 0.00" E
Global Positioning	
Distance:	0.000 (ft)
Offset:	0.000 (ft)
Elevation:	(ft)

Structures

Name: Exist. INT Span 2 Superstruct. Description:

Structure Alternatives

Name: Exist. INT Span 2 Alt. Description: Superstructure Definition: INT Span 2 - PS Conc PSU

Superstructure Definition End Span 1 (or 3) - PS Conc PSU

Definition		
Units:		US Customary
Number of sp	ans:	1
Number of gi	rders:	11
	Length	
Span	(ft)	
1		
Frame Structu	ure Simplified I	Definition:
Support	Frame Conne	ction
1		
2		
Girder Spacin	ng Display Type	e: Perpendicular

Average Humidity:70.000 (%)AnalysisDefault Library FactorsDefault Library FactorsFactor OverrideAnalysis ModuleAnalysis Module:Analysis Module:Analysis Module:Analysis Module Component:Properties:

Analysis Method: LFD Analysis Module: Analysis Module Component: Properties:

Analysis Method: LRFD Analysis Module: Analysis Module Component: Properties:

Analysis Method: LRFR Analysis Module: Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Analysis Module Component: Properties:

Default rating method: LFD

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

(ft)

Structure Framing Plan Details

Layout		
	Skew	
Support	(Degrees)	
1	0.0000	
2	0.0000	
Girder Spacing Orientation:		Perpendicular
Girder	Girder Spac	ing
Bay	Start	End

(ft)

1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

<u>Diaphragms</u>

Girder Bay 1 Girder Bay 2 Girder Bay 3 Girder Bay 4 Girder Bay 5 Girder Bay 6 Girder Bay 7 Girder Bay 8 Girder Bay 9 Girder Bay 10

Structure Typical Section Deck

Deck	
Left start width:	18.00 <i>(ft)</i>
Left end width:	18.00 <i>(ft)</i>
Right start width:	15.00 <i>(ft)</i>
Right end width:	15.00 <i>(ft)</i>
Left start overhang:	1.50 <i>(ft)</i>
Left end overhang:	1.50 <i>(ft)</i>

Deck (Cont'd)

Deck concrete: Total deck thickness: (in) Deck crack control parameter: (kip/in) Sustained modular ratio factor: 3.000 Railing

		Measure	Measured	Distance	Distance	Front Face	
Name	Load Case	То	From	At Start	At End	Orientation	
Conc Guar	DC1 - R		Left Ed	0.00	0.00	Right	
Conc Guar	DC1 - R		Right E	0.00	0.00	Left	
Sidewalk							
Width	Thickness	Material	Load Case	Measure to	Measured F	from	At Start
	At End						
60.0000	11.4375	Class A	DC1 - C		Left Ed	0.00	
24.0000	10.5630	Class A	DC1 - C		Right E	0.00	
Lane Position							
Offset Left Start:		-13.00 <i>(ft)</i>					
Offset Left Er	nd:	-13.00 <i>(ft)</i>					

Offset Right Start: Offset Right End: Offset Left Start: Offset Left End: Offset Right Start: Offset Right End: Wearing Surface	0.00 (ft) 0.00 (ft) 13.00 (ft) 13.00 (ft) 0.00 (ft) 0.00 (ft)
Wearing surface material: Description:	Asphalt Asphalt Wearing Surface
Wearing surface thickness:	1.1670 <i>(in)</i>
Wearing surface density:	145.000 (pcf)
Load case:	DW - A.W.S.

Load Case Description

Load Case Name

Description

		(Days)	
DC1 - Railing	DC acting on non-comp	Non-composite (Sta	D,DC
DC1 - Curb	DC acting on non-comp	Non-composite (Sta	D,DC
DW - A.W.S.	DW acting on long-ter	Composite (long te	D,DW

Stage

Type Time

Superstructure Loads

DL Distribution Stage 1 Dead Load Distribution: Tributary Area Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name:	PS Conc Stress Limits		
Description:			
Concrete material:	Class P (5000)		
Initial allowable tensi	on (LFD):	0.190	(ksi)
Initial allowable comp	pression (LFD):	2.400	(ksi)
Final allowable slab c	compression (LFD):	(ksi)	
Final allowable tensic	on (LFD):	0.425	(ksi)
Final allowable DL co	ompression (LFD):	2.000	(ksi)
Final allowable compression (LFD):		3.000	(ksi)
Final allowable compression $(LL + 1/2(Pe+DL)) (LFD):2.000$ (k			00 <i>(ksi)</i>
Initial allowable tensi	on (LRFD):	0.190	(ksi)
Initial allowable compression (LRFD):		2.600	(ksi)
Final allowable slab c	compression (LRFD):	(ksi)	
Final allowable tensic	on (LRFD):	0.425	(ksi)
Final allowable DL co	ompression (LRFD):	2.250	(ksi)
Final allowable comp	ression (LRFD):	3.000	(ksi)
Final allowable comp	ression $(LL + 1/2(Pe+DL))$ (L	RFD):	2.000 (ksi)

Prestress Properties

Name: **PS Strands Properties** General Pretress Data

Prestressing Strand: Loss Method:	7/16" (7W-250) SR AASHTO Approximate
Jacking stress ratio:	0.700
Transfer stress ratio:	
Transfer time:	24.0 (Hours)
AASHTO - Dead load percent:	0.0 (%)
Loss Data - PCI	
PCI - Maturity coefficient:	
PCI - Ultimate creep loss:	(ksi)
PCI - Ultimate shrinkage loss:	(ksi)
PCI - Additional time 1:	(Days)
PCI - Additional time 2:	(Days)
PCI - Additional time 3:	(Days)
PCI - Additional time 4:	(Days)
PCI - Additional time 5:	(Days)
PCI - Additional time 6:	(Days)
PCI - Additional time 7:	(Days)
PCI - Additional time 8:	(Days)
PCI - Additional time 9:	(Days)
PCI - Additional time 10:	(Days)
Loss Data - Lump-sum	
Lump-sum - Composite loss:	(ksi)
Lump-sum - Continuous loss:	(ksi)
Lump-sum - Final loss:	(ksi)

Shear Reinforcement Definitions - Vertical

Name:	#4 Bent Shear Reinf	•
Vertical Reinforceme	nt:	Grade 40
Vertical Rebar:		4
Number of legs (Vert	ical):	3.00
Inclination angle alph	a (Vertical):	90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name:	#3 - 2'-7" long		
Reinforcement (Horz.	1):	Grad	e 40
Rebar (Horz. 1):		3	
Number of legs (Horz	z. 1):	1.00	
Inclination angle alpha (Horz. 1):		90.0	(Degrees)
Reinforcement (Horz. 2):			
Rebar (Horz. 2):			
Number of legs (Horz	2. 2):		
Inclination angle alph	a (Horz. 2):	90.0	(Degrees)

Member G1 Link with: None Description:

Existing:	17"x36" EXT PSU -
Current:	17"x36" EXT PSU -

Number of Spans:

1

Span Number 1	Span Length (<i>ft</i>) 28.291666		
Support 1 2	Frame Connection		
Pedestrian load	1 : (<i>lb/ft</i>)		
Member Loads			

<u>Member Load</u> Support Number 1 2	ds - Settlement Horizontal (in)	Vertical (in)	Rotati (Radia		Load Case	e Name
Support Con General Support Number 1 2	straints Support Type Pinned Roller	X Transla Fixed Free	tion	Y Tra Fixed Fixed	nslation	Z Rotation Free Free
<u>Elastic</u> Support Number 1 2	X Translation (<i>kip/ft</i>)	Y Transla (kip/ft)	tion	Z Rota (kip-in/		Override Computed Z Rotation

Member Alternative 17"x36" EXT PSU

Description:	
<u>Description</u>	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method	: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Component	•
Properties:	

Analysis Method:	LFD
Analysis Module:	AASHTO LFD

Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

<u>Factors</u> Factor Override LRFD: LFD: ASD Factors	2002 AASH Inventory	ΓΟ Std. Specifications(CD=0.85) Operating
Structural steel		
Concrete DS Concrete Comp		
PS Concrete Comp. PS Concrete Tens.		
PS Moment Cap.		
Reinforcement		
Bearing Stiffener Stirrup		
Timber	NA	
Default Materials		
Deck concrete:	Class A (300	0)
Deck reinforcement: Beam concrete:	Grade 40 Class P (500	0)
Beam reinforcement:	Grade 40	0)
Stirrup reinforcemt:	Grade 40	
Prestressing strand:	7/16" (7W-2:	50) SR
<u>Impact</u> Standard Impact Factor		

Standard Impact Factor Type: LRFD Dynamic Load Allowance

Standard - AASHTO

Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

<u>Standard</u>							
	Distribution Factor (Wheels)						
Lanes		Shear at					
Loaded	Shear	Supports	Moment	Deflection			
1 Lane	0.100	0.100	0.100	0.100			
Multi-Lane	0.100	0.100	0.100	0.100			

<u>LRFD</u>

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.100	0.100
0.00	28.292	Moment	0.100	0.100
0.00	28.292	Shear	0.100	0.100

Shrinkage/Time

Deck curing method	od:	Moist-cu	ured		
Deck drying time: 3.000 (Days)					
Consider deck dif	FALSE				
Beam Curing method: Steam-cured			ured		
Curing time:	20.00	(Days)			
Service life:	75.00	(Years)			
Analysis time:	54.00	(Years)			
Composite time:	60.00	(Days)			
Continuous time:	45.0 (Days)			

Beam Details

Span DetailsSpan Prestress ShapeConcrete MaterialPrestress PropertiesLeft					Left	Right	
opun	Use	n				rugiit	
					Projection	n	
	Projection	Creep			(in) (in)		
1	17"x36" PSU TRUE	Class P (5000 6.64)	PS Strands Pr	6.0000	8.5000	
Continuous Support Details							
Support Support Distance		Suppo	ort Distance				
Numb	nber on Left, SL		on Right, SR				
	<i>(in)</i>		(in)				
1							
1							

2

Stress Limit Ranges

Stress	Limit	Span	Start Dis	tance		Length
PS Cor	nc Stress Lim	1	(ft) 0.000			(ft) 29.50
Deck i Interfa Deck c	nterface nterface type: ce width: cohesion factor: friction factor:	Monolithic (<i>in</i>) 0.400 (<i>ksi</i>) 1.400				
Contin	nuity Diaphragm	Left Support			Right Sup	port
Span	Material Bar	Distance Bar	Bar	Bar	Material	Distance
No.			Count	Size	Co	unt Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	<i>(ft)</i> onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debo	onded		
1	Right Left	1	7	Straight/Debo	onded		
1	Right Left	1	8	Straight/Debo	onded		
1	Right Left	1	9	Straight/Debo	onded		
1	Right Left	1	10	Straight/Debo	onded		
1	Right	1	11	Straight/Debo	onded		

1	Left Right	1	14	Straight/Debonded
	Left			
	Right			G. 1./D.1.1.1
1	Left	1	15	Straight/Debonded
	Right			
1	8	1	16	Straight/Debonded
	Left			
1	Right	2	1	Studialt/Dahandad
1	Left	3	1	Straight/Debonded
	Right			
1	C	3	16	Straight/Debonded
	Left			
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
Remotechient	NO	(ft)	Spaces	(in)	Deek
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

<u>Shear Reinforcement Ranges - Horizontal</u>

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	

Member G2 Link with: None

Description:

Existing:	17"x36" INT PSU -	-
Current:	17"x36" INT PSU -	-
Number of Spa	ans:	1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member Loads

Member Load	<u>ls - Settlement</u>					
Support	Horizontal	Vertical	Rotati	onal L	oad Case	Name
Number	(in)	(in)	(Radian	ns)		
1						
2						
Support Con	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Transla	tion	Y Transla	ation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free
Elastic						
Support	X Translation	Y Transla	tion	Z Rotatio	n	Override Computed
Number	(kip/ft)	(kip/ft)		(kip-in/rad)	Z Rotation
1		1 1 0 /		/		

1

2

Member Alternative 17"x36" INT PSU Description:

Description:	
Description	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method:	Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)

Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: **Properties:** Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: **Properties:** Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: **Properties: Distribution Factors** Analysis Method: Analysis Module: Legacy BrR Dist Fact Analysis Module Component: **Properties:** Default rating method: LRFR LRFD shear computation method: **General Procedure** Factors Factor Override LRFD: LFD: 2002 AASHTO Std. Specifications(CD=0.85) ASD Factors Inventory Operating Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement **Bearing Stiffener** Stirrup Timber NA **Default Materials** Deck concrete: Class A (3000) Deck reinforcement: Grade 40 Beam concrete: Class P (5000)

Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.167	0.167	0.167	0.167
Multi-Lane	0.167	0.167	0.167	0.167

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.167	0.200
0.00	28.292	Moment	0.167	0.200
0.00	28.292	Shear	0.167	0.200

Shrinkage/Time

Deck curing meth	od:		Moist-cured	
Deck drying time:	3.000	(Days)		
Consider deck differential shrinkage loads:			age loads:	FALSE
Beam Curing met	hod:		Steam-cured	
Curing time:	20.00	(Days)		
Service life:	75.00	(Years)		
Analysis time:	54.00	(Years)		
Composite time:	60.00	(Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span Details

Span	Prestress Shape Use	Concrete Material	Prestress Properties	Left	Right
		n		Projection	1
	Projection	Creep		(in) (in)	
1	17"x36" PSU TRUE	Class P (5000 6.64	PS Strands Pr	6.0000	8.5000

Continuous Support Details

Support Number 1 2	Support Dista on Left, SL (<i>in</i>)	nce	Support I on Right, <i>(in)</i>		e	
Stress Limit Stress Limit PS Conc Stre	0	Span 1	Start Dist (ft) 0.000	tance		Length (<i>ft</i>) 29.50
Slab Interfac Deck interfac Interface widt Deck cohesio Deck friction	e type: h: n factor:	Monolithic (<i>in</i>) 0.400 (<i>ksi</i>) 1.400				
Continuity D Span Mater Bar		Left Support Distance Bar	Bar	Bar	Right Sup Material	port Distance
No.			Count	Size	Co	ount Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left	1	1	Straight/Debc		(11)	(***)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debc	onded		
1	Right Left	1	7	Straight/Debc	onded		
1	Right Left	1	8	Straight/Debc	onded		

1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start		Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G3 Link with: None Description:

Existing:	17"x36" INT PSU	-
Current:	17"x36" INT PSU	-
Number of Sp	ans:	1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member Loads

Member Load Support Number 1 2	ls - Settlement Horizontal (in)	Vertical <i>(in)</i>	Rotatio (Radiar		Load Case	e Name
Support Con General Support Number 1 2	straints Support Type Pinned Roller	X Transla Fixed Free	tion	Y Trai Fixed Fixed	nslation	Z Rotation Free Free
Elastic Support Number 1 2	X Translation (<i>kip/ft</i>)	Y Transla (kip/fi)	tion	Z Rota (kip-in/		Override Computed Z Rotation

Member Alternative 17"x36" INT PSU

Description: Description Material Type: Prestressed Concrete Girder Type: **PS** Precast Box Member units: US Customary Girder property input method: Schedule based Additional Self Load: (kip/ft) Additional Self Load %: 1.0 (%) Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: AASHTO LFD

Analysis Module: AASHTOL Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Legacy BrR Dist Fact Analysis Module Component: Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

Bearing Stiffener

FactorsFactor OverrideLRFD:LFD:2002 AASHTO Std. Specifications(CD=0.85)ASD FactorsInventoryOperatingStructural steelConcretePS Concrete Comp.PS Concrete Tens.PS Moment Cap.Reinforcement

Stirrup Timber

NA

Default Materials

Default Materials	
Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	1.000	1.000	1.000	1.000
Multi-Lane	1.000	1.000	1.000	1.000

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.500	0.600
0.00	28.292	Moment	0.500	0.600
0.00	28.292	Shear	0.500	0.600

Shrinkage/Time

Deck curing method	od:		Moist-cured	
Deck drying time:	3.000	(Days)		
Consider deck diff	FALSE			
Beam Curing met				
Curing time:	20.00	(Days)		
Service life:	75.00	(Years)		
Analysis time:	54.00	(Years)		
Composite time:	60.00	(Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span 1	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right

	Use			n						
	Projec	tion		Creep	Creep				Projection	L
1	17"x30 TRUE	6" PSU		Class P (5000 6.64		PS Str	ands Pr		<i>(in) (in)</i> 5.0000	8.5000
ContinuousSupport DetailsSupportSupport DistantNumberon Left, SL(in)1			Suppor on Rigl <i>(in)</i>		nce					
2 Stress Limit Ranges Stress Limit PS Conc Stress Lim		Span 0	Start Distance (ft) -0.750		6	Length (ft) 29.50				
Slab Interface Deck interface type: Interface width: Deck cohesion factor: Deck friction factor:			Monolithic (in) 0.400 (ksi) 1.400							
Conti	nuity D	iaphra	gm				D: 1.4	a		
Span No.	Materi Bar	al		Left Support Distance Bar	Bar Count	Bar Siz		al	Distan Distan nt Size	ce
Prestr	essing	Force I	<u>nforma</u>	<u>tion</u>						
Stran	d Layou	<u>ut</u>								
Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distanc	ce	Debond Distance	(Harp Curvature	
1	Left	1	1	Straight/Debo	<i>(ft)</i> nded		(in)	((in)	
1	Right Left	1	2	Straight/Debonded						
1	Right 1 3 Straight/Debon Left Right				onded					

1	TO	1	6	Straight/Debonded
1	Left Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number Spacing	Extends into
Reinforcement	No	Distance	Spaces	Deck

		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G4 Link with: G3

Link with: G3 Description:

Existing:	
Current:	
Number of Spans:	1

Span	Span Length
Number	(ft)
1	28.291666

Support	Frame Connection
1	
2	

Pedestrian load: (lb/ft)

Member G5 Link with: G3

Link with: G3 Description:

Existing:	
Current:	
Number of Spans:	

1

Span Length
(ft)
28.291666

Support Frame Connection

1 2

Pedestrian load: *(lb/ft)*

Member G6 Link with: G3

Link with: G3 Description:

Existing: 17"x36" INT PSU -Current: 17"x36" INT PSU -Number of Spans: 1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member G7 Link with: G3

Link with: G3 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member G8

Link with: G9 Description:

Existing: Current: Number of Spans:

1

Span Number 1	Span Length (<i>ft</i>) 28.291666			
Support 1 2	Frame Connection	on		
Pedestrian lo	oad: (<i>lb/ft</i>)			
ember G9 Link with: N Description:				
Existing: Current: Number of S	17"x36" INT PS	U - w/ Post Tensic U - w/ Post Tensic 1	-	
Span Number 1	Span Length (<i>ft</i>) 28.291666			
Support 1 2	Frame Connection	on		
Pedestrian lo	oad: (<i>lb/ft</i>)			
Member Lo	ads			
Member Loa Support Number 1 2		vertical Rota n) (Radi	tional Load Ca ans)	se Name
Support Co	<u>nstraints</u>			
General Support Number 1 2	Support Type Pinned Roller	X Translation Fixed Free	Y Translation Fixed Fixed	Z Rotation Free Free
<u>Elastic</u> Support Number 1 2	X Translation (kip/ft)	Y Translation (kip/fi)	Z Rotation (kip-in/rad)	Override Computed Z Rotation

Member Alternative 17"x36" INT PSU - w/ Post Tensioning

Description: Description Material Type: Prestressed Concrete Girder Type: **PS** Precast Box Member units: US Customary Girder property input method: Schedule based Additional Self Load: (kip/ft) Additional Self Load %: 1.0 (%) Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:** Analysis Method: LFD

Analysis Module: AASHTO LFD Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Legacy BrR Dist Fact Analysis Module Component: Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

Bearing Stiffener

FactorsFactor OverrideLRFD:LFD:2002 AASHTO Std. Specifications(CD=0.90)ASD FactorsInventoryOperatingStructural steelConcretePS Concrete Comp.PS Concrete Tens.PS Moment Cap.Reinforcement

Stirrup Timber

NA

Default Materials

Default Materials	
Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard				
	Distrib	ution F	actor (Whe	eels)
Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.533	0.000	0.533	0.182
Multi-Lane	0.533	0.000	0.533	0.364
LRFD				
Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Moment	0.296	0.273
0.00	28.292	Shear	0.296	0.273
0.00	28.292	Deflectio	0.109	0.182

Shrinkage/Time

Deck curing meth	od:	Moist-cured	
Deck drying time:	3.000	(Days)	
Consider deck differential shrinkage loads:			FALSE
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	
Analysis time:	54.00	(Years)	
Composite time:	60.00	(Days)	
Continuous time:	45.0 ((Days)	

Beam Details

Span 1	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right

	Use			n						
	Projec	tion		Creep					Projection	L
1	17"x30 TRUE	6" PSU		Class P (5000 6.64		PS Str	ands Pr		<i>(in) (in)</i> 5.0000	8.5000
Suppo Numb 1				Suppor on Rigl <i>(in)</i>		nce				
Stress	Limit Limit			Span 0	Start D (ft) -0.75		•	6	Length (ft) 29.50	
Deck i Interfa Deck o	nterface nterface ice widt cohesion friction	e type: h: 1 factor	:	Monolithic (in) 0.400 (ksi) 1.400						
Conti	nuity D	iaphra	gm				D: 1.4	a		
Span No.	Materi Bar	al		Left Support Distance Bar	Bar Count	Bar Siz		al	Distan Distan nt Size	ce
Prestr	essing	Force I	<u>nforma</u>	<u>tion</u>						
Stran	d Layou	<u>ut</u>								
Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distanc	ce	Debond Distance	(Harp Curvature	
1	Left	1	1	Straight/Debo	<i>(ft)</i> nded		(in)	((in)	
1	Right Left	1	2	Straight/Debo	nded					
1	Right Left Right	1	3	Straight/Debo	nded					

1	TO	1	6	Straight/Debonded
1	Left Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number Spacing	Extends into
Reinforcement	No	Distance	Spaces	Deck

		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Spacing	Composite Length
(in)	(ft)
6.0000	
8.0000	
15.0000	
8.0000	
6.0000	
	(<i>in</i>) 6.0000 8.0000 15.0000 8.0000

Member G10 Link with: G9

Description:

Existing:	17"x36" INT PSU	-
Current:	17"x36" INT PSU	-
Number of Spa	ans:	1

Span	Span Length
Number	(ft)
1	28.291666

Support	Frame Connection
1	
2	

Pedestrian load: (*lb/ft*)

Member G11

Link with: G1 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection

1 2

Pedestrian load: (*lb/ft*)

Superstructure Definition INT Span 2 - PS Conc PSU

Definition Units: **US** Customary Number of spans: 1 Number of girders: 11 Length Span (ft)1 38.5000 Frame Structure Simplified Definition: Frame Connection Support 1 2 Girder Spacing Display Type: Perpendicular Average Humidity: 70.000 (%) Analysis Default Library Factors Factor Override Analysis Module ASD Analysis Method: Analysis Module: Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: Analysis Module Component: **Properties:**

Analysis Method: LRFD Analysis Module: Analysis Module Component: Properties:

Analysis Method: LRFR Analysis Module: Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Analysis Module Component: Properties:

Default rating method: LFD

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Structure Framing Plan Details

<u>Layout</u>		
-	Skew	
Support	(Degrees)	
1	0.0000	
2	0.0000	
Girder Spacing C	rientation:	Perpendicular

Girder	Girder Spacing		
Bay	Start	End	
	(ft)	(ft)	
1	3.0000	3.0000	
2	3.0000	3.0000	
3	3.0000	3.0000	
4	3.0000	3.0000	
5	3.0000	3.0000	
6	3.0000	3.0000	
7	3.0000	3.0000	
8	3.0000	3.0000	
9	3.0000	3.0000	
10	3.0000	3.0000	

<u>Diaphragms</u>

Girder Bay 1 Girder Bay 2 Girder Bay 3 Girder Bay 4 Girder Bay 5 Girder Bay 6 Girder Bay 7 Girder Bay 8 Girder Bay 9 Girder Bay 10

Structure Typical Section

Deck	
Left start width:	18.00 <i>(ft)</i>
Left end width:	18.00 <i>(ft)</i>
Right start width:	15.00 <i>(ft)</i>
Right end width:	15.00 <i>(ft)</i>
Left start overhang:	1.50 <i>(ft)</i>
Left end overhang:	1.50 <i>(ft)</i>

Deck (Cont'd)Deck concrete:Total deck thickness:(in)Deck crack control parameter:(kip/in)Sustained modular ratio factor:3.000Railing							
	1.10	Measure	Measured	Distance	Distance	Front Face	
Name	Load Case	То	From	At Start	At End	Orientation	
Conc Guar Conc Guar	DC1 - R DC1 - R		Left Ed Bight E	0.00 0.00	0.00 0.00	Right Left	
Sidewalk	DC1 - K		Right E	0.00	0.00	Len	
Width	Thickness	Material	Load Case	Measure to	Measured H	From	At Start
Width	At End	Waterial	Loud Case	Wiedsure to	Wiedsured I	TOIL	It Start
60.0000	11.4375	Class A	DC1 - C		Left Ed	0.00	
24.0000	10.5630	Class A	DC1 - C		Right E	0.00	•••
Lane Position					e		
Offset Left Sta	art:	-13.00 <i>(ft)</i>					
Offset Left Er	nd:	-13.00 <i>(ft)</i>					
Offset Right S	Start:	0.00 <i>(ft)</i>					
Offset Right E	End:	0.00 <i>(ft)</i>					
Offset Left Sta		13.00 <i>(ft)</i>					
Offset Left Er	ıd:	13.00 <i>(ft)</i>					
Offset Right S		0.00 <i>(ft)</i>					
Offset Right E		0.00 (ft)					
Wearing Surfa							
Wearing surfa	ce material:	Asphalt					
Description:			Wearing Sur	face			
Wearing surfa							
Wearing surfa	ce density:	145.000					
Load case:		DW - A.	W.S.				
Load Case Description							
Load Case Na		Descrip	otion		Stage	Type Tin (Days)	me
DC1 - Railing	-	DC acti	ng on non-co	omp	Non-con	nposite (Sta	. D,DC
DC1 - Curb			ng on non-co	-		nposite (Sta	
DW - A.W.S.			ing on long-	-		ite (long te	

Superstructure Loads

Stage 1 Dead Load Distribution: Tributary Area Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name: **PS Conc Stress Limits** Description:

Concrete material: Class P (5000)	
Initial allowable tension (LFD):	0.190 (ksi)
Initial allowable compression (LFD):	2.400 (ksi)
Final allowable slab compression (LFD):	(ksi)
Final allowable tension (LFD):	0.425 (ksi)
Final allowable DL compression (LFD):	2.000 (ksi)
Final allowable compression (LFD):	3.000 (ksi)
Final allowable compression $(LL + 1/2(Pe+I))$	DL)) (LFD):2.000 (ksi)
Initial allowable tension (LRFD):	0.190 (ksi)
Initial allowable compression (LRFD):	2.600 (ksi)
Final allowable slab compression (LRFD):	(ksi)
Final allowable tension (LRFD):	0.425 (ksi)
Final allowable DL compression (LRFD):	2.250 (ksi)
Final allowable compression (LRFD):	3.000 (ksi)
Final allowable compression $(LL + 1/2(Pe+I))$	DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name: PS Strands Properties	
General Pretress Data	
Prestressing Strand:	7/16" (7W-250) SR
Loss Method:	AASHTO Approximate
Jacking stress ratio:	0.700
Transfer stress ratio:	
Transfer time:	24.0 (Hours)
AASHTO - Dead load percent:	0.0 (%)
Loss Data - PCI	
PCI - Maturity coefficient:	
PCI - Ultimate creep loss:	(ksi)
PCI - Ultimate shrinkage loss:	(ksi)
PCI - Additional time 1:	(Days)
PCI - Additional time 2:	(Days)
PCI - Additional time 3:	(Days)
PCI - Additional time 4:	(Days)
PCI - Additional time 5:	(Days)
PCI - Additional time 6:	(Days)
PCI - Additional time 7:	(Days)
PCI - Additional time 8:	(Days)
PCI - Additional time 9:	(Days)
PCI - Additional time 10:	(Days)
Loss Data - Lump-sum	
Lump-sum - Composite loss:	(ksi)
Lump-sum - Continuous loss:	(ksi)
Lump-sum - Final loss:	(ksi)

Shear Reinforcement Definitions - Vertical

Name:	#4 Bent Shear Reinf	•
Vertical Reinforceme	ent:	Grade 40
Vertical Rebar:		4
Number of legs (Ver	tical):	3.00

Inclination angle alpha (Vertical):

90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name:	#3 - 2'-7" long		
Reinforcement (Horz	. 1):	Grad	e 40
Rebar (Horz. 1):		3	
Number of legs (Horz	z. 1):	1.00	
Inclination angle alph	a (Horz. 1):	90.0	(Degrees)
Reinforcement (Horz	. 2):		
Rebar (Horz. 2):			
Number of legs (Horz	z. 2):		
Inclination angle alph	a (Horz. 2):	90.0	(Degrees)

Member G1 Link with: None Description:

Existing:	17"x36" EXT PSU	-
Current:	17"x36" EXT PSU	-
Number of Spa	ans: 1	L

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member Loads

<u>Member Load</u> Support Number 1 2	<u>ds - Settlement</u> Horizontal <i>(in)</i>	Vertical <i>(in)</i>	Rotatio (Radian		ise Name
Support Con General Support Number 1 2	support Support Type Pinned Roller	X Transla Fixed Free	tion	Y Translation Fixed Fixed	Z Rotation Free Free
<u>Elastic</u> Support Number 1	X Translation (<i>kip/ft</i>)	Y Transla (kip/ft)	tion	Z Rotation (kip-in/rad)	Override Computed Z Rotation

Member Alternative 17"x36" EXT PSU

Description:	
Description	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method	d: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Componen	t:
Properties:	

Analysis Method:LFDAnalysis Module:AASHTO LFDAnalysis Module Component:Properties:

Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

 Factors

 Factor Override

 LRFD:

 LFD:
 2002 AASHTO Std. Specifications(CD=0.90)

 ASD Factors

 Inventory
 Operating

 Structural steel

 Concerte

Structural steel Concrete PS Concrete Comp. PS Concrete Tens.

PS Moment Cap.
Reinforcement
Bearing Stiffener
Stirrup
Timber

Default Materials

Class A (3000)
Grade 40
Class P (5000)
Grade 40
Grade 40
7/16" (7W-250) SR

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

NA

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

<u>LRFD</u>

Distance (ft)	Length	Туре	1 Lane	Multi-Lane
0.00	38.500	Deflectio	0.100	0.100
0.00	38.500	Moment	0.100	0.100
0.00	38.500	Shear	0.100	0.100

Shrinkage/Time

Deck curing method:Moist-curedDeck drying time:3.000 (Days)Consider deck differential shrinkage loads:FALSEBeam Curing method:Steam-curedCuring time:20.00 (Days)Service life:75.00 (Years)Analysis time:54.00 (Years)Composite time:60.00 (Days)Continuous time:45.0 (Days)

Beam Details

Span Span	Use Projec	6" PSU	Concrete Mate n Creep Class P (5000 6.64		Prestress PS Strand	Properties ds Pr	Left Projection (in) (in) 8.5000	Right n 8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>			rt Distance ht, SR	e		
Stress	Limit Limit	Ranges ss Lim	Span 1	Start I (<i>ft</i>) 0.0	Distance 00		Length (<i>ft</i>) 39.92	
Deck Interfa Deck	Interfac interface ace widt cohesion friction	e type: h: n factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti Span No.	nuity D Materi Bar	iaphragm ial	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	nce
Presti	ressing	Force Informa	<u>ation</u>					

Strand Layout

Span	Pos.		Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left Right	1	1	Straight/Debo	onded		
1	Left Right	1	2	Straight/Debo	onded		

1	Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right Left	1	5	Straight/Debonded
1	Right	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right	1	9	Straight/Debonded
1	Left Right	1	10	Straight/Debonded
1	Left Right	1	11	Straight/Debonded
1	Left Right	1	12	Straight/Debonded
1	Left Right	1	13	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left Right	1	15	Straight/Debonded
1	Left Right	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	Left Right			-
	Left Right	2	2	Straight/Debonded
1	Left	2	3	Straight/Debonded

1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length

		(ft)		(in)
#3 - 2'-7" long	1	0.21	4	6.0000
#3 - 2'-7" long	1	2.21	1	10.5000
#3 - 2'-7" long	1	3.08	27	15.0000
#3 - 2'-7" long	1	36.83	1	10.5000
#3 - 2'-7" long	1	37.71	4	6.0000

(ft)

Member G2 Link with: None

Link with: None Description:

Existing:	17"x36" INT PSU ·	-
Current:	17"x36" INT PSU ·	-
Number of Spa	ans:	1

Span	Span Length
Number	(ft)
1	38.500000

Support	Frame Connection
1	
2	

Pedestrian load: (lb/ft)

Member Loads

Member Load Support Number 1 2		Vertical (in)	Rotatio (Radian		Load Case	e Name
<u>Support Con</u>	<u>straints</u>					
<u>General</u> Support Number 1 2	Support Type Pinned Roller	X Translat Fixed Free	tion	Y Tran Fixed Fixed	nslation	Z Rotation Free Free
Elastic Support Number 1 2	X Translation (kip/ft)	Y Translat (kip/ft)	tion	Z Rota (kip-in/		Override Computed Z Rotation
Member Alt Descriptio Descriptio		x36" INT PS	SU			

Description Material Type:

Prestressed Concrete

Girder Type: **PS** Precast Box Member units: US Customary Girder property input method: Schedule based Additional Self Load: (kip/ft) Additional Self Load %: 1.0 (%) Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: **Properties:** Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: **Properties:** Analysis Method: LRFR AASHTO LRFR Analysis Module: Analysis Module Component: **Properties:** Analysis Method: **Distribution Factors** Analysis Module: Legacy BrR Dist Fact Analysis Module Component: **Properties:** Default rating method: LRFR LRFD shear computation method: **General Procedure** Factors Factor Override LRFD: 2002 AASHTO Std. Specifications(CD=0.90) LFD: ASD Factors Inventory Operating Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement **Bearing Stiffener** Stirrup

NA

Timber

Default Materials

Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

<u>Impact</u>	
Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.167	0.167	0.167	0.167
Multi-Lane	0.167	0.167	0.167	0.167

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.167	0.200
0.00	38.500	Moment	0.167	0.200
0.00	38.500	Shear	0.167	0.200

<u>Shrinkage/Time</u>

<u>Shrinkage/Time</u>			
Deck curing meth	od:	Moist-cured	
Deck drying time:	3.000	(Days)	
Consider deck dif	ferentia	al shrinkage loads:	FALSE
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	
Analysis time:	54.00	(Years)	
Composite time:	60.00	(Days)	
Continuous time:	45.0 ((Days)	

Beam Details

Span	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n			
				Projection	l
	Projection	Creep			

1 17": TRU	x36" PSU JE	Class P (5000 6.64) I	PS Strand	ls Pr	(in) (in) 8.5000	8.5000
Continuou Support Number 1 2	s Support Detai Support Dista on Left, SL <i>(in)</i>		Support on Right <i>(in)</i>	Distance t, SR	2		
Stress Lim Stress Limi PS Conc St	t	Span 1	Start Dis (ft) 0.000			Length (<i>ft</i>) 39.92	
Slab Interf Deck interf Interface w Deck cohes Deck frictio	ace type: idth: ion factor:	Monolithic (<i>in</i>) 0.400 (<i>ksi</i>) 1.400					
·	Diaphragm erial	Left Support Distance Bar	Bar Count	Bar Size	Right Supj Material Co	port Dista ount Size	ance

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	4	Straight/Debo	onded		
	Right						

1	Left	1	5	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right	1	11	Straight/Debonded
1	Right	1	12	Straight/Debonded
1	Right	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right	2	1	Straight/Debonded
1	Left Right	2	2	Straight/Debonded
1	Left Right	2	3	Straight/Debonded
1	Left Right	2	4	Straight/Debonded
1	Left Right Left	2	5	Straight/Debonded

1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.95	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Span No	Start Distance	Number Spaces	Spacing	Composite Length
	(ft)		(in)	(ft)
1	0.21	4	6.0000	
1	2.21	1	10.5000	
1	3.08	27	15.0000	
1	36.83	1	10.5000	
1	37.71	4	6.0000	
	1	No Distance (ft) 1 0.21 1 2.21 1 1 3.08 1 1 36.83 1	No Distance Spaces (ft) 1 0.21 4 1 2.21 1 1 3.08 27 1 36.83 1	IDistanceSpaces (f) (in) 10.2140.21112.21110.500013.0827136.83110.5000

Member G3 Link with: None

Link with: None Description:

Existing: 17"x36" INT PSU - w/ Conc Repair Only -Current: 17"x36" INT PSU - w/ Conc Repair Only -Number of Spans: 1

Span	Span Length
Number	(<i>ft</i>)
1	38.500000
Support 1 2	Frame Connection

Pedestrian load: *(lb/ft)*

Member Loads

Member Load	Member Loads - Settlement							
Support	Horizontal	Vertical	Rotatio	nal Load Case	e Name			
Number	(in)	(in)	(Radians	s)				
1								
2								
<u>Support Con</u>	<u>straints</u>							
<u>General</u>								
Support	Support							
Number	Туре	X Transla	tion	Y Translation	Z Rotation			
1	Pinned	Fixed		Fixed	Free			
2	Roller	Free		Fixed	Free			
<u>Elastic</u>								
Support	X Translation	Y Transla	tion	Z Rotation	Override Computed			
Number	(kip/ft)	(kip/ft)		(kip-in/rad)	Z Rotation			
1								
2								

Member Alternative 17"x36" INT PSU - w/ Conc Repair Only

Prestressed Concrete
PS Precast Box
US Customary
Schedule based
(kip/ft)
1.0 (%)

Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: Properties:

Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

 Factors

 Factor Override

 LRFD:

 LFD:

 ASD Factors

 Inventory

 Operating

 Structural steel

Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup Timber

NA

Default Materials

Deck concrete: Deck reinforcement: Beam concrete: Beam reinforcement:

Class A (3000) Grade 40 Class P (5000) Grade 40

Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

<u>Impact</u>

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	1.000	1.000	1.000	1.000
Multi-Lane	1.000	1.000	1.000	1.000

LRFD

Distance (ft)	Length	Туре	1 Lane	Multi-Lane
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Deck curing method	od:		Moist-cured	
Deck drying time:	3.000	(Days)		
Consider deck diff	ferentia	ıl shrink	age loads:	FALSE
Beam Curing met	nod:		Steam-cured	
Curing time:	20.00	(Days)		
Service life:	75.00	(Years)		
Analysis time:	54.00	(Years)		
Composite time:	60.00	(Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
-	Use	n	-		-
				Projection	ı
	Projection	Creep		5	
	5	1		(in) (in)	
1	17"x36" PSU TRUE	Class P (5000 6.64	PS Strands Pr	8.5000	8.5000

Continuous Support Details

Support Support Distance Support Distan	ice

Number	on Left, SL		on Right,	, SR		
1	(in)		(in)			
2						
Stress Limit	Ranges					
Stress Limit		Span	Start Dis	tance		Length
PS Conc Stree	ss Lim	1	(ft) 0.000			(ft) 39.92
Slab Interfac	e					
Deck interfac	· 1	Monolithic				
Interface widt		<i>(in)</i>				
Deck cohesion Deck friction		0.400 <i>(ksi)</i> 1.400				
Deck metion	lactor.	1.400				
Continuity D	aphragm					
· ·	1 0	Left Support			Right Supp	ort
Span Mater	ial	Distance	Bar	Bar	Material	Distance
Bar		Bar		~ •		
No.			Count	Size	Cou	int Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left Right	1	1	Straight/Debo		(11)	(11)
1	Left Right	1	2	Straight/Debo	onded		
1	Left Right	1	3	Straight/Debo	onded		
1	Left Right	1	4	Straight/Debo	onded		
1	Left Right	1	5	Straight/Debo	onded		
1	Left Right	1	12	Straight/Debc	onded		

1	Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right	3	16	Straight/Debonded
	Left Right			

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636

1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start		Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G4

Link with: G3 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member G5

Link with: G3 Description:

Existing: Current: Number of Spans:

1

	Span Number 1	Span Length (<i>ft</i>) 38.500000	
	Support 1 2	Frame Connection	
	Pedestrian loa	d: (<i>lb/ft</i>)	
M	ember G6 Link with: G3 Description:		
	Existing: Current: Number of Sp	ans:	1
	Span Number 1	Span Length (<i>ft</i>) 38.500000	
	Support 1 2	Frame Connection	
	Pedestrian loa	d: (<i>lb/ft</i>)	
M	ember G7 Link with: G3 Description:		
	Existing: Current: Number of Sp	ans:	1
	Span Number 1	Span Length (ft) 38.500000	
	Support 1 2	Frame Connection	
	Pedestrian loa	d: (<i>lb/ft</i>)	
M	ember G8 Link with: No	ne	

Link with: None

Description:

Existing:	17"x36" INT PSU	-
Current:	17"x36" INT PSU	-
Number of Spa	ans:	1

Span Length
(ft)
38.500000

Support	Frame Connection
1	
2	

Pedestrian load: (lb/ft)

Member Loads

Member Load Support Number 1 2	ls - Settlement Horizontal <i>(in)</i>	Vertical (in)	Rotatio (Radian		Load Case	e Name
Support Con General Support Number 1 2	<u>straints</u> Support Type Pinned Roller	X Transla Fixed Free	tion	Y Tran Fixed Fixed	nslation	Z Rotation Free Free
Elastic Support Number 1 2	X Translation (<i>kip/ft</i>)	Y Transla (kip/ft)		Z Rota (kip-in/i		Override Computed Z Rotation
Member Alternative 17"x36" INT PSU						

Description:

Description.	
<u>Description</u>	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input meth	od: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Compone	ent:

Properties:

Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

Factors Factor Override LRFD: 2002 AASHTO Std. Specifications(CD=0.85) LFD: ASD Factors Operating Inventory Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement **Bearing Stiffener** Stirrup NA Timber **Default Materials** Deck concrete: Class A (3000) Deck reinforcement: Grade 40 Class P (5000) Beam concrete: Beam reinforcement: Grade 40 Stirrup reinforcemt: Grade 40 Prestressing strand: 7/16" (7W-250) SR

Impact

Standard - AASHTO
15.0 (%)
33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	1.000	1.000	1.000	1.000
Multi-Lane	1.000	1.000	1.000	1.000

LRFD Distance	Length	Туре	1 Lane	Multi-Lane
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Shrinkage/ rinie				
Deck curing meth	od:		Moist-cured	
Deck drying time:	3.000	(Days)		
Consider deck dif	ferentia	al shrink	age loads:	FALSE
Beam Curing met	hod:		Steam-cured	
Curing time:	20.00	(Days)		
Service life:	75.00	(Years)		
Analysis time:	54.00	(Years)		
Composite time:	60.00	(Days)		
Continuous time:	45.0 ((Days)		

Beam Details

Span Details

~ p					
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n		D	
		C		Projection	1
	Projection	Creep			
				(in) (in)	
1	17"x36" PSU	Class P (5000	PS Strands Pr	8.5000	8.5000
	TRUE	6.64			

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	<i>(in)</i>	<i>(in)</i>
1		

2

Stress Limit Ranges					
Stress Limit	Span	Start Dist	tance		Length
PS Conc Stress Lim	1	(ft) 0.000			(ft) 39.92
Slab Interface					
Deck interface type:	Monolithic				
Interface width:	<i>(in)</i>				
Deck cohesion factor:	0.400 <i>(ksi)</i>				
Deck friction factor:	1.400				
Continuity Diaphragm					
	Left Support			Right Sup	L
Span Material	Distance	Bar	Bar	Material	Distance
Bar	Bar				
No.		Count	Size	Co	unt Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left	1	1	Straight/Debo	• •	()	()
1	Right Left Right	1	2	Straight/Debo	onded		
1	Left Right	1	3	Straight/Debo	onded		
1	Left Right	1	4	Straight/Debo	onded		
1	Left Right	1	5	Straight/Debo	onded		
1	Left Right	1	12	Straight/Debo	onded		
1	Left Right	1	13	Straight/Debo	onded		

1	Left	1	14	Straight/Debonded
1	Left Right Left Right	1	15	Straight/Debonded
1	Left	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	C	2	2	Straight/Debonded
1	Left Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right	3	1	Straight/Debonded
1	Left Right Left	3	7	Straight/Debonded
1	Right	3	10	Straight/Debonded
1	Left Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
Kennoreement	110	(ft)	Spaces	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	00
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G9 Link with: G8

Link with: G8 Description:

Existing:	17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -
Current:	17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -
Number of Spa	ns: 1

SpanSpan LengthNumber(ft)138.500000

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member G10

Link with: None Description:

Existing:	17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -
Current:	17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -
Number of Spa	ans: 1

SpanSpan LengthNumber(ft)

1 38.500000

Support	Frame Connection
1	
2	

Pedestrian load: (*lb/ft*)

Member Loads

Member Load Support Number 1 2	ls - Settlement Horizontal (in)	Vertical (in)	Rotatic (Radian		Load Case	e Name
Support Con General Support Number 1 2	straints Support Type Pinned Roller	X Transla Fixed Free	tion	Y Tran Fixed Fixed	slation	Z Rotation Free Free
<u>Elastic</u> Support Number 1 2	X Translation (kip/ft)	Y Transla (kip/fi)	tion	Z Rota (kip-in/r		Override Computed Z Rotation

Member Alternative 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

Description:	
Description	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input meth	od: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Compone	ent:
Properties:	
-	

Analysis Method:	LFD
Analysis Module:	AASHTO LFD
Analysis Module Comp	onent:
Properties:	

Analysis Method: LRFD

Analysis Module: Analysis Module Component Properties:	
5	LRFR AASHTO LRFR :
	Distribution Factors Legacy BrR Dist Fact :
Default rating method: LRFD shear computation met	LRFR chod: General Procedure
<u>Factors</u> Factor Override LRFD: LFD: ASD Factors	2002 AASHTO Std. Specifications(CD=0.90)
Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup	Inventory Operating
Timber	NA
Default Materials Deck concrete: Deck reinforcement: Beam concrete: Beam reinforcement: Stirrup reinforcemt: Prestressing strand:	Class A (3000) Grade 40 Class P (5000) Grade 40 Grade 40 7/16" (7W-250) SR
Impact Standard Impact Factor Type:	Standard - AASHTO
<i>LRFD Dynamic Load Allowa</i> Fatigue and fracture limit stat All other limit states:	
Live Load Distribution	

Standard

Distribution Factor (Wheels)

Lanes Loaded 1 Lane Multi-Lane	Shear 0.527 0.527	Shear at Supports 0.000 0.000	Moment 0.527 0.527	Deflection 0.182 0.364
LRFD Distance (ft) 0.00	Length (<i>ft</i>) 38.500	Type Moment	1 Lane 0.254	Multi-Lane 0.256
0.00 0.00	38.500 38.500	Shear Deflectio	0.254 0.109	0.256 0.182

<u>Shrinkage/Time</u>			
Deck curing meth	od:	Moist-cured	
Deck drying time:	3.000 (Days)		
Consider deck dif	ferential shrink	age loads:	FALSE
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00 (Days)		
Service life:	75.00 (Years)		
Analysis time:	54.00 (Years)		
Composite time:	60.00 (Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span	Details					
Span	Prestress Shape	Concrete Mat	erial	Prestress Properties	Left	Right
	Use	n			Projection	1
	Projection	Creep				
1	17"x36" PSU TRUE	Class P (5000 6.64)	PS Strands Pr	(in) (in) 8.5000	8.5000
Conti Suppo	nuous Support Detai		Suppo	ort Distance		
Numb				ght, SR		
	<i>(in)</i>		(in)	-		
1						
2						
Stress	s Limit Ranges					
	Limit	Span		Distance	Length	
DS Co	onc Stress Lim	1	<i>(ft)</i> 0.0	000	(ft) 39.92	
rsco	nic Suess Lini	1	0.0	00	37.72	

Slab Interface

Deck interface type:	Monolithic		
Interface width:	(in)		
Deck cohesion factor:	0.400 <i>(ksi)</i>		
Deck friction factor:	1.400		

Continuity Diaphragm

Conti	nuity Diaphragm					
		Left Support			Right Support	;
Span	Material Bar	Distance Bar	Bar	Bar	Material	Distance
No.			Count	Size	Count	Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance (in)	Harp Curvature <i>(in)</i>
1	Left Right	1	1	Straight/Deb	•	(111)	(111)
1	Left	1	2	Straight/Deb	onded		
1	Right Left	1	3	Straight/Deb	onded		
1	Right Left	1	4	Straight/Deb	onded		
1	Right Left	1	5	Straight/Deb	onded		
1	Right Left	1	12	Straight/Deb	onded		
1	Right Left	1	13	Straight/Deb	onded		
1	Right Left	1	14	Straight/Deb	onded		
1	Right Left	1	15	Straight/Deb	onded		
1	Right Left	1	16	Straight/Deb	onded		

1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE

#4 Bent Shear R... 1

37.71 4

FALSE

6.0000

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		<i>(in)</i>	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G11

Link with: G1 Description:

Existing: Current: Number of Spans: 1

SpanSpan LengthNumber(ft)138.500000

Support Frame Connection 1

2

Pedestrian load: (*lb/ft*)

Username: BrR Date: Wednesday, September 22, 2021 10:06:29

Bridge ID 874294 Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID (8): 874294

Description: Rating by YRA, from As-built plans, 9/14/2021

Three spans (30'-40'-30') non-composite PS Concrete voided slab unit superstructure comprised of eleven (11) 17"x36" units. Deck width is 35'-0" out-to-out with a 26'-0" clear roadway width. Wearing surface is present along the bridge with an average thickness of 1.167" along end spans 1 and 3, and 1.292" for interior span 2.

The load rating analysis for the prestressed voided slab units was initially performed using the Load and Resistance factor Rating methodology in accordance with the AASHTO LRFD Bridge Design Specifications (9th edition, 2020), the Manual for Bridge Evaluation (3rd edition with interims through 2019), and the FDOT Bridge Load Rating Manual (January 2021). However, the resulting design and legal rating factors were less than 1, which granted the need to evaluate the structure using the Load Factor Rating methodology.

Matheson Hammock Park
100.33 <i>(ft)</i>
Matheson Hmk Road
00000
Matheson Hammock Canal
0.08 (<i>mi</i>)
US Customary
1967
11
District 6
County Hwy Agency
0 Not on NHS
09 Rural Local
0.000 (ft)
0.000 (ft)
(ft)
80.26 (Degrees)
25.68 (Degrees)

Materials

No steel materials.

Concrete

Name:Class P (5000)Description:Class 5000 cement concreteSpecified compressive strength at 28 days (fc):5.000 (ksi)

Initial specified comp Coefficient of therma Density (for dead load Density (for modulus Std Modulus of elasti LRFD Modulus of elasti Poisson's ratio: Modulus of rupture: Shear factor: Composition of conce Std Initial modulus of LRFD Initial modulus	ds): of elasticity): city (Ec): asticity (Ec): rete: f elasticity (Eci): s of elasticity (Eci):	4.000 (ksi) 0.0000060000 (1/F) 0.150 (kcf) 0.145 (kcf) 4074.28 (ksi) 4291.19 (ksi) 0.200 0.537 (ksi) 1.000 Normal 3644.15 (ksi) 3986.55 (ksi) (ksi)
Name:	Class A (3000)	
Description: Specified compressiv	Class A cement concrete (30 e strength at 28 days (fc): oressive strength (fci): l expansion: ds): of elasticity): city (Ec): asticity (Ec): rete: f elasticity (Eci): s of elasticity (Eci):	00 psi) 3.000 (ksi) (ksi) 0.0000060000 (1/F) 0.150 (kcf) 0.145 (kcf) 3150.39 (ksi) 3617.02 (ksi) 0.200 0.416 (ksi) 1.000 Normal (ksi) (ksi) (ksi)
Reinforcing Steel		
Name: Description: Specified yield streng Modulus of elasticity Ultimate strength (Fu Type:	(Es):	40.000 <i>(ksi)</i> 29000.00 <i>(ksi)</i> 70.000 <i>(ksi)</i> Plain
Duastucesing Stuand		
Prestressing Strand		
Name: Description: Specified yield streng Ultimate Tensile stren Modulus of elasticity Load per unit length: Cross sectional area (Nominal diameter (d) Transfer length (Std): Transfer length (LRF)	ngth (Fu): (Es): A):	Wire/fpu = 250 212.500 (ksi) 250.000 (ksi) 28500.00 (ksi) 0.367 (lb/ft) 0.108 (in^2) 0.4375 (in) 21.8750 (in) 26.2500 (in)

Type: Epoxy coated:

No timber materials.

Beam Shapes

Steel Shapes

No steel shapes.

Prestressed Shapes

No prestressed I shapes.

Prestressed Box Shapes

Name:	17"x36" PSU			
Description:	17"x36" Prestress	ed Slab Unit for unit	ts E thru G	
Туре:		Circular	Void	
Nominal Depth:		17.0000	<i>(in)</i>	
Depth (d):		17.0000	<i>(in)</i>	
Top flange width:		35.0000	<i>(in)</i>	
Bottom flange width	1:	36.0000	<i>(in)</i>	
Three-void (D1, D2,	, D1) shape:	FALSE		
Circular void diama	ter:	10.0000	<i>(in)</i>	
Distance to CG of v	oid(s) from bottom:	9.0000	(in)	
Number of circular	voids:	2		
Center to center dist	ance of voids:	16.0000	(in)	
Vertical location of	shear key:	2.0000		
Shear key height:		6.0000		
Shear key depth:		1.5000		
Nominal load:		457.107	(<i>lb/ft</i>)	
Cross sectional area	:	438.822	(in^2)	
Ixx:		13330.1	01 <i>(in^4)</i>	
CG from bottom:		8.1667	No. 2	
Bottom Sxx:		1632.24		
Top Sxx:		1509.07	'8 (in^3)	
Volume/Surface Rat		3.175 (1	in)	
Half Depth Area for		(in^2)		
Half Depth Area for		(in^2)		
St. Venant's Torsion	nal Constant:	14593.7	72 <i>(in^4)</i>	
Strand Grid				
Row Number N	Sumber of Strands	Vertical Location	Horizontal Spacing	
1 1	6	(in) 2.5000	(in) 2.0000	
1 1	0	2.2000	2.0000	

Stress Relieved FALSE

2	6	4.5000	2.0000
3	16	14.5000	2.0000

No prestressed U shapes.

No prestressed tee shapes.

Timber Shapes

No timber shapes.

Appurtenances

No concrete railings.

Railings

Name:	Conc Guardrail w/ metal Post and Rail			
Description:	Conc. Post and beam guardrail with post and tube rail mounted			
Effective Wind Heigh	:: 36.0000 <i>(in)</i>			
Railing Load:	0.166 (kip/ft)			
Distance From Edge	• Centroid: 5.0000 (in)			
Width:	10.0000 <i>(in)</i>			

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Factors

Factors - LFD

Name: Description: Edition, 2002 2002 AASHTO Std. Specifications AASHTO Standard Specifications for Highway Bridges, 17th

Load Factors Load Group Inventory Operating	Gamma 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group	SF	W	WL	LF	R+S+T	EQ	ICE
Inventory	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Operating	1.000	0.000	0.000	0.000	0.000	0.000	0.000

Resistance Factors	
Reinforced concrete:	
Flexure:	0.900
Reinforced concrete:	
Shear:	0.850
Prestressed concrete:	
Flexure:	1.000
Prestressed concrete:	
Shear:	0.900
Prestressed concrete:	
Flexure in Non-P/S Components:	0.900
Steel:	
Flexure:	1.000
Steel:	
Shear:	1.000
Steel:	
Bearing Stiffeners:	1.000
Name:	2002 AASHTO Std. Specifications(CF=0.9)
Description:	AASHTO Standard Specifications for Highway Bridges,
17th Edition, 2002	

Load Factors

Bearing Stiffeners:

Name: Description:

Load Group	Gamm	a D		(L+I)p		E	В
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
Operating	1.300	1.000	1.000	0.000	1.000	1.000	1.000
I 10	CT.		XX / I	τr	DICIT		ICE
Load Group	SF	W	WL	LF	R+S+T	~	ICE
Inventory	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Operating	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Resistance Fa	ctors						
Reinforced co							
Flexure:				0.810			
Reinforced concrete:							
Shear: 0.765							
Prestressed concrete:							
Flexure:			0.900				
Prestressed concrete:							
Shear:	0.810						
Prestressed co							
Flexure in N	0.810						
Steel:							
Flexure:	0.900						
Steel:							
Shear:			0.900				
Steel:							

0.900

2002 AASHTO Std. Specifications(CF=0.95) AASHTO Standard Specifications for Highway Bridges, 17th Edition, 2002

Load Factors Load Group Inventory Operating	Gamma 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group Inventory Operating	SF 1.000 1.000	W 0.000 0.000	WL 0.000 0.000	LF 0.000 0.000	R+S+T 0.000 0.000	EQ 0.000 0.000	ICE 0.000 0.000
Resistance Fac Reinforced co Flexure:	ncrete:			0.855			
Reinforced co Shear:	ncrete:			0.807			
Prestressed co Flexure:				0.950			
Prestressed co Shear:	ncrete:			0.855			
Prestressed co Flexure in N Steel:		Compone	ents:	0.855			
Flexure:				0.950			
Steel: Shear:				0.950			
Steel: Bearing Stiff	on ors.			0.950			
Name: Description: 17th Edition, 2				2002			pecifications(CF=0.85) pecifications for Highway Bridges,
Load Factors Load Group Inventory Operating	Gamma 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group	SF	W	WL	LF	R+S+T		ICE
Inventory Operating	$1.000 \\ 1.000$	$\begin{array}{c} 0.000\\ 0.000 \end{array}$	$0.000 \\ 0.000$	0.000 0.000			
Resistance Fac Reinforced co Flexure:				0.765			
Reinforced concrete: Shear:				0.723			

0.850

Flexure: Prestressed concrete:

Prestressed concrete:

Shear:	0.765
Prestressed concrete: Flexure in Non-P/S Components:	0.765
Steel:	
Flexure: Steel:	0.850
Shear: Steel:	0.850
Bearing Stiffeners:	0.850

No LRFD Factors specified.

Bridge Alternatives End Span 1 (or 3) - Bridge Alt.

Reference Line	
Reference Line Length:	(ft)
Starting Station:	(ft)
Bearing:	N 90^ 0' 0.00" E
Global Positioning	
Distance:	0.000 (ft)
Offset:	0.000 (ft)
Elevation:	(ft)

Structures

Name: Exist. EXT Span 1(or 3) SuperStr Description:

Structure Alternatives

Name: Exist. END Span 1(or 3) Alt. Description: Superstructure Definition: End Span 1 (or 3) - PS Conc PSU

Bridge Alternatives INT Span 2 - Bridge Alt.

Reference Line	
Reference Line Length:	(ft)
Starting Station:	(ft)
Bearing:	N 90^ 0' 0.00" E
Global Positioning	
Distance:	0.000 (ft)
Offset:	0.000 (ft)
Elevation:	(ft)

Structures

Name: Exist. INT Span 2 Superstruct.

Description:

Structure Alternatives Name: Exist. INT Span 2 Alt. Description: Superstructure Definition: INT Span 2 - PS Conc PSU

Superstructure Definition End Span 1 (or 3) - PS Conc PSU

Definition Units: **US** Customary Number of spans: 1 Number of girders: 11 Length Span (ft)28.2917 1 Frame Structure Simplified Definition: Support Frame Connection 1 2 Girder Spacing Display Type: Perpendicular Average Humidity: 70.000 (%) Analysis Default Library Factors Factor Override Analysis Module ASD Analysis Method: Analysis Module: Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: Analysis Module Component: **Properties:** Analysis Method: LRFD Analysis Module: Analysis Module Component: **Properties:** Analysis Method: LRFR Analysis Module: Analysis Module Component: **Properties:** Analysis Method: **Distribution Factors**

Analysis Module:

Analysis Module Component: Properties:

Default rating method: LFD

Impact

Standard - AASHTO
15.0 (%)
33.0 (%)

Structure Framing Plan Details

<u>Layout</u>		
	Skew	
Support	(Degrees)	
1	0.0000	
2	0.0000	
Girder Spacing C	Drientation:	Perpendicular

Girder	Girder Spacing	
Bay	Start	End
	(ft)	(ft)
1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

<u>Diaphragms</u>

Girder Bay 1 Girder Bay 2 Girder Bay 3 Girder Bay 4 Girder Bay 5 Girder Bay 6 Girder Bay 7 Girder Bay 8 Girder Bay 9 Girder Bay 10

Structure Typical Section

<u>Deck</u>	
Left start width:	18.00 <i>(ft)</i>
Left end width:	18.00 <i>(ft)</i>

Right start wid Right end wid Left start over Left end overh	th: hang:	15.00 (ft 15.00 (ft 1.50 (ft) 1.50 (ft)					
Deck (Cont'd) Deck concrete Total deck thi Deck crack co Sustained moo <u>Railing</u>	: ckness: ntrol parame						
Name Conc Guar Conc Guar <u>Sidewalk</u>	Load Case DC1 - R DC1 - R	Measure To	Measured From Left Ed Right E	Distance At Start 0.00 0.00	Distance At End 0.00 0.00	Front Face Orientation Right Left	L
Width	Thickness At End	Material	Load Case	Measure to	Measured H	rom	At Start
60.0000 24.0000 <u>Lane Position</u>	11.4375 10.5630	Class A Class A	DC1 - C DC1 - C		Left Ed Right E	0.00 0.00	
Offset Left Sta Offset Left En		-13.00 <i>(ft)</i> -13.00 <i>(ft)</i>					
Offset Right S		-13.00 (ft) 0.00 (ft)					
Offset Right E		0.00 (t) 0.00 (ft)					
Offset Left Sta		13.00 <i>(ft)</i>					
Offset Left En		13.00 (<i>ft</i>)					
Offset Right S		0.00 (ft)					
Offset Right E		0.00 (ft) 0.00 (ft)					
Wearing Surfa		0.000 (1)					
Wearing surfa		Asphalt					
Description:		-	Wearing Sur	face			
Wearing surfa	ce thickness		-				
Wearing surfa		145.000	(pcf)				
Load case:	·	DW - A.	W.S.				
Load Case D							
Load Case Na	me	Descrip	tion		Stage	Type Tin (Days)	me
DC1 - Railing	-	DC acti	ng on non-co	omp	Non-con	nposite (Sta	D,DC
DC1 - Curb			ng on non-co	-		nposite (Sta	
DW - A.W.S.		DW act	ing on long-	ter		ite (long te	

Superstructure Loads

DL Distribution Stage 1 Dead Load Distribution: Tributary Area Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name:

PS Conc Stress Limits

Description:	
Concrete material: Class P (5000)	
Initial allowable tension (LFD):	0.190 <i>(ksi)</i>
Initial allowable compression (LFD):	2.400 <i>(ksi)</i>
Final allowable slab compression (LFD):	(ksi)
Final allowable tension (LFD):	0.425 <i>(ksi)</i>
Final allowable DL compression (LFD):	2.000 (ksi)
Final allowable compression (LFD):	3.000 (ksi)
Final allowable compression $(LL + 1/2(Pe+DL))$ (L	LFD):2.000 (ksi)
Initial allowable tension (LRFD):	0.190 <i>(ksi)</i>
Initial allowable compression (LRFD):	2.600 (ksi)
Final allowable slab compression (LRFD):	(ksi)
Final allowable tension (LRFD):	0.425 <i>(ksi)</i>
Final allowable DL compression (LRFD):	2.250 (ksi)
Final allowable compression (LRFD):	3.000 (ksi)
Final allowable compression $(LL + 1/2(Pe+DL))$ (L	LRFD): 2.000 (ksi)

Prestress Properties

Name:	PS Strands Properties	
General Pretress Data	<u>1</u>	
Prestressing Strand:		7/16" (7W-250) SR
Loss Method:		AASHTO Approximate
Jacking stress ratio:		0.700
Transfer stress ratio:		
Transfer time:		24.0 (Hours)
AASHTO - Dead loa	d percent:	0.0 (%)
Loss Data - PCI		
PCI - Maturity coeffi	cient:	
PCI - Ultimate creep	loss:	(ksi)
PCI - Ultimate shrink	tage loss:	(ksi)
PCI - Additional time	e 1:	(Days)
PCI - Additional time	e 2:	(Days)
PCI - Additional time	e 3:	(Days)
PCI - Additional time	e 4:	(Days)
PCI - Additional time	e 5:	(Days)
PCI - Additional time	e 6:	(Days)
PCI - Additional time	e 7:	(Days)
PCI - Additional time	e 8:	(Days)
PCI - Additional time	e 9:	(Days)
PCI - Additional time	e 10:	(Days)
Loss Data - Lump-su	<u>m</u>	
Lump-sum - Compos	ite loss:	(ksi)
Lump-sum - Continu	ous loss:	(ksi)
Lump-sum - Final los	SS:	(ksi)

Shear Reinforcement Definitions - Vertical

Vertical Reinforcement:	Grade 40
Vertical Rebar:	4
Number of legs (Vertical):	3.00
Inclination angle alpha (Vertical):	90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name:	#3 - 2'-7" long		
Reinforcement (Horz.	1):	Grad	e 40
Rebar (Horz. 1):		3	
Number of legs (Horz.	1):	1.00	
Inclination angle alpha	a (Horz. 1):	90.0	(Degrees)
Reinforcement (Horz.	2):		
Rebar (Horz. 2):			
Number of legs (Horz.	2):		
Inclination angle alpha	a (Horz. 2):	90.0	(Degrees)

Member G1 Link with: None Description:

Existing:	17"x36" EXT PSU	-
Current:	17"x36" EXT PSU	-
Number of Spa	ans: 1	

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member Loads

Member Load	ls - Settlement					
Support	Horizontal	Vertical	Rotati	onal	Load Case	e Name
Number	(in)	(in)	(Radiar	ns)		
1						
2						
Support Con	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Transla	tion	Y Tra	nslation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free

Elastic

Support Number 1 2	X Translation (<i>kip/ft</i>)	Y Translation (<i>kip/ft</i>)	Z Rotation (kip-in/rad)	Override Computed Z Rotation
Descripti Descripti Material Girder T Member Girder pr Addition Addition Analysis Analysis	ion Type: ype: units: roperty input metho al Self Load: al Self Load %: <i>Module</i> Method: Module: Module Componer	Prestressed Conc PS Precast Box US Customary d: Schedule bas (kip/ft) 1.0 (%) ASD AASHTO ASD		
Analysis	Method: Module: Module Componer es:	LFD AASHTO LFD nt:		
Analysis	Method: Module: Module Componer es:	LRFD AASHTO LRFD nt:		
Analysis	Method: Module: Module Componer es:	LRFR AASHTO LRFR nt:		
Analysis	Method: Module: Module Componer es:	Distribution Fact Legacy BrR Dist nt:		
	rating method: near computation me	LRFR ethod: Gener	ral Procedure	
<u>Factors</u> Factor C LRFD: LFD: ASD Fac Structura	ctors		Std. Specifications(perating	CF=0.9)

Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup Timber

NA

Default Materials

Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Impact	
Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.010	0.010	0.010	0.010
Multi-Lane	0.010	0.010	0.010	0.010

LRFD

Distance (ft)	Length	Туре	1 Lane	Multi-Lane
0.00	28.292	Deflectio	0.010	0.010
$0.00 \\ 0.00$	28.292 28.292	Moment Shear	0.010 0.010	$\begin{array}{c} 0.010\\ 0.010\end{array}$

Shrinkage/Time

Deck curing meth	od:	Moist-cured	
Deck drying time:	3.000	(Days)	
Consider deck dif	ferentia	al shrinkage loads:	FALSE
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	
Analysis time:			
Composite time:	60.00	(Days)	
Continuous time:	45.0 ((Days)	

Beam Details

Span Span	Use Projec	6" PSU	Concrete Mat n Creep Class P (5000 6.64		Prestress PS Stran	s Properties ds Pr	Left Projection (<i>in</i>) (<i>in</i>) 6.0000	Right n 8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>			rt Distanc ht, SR	e		
Stress PS Co Slab I Deck i Interfa Deck o	onc Stres Interfact interface ace widt cohesion	ss Lim e e type: h: n factor:	Span 1 Monolithic (in) 0.400 (ksi)	Start I (ft) 0.0	Distance 00		Length (<i>ft</i>) 29.50	
	friction nuity D Materi Bar	iaphragm	1.400 Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	pport Dista punt Size	nce

Prestressing Force Information

Strand Layout

Span	Pos.	Row	Col.	Config.	Harp	Debond	Harp
		No.	No.	Туре	Distance	Distance	Curvature
					(ft)	<i>(in)</i>	(in)
1		1	1	Straight/Debo	onded		
	Left						
	Right						

1	Left	1	2	Straight/Debonded
1	Right Left	1	3	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right	1	11	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left Right	1	15	Straight/Debonded
1	Left Right	1	16	Straight/Debonded
1	Left Right	3	1	Straight/Debonded
1	Left Right	3	16	Straight/Debonded
T	Left Right	5	10	Strangin Debonded

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636

	22.25	6.25	1	1.0000	0.1636
--	-------	------	---	--------	--------

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
Remoteement	110	(ft)	Spaces	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	0.7
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

1

Member G2 Link with: None Description:

Existing:	17"x36" INT PSU -	
Current:	17"x36" INT PSU -	
Number of Spa	ans: 1	l

Span	Span Length
Number	(ft)
1	28.291666

Frame Connection Support 1 2

Pedestrian load: (lb/ft)

Member Loads

Member Load	<u>ds - Settlement</u>			
Support	Horizontal	Vertical	Rotational	Load Case Name
Number	(in)	(in)	(Radians)	
1				
2				

Support Con General Support Number 1 2	nstraints Support Type Pinned Roller	X Translation Fixed Free	Y Translation Fixed Fixed	Z Rotation Free Free		
Elastic Support Number 1 2	X Translation (kip/ft)	Y Translation (<i>kip/ft</i>)	Z Rotation (kip-in/rad)	Override Computed Z Rotation		
Descripti Descripti Material Girder Ty Member Girder pr Addition Addition Analysis Analysis	on Type: ype: units: operty input metho al Self Load: al Self Load %: <i>Module</i> Method:	Prestressed Conc PS Precast Box US Customary d: Schedule bas (kip/ft) 1.0 (%) ASD				
Analysis Module: AASHTO ASD Analysis Module Component: Properties:						
Analysis Analysis Analysis Propertie	Module: Module Componer	LFD AASHTO LFD nt:				
Analysis	Method:	LRFD				

Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

<u>Factors</u> Factor Override LRFD: LFD: ASD Factors	2002 AASHT	O Std. Specificatio Operating	ns(CF=0.9)
Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup			
Timber	NA		
Default Materials Deck concrete: Deck reinforcement: Beam concrete: Beam reinforcement: Stirrup reinforcemt: Prestressing strand:	Class A (3000) Grade 40 Class P (5000) Grade 40 Grade 40 7/16" (7W-250))	
Impact Standard Impact Factor Type: <i>LRFD Dynamic Load Allowa</i> Fatigue and fracture limit stat All other limit states:	nce		
Live Load Distribution Standard			
Distribu Lanes Loaded Shear 1 Lane 0.167 Multi-Lane 0.167	tion Fa Shear at Supports 0.017 0.017	a c t o r (Wheels Moment 0.017 0.017	Deflection 0.017 0.017
LRFDDistanceLength(ft)(ft)0.0028.2920.0028.2920.0028.292	Type Deflectio Moment Shear	1 Lane 0.167 0.167 0.167	Multi-Lane 0.200 0.200 0.200

Shrinkage/Time Deck curing method:

Moist-cured

Deck drying time: 3.000 (Days)Consider deck differential shrinkage loads:FALSEBeam Curing method:Steam-curedCuring time:20.00 (Days)Service life:75.00 (Years)Analysis time:54.00 (Years)Composite time:60.00 (Days)Continuous time:45.0 (Days)							
<u>Beam</u>	<u>Details</u>						
Span Span	Details Prestress Shape Use	Concrete Mat	erial	Prestress	Properties	Left	Right
	Projection	Creep				Projection	l
1	17"x36" PSU TRUE	Class P (5000 6.64)	PS Strand	ls Pr	<u>(in) (in)</u> 6.0000	8.5000
Conti Suppo Numb 1 2			Suppor on Rig <i>(in)</i>	rt Distance ht, SR	2		
Stress	Limit Ranges Limit nc Stress Lim	Span 1	Start D (<i>ft</i>) 0.00	vistance		Length (<i>ft</i>) 29.50	
Deck i Interfa Deck o	nterface interface type: ice width: cohesion factor: friction factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti Span No.	nuity Diaphragm Material Bar	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	ace

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	<i>(ft)</i> onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debo	onded		
1	Right Left	1	7	Straight/Debo	onded		
1	Right Left	1	8	Straight/Debo	onded		
1	Right Left	1	9	Straight/Debo	onded		
1	Right	1	10	Straight/Debo	onded		
1	Left Right	1	11	Straight/Debo	onded		
1	Left Right	1	14	Straight/Debo	onded		
1	Left Right	1	15	Straight/Debo	onded		
1	Left Right	1	16	Straight/Debo			
	Left Right			-			
1	Left Right	3	1	Straight/Debo			
1	Left Right	3	16	Straight/Debo	onded		

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G3 Link with: None

Link with: None Description:

Existing:	17"x36" INT PSU -
Current:	17"x36" INT PSU -
Number of Sp	ans: 1
Span	Span Length
Number	(<i>ft</i>)
1	28.291666
Support 1 2	Frame Connection

Pedestrian load: (lb/ft)

Member Loads

Member Load Support Number 1 2	ls - Settlement Horizontal (in)	Vertical <i>(in)</i>	Rotatio (Radiar		Load Case	e Name		
Support Constraints								
General Support Number 1 2	Support Type Pinned Roller	X Transla Fixed Free	tion	Y Trai Fixed Fixed	nslation	Z Rotation Free Free		
Elastic Support Number 1 2	X Translation (kip/ft)	Y Transla (kip/ft)	tion	Z Rota (kip-in/		Override Computed Z Rotation		
Member Alt Description Description Material T	x36" INT P Prestresse		rete					

Description	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method	: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Component	
Properties:	

Analysis Method:LFDAnalysis Module:AASHTO LFDAnalysis Module Component:Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method: Analysis Module: Analysis Module Componer	Distribution Factors Legacy BrR Dist Fact ent:				
Properties:					
Default rating method: LRFD shear computation m	LRFR ethod: Gene	eral Procedure			
<u>Factors</u> Factor Override LRFD:					
LFD: ASD Factors	2002 AASHTO	Std. Specificati	ons(CF=0.9)		
	Inventory C	Operating			
Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup					
Timber	NA				
Default Materials Deck concrete: Deck reinforcement: Beam concrete: Beam reinforcement: Stirrup reinforcemt: Prestressing strand:	Class A (3000) Grade 40 Class P (5000) Grade 40 Grade 40 7/16" (7W-250)	SR			
Impact Standard Impact Factor Type: LRFD Dynamic Load Allow Fatigue and fracture limit sta All other limit states:	ance				
Live Load Distribution Standard			1 \		
Lanes D 1 S T T 1 D	ution Fa Shear at	cior (whee	-1S <i>)</i>		
Loaded Shear	Supports	Moment	Deflection		
1 Lane 1.000	1.000	1.000	1.000		
Multi-Lane 1.000	1.000	1.000	1.000		

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Moment	0.500	0.600
0.00	28.292	Shear	0.500	0.600
0.00	28.292	Deflectio	0.500	0.600

Shrinkage/Time

Deck curing method	od:	Moist-cured	
Deck drying time:	3.000	(Days)	
Consider deck diff	ferentia	al shrinkage loads:	FALSE
Beam Curing met	nod:	Steam-cured	
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	
Analysis time:	54.00	(Years)	
Composite time:	60.00	(Days)	
Continuous time:	45.0 ((Days)	

Beam Details

Span Details	Span	Details
--------------	------	---------

Span	Prestress Shape Use	Concrete Material	Prestress Properties	Left	Right
				Projection	ı
	Projection	Creep		(in) (in)	
1	17"x36" PSU TRUE	Class P (5000 6.64	PS Strands Pr	6.0000	8.5000

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	<i>(in)</i>
1		

2

Stress Limit Ranges

Stress Limit	Span	Start Distance	Length
PS Conc Stress Lim	0	<i>(ft)</i> -0.750	(ft) 29.50
Slab Interface Deck interface type: Interface width: Deck cohesion factor: Deck friction factor:	Monolithic (in) 0.400 (ksi) 1.400		
Continuity Diaphragm	Left Support		Right Support

Span	Material Bar	Distance Bar	Bar	Bar	Material	Distance
No.			Count	Size	Count	Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Laft	1	1	Straight/Debo	(ft) onded	<i>(in)</i>	<i>(in)</i>
1	Left Right	1	2	Straight/Debc	ndad		
1	Left Right	1	2	Straight Debe	maca		
1	Left	1	3	Straight/Debc	onded		
1	Right	1	6	Straight/Debc	onded		
-	Left Right	-	0	2			
1	Left	1	7	Straight/Debc	onded		
1	Right	1	8	Straight/Debc	onded		
	Left Right						
1	Left	1	9	Straight/Debc	onded		
1	Right	1	10	Straight/Debo	onded		
	Left Right						
1	Left	1	11	Straight/Debo	onded		
1	Right	1	14	Straight/Debc	onded		
1	Left Right	1	15	Straight/Debo	andad		
1	Left Right	1	15	Straight/Debt	onded		
1	Left	1	16	Straight/Debc	onded		
1	Right	3	1	Straight/Debo	onded		
-		·	-				

	Left Right		
1	3	16	Straight/Debonded
	Left Right		-

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G4 Link with: G3

Description:

Existing:

Current:		
Number of	Spans:	1

Span Span Length

Number 1	<i>(ft)</i> 28.291666
Support 1 2	Frame Connection
Pedestrian loa	nd: (<i>lb/ft</i>)
Member G5 Link with: G3 Description:	}
Existing: Current: Number of Sp	oans: 1
Span Number 1	Span Length (<i>ft</i>) 28.291666
Support 1 2	Frame Connection
Pedestrian loa	nd: (<i>lb/ft</i>)
Member G6 Link with: G3 Description:	3
Existing: Current: Number of Sp	oans: 1
Span Number 1	Span Length (<i>ft</i>) 28.291666
Support 1 2	Frame Connection
Pedestrian loa	nd: (<i>lb/ft</i>)
Member G7 Link with: G3 Description:	3

Existing: Current: Number of Spans: Span Length Span Number (ft)1 28.291666 Support Frame Connection 1 2 Pedestrian load: (lb/ft) Member G8 Link with: G3 Description: Existing: Current:

1

Number of Spans: 1

SpanSpan LengthNumber(ft)128.291666

Support Frame Connection 1 2

Pedestrian load: (*lb/ft*)

Member G9

Link with: G3 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	28.291666

Support Frame Connection 1 2

Pedestrian load: (*lb/ft*)

Member G10 Link with: None

Link with: None Description:

Existing: 17"x36" INT PSU - (w/ Post Tensioning) -Current: 17"x36" INT PSU - (w/ Post Tensioning) -Number of Spans: 1

Span	Span Length
Number	(<i>ft</i>)
1	28.291666
Support 1 2	Frame Connection

Pedestrian load: (*lb/ft*)

Member Loads

Member Load	ls - Settlement					
Support	Horizontal	Vertical	Rotatio	onal	Load Case	e Name
Number	(in)	(in)	(Radian	ıs)		
1						
2						
<u>Support Con</u>	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Transla	tion	Y Trai	nslation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free
<u>Elastic</u>						
Support	X Translation	Y Transla	tion	Z Rota	ation	Override Computed
Number	(kip/ft)	(kip/ft)		(kip-in/	rad)	Z Rotation
1						
2						

Member Alternative 17"x36" INT PSU - (w/ Post Tensioning)

Description:	
<u>Description</u>	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input metho	od: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	

Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: Properties:

Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: Properties:

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

 Factors

 Factor Override

 LRFD:

 LFD:

 ASD Factors

 Inventory

 Operating

 Structural steel

 Concrete

Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup Timber

NA

Default Materials

Deck concrete: Deck reinforcement: Beam concrete: Beam reinforcement:

Class A (3000) Grade 40 Class P (5000) Grade 40

Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

<u>Impact</u>

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.533	0.000	0.533	0.182
Multi-Lane	0.533	0.000	0.533	0.364

LRFD

Distance (ft)	Length	Туре	1 Lane	Multi-Lane
0.00	28.292 28.292	Moment Shear	0.296 0.296	0.273 0.273
0.00	28.292	Deflectio	0.290	0.182

Shrinkage/Time

Deck curing method	od:		Moist-cured	
Deck drying time:	3.000	(Days)		
Consider deck diff	ferentia	al shrink	age loads:	FALSE
Beam Curing met	nod:		Steam-cured	
Curing time:	20.00	(Days)		
Service life:	75.00	(Years)		
Analysis time:	54.00	(Years)		
Composite time:	60.00	(Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n			
		C		Projection	l
	Projection	Creep			
1	17"x36" PSU	$C_{laga} \mathbf{D} (5000)$	PS Strands Pr	(in) (in)	Q 5000
1	TRUE	Class P (5000 6.64	PS Strands PT	6.0000	8.5000

Continuous Support Details

Support	Support Distance	Support Distance
**	**	

Number	on Left, SL		on Right,	SR		
1	(in)		(in)			
2						
Stress Limit	Ranges					
Stress Limit		Span	Start Dist	tance		Length
PS Conc Stres	ss Lim	0	(<i>ft</i>) -0.750			(<i>ft)</i> 29.50
Slab Interfac	e					
Deck interface Interface widt	• •	Monolithic				
Deck cohesion		(in) 0.400 (ksi)				
Deck friction	factor:	1.400				
Continuity D	iaphragm					
		Left Support			Right Supp	ort
Span Materi	ial	Distance	Bar	Bar	Material	Distance
Bar		Bar	0	с.	C	4 G.
No.			Count	Size	Cou	nt Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left Right	1	1	Straight/Debo		(,	(,
1	Left Right	1	2	Straight/Debo	onded		
1	Left Right	1	3	Straight/Debo	onded		
1	Left Right	1	6	Straight/Debo	onded		
1	Left Right	1	7	Straight/Debo	onded		
1	Left Right	1	8	Straight/Debo	onded		

1	Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	
Member G11					

Link with: None Description:

Existing:	17"x36"	EXT	PSU (w/	Post	Tensioning) -
Current:	17"x36"	EXT	PSU (w/	Post	Tensioning) -
Number of Spa	ans:		1		

Span	Span Length
Number	(ft)
1	28.291666

Support	Frame Connection
1	

1 2

.

Pedestrian load: (*lb/ft*)

Member Loads

Member Load	s - Settlement					
Support	Horizontal	Vertical	Rotatio	onal	Load Case	Name
Number	(in)	(in)	(Radian	is)		
1						
2						
Support Cons	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Translat	tion	Y Tran	slation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free
Flastia						
<u>Elastic</u>	V Translation	V Trongla	4	7 Data	41 a.m.	Orrentiale Commuted
Support	X Translation	Y Translat	lion	Z Rota		Override Computed
Number	(kip/ft)	(kip/ft)		(kip-in/r	ad)	Z Rotation
1 2						
2						

Member Alternative 17"x36" EXT PSU (w/ Post Tensioning) Description:

Description Material Type: Prestressed Concrete Girder Type: **PS** Precast Box Member units: US Customary Girder property input method: Schedule based Additional Self Load: (kip/ft) Additional Self Load %: 1.0 (%) Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:** Analysis Method: LFD Analysis Module: AASHTO LFD Analysis Module Component: **Properties:** Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: **Properties:** Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: **Properties:** Analysis Method: **Distribution Factors** Analysis Module: Legacy BrR Dist Fact Analysis Module Component: **Properties:** Default rating method: LRFR LRFD shear computation method: **General Procedure** Factors Factor Override LRFD: 2002 AASHTO Std. Specifications(CF=0.9) LFD: ASD Factors Inventory Operating Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement **Bearing Stiffener** Stirrup

Timber

NA

Default Materials

Default Mater fais	
Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.100	0.100
0.00	28.292	Moment	0.100	0.100
0.00	28.292	Shear	0.100	0.100

Shrinkage/Time

Deck curing method:Moist-curedDeck drying time: 3.000 (Days)Consider deck differential shrinkage loads:FALSEBeam Curing method:Steam-curedCuring time:20.00 (Days)Service life:75.00 (Years)Analysis time:54.00 (Years)Composite time:60.00 (Days)Continuous time:45.0 (Days)

Beam Details

Span	Details				
Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n			

	Ducioo	tion	Croop				Projectio	n
1	Projec 17"x3 TRUE	6" PSU	Creep Class P (5000 6.64	I	PS Stran	ds Pr	(in) (in) 6.0000	8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL (in)		Support on Right <i>(in)</i>	Distance t, SR	5		
	Limit Limit	Ranges	Span	Start Dis	stance		Length (ft)	
PS Co	onc Stres	ss Lim	1	0.000)		29.50	
Deck Interfa Deck	Interfaction interfaction ace widt cohesion friction	e type: h: n factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti	nuity D	iaphragm						
Span	Materi Bar	ial	Left Support Distance Bar	Bar	Bar	Right Sup Material	port Dista	nce
No.	Dui		Dui	Count	Size	Сс	ount Size	
Presti	ressing	Force Informa	<u>ition</u>					

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	<i>(ft)</i> onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right	1	6	Straight/Debo	onded		

	Left Right			
1	_	1	7	Straight/Debonded
	Left Right			
1	e	1	8	Straight/Debonded
	Left Right			
1	e	1	9	Straight/Debonded
	Left Right			
1	_	1	10	Straight/Debonded
	Left Right			
1	-	1	11	Straight/Debonded
	Left Right			
1	Kigin	1	14	Straight/Debonded
	Left Dight			
1	Right	1	15	Straight/Debonded
	Left			
1	Right	1	16	Straight/Debonded
	Left			-
1	Right	3	1	Straight/Debonded
	Left			C
1	Right	3	16	Straight/Debonded
	Left Right	_	-	0

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Spacing	Extends into Deck
		(ft)	(in)	

#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
	110	(ft)	Spaces	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Superstructure Definition INT Span 2 - PS Conc PSU

Definition		-
Units:		US Customary
Number of sp	ans:	1
Number of gir	rders:	11
	Length	
Span	(ft)	
1	38.5000	
Frame Structu	ıre Simplifi	ed Definition:
Support	Frame Co	nnection
1		
2		
Girder Spacin	g Display 7	Type: Perpendicular
Average Hum	idity:	70.000 (%)
<u>Analysis</u>		
Default Libra	ry Factors	
Factor Overri	ide	
Analysis Mod	ule	
Analysis Meth	nod:	ASD
Analysis Mod	lule:	
Analysis Mod	lule Compo	nent:
Properties:		
Analysis Meth	nod:	LFD
Analysis Mod	lule:	
Analysis Mod	lule Compo	nent:
Properties:		
Analysis Meth		LRFD
Analysis Mod		
Analysis Mod	lule Compo	nent:
Properties:		

Analysis Method: LRFR Analysis Module: Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Analysis Module Component: Properties:

Default rating method: LFD

Impact

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Structure Framing Plan Details

Layout		
	Skew	
Support	(Degrees)	
1	0.0000	
2	0.0000	
Girder Spacing O	rientation:	Perpendicular

Girder	Girder Spacing	
Bay	Start	End
	(ft)	(ft)
1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

<u>Diaphragms</u>

Girder Bay 1 Girder Bay 2 Girder Bay 3 Girder Bay 4 Girder Bay 5 Girder Bay 6 Girder Bay 7 Girder Bay 8 Girder Bay 9 Girder Bay 10

. .

-

-

. . .

Structure Typical Section

Deck	
Left start width:	18.00 <i>(ft)</i>
Left end width:	18.00 <i>(ft)</i>
Right start width:	15.00 <i>(ft)</i>
Right end width:	15.00 <i>(ft)</i>
Left start overhang:	1.50 <i>(ft)</i>
Left end overhang:	1.50 <i>(ft)</i>

Deck (Cont'd)Deck concrete:Total deck thickness:(in)Deck crack control parameter:(kip/in)

Sustained modular ratio factor: 3.000 Railing

Name Conc Guar Conc Guar	Load Case DC1 - R DC1 - R	Measure To	Measured From Left Ed Right E	Distance At Start 0.00 0.00	Distance At End 0.00 0.00	Front Face Orientation Right Left	
<u>Sidewalk</u> Width	Thickness	Material	Load Case	Measure to	Measured F	rom	At Start
	At End						
60.0000	11.4375	Class A	DC1 - C		Left Ed	0.00	•••
24.0000	10.5630	Class A	DC1 - C		Right E	0.00	
Lane Position							
Offset Left St	art:	-13.00 <i>(ft)</i>					
Offset Left Er		-13.00 <i>(ft)</i>					
Offset Right S	Start:	0.00 <i>(ft)</i>					
Offset Right I	End:	0.00 <i>(ft)</i>					
Offset Left St	art:	13.00 <i>(ft)</i>					
Offset Left Er	nd:	13.00 <i>(ft)</i>					
Offset Right S		0.00 <i>(ft)</i>					
Offset Right I	End:	0.00 <i>(ft)</i>					
Wearing Surfa							
Wearing surfa	ace material:	Asphalt					
Description:		Asphalt V	Wearing Surf	face			
Wearing surfa		1					
Wearing surfa	ace density:	145.000					
Load case:		DW - A.	W.S.				

Load Case Description Load Case Name	Description	Stage Type Time (Days)	
DC1 - Railing	DC acting on non-comp	Non-composite (Sta	D,DC
DC1 - Curb	DC acting on non-comp	Non-composite (Sta	D,DC
DW - A.W.S.	DW acting on long-ter	Composite (long te	D,DW

Superstructure Loads

DL Distribution Stage 1 Dead Load Distribution: Tributary Area Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name: **PS Conc Stress Limits** Description: Concrete material: Class P (5000) Initial allowable tension (LFD): 0.190 (ksi) Initial allowable compression (LFD): 2.400 (ksi) Final allowable slab compression (LFD): (ksi) 0.425 (ksi) Final allowable tension (LFD): Final allowable DL compression (LFD): 2.000 (ksi) Final allowable compression (LFD): 3.000 (ksi) Final allowable compression (LL + 1/2(Pe+DL)) (LFD): 2.000 (ksi) Initial allowable tension (LRFD): 0.190 *(ksi)* Initial allowable compression (LRFD): 2.600 (ksi) Final allowable slab compression (LRFD): (ksi) Final allowable tension (LRFD): 0.425 (ksi) Final allowable DL compression (LRFD): 2.250 (ksi) Final allowable compression (LRFD): 3.000 (ksi) Final allowable compression (LL + 1/2(Pe+DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name:	PS Strands Properties					
General Pretress Data	General Pretress Data					
Prestressing Strand:		7/16" (7W-250) SR				
Loss Method:		AASHTO Approximate				
Jacking stress ratio:		0.700				
Transfer stress ratio:						
Transfer time:		24.0 (Hours)				
AASHTO - Dead loa	d percent:	0.0 (%)				
Loss Data - PCI						
PCI - Maturity coefficient	cient:					
PCI - Ultimate creep	loss:	(ksi)				
PCI - Ultimate shrink	tage loss:	(ksi)				
PCI - Additional time	e 1:	(Days)				
PCI - Additional time	e 2:	(Days)				
PCI - Additional time	e 3:	(Days)				
PCI - Additional time	e 4:	(Days)				
PCI - Additional time	e 5:	(Days)				
PCI - Additional time	e 6:	(Days)				
PCI - Additional time	e 7:	(Days)				
PCI - Additional time	e 8:	(Days)				
PCI - Additional time	e 9:	(Days)				

PCI - Additional time 10:	(Days)
Loss Data - Lump-sum	
Lump-sum - Composite loss:	(ksi)
Lump-sum - Continuous loss:	(ksi)
Lump-sum - Final loss:	(ksi)

Shear Reinforcement Definitions - Vertical

Name:	#4 Bent Shear Reinf	•
Vertical Reinforceme	ent:	Grade 40
Vertical Rebar:		4
Number of legs (Vert	ical):	3.00
Inclination angle alph	na (Vertical):	90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name:	#3 - 2'-7" long	
Reinforcement (Horz.	1):	Grade 40
Rebar (Horz. 1):		3
Number of legs (Horz	. 1):	1.00
Inclination angle alph	a (Horz. 1):	90.0 (Degrees)
Reinforcement (Horz.	2):	
Rebar (Horz. 2):		
Number of legs (Horz		
Inclination angle alph	a (Horz. 2):	90.0 (Degrees)

Member G1 Link with: None Description:

Existing:	17"x36" EXT PSU	-
Current:	17"x36" EXT PSU	-
Number of Sp	pans: 1	L

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: (lb/ft)

Member Loads

Member Lo	ads - Settlement			
Support	Horizontal	Vertical	Rotational	Load Case Name
Number	(in)	(in)	(Radians)	
1				
2				

<u>General</u> Support	Support			
Number	Туре	X Translation	Y Translation	Z Rotation
l	Pinned	Fixed	Fixed	Free
2	Roller	Free	Fixed	Free
Elastic				
Support	X Translation	Y Translation	Z Rotation	Override Computed
Number	(kip/ft)	(kip/ft)	(kip-in/rad)	Z Rotation
2				
Member A	lternative 17":	x36" EXT PSU		
Descript				
Descript				
Material		Prestressed Con	crete	
Girder T	ype:	PS Precast Box		
Member		US Customary		
1	roperty input meth	od: Schedule ba	sed	
	al Self Load:	(kip/ft)		
	al Self Load %:	1.0 (%)		
Analysis	Module Method:	ASD		
	Module:	AASHTO ASD		
	Module Compone			
Propertie	-			
Analysis	Method:	LFD		
Analysis	Module:	AASHTO LFD		
Analysis	Module Compone	ent:		
Propertie	es:			
	Method:	LRFD		
	Module:	AASHTO LRFI)	
	Module Compone	ent:		
Propertie	es:			
Analysis	Method:	LRFR		
•	Module:	AASHTO LRFF	ર	
	Module Compone	ent:		
Propertie	es:			
•	Method:	Distribution Fac		
Analysis	Module:	Legacy BrR Dis	t Fact	
•	Madula Compon	ent		
Analysis Propertie	Module Compones:	cht.		

I DED show	computation m	athad: Ga	eneral Procedure	
LKFD shear	computation m	lethod: Ge	eneral Procedure	
<u>Factors</u> Factor Over LRFD: LFD: ASD Factor Structural st	S	Inventory	Operating	
Concrete PS Concrete PS Concrete PS Moment Reinforcem Bearing Stif	e Tens. Cap. ent			
Stirrup Timber		NA		
Deck concre Deck reinfo Beam concr Beam reinfo Stirrup reinfo Prestressing	ete: rcement: ete: orcement: forcemt:	Class A (3000 Grade 40 Class P (5000 Grade 40 Grade 40 7/16" (7W-25)	
Type: LRFD Dyna	<i>upact Factor</i> <i>umic Load Allow</i> fracture limit st nit states:	vance		
Live Load	<u>Distribution</u>			
T	Distrib	ution F	actor (Wh	eels)
Lanes Loaded	Shear	Shear at Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100
LRFD Distance	Length	Туре	1 Lane	Multi-Lane

ulti-Lane (*ft*) 0.00 (*ft*) 38.500 Deflectio... 0.100 0.100 0.100 38.500 0.00 0.100 Moment 0.00 38.500 0.100 0.100 Shear

Shrinkage/Time

Deck Consid Beam Curing Servic Analy Comp	curing method: drying time: 3.000 (D) der deck differential s Curing method: g time: 20.00 (D) the life: 75.00 (Y) sis time: 54.00 (Y) osite time: 60.00 (D) nuous time: 45.0 (Da)	hrinkage loads: Steam-cur ays) ears) ears) ays)	FA	LSE			
<u>Beam</u>	Details						
Span Span	Details Prestress Shape Use Projection 17"x36" PSU TRUE	Concrete Mat n Creep Class P (5000 6.64		Prestress PS Strand	Properties ds Pr	Left Projection (in) (in) 8.5000	Right 1 8.5000
Conti Suppo Numb 1 2			Suppor on Rig <i>(in)</i>	rt Distance ht, SR	2		
Stress PS Co	E Limit Ranges Limit onc Stress Lim	Span 1	Start D (ft) 0.00	Distance		Length (<i>ft</i>) 39.92	
Deck Interfa Deck	interface type: ace width: cohesion factor: friction factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti Span No.	nuity Diaphragm Material Bar	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	nce

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	<i>(ft)</i> onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left Right	1	4	Straight/Debo	onded		
1	Left Right	1	5	Straight/Debo	onded		
1	Left Right	1	6	Straight/Debo	onded		
1	Left Right	1	7	Straight/Debo	onded		
1	Left Right	1	8	Straight/Debo	onded		
1	Left Right	1	9	Straight/Debo	onded		
1	Left Right	1	10	Straight/Debo	onded		
1	Left Right	1	11	Straight/Debo	onded		
1	Left Right	1	12	Straight/Debo	onded		
1	Left Right	1	13	Straight/Debo	onded		
1	Left Right	1	14	Straight/Debo	onded		
1	Left	1	15	Straight/Debo	onded		

1	Right	1	16	Straight/Dahandad
1	Left	1	10	Straight/Debonded
1	Right	2	1	Straight/Debonded
	Left Right			
1	Left	2	2	Straight/Debonded
1	Right	2	3	Straight/Debonded
1	Left	2	5	Stranght Debonded
1	Right	2	4	Straight/Debonded
	Left Right			
1	Left	2	5	Straight/Debonded
1	Right	2	6	Straight/Debonded
1	Left Right	-	Ū	Situigila Deconaca
1		3	1	Straight/Debonded
	Left Right			
1	Left	3	7	Straight/Debonded
1	Right	3	10	Straight/Debonded
	Left Right			U
1	Left	3	16	Straight/Debonded
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into

Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G2

Link with: None Description:

Existing:	17"x36" INT PSU -	-
Current:	17"x36" INT PSU -	-
Number of Spa	ans:	1

Span Number 1	Span Length (<i>ft</i>) 38.500000	
G	F C	

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member Loads

Member Load Support Number 1 2	<u>ds - Settlement</u> Horizontal (in)	Vertical (in)	Rotational (Radians)	Load Case	e Name
Support Con General Support Number 1	support Support Type Pinned	X Transla Fixed	tion Y Tr Fixed	anslation d	Z Rotation Free

2	Roller	Free	Fixed	Free
Elastic Support Number 1 2	X Translation (<i>kip/ft</i>)	Y Translation (<i>kip/ft</i>)	Z Rotation (kip-in/rad)	Override Computed Z Rotation

Member Alternative 17"x36" INT PSU

Description:	
Description	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method	: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Component	•
Properties:	

Analysis Method:	LFD
Analysis Module:	AASHTO LFD
Analysis Module Compor	nent:
Properties:	

Analysis Method:LRFDAnalysis Module:AASHTO LRFDAnalysis Module Component:Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method: LRFR LRFD shear computation method: C

General Procedure

<u>Factors</u> *Factor Override* LRFD: LFD: ASD Factors

	Inventory	Operating
Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup	Inventory	Operating
Timber	NA	
Default Materials		
Deck concrete:	Class A (3000))
Deck reinforcement:	Grade 40	

DUCK CONCICIU.	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

<u>Impact</u>

Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.167	0.167	0.167	0.167
Multi-Lane	0.167	0.167	0.167	0.167

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft) 0.00	(ft) 38.500	Deflectio	0.167	0.200
0.00	38.500	Moment	0.167	0.200
0.00	38.500	Shear	0.167	0.200

Shrinkage/Time

SIITIIKage/TIII			
Deck curing met	hod:	Moist-cured	
Deck drying time			
Consider deck di	FALSE		
Beam Curing me			
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	

Analysis time:	54.00 (Years)
Composite time:	60.00 (Days)
Continuous time:	45.0 (Days)

Beam Details

Span Span	pan Details pan Prestress Shape Use Projection		Concrete Material n Creep		Prestress Properties		Left Projection (in) (in)	Right 1
1	17"x3 TRUE	6" PSU	Class P (5000 6.64		PS Strand	ds Pr	8.5000	8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>			rt Distance ht, SR	e		
Stress	Limit	Ranges ss Lim	Span 1	Start I (<i>ft</i>) 0.0	Distance 00		Length (<i>ft</i>) 39.92	
Deck Interfa Deck	Interfaction interfaction interfaction interfaction	e type: h: n factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti Span No.	nuity D Mater Bar	Diaphragm	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	nce
Presti	ressing	Force Informa	<u>ation</u>					

Strand Layout

Span	Pos.	Row	Col.	Config.	Harp	Debond	Harp
		No.	No.	Туре	Distance	Distance	Curvature
					(ft)	<i>(in)</i>	<i>(in)</i>

1	Left	1	1	Straight/Debonded
1	Right Left	1	2	Straight/Debonded
1	Right Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right	1	5	Straight/Debonded
1	Left Right	1	6	Straight/Debonded
1	Left Right	1	7	Straight/Debonded
1	Left Right	1	8	Straight/Debonded
1	Left Right	1	9	Straight/Debonded
1	Left Right	1	10	Straight/Debonded
1	Left Right	1	11	Straight/Debonded
1	Left Right	1	12	Straight/Debonded
1	Left Right	1	13	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left Right	1	15	Straight/Debonded
	Left Right			-
1	Left Right	1	16	Straight/Debonded
1	Left	2	1	Straight/Debonded

1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.95	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE

#4 Bent Shear R... 1

37.71 4

FALSE

6.0000

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
#3 - 2'-7" long	1	(ft) 0.21	4	(in) 6.0000	(ft)
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long #3 - 2'-7" long	1	3.08 36.83	27 1	15.0000 10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G3

Link with: None Description:

Existing:	17"x36" INT PSU ·	-
Current:	17"x36" INT PSU ·	-
Number of Spa	ans:	1

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: (*lb/ft*)

Member Loads

<u>ls - Settlement</u> Horizontal <i>(in)</i>	Vertical <i>(in)</i>			Load Case	Name
<u>straints</u>					
Support					
Туре		tion	Y Trans	slation	Z Rotation
	Fixed		Fixed		Free
Roller	Free		Fixed		Free
X Translation	Y Transla	tion	Z Rotat	ion	Override Computed
(kip/ft)	(kip/ft)		(kip-in/ra	ud)	Z Rotation
	Horizontal (in) straints Support Type Pinned Roller X Translation	HorizontalVertical(in)(in)straintsSupportTypeX TranslaPinnedFixedRollerFreeX TranslationY Transla	HorizontalVerticalRotation(in)(in)(Radian)straintsSupportSupportX TranslationPinnedFixedRollerFreeX TranslationY Translation	HorizontalVerticalRotational(in)(in)(Radians)straintssupportTypeX TranslationY TransPinnedFixedFixedRollerFreeFixedX TranslationY TranslationZ Rotat	Horizontal (in)Vertical (in)Rotational (Radians)Load Casestraintssupport TypeTypeX Translation Fixed RollerY Translation Fixed FreeX TranslationY Translation Fixed FreeX TranslationY Translation Fixed FreeX TranslationY Translation FixedX TranslationY Translation

Member Alternative 17"x36" INT PSU

Description:	
<u>Description</u>	
Material Type:	Prestressed Concrete
Girder Type:	PS Precast Box
Member units:	US Customary
Girder property input method	I: Schedule based
Additional Self Load:	(kip/ft)
Additional Self Load %:	1.0 (%)
Analysis Module	
Analysis Method:	ASD
Analysis Module:	AASHTO ASD
Analysis Module Component	t:
Properties:	

Analysis Method:LFDAnalysis Module:AASHTO LFDAnalysis Module Component:Properties:

Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: Properties:

Analysis Method:LRFRAnalysis Module:AASHTO LRFRAnalysis Module Component:Properties:

Analysis Method:Distribution FactorsAnalysis Module:Legacy BrR Dist FactAnalysis Module Component:Properties:

Default rating method:LRFRLRFD shear computation method:General Procedure

 Factors

 Factor Override

 LRFD:

 LFD:
 2002 AASHTO Std. Specifications(CF=0.9)

 ASD Factors

 Inventory
 Operating

 Structural steel

Structural steel Concrete PS Concrete Comp. PS Concrete Tens.

PS Moment Cap.
Reinforcement
Bearing Stiffener
Stirrup
Timber

NA

Default Materials

Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Impact	
Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	1.000	1.000	1.000	1.000
Multi-Lane	1.000	1.000	1.000	1.000

LRFD

Distance (ft)	Length	Туре	1 Lane	Multi-Lane
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Shrinkage/Time			
Deck curing method	od:	Moist-cured	
Deck drying time:	3.000 (Days)		
Consider deck diff	age loads:	FALSE	
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00 (Days)		
Service life:	75.00 (Years)		
Analysis time:	54.00 (Years)		
Composite time:	60.00 (Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span Span	Use Projec	6" PSU	Concrete Mate n Creep Class P (5000 6.64		Prestress PS Strand	Properties ds Pr	Left Projection (in) (in) 8.5000	Right n 8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>			rt Distance ht, SR	e		
Stress	Limit Limit	Ranges ss Lim	Span 1	Start I (<i>ft</i>) 0.0	Distance 00		Length (<i>ft</i>) 39.92	
Deck Interfa Deck	Interfac interface ace widt cohesion friction	e type: h: n factor:	Monolithic (in) 0.400 (ksi) 1.400					
Conti Span No.	nuity D Materi Bar	iaphragm ial	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	nce
Presti	ressing	Force Informa	<u>ation</u>					

Strand Layout

Span	Pos.		Col. No.	Config. Type	Harp Distance (<i>ft</i>)	Debond Distance <i>(in)</i>	Harp Curvature <i>(in)</i>
1	Left Right	1	1	Straight/Debo	onded		
1	Left Right	1	2	Straight/Debo	onded		

1	Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right Left	1	5	Straight/Debonded
1	Right	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right	1	9	Straight/Debonded
1	Left Right	1	10	Straight/Debonded
1	Left Right	1	11	Straight/Debonded
1	Left Right	1	12	Straight/Debonded
1	Left Right	1	13	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left Right	1	15	Straight/Debonded
1	Left Right	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	Left Right			-
	Left Right	2	2	Straight/Debonded
1	Left	2	3	Straight/Debonded

1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length

		(ft)		(in)
#3 - 2'-7" long	1	0.21	4	6.0000
#3 - 2'-7" long	1	2.21	1	10.5000
#3 - 2'-7" long	1	3.08	27	15.0000
#3 - 2'-7" long	1	36.83	1	10.5000
#3 - 2'-7" long	1	37.71	4	6.0000

(ft)

Member G4

Link with: G3 Description:

Existing:	
Current:	
Number of Spans:	1

Span	Span Length
Number	(ft)
1	38.500000

Support	Frame Connection
1	
2	

Pedestrian load: *(lb/ft)*

Member G5 Link with: G3

Link with: G3 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: (*lb/ft*)

Member G6 Link with: G3

Link with: G3 Description:

Existing: Current: Number of Spans:

1

	Number of Spans.		
	Span Number 1	Span Length (<i>ft</i>) 38.500000	
	Support 1 2	Frame Connection	l
	Pedestrian loa	d: (<i>lb/ft</i>)	
M	ember G7 Link with: G3 Description:		
	Existing: Current: Number of Sp	ans:	1
	Span Number 1	Span Length (<i>ft</i>) 38.500000	
	Support 1 2	Frame Connection	l
	Pedestrian loa	d: (<i>lb/ft</i>)	
M	ember G8 Link with: G3 Description:		
	Existing: Current: Number of Sp	ans:	1
	Span Number 1	Span Length (<i>ft</i>) 38.500000	
	Support 1 2	Frame Connection	l
	Pedestrian loa	d: (<i>lb/ft</i>)	

Member G9

Link with: G3 Description:

Existing: Current: Number of Spans: 1

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member G10 Link with: None

Link with: None Description:

Existing: 17"x36" INT PSU - w/ post Tensioning -Current: 17"x36" INT PSU - w/ post Tensioning -Number of Spans: 1

Span	Span Length
Number	(ft)
1	38.500000

Support Frame Connection 1 2

Pedestrian load: *(lb/ft)*

Member Loads

Member Load	ls - Settlement					
Support	Horizontal	Vertical	Rotatio	onal	Load Case	e Name
Number	(in)	(in)	(Radian	s)		
1						
2						
<u>Support Con</u>	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Transla	tion	Y Tran	slation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free

<u>Elastic</u> Support Number 1 2	X Translation (kip/ft)	Y Translation (kip/ft)	Z Rotation (kip-in/rad)	Override Computed Z Rotation
Member A Descript Descript		36" INT PSU - v	w/ post Tensioni	ng
Material Girder T Member Girder p	Type: Ype:	Prestressed Con PS Precast Box US Customary od: Schedule ba (kip/ft)		
Addition <i>Analysis</i> Analysis Analysis	nal Self Load %: <i>Module</i> Method: Module:	1.0 (%) ASD AASHTO ASD		
Analysis Propertie	Module Compone	nt:		
Analysis	Method: Module: Module Compone es:	LFD AASHTO LFD nt:		
Analysis	s Method: s Module: s Module Compone es:	LRFD AASHTO LRFI nt:	D	
Analysis	s Method: s Module: s Module Compone es:	LRFR AASHTO LRFI nt:	R	
Analysis	s Method: s Module: s Module Compone es:	Distribution Fac Legacy BrR Dis nt:		
	rating method: hear computation m	LRFR nethod: Gene	eral Procedure	
<u>Factors</u> <i>Factor (</i> LRFD:	Dverride			
LFD: ASD Fac	ctors		Std. Specification	ns(CF=0.9)

Structural steel Concrete PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener Stirrup Timber

NA

Default Materials

Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

Impact

Standard - AASHTO
15.0 (%)
33.0 (%)

Live Load Distribution

Standard

	Distribu	tion Fa	ctor(Whe	eels)
Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.527	0.000	0.527	0.182
Multi-Lane	0.527	0.000	0.527	0.364

LRFD		_		
Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Moment	0.254	0.256
0.00	38.500	Shear	0.254	0.256
0.00	38.500	Deflectio	0.109	0.182

Shrinkage/Time

Deck curing meth	od:	Moist-cured	
Deck drying time:	3.000	(Days)	
Consider deck dif	ferentia	ll shrinkage loads:	FALSE
Beam Curing met	hod:	Steam-cured	
Curing time:	20.00	(Days)	
Service life:	75.00	(Years)	
Analysis time:	54.00	(Years)	
Composite time:	60.00	(Days)	

Continuous time: 45.0 (Days)

Beam Details

Span Span	Use Projec	5" PSU	Concrete Mate n Creep Class P (5000 6.64		Prestress PS Strand	Properties ds Pr	Left Projection (in) (in) 8.5000	Right n 8.5000
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>		Suppo on Rig <i>(in)</i>	rt Distance ht, SR	2		
Stress PS Co Slab I Deck i Interfa Deck o		e type: h: n factor:	Span 1 Monolithic (<i>in</i>) 0.400 (<i>ksi</i>) 1.400	Start E (ft) 0.00	Distance 00		Length (<i>ft</i>) 39.92	
Conti Span No.	nuity D Materi Bar	iaphragm al	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	port Distar ount Size	nce

Prestressing Force Information

Strand Layout

Span	Pos.			Config. Type	Harp Distance	_ ·	Harp Curvature
				51	(ft)	(in)	(in)
1		1	1	Straight/Debo	onded		
	Left						

	D' 1.			
1	Right	1	2	Straight/Debonded
	Left Right			
1	Left	1	3	Straight/Debonded
1	Right	1	4	Straight/Debonded
1	Left Right	1	5	Straight/Debonded
	Left Right			
1	Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right	1	8	Straight/Debonded
1	Right	1	9	Straight/Debonded
1	Left Right Left	1	10	Straight/Debonded
1	Right	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right	1	13	Straight/Debonded
1	Left Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right	2	2	Straight/Debonded

	Left Right			
1	Left	2	3	Straight/Debonded
	Right	_		~ ~
1	Left	2	4	Straight/Debonded
1	Right	2	5	Straight/Debonded
1	Left	2	5	Straight Debonded
1	Right	2	6	Straight/Debonded
	Left Right			C
1	-	3	1	Straight/Debonded
	Left Right			
1	Left	3	7	Straight/Debonded
	Right			
1	Left	3	10	Straight/Debonded
1	Right	3	16	Studialt/Dahandad
1	Left Right	3	10	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G11 Link with: None Description:

Existing:	17"x36" EXT PSU	-
Current:	17"x36" EXT PSU	-
Number of Spa	ans:	L

Span	Span Length
Number	(ft)
1	38.500000

Support	Frame Connection
1	
2	

Pedestrian load: (lb/ft)

Member Loads

Member Load	ls - Settlement					
Support	Horizontal	Vertical	Rotatio	onal	Load Case	e Name
Number	(in)	<i>(in)</i>	(Radian	s)		
1						
2						
Support Con	<u>straints</u>					
General						
Support	Support					
Number	Туре	X Transla	tion	Y Tran	nslation	Z Rotation
1	Pinned	Fixed		Fixed		Free
2	Roller	Free		Fixed		Free
<u>Elastic</u>						
Support	X Translation	Y Transla	tion	Z Rota	tion	Override Computed
Number	(kip/ft)	(kip/ft)		(kip-in/i	rad)	Z Rotation
1		/		· *		
2						

Member Alternative 17"x36" EXT PSU

Description: Description Material Type: Prestressed Concrete Girder Type: PS Precast Box Member units: **US** Customary Girder property input method: Schedule based Additional Self Load: (kip/ft) Additional Self Load %: 1.0 (%) Analysis Module Analysis Method: ASD Analysis Module: AASHTO ASD Analysis Module Component: **Properties:**

Analysis Method:LFDAnalysis Module:AASHTO LFDAnalysis Module Component:Properties:

Analysis Method: LRFD Analysis Module: AASHTO LRFD Analysis Module Component: Properties:

Analysis Method: LRFR Analysis Module: AASHTO LRFR Analysis Module Component: Properties:

Analysis Method: Distribution Factors Analysis Module: Legacy BrR Dist Fact Analysis Module Component: Properties:

PS Concrete Tens. PS Moment Cap.

Default rating method:LRFRLRFD shear computation method:General Procedure

 Factors

 Factor Override

 LRFD:

 LFD:

 ASD Factors

 Inventory

 Operating

 Structural steel

 Concrete

 PS Concrete Comp.

Reinforcement Bearing Stiffener Stirrup Timber

NA

Default Materials

Deck concrete:	Class A (3000)
Deck reinforcement:	Grade 40
Beam concrete:	Class P (5000)
Beam reinforcement:	Grade 40
Stirrup reinforcemt:	Grade 40
Prestressing strand:	7/16" (7W-250) SR

<u>Impact</u>	
Standard Impact Factor	
Туре:	Standard - AASHTO
LRFD Dynamic Load Allowance	
Fatigue and fracture limit states:	15.0 (%)
All other limit states:	33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

LRFD

Distance	Length	Туре	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.100	0.100
0.00	38.500	Moment	0.100	0.100
0.00	38.500	Shear	0.100	0.100

Shrinkage/Time

Deck curing method	od:	Moist-cured	
Deck drying time:	3.000 (Days)		
Consider deck diff	ferential shrinl	kage loads:	FALSE
Beam Curing met	nod:	Steam-cured	
Curing time:	20.00 (Days)		
Service life:	75.00 (Years)		
Analysis time:	54.00 (Years)		
Composite time:	60.00 (Days)		
Continuous time:	45.0 (Days)		

Beam Details

Span Span	Use Projec	6" PSU	Concrete Mate n Creep Class P (5000 6.64		Prestress PS Strand	Properties ds Pr	Left Project (<i>in</i>) (<i>in</i>) 8.5000	
Conti Suppo Numb 1 2	ort	Support Detail Support Dista on Left, SL <i>(in)</i>			rt Distanco ht, SR	2		
Stress PS Co Slab I Deck : Interfa Deck (Interfac interface ace widt	e type: h: n factor:	Span 1 Monolithic (in) 0.400 (ksi) 1.400	Start E (ft) 0.00	Distance		Length (ft) 39.92	1
Conti Span No.	nuity D Materi Bar	iaphragm ial	Left Support Distance Bar	Bar Count	Bar Size	Right Sup Material Co	+	stance ze

Prestressing Force Information

Strand Layout

Span	Pos.		Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1		1	1	Ω_{4} = $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$	<i>(ft)</i>	(in)	(in)
1		1	1	Straight/Debo	onded		
	Left						
	Right						
1	0	1	2	Straight/Debo	onded		
1	Left	1	2	Stranging Deot	maca		
	Right						
1		1	3	Straight/Debo	onded		
				-			

	Left			
1	Right Left	1	4	Straight/Debonded
1	Right	1	5	Straight/Debonded
1	Left Right	1	6	Straight/Debonded
	Left Right			-
1	Left Right	1	7	Straight/Debonded
1	Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right	1	10	Straight/Debonded
1	Left Right	1	11	Straight/Debonded
1	Left Right	1	12	Straight/Debonded
	Left Right			-
1	Left Right	1	13	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right	2	2	Straight/Debonded
1	Left Right	2	3	Straight/Debonded
_	Left Right	_	-	<u></u> 2 00 01404

1	Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)

#3 - 2'-7" long	1	0.21	4	6.0000
#3 - 2'-7" long	1	2.21	1	10.5000
#3 - 2'-7" long	1	3.08	27	15.0000
#3 - 2'-7" long	1	36.83	1	10.5000
#3 - 2'-7" long	1	37.71	4	6.0000

1.4 SUMMARY OF LRFR LOAD RATING ANALYSIS RESULTS

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294 Bridge ID: 874294

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 15:41:57 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 15:42:26

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU **Member Name:** G3 **Member Alternative Name:** 17"x36" INT PSU - Existing Condition

Report by Action: 🗹 Flexure 🗹 Concrete Stresses 🗹 Shear 🗹 Critical

Detailed Rating Results 17"x36" INT PSU - Existing Condition HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

							Inventory	Inventory	Operating	Operating
Location	l						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	89.52	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.70	-0.00	0.00	99.000	3564.00		
1.17	4.1	Shear	kip	128.89	7.72	41.31	1.649	59.37	2.138	76.97
1.69	6.0	Flexure	kip-ft	249.21	13.52	68.34	1.942	69.93	2.518	90.65
1.69	6.0	Shear	kip	118.02	7.42	40.19	1.546	55.65	2.004	72.14
1.69	6.0	Concrete Stresses	ksi	1.63	0.10	0.49	3.891	140.09		
2.83	10.0	Flexure	kip-ft	288.41	21.61	108.12	1.381	49.73	1.791	64.47
2.83	10.0	Shear	kip	61.28	6.76	37.73	0.800	28.81	1.652	59.48
2.83	10.0	Concrete Stresses	ksi	1.63	0.16	0.78	2.366	85.17		
5.66	20.0	Flexure	kip-ft	304.60	38.40	184.27	0.796	28.65	1.031	37.13
5.66	20.0	Shear	kip	29.07	5.11	31.70	0.409	14.72	0.815	29.33
5.66	20.0	Concrete Stresses	ksi	1.63	0.28	1.33	1.274	45.88		
8.49	30.0	Flexure	kip-ft	304.60	50.23	228.45	0.605	21.77	0.784	28.23
8.49	30.0	Shear	kip	23.83	3.30	25.78	0.437	15.73	0.795	28.61
8.49	30.0	Concrete Stresses	ksi	1.63	0.36	1.65	0.963	34.67		
11.32	40.0	Flexure	kip- ft	304.60	57.22	240.66	0.553	19.92	0.717	25.83
11.32	40.0	Shear	kip	23.83	1.65	19.96	0.623	22.44	1.044	37.57
11.32	40.0	Concrete Stresses	ksi	1.63	0.41	1.73	0.878	31.61		
14.15	50.0	Flexure	kip- ft	304.60	59.54	221.36	0.594	21.39	0.770	27.73
14.15	50.0	Shear	kip	-24.61	-0.00	-14.26	0.986	35.50	1.780	64.09

14.15	50.0	Concrete ksi Stresses	1.63	0.43 1.60	0.941	33.89		
16.98	60.0	Flexure kip- ft	304.60	57.20 240.66	0.553	19.93	0.717	25.83
16.98	60.0	Shear kip	-23.83	-1.65 -19.96	0.623	22.43	1.043	37.56
16.98	60.0	Concrete Stresses ksi	1.63	0.41 1.73	0.878	31.61		
19.80	70.0	Flexure kip-ft	304.60	50.19 228.45	0.605	21.78	0.784	28.23
19.80	70.0	Shear kip	-23.83	-3.30 -25.78	0.437	15.73	0.795	28.61
19.80	70.0	Concrete Stresses ksi	1.63	0.36 1.65	0.963	34.68		
22.63	80.0	Flexure kip-ft	304.60	38.37 184.27	0.796	28.65	1.032	37.14
22.63	80.0	Shear kip	-29.07	-5.12 -31.70	0.409	14.72	0.815	29.32
22.63	80.0	Concrete Stresses ksi	1.63	0.28 1.33	1.275	45.88		
25.46	90.0	Flexure kip-ft	295.44	21.57 108.12	1.419	51.08	1.839	66.22
25.46	90.0	Shear kip	-58.31	-6.76 -37.73	0.755	27.19	1.596	57.45
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.78	2.367	85.19		
26.81	94.8	Flexure kip-ft	262.19	11.90 60.52	2.335	84.07	3.027	108.97
26.81	94.8	Shear kip	-118.16	-7.55 -40.64	1.529	55.03	1.981	71.33
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.44	4.428	159.40		
27.11	95.8	Shear kip	-125.66	-7.72 -41.29	1.605	57.79	2.081	74.92
28.29	100.0	Flexure kip- ft	88.49	0.00 0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Condition HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Span 1

Inventory Inventory Operating Operating

Location	l						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00							99.000			3564.00
0.00	0.0		ksi	0.70	-0.00	0.00	99.000	3564.00		

		Concrete Stresses						
1.17	4.1	Shear kip	128.89	7.72 40.42	1.686	60.69	2.185	78.67
1.69	6.0	Flexure kip-ft	249.21	13.52 67.18	1.976	71.14	2.562	92.22
1.69	6.0	Shear kip	118.02	7.42 39.50	1.573	56.63	2.039	73.40
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.48	3.959	142.52		
2.83	10.0	Flexure kip-ft	288.41	21.61 107.45	1.390	50.04	1.802	64.87
2.83	10.0	Shear kip	61.99	6.76 37.49	0.816	29.38	1.663	59.86
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.77	2.381	85.71		
5.66	20.0	Flexure kip-ft	304.60	38.40 189.24	0.775	27.89	1.004	36.16
5.66	20.0	Shear kip	28.05	5.11 32.58	0.380	13.68	0.758	27.30
5.66	20.0	Concrete Stresses ksi	1.63	0.28 1.36	1.241	44.67		
8.49	30.0	Flexure kip-ft	304.60	50.23 245.39	0.563	20.27	0.730	26.28
8.49	30.0	Shear kip	23.83	3.30 27.77	0.406	14.60	0.663	23.86
8.49	30.0	Concrete Stresses	1.63	0.36 1.77	0.897	32.28		
11.32	40.0	Flexure kip- ft	304.60	57.22 275.88	0.483	17.38	0.626	22.53
11.32	40.0	Shear kip	23.83	1.65 23.07	0.539	19.41	0.746	26.86
11.32	40.0	Concrete Stresses ksi	1.63	0.41 1.99	0.766	27.57		
14.15	50.0	Flexure kip- ft	304.60	59.54 280.73	0.469	16.87	0.607	21.86
14.15	50.0	Shear kip	-23.83	-0.00 -18.49	0.737	26.51	1.013	36.46
14.15	50.0	Concrete Stresses ksi	1.63	0.43 2.02	0.742	26.73		
16.98	60.0	Flexure kip- ft	304.60	57.20 275.88	0.483	17.38	0.626	22.53
16.98	60.0	Shear kip	-23.83	-1.65 -23.07	0.539	19.40	0.746	26.85
16.98	60.0	Concrete Stresses ksi	1.63	0.41 1.99	0.766	27.58		
19.80	70.0	Flexure kip-ft	304.60	50.19 245.39	0.563	20.28	0.730	26.28
19.80	70.0	Shear kip	-23.83	-3.30 -27.77	0.405	14.60	0.663	23.85
19.80	70.0	Concrete Stresses ksi	1.63	0.36 1.77	0.897	32.29		
22.63	80.0	Flexure kip-ft	304.60	38.37 189.24	0.775	27.90	1.005	36.16
22.63	80.0	Shear kip	-28.05	-5.12 -32.58	0.380	13.67	0.758	27.30
22.63	80.0	Concrete Stresses ksi	1.63	0.28 1.36	1.241	44.68	1 0 5 1	
25.46	90.0	Flexure kip-ft	295.44	21.57 107.45	1.428	51.40	1.851	66.63
25.46	90.0	Shear kip	-59.02	-6.76 -37.49	0.771	27.74	1.606	57.81
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.77	2.381	85.73		

26.81	94.8	Flexure kip-ft	262.19	11.90 59.3	8 2.380	85.68	3.085	111.07
26.81	94.8	Shear kip	-118.16	-7.55 -39.8	1.558	56.09	2.020	72.71
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.43	4.513	162.46		
27.11	95.8	Shear kip	-125.66	-7.72 -40.4	0 1.641	59.07	2.127	76.57
28.29	100.0	Flexure kip- ft	88.49	0.00 0.00) 99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00) 99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	128.89	7.72	22.62	4.054	113.52
1.69	6.0	Flexure	kip-ft	249.21	13.52	37.34	4.785	133.99
1.69	6.0	Shear	kip	118.02	7.42	22.13	3.780	105.84
2.83	10.0	Flexure	kip-ft	288.41	21.61	59.51	3.379	94.61
2.83	10.0	Shear	kip	92.60	6.76	21.03	3.078	86.17
5.66	20.0	Flexure	kip-ft	304.60	38.40	103.67	1.904	53.31
5.66	20.0	Shear	kip	85.06	5.11	18.32	3.303	92.49
8.49	30.0	Flexure	kip-ft	304.60	50.23	132.47	1.404	39.32
8.49	30.0	Shear	kip	75.98	3.30	15.61	3.542	99.17
11.32	40.0	Flexure	kip-ft	304.60	57.22	145.92	1.229	34.40
11.32	40.0	Shear	kip	62.87	1.65	12.89	3.628	101.58
14.15	50.0	Flexure	kip-ft	304.60	59.54	144.02	1.229	34.42
14.15	50.0	Shear	kip	-66.05	-0.00	-10.18	4.990	139.73
16.98	60.0	Flexure	kip-ft	304.60	57.20	145.92	1.229	34.41
16.98	60.0	Shear	kip	-62.88	-1.65	-12.89	3.628	101.57
19.80	70.0	Flexure	kip-ft	304.60	50.19	132.47	1.404	39.32
19.80	70.0	Shear	kip	-76.01	-3.30	-15.61	3.543	99.20
22.63	80.0	Flexure	kip-ft	304.60	38.37	103.67	1.904	53.32
22.63	80.0	Shear	kip	-85.06	-5.12	-18.32	3.303	92.48
25.46	90.0	Flexure	kip-ft	295.44	21.57	59.51	3.470	97.17

25.46	90.0	Shear	kip	-89.73	-6.76	-21.03	2.972	83.23
26.81	94.8	Flexure	kip-ft	262.19	11.90	33.03	5.760	161.28
26.81	94.8	Shear	kip	-118.16	-7.55	-22.33	3.745	104.87
27.11	95.8	Shear	kip	-125.66	-7.72	-22.61	3.946	110.49
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	128.89	7.72	31.77	2.887	105.82
1.69	6.0	Flexure	kip-ft	249.21	13.52	51.99	3.437	125.98
1.69	6.0	Shear	kip	118.02	7.42	30.81	2.715	99.51
2.83	10.0	Flexure	kip-ft	288.41	21.61	82.09	2.449	89.77
2.83	10.0	Shear	kip	92.60	6.76	29.02	2.231	81.77
5.66	20.0	Flexure	kip-ft	304.60	38.40	144.31	1.368	50.13
5.66	20.0	Shear	kip	64.21	5.11	25.50	1.744	63.92
8.49	30.0	Flexure	kip-ft	304.60	50.23	186.66	0.996	36.52
8.49	30.0	Shear	kip	43.23	3.30	21.99	1.368	50.13
11.32	40.0	Flexure	kip-ft	304.60	57.22	209.15	0.857	31.42
11.32	40.0	Shear	kip	37.55	1.65	18.48	1.477	54.14
14.15	50.0	Flexure	kip-ft	304.60	59.54	211.77	0.836	30.64
14.15	50.0	Shear	kip	-37.72	-0.00	-14.97	1.938	71.03
16.98	60.0	Flexure	kip-ft	304.60	57.20	209.15	0.857	31.42
16.98	60.0	Shear	kip	-37.55	-1.65	-18.48	1.477	54.13
19.80	70.0	Flexure	kip-ft	304.60	50.19	186.66	0.997	36.53
19.80	70.0	Shear	kip	-43.24	-3.30	-21.99	1.368	50.13
22.63	80.0	Flexure	kip-ft	304.60	38.37	144.31	1.368	50.14
22.63	80.0	Shear	kip	-64.23	-5.12	-25.50	1.744	63.93
25.46	90.0	Flexure	kip-ft	295.44	21.57	82.09	2.516	92.21
25.46	90.0	Shear	kip	-89.73	-6.76	-29.02	2.155	78.97
26.81	94.8	Flexure	kip-ft	262.19	11.90	46.14	4.123	151.10
26.81	94.8	Shear	kip	-118.16	-7.55	-31.19	2.681	98.26
27.11	95.8	Shear	kip	-125.66	-7.72	-31.75	2.811	103.01

28.29 100.0 Flexure kip-ft 88.49 0.00 0.00 99.000 3628.3	28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	3628.35
--	-------	-------	---------	--------	-------	------	------	---------------	---------

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 5 Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	128.89	7.72	31.90	2.875	115.01
1.69	6.0	Flexure	kip-ft	249.21	13.52	52.61	3.397	135.88
1.69	6.0	Shear	kip	118.02	7.42	31.17	2.683	107.33
2.83	10.0	Flexure	kip-ft	288.41	21.61	83.64	2.404	96.16
2.83	10.0	Shear	kip	92.60	6.76	29.56	2.190	87.59
5.66	20.0	Flexure	kip-ft	304.60	38.40	144.70	1.364	54.56
5.66	20.0	Shear	kip	63.88	5.11	25.57	1.729	69.18
8.49	30.0	Flexure	kip-ft	304.60	50.23	183.19	1.015	40.62
8.49	30.0	Shear	kip	44.36	3.30	21.58	1.434	57.37
11.32	40.0	Flexure	kip-ft	304.60	57.22	199.10	0.901	36.02
11.32	40.0	Shear	kip	40.01	1.65	17.59	1.659	66.37
14.15	50.0	Flexure	kip-ft	304.60	59.54	209.06	0.847	33.88
14.15	50.0	Shear	kip	-38.63	-0.00	-13.61	2.183	87.33
16.98	60.0	Flexure	kip-ft	304.60	57.20	199.10	0.901	36.02
16.98	60.0	Shear	kip	-40.01	-1.65	-17.59	1.659	66.36
19.80	70.0	Flexure	kip-ft	304.60	50.19	183.19	1.016	40.62
19.80	70.0	Shear	kip	-44.37	-3.30	-21.58	1.434	57.37
22.63	80.0	Flexure	kip-ft	304.60	38.37	144.70	1.364	54.57
22.63	80.0	Shear	kip	-63.89	-5.12	-25.57	1.730	69.18
25.46	90.0	Flexure	kip-ft	295.44	21.57	83.64	2.469	98.77
25.46	90.0	Shear	kip	-89.73	-6.76	-29.56	2.115	84.59
26.81	94.8	Flexure	kip-ft	262.19	11.90	46.55	4.087	163.48
26.81	94.8	Shear	kip	-118.16	-7.55	-31.47	2.658	106.31
27.11	95.8	Shear	kip	-125.66	-7.72	-31.89	2.799	111.94
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	3960.00

Detailed Rating Results

17"x36" INT PSU - Existing Condition FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	249.21	13.52	82.89	2.335	140.13
2.83	10.0	Flexure	kip-ft	288.41	21.61	130.88	1.664	99.86
5.66	20.0	Flexure	kip-ft	304.60	38.40	221.65	0.965	57.89
8.49	30.0	Flexure	kip-ft	304.60	50.23	272.30	0.740	44.40
11.32	40.0	Flexure	kip-ft	304.60	57.22	282.85	0.687	41.20
14.15	50.0	Flexure	kip-ft	304.60	59.54	253.93	0.755	45.32
16.98	60.0	Flexure	kip-ft	304.60	57.20	282.85	0.687	41.21
19.80	70.0	Flexure	kip-ft	304.60	50.19	272.30	0.740	44.41
22.63	80.0	Flexure	kip-ft	304.60	38.37	221.65	0.965	57.89
25.46	90.0	Flexure	kip-ft	295.44	21.57	130.88	1.709	102.57
26.81	94.8	Flexure	kip-ft	262.19	11.90	73.43	2.807	168.40
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	128.89	7.72	31.15	2.944	117.77
1.69	6.0	Flexure	kip-ft	249.21	13.52	51.25	3.487	139.49
1.69	6.0	Shear	kip	118.02	7.42	30.37	2.754	110.18
2.83	10.0	Flexure	kip-ft	288.41	21.61	81.00	2.482	99.30

2.83	10.0	Shear	kip	92.60	6.76	28.63	2.261	90.45
5.66	20.0	Flexure	kip-ft	304.60	38.40	137.61	1.434	57.38
5.66	20.0	Shear	kip	70.63	5.11	24.32	2.032	81.28
8.49	30.0	Flexure	kip-ft	304.60	50.23	169.84	1.095	43.81
8.49	30.0	Shear	kip	49.40	3.30	20.01	1.741	69.63
11.32	40.0	Flexure	kip-ft	304.60	57.22	189.17	0.948	37.91
11.32	40.0	Shear	kip	43.10	1.65	15.70	2.011	80.43
14.15	50.0	Flexure	kip-ft	304.60	59.54	189.87	0.932	37.30
14.15	50.0	Shear	kip	-43.83	-0.00	-12.33	2.734	109.34
16.98	60.0	Flexure	kip-ft	304.60	57.20	189.17	0.948	37.91
16.98	60.0	Shear	kip	-43.10	-1.65	-15.70	2.011	80.42
19.80	70.0	Flexure	kip-ft	304.60	50.19	169.84	1.095	43.82
19.80	70.0	Shear	kip	-49.41	-3.30	-20.01	1.741	69.63
22.63	80.0	Flexure	kip-ft	304.60	38.37	137.61	1.435	57.38
22.63	80.0	Shear	kip	-70.64	-5.12	-24.32	2.032	81.29
25.46	90.0	Flexure	kip-ft	295.44	21.57	81.00	2.550	101.99
25.46	90.0	Shear	kip	-89.73	-6.76	-28.63	2.184	87.35
26.81	94.8	Flexure	kip-ft	262.19	11.90	45.39	4.191	167.65
26.81	94.8	Shear	kip	-118.16	-7.55	-30.68	2.725	109.02
27.11	95.8	Shear	kip	-125.66	-7.72	-31.14	2.866	114.63
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	128.89	7.72	21.61	4.245	72.16
1.69	6.0	Flexure	kip-ft	249.21	13.52	35.63	5.016	85.26
1.69	6.0	Shear	kip	118.02	7.42	21.11	3.962	67.35
2.83	10.0	Flexure	kip-ft	288.41	21.61	56.64	3.550	60.35
2.83	10.0	Shear	kip	92.60	6.76	20.02	3.234	54.97
5.66	20.0	Flexure	kip-ft	304.60	38.40	97.92	2.016	34.27
5.66	20.0	Shear	kip	85.06	5.11	17.31	3.497	59.45
8.49	30.0	Flexure	kip-ft	304.60	50.23	123.85	1.502	25.53

8.49	30.0	Shear	kip	85.06	3.30	14.59	4.267	72.54
11.32	40.0	Flexure	kip-ft	304.60	57.22	134.43	1.334	22.67
11.32	40.0	Shear	kip	73.13	1.65	11.88	4.602	78.24
14.15	50.0	Flexure	kip-ft	304.60	59.54	129.66	1.366	23.21
14.15	50.0	Shear	kip	-81.39	-0.00	-9.17	6.830	116.11
16.98	60.0	Flexure	kip-ft	304.60	57.20	134.43	1.334	22.68
16.98	60.0	Shear	kip	-73.14	-1.65	-11.88	4.602	78.24
19.80	70.0	Flexure	kip-ft	304.60	50.19	123.85	1.502	25.54
19.80	70.0	Shear	kip	-85.06	-3.30	-14.59	4.266	72.53
22.63	80.0	Flexure	kip-ft	304.60	38.37	97.92	2.016	34.27
22.63	80.0	Shear	kip	-85.06	-5.12	-17.31	3.497	59.44
25.46	90.0	Flexure	kip-ft	295.44	21.57	56.64	3.646	61.99
25.46	90.0	Shear	kip	-89.73	-6.76	-20.02	3.123	53.09
26.81	94.8	Flexure	kip-ft	262.19	11.90	31.53	6.034	102.58
26.81	94.8	Shear	kip	-118.16	-7.55	-21.31	3.924	66.71
27.11	95.8	Shear	kip	-125.66	-7.72	-21.60	4.132	70.24
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	128.89	7.72	38.49	2.383	78.64
1.69	6.0	Flexure	kip-ft	249.21	13.52	63.33	2.822	93.12
1.69	6.0	Shear	kip	118.02	7.42	37.53	2.229	73.55
2.83	10.0	Flexure	kip-ft	288.41	21.61	100.16	2.007	66.24
2.83	10.0	Shear	kip	92.60	6.76	35.40	1.828	60.34
5.66	20.0	Flexure	kip-ft	304.60	38.40	170.52	1.158	38.20
5.66	20.0	Shear	kip	48.46	5.11	30.14	1.074	35.44
8.49	30.0	Flexure	kip-ft	304.60	50.23	211.09	0.881	29.08
8.49	30.0	Shear	kip	36.71	3.30	24.87	1.008	33.26
11.32	40.0	Flexure	kip-ft	304.60	57.22	236.48	0.758	25.02
11.32	40.0	Shear	kip	32.36	1.65	19.60	1.189	39.24
14.15	50.0	Flexure	kip-ft	304.60	59.54	239.38	0.740	24.41

14.15	50.0	Shear	kip	-32.65	-0.00	-14.97	1.677	55.35
16.98	60.0	Flexure	kip-ft	304.60	57.20	236.48	0.758	25.02
16.98	60.0	Shear	kip	-32.37	-1.65	-19.60	1.189	39.23
19.80	70.0	Flexure	kip-ft	304.60	50.19	211.09	0.881	29.09
19.80	70.0	Shear	kip	-36.71	-3.30	-24.87	1.008	33.26
22.63	80.0	Flexure	kip-ft	304.60	38.37	170.52	1.158	38.20
22.63	80.0	Shear	kip	-48.47	-5.12	-30.14	1.074	35.44
25.46	90.0	Flexure	kip-ft	295.44	21.57	100.16	2.062	68.04
25.46	90.0	Shear	kip	-89.73	-6.76	-35.40	1.766	58.28
26.81	94.8	Flexure	kip-ft	262.19	11.90	56.09	3.392	111.93
26.81	94.8	Shear	kip	-118.16	-7.55	-37.92	2.206	72.79
27.11	95.8	Shear	kip	-125.66	-7.72	-38.47	2.320	76.55
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	89.52	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	128.89	7.72	40.09	2.288	80.08
1.69	6.0	Flexure	kip-ft	249.21	13.52	65.94	2.710	94.86
1.69	6.0	Shear	kip	118.02	7.42	39.07	2.141	74.92
2.83	10.0	Flexure	kip-ft	288.41	21.61	104.17	1.930	67.56
2.83	10.0	Shear	kip	92.60	6.76	36.82	1.758	61.54
5.66	20.0	Flexure	kip-ft	304.60	38.40	176.73	1.117	39.09
5.66	20.0	Shear	kip	45.94	5.11	31.23	0.974	34.10
8.49	30.0	Flexure	kip-ft	304.60	50.23	225.32	0.826	28.89
8.49	30.0	Shear	kip	33.91	3.30	25.65	0.893	31.27
11.32	40.0	Flexure	kip-ft	304.60	57.22	257.95	0.695	24.33
11.32	40.0	Shear	kip	29.16	1.65	20.27	1.029	36.00
14.15	50.0	Flexure	kip-ft	304.60	59.54	258.96	0.684	23.93
14.15	50.0	Shear	kip	-29.63	-0.00	-15.79	1.443	50.51
16.98	60.0	Flexure	kip-ft	304.60	57.20	257.95	0.695	24.33
16.98	60.0	Shear	kip	-29.16	-1.65	-20.27	1.028	35.99
19.80	70.0	Flexure	kip-ft	304.60	50.19	225.32	0.826	28.90

19.80	70.0	Shear	kip	-33.91	-3.30	-25.65	0.893	31.27
22.63	80.0	Flexure	kip-ft	304.60	38.37	176.73	1.117	39.10
22.63	80.0	Shear	kip	-45.95	-5.12	-31.23	0.974	34.10
25.46	90.0	Flexure	kip-ft	295.44	21.57	104.17	1.983	69.39
25.46	90.0	Shear	kip	-89.73	-6.76	-36.82	1.698	59.43
26.81	94.8	Flexure	kip-ft	262.19	11.90	58.40	3.257	114.00
26.81	94.8	Shear	kip	-118.16	-7.55	-39.48	2.118	74.13
27.11	95.8	Shear	kip	-125.66	-7.72	-40.07	2.227	77.94
28.29	100.0	Flexure	kip-ft	88.49	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294 Bridge ID: 874294

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 15:45:03 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 15:45:44

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU Member Name: G10 Member Alternative Name: 17"x36" INT PSU - (w/ Post Tensioning)

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

						Inventory Inventory Operating Operati				Operating
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	88.32	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.70	-0.00	0.00	99.000	3564.00		
1.17	4.1	Shear	kip	129.09	7.72	20.37	3.351	120.64	4.344	156.39
1.69	6.0	Flexure	kip-ft	243.32	13.52	33.69	3.841	138.27	4.979	179.24
1.69	6.0	Shear	kip	118.17	7.42	19.81	3.141	113.07	4.072	146.57
1.69	6.0	Concrete Stresses	ksi	1.63	0.10	0.25	7.736	278.50		
2.83	10.0	Flexure	kip-ft	284.36	21.61	53.30	2.759	99.33	3.577	128.76
2.83	10.0	Shear	kip	92.75	6.76	18.60	2.590	93.25	3.358	120.88
2.83	10.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.700	169.19		
5.66	20.0	Flexure	kip- ft	304.65	38.40	90.83	1.615	58.13	2.093	75.35
5.66	20.0	Shear	kip	85.08	5.11	15.62	2.878	103.61	3.731	134.31
5.66	20.0	Concrete Stresses	ksi	1.63	0.28	0.67	2.527	90.96		
8.49	30.0	Flexure	kip- ft	304.65	50.23	112.61	1.227	44.18	1.591	57.27
8.49	30.0	Shear	kip	59.51	3.30	12.71	2.491	89.69	4.720	169.93
8.49	30.0	Concrete Stresses	ksi	1.63	0.37	0.83	1.907	68.64		
11.32	40.0	Flexure	kip- ft	304.65	57.22	118.63	1.123	40.43	1.456	52.41
11.32	40.0	Shear	kip	54.86	1.65	9.84	3.066	110.39	6.250	225.00
11.32	40.0	Concrete Stresses	ksi	1.63	0.42	0.87	1.736	62.51		
14.15	50.0	Flexure		304.65	59.54	109.11	1.206	43.40	1.563	56.26

		kip ft	-					
14.15	50.0	Shear kip	-64.58	-0.00 -7.0	5.251	189.03	8.967	322.81
14.15	50.0	Concrete Stresses ksi	1.63	0.44 0.8	0 1.861	67.00		
16.98	60.0	Flexure kip	304.65	57.20 118.	63 1.123	40.43	1.456	52.41
16.98	60.0	Shear kip	-54.87	-1.65 -9.8	3.066	110.38	6.249	224.98
16.98	60.0	Concrete Stresses ksi	1.63	0.42 0.8	7 1.737	62.51		
19.80	70.0	Flexure kip	304.65	50.19 112.	61 1.228	44.19	1.591	57.29
19.80	70.0	Shear kip	-59.53	-3.30 -12.	71 2.492	89.71	4.720	169.91
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.8	3 1.907	68.66		
22.63	80.0	Flexure kip	304.65	38.37 90.8	33 1.615	58.13	2.093	75.36
22.63	80.0	Shear kip	-85.08	-5.12 -15.	62 2.878	103.60	3.730	134.30
22.63	80.0	Concrete Stresses ksi	1.63	0.28 0.6	7 2.527	90.97		
25.46	90.0	Flexure kip-		21.57 53.3	30 2.839	102.20	3.680	132.49
25.46	90.0	Shear kip	-89.88	-6.76 -18.	60 2.502	90.07	3.243	116.75
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.3	9 4.701	169.23		
26.81	94.8	Flexure kip-		11.90 29.8		166.53	5.996	215.87
26.81	94.8	Shear kip	-118.33	-7.55 -20.	03 3.106	111.81	4.026	144.94
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.2	2 8.804	316.93		
27.11	95.8	Shear kip		-7.72 -20.	35 3.262	117.43	4.228	152.22
28.29	100.0	Flexure kip ft	86.22	0.00 0.0	0 99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.0	0 99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

				Inventory Inventory Operating Operati				
Locatio	n			Rating	Load Rating	Rating	Load Rating	
(ft)	Percent	Units Capacity	LL	Factor	(Ton)	Factor	(Ton)	

		Limit State		DL + Adj- LL*				
0.00	0.0	Flexure kip- ft	88.32	0.00 0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses ksi	0.70	-0.00 0.00	99.000	3564.00		
1.17	4.1	Shear kip	129.09	7.72 19.93	3.425	123.31	4.440	159.85
1.69	6.0	Flexure kip-f	243.32	13.52 33.11	3.907	140.67	5.065	182.34
1.69	6.0	Shear kip	118.17	7.42 19.47	3.196	115.05	4.143	149.13
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.24	7.870	283.33		
2.83	10.0	Flexure kip-f	284.36	21.61 52.96	2.777	99.96	3.599	129.57
2.83	10.0	Shear kip	92.75	6.76 18.48	2.607	93.85	3.379	121.65
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.39	4.729	170.26		
5.66	20.0	Flexure kip- ft	304.65	38.40 93.28	1.572	56.60	2.038	73.37
5.66	20.0	Shear kip	85.08	5.11 16.06	2.801	100.82	3.630	130.69
5.66	20.0	Concrete Stresses ksi	1.63	0.28 0.69	2.460	88.57		
8.49	30.0	Flexure kip- ft	304.65	50.23 120.96	1.143	41.13	1.481	53.32
8.49	30.0	Shear kip	53.03	3.30 13.69	2.042	73.50	4.381	157.72
8.49	30.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.90		
11.32	40.0	Flexure kip- ft	304.65	57.22 135.99	0.980	35.27	1.270	45.71
11.32	40.0	Shear kip	45.04	1.65 11.37	2.159	77.74	4.245	152.83
11.32	40.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
14.15	50.0	Flexure kip- ft	304.65	59.54 138.38	0.951	34.23	1.232	44.37
14.15	50.0	Shear kip	-44.95	-0.00 -9.11	2.818	101.46	5.444	195.99
14.15	50.0	Concrete Stresses ksi	1.63	0.44 1.02	1.467	52.83		
16.98	60.0	Flexure kip- ft	304.65	57.20 135.99	0.980	35.27	1.270	45.72
16.98	60.0	Shear kip	-45.04	-1.65 -11.37	2.159	77.73	4.245	152.83
16.98	60.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
19.80	70.0	Flexure kip- ft	304.65	50.19 120.96	1.143	41.14	1.481	53.33
19.80	70.0	Shear kip	-53.04	-3.30 -13.69	2.042	73.50	4.381	157.70
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.92		
22.63	80.0	Flexure	304.65	38.37 93.28	1.572	56.61	2.038	73.38

		kip- ft						
22.63	80.0	Shear kip	-85.08	-5.12 -16.0	06 2.800	100.81	3.630	130.68
22.63	80.0	Concrete Stresses ksi	1.63	0.28 0.6	9 2.461	88.58		
25.46	90.0	Flexure kip-f	t 291.74	21.57 52.9	06 2.857	102.85	3.703	133.32
25.46	90.0	Shear kip	-89.88	-6.76 -18.4	48 2.518	90.64	3.264	117.50
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.3	9 4.730	170.30		
26.81	94.8	Flexure kip-f	t 256.36	11.90 29.2	4.715	169.73	6.112	220.02
26.81	94.8	Shear kip	-118.33	-7.55 -19.0	65 3.166	113.97	4.104	147.74
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.22	2 8.973	323.03		
27.11	95.8	Shear kip	-125.83	-7.72 -19.9	91 3.334	120.01	4.321	155.57
28.29	100.0	Flexure kip- ft	86.22	0.00 0.0	0 99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.0	0 99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	129.09	7.72	11.15	8.238	230.67
1.69	6.0	Flexure	kip-ft	243.32	13.52	18.41	9.462	264.94
1.69	6.0	Shear	kip	118.17	7.42	10.91	7.679	215.03
2.83	10.0	Flexure	kip-ft	284.36	21.61	29.33	6.749	188.96
2.83	10.0	Shear	kip	92.75	6.76	10.37	6.254	175.13
5.66	20.0	Flexure	kip-ft	304.65	38.40	51.10	3.864	108.18
5.66	20.0	Shear	kip	85.08	5.11	9.03	6.703	187.69
8.49	30.0	Flexure	kip-ft	304.65	50.23	65.30	2.849	79.78
8.49	30.0	Shear	kip	85.08	3.30	7.69	8.095	226.66
11.32	40.0	Flexure	kip-ft	304.65	57.22	71.93	2.493	69.81
11.32	40.0	Shear	kip	85.08	1.65	6.36	10.048	281.34
14.15	50.0	Flexure	kip-ft	304.65	59.54	70.99	2.495	69.85

14.15	50.0	Shear	kip	-85.08	-0.00	-5.02	13.040	365.13
16.98	60.0	Flexure	kip-ft	304.65	57.20	71.93	2.493	69.82
16.98	60.0	Shear	kip	-85.08	-1.65	-6.36	10.047	281.31
19.80	70.0	Flexure	kip-ft	304.65	50.19	65.30	2.850	79.80
19.80	70.0	Shear	kip	-85.08	-3.30	-7.69	8.094	226.64
22.63	80.0	Flexure	kip-ft	304.65	38.37	51.10	3.864	108.20
22.63	80.0	Shear	kip	-85.08	-5.12	-9.03	6.702	187.67
25.46	90.0	Flexure	kip-ft	291.74	21.57	29.33	6.944	194.42
25.46	90.0	Shear	kip	-89.88	-6.76	-10.37	6.041	169.14
26.81	94.8	Flexure	kip-ft	256.36	11.90	16.28	11.410	319.48
26.81	94.8	Shear	kip	-118.33	-7.55	-11.01	7.610	213.09
27.11	95.8	Shear	kip	-125.83	-7.72	-11.15	8.018	224.49
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	129.09	7.72	15.66	5.867	215.02
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.63	6.797	249.10
1.69	6.0	Shear	kip	118.17	7.42	15.19	5.516	202.17
2.83	10.0	Flexure	kip-ft	284.36	21.61	40.46	4.892	179.30
2.83	10.0	Shear	kip	92.75	6.76	14.30	4.534	166.17
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.13	2.775	101.72
5.66	20.0	Shear	kip	85.08	5.11	12.57	4.815	176.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	92.01	2.022	74.11
8.49	30.0	Shear	kip	85.08	3.30	10.84	5.745	210.55
11.32	40.0	Flexure	kip-ft	304.65	57.22	103.09	1.739	63.75
11.32	40.0	Shear	kip	85.08	1.65	9.11	7.010	256.93
14.15	50.0	Flexure	kip-ft	304.65	59.54	104.38	1.697	62.18
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	325.04
16.98	60.0	Flexure	kip-ft	304.65	57.20	103.09	1.740	63.76
16.98	60.0	Shear	kip	-85.08	-1.65	-9.11	7.010	256.90
19.80	70.0	Flexure	kip-ft	304.65	50.19	92.01	2.022	74.12

19.80	70.0	Shear	kip	-85.08	-3.30	-10.84	5.744	210.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.13	2.776	101.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.57	4.815	176.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	40.46	5.034	184.49
25.46	90.0	Shear	kip	-89.88	-6.76	-14.30	4.379	160.50
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.74	8.167	299.32
26.81	94.8	Shear	kip	-118.33	-7.55	-15.38	5.447	199.65
27.11	95.8	Shear	kip	-125.83	-7.72	-15.65	5.711	209.30
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.73	5.842	233.70
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.93	6.717	268.67
1.69	6.0	Shear	kip	118.17	7.42	15.37	5.451	218.06
2.83	10.0	Flexure	kip-ft	284.36	21.61	41.23	4.802	192.06
2.83	10.0	Shear	kip	92.75	6.76	14.57	4.450	178.00
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.33	2.768	110.72
5.66	20.0	Shear	kip	85.08	5.11	12.61	4.802	192.09
8.49	30.0	Flexure	kip-ft	304.65	50.23	90.30	2.060	82.42
8.49	30.0	Shear	kip	85.08	3.30	10.64	5.854	234.15
11.32	40.0	Flexure	kip-ft	304.65	57.22	98.14	1.827	73.09
11.32	40.0	Shear	kip	85.08	1.65	8.67	7.364	294.57
14.15	50.0	Flexure	kip-ft	304.65	59.54	103.05	1.719	68.74
14.15	50.0	Shear	kip	-85.08	-0.00	-6.71	9.756	390.22
16.98	60.0	Flexure	kip-ft	304.65	57.20	98.14	1.827	73.10
16.98	60.0	Shear	kip	-85.08	-1.65	-8.67	7.364	294.54
19.80	70.0	Flexure	kip-ft	304.65	50.19	90.30	2.061	82.43
19.80	70.0	Shear	kip	-85.08	-3.30	-10.64	5.853	234.13
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.33	2.768	110.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.61	4.802	192.07
25.46	90.0	Flexure	kip-ft	291.74	21.57	41.23	4.940	197.62

25.46	90.0	Shear	kip	-89.88	-6.76	-14.57	4.298	171.92
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.94	8.096	323.85
26.81	94.8	Shear	kip	-118.33	-7.55	-15.51	5.400	216.01
27.11	95.8	Shear	kip	-125.83	-7.72	-15.72	5.686	227.44
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	243.32	13.52	40.86	4.618	277.07
2.83	10.0	Flexure	kip-ft	284.36	21.61	64.51	3.324	199.45
5.66	20.0	Flexure	kip-ft	304.65	38.40	109.25	1.958	117.46
8.49	30.0	Flexure	kip-ft	304.65	50.23	134.22	1.502	90.10
11.32	40.0	Flexure	kip-ft	304.65	57.22	139.42	1.393	83.60
14.15	50.0	Flexure	kip-ft	304.65	59.54	125.17	1.533	91.97
16.98	60.0	Flexure	kip-ft	304.65	57.20	139.42	1.394	83.61
19.80	70.0	Flexure	kip-ft	304.65	50.19	134.22	1.502	90.12
22.63	80.0	Flexure	kip-ft	304.65	38.37	109.25	1.958	117.47
25.46	90.0	Flexure	kip-ft	291.74	21.57	64.51	3.420	205.22
26.81	94.8	Flexure	kip-ft	256.36	11.90	36.20	5.560	333.58
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) ST 5 Axle Load Impact: With Impact Lane: Single Lane

Span 1

Legal	Legal
Dating	Load
Rating	Rating

Location

(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.36	5.983	239.30
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.26	6.895	275.80
1.69	6.0	Shear	kip	118.17	7.42	14.97	5.596	223.84
2.83	10.0	Flexure	kip-ft	284.36	21.61	39.92	4.958	198.33
2.83	10.0	Shear	kip	92.75	6.76	14.11	4.595	183.81
5.66	20.0	Flexure	kip-ft	304.65	38.40	67.83	2.911	116.42
5.66	20.0	Shear	kip	85.08	5.11	11.99	5.050	201.99
8.49	30.0	Flexure	kip-ft	304.65	50.23	83.72	2.222	88.89
8.49	30.0	Shear	kip	85.08	3.30	9.86	6.314	252.56
11.32	40.0	Flexure	kip-ft	304.65	57.22	93.25	1.923	76.92
11.32	40.0	Shear	kip	85.08	1.65	7.74	8.252	330.08
14.15	50.0	Flexure	kip-ft	304.65	59.54	93.59	1.892	75.69
14.15	50.0	Shear	kip	-85.08	-0.00	-6.08	10.765	430.60
16.98	60.0	Flexure	kip-ft	304.65	57.20	93.25	1.923	76.93
16.98	60.0	Shear	kip	-85.08	-1.65	-7.74	8.251	330.04
19.80	70.0	Flexure	kip-ft	304.65	50.19	83.72	2.223	88.91
19.80	70.0	Shear	kip	-85.08	-3.30	-9.86	6.313	252.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	67.83	2.911	116.44
22.63	80.0	Shear	kip	-85.08	-5.12	-11.99	5.049	201.97
25.46	90.0	Flexure	kip-ft	291.74	21.57	39.92	5.102	204.07
25.46	90.0	Shear	kip	-89.88	-6.76	-14.11	4.438	177.53
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.37	8.303	332.11
26.81	94.8	Shear	kip	-118.33	-7.55	-15.13	5.538	221.51
27.11	95.8	Shear	kip	-125.83	-7.72	-15.35	5.823	232.91
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 2 Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	129.09	7.72	10.65	8.625	146.63

1.69	6.0	Flexure	kip-ft	243.32	13.52	17.56	9.917	168.59
1.69	6.0	Shear	kip n	118.17	7.42	10.41	8.049	136.83
			-					
2.83	10.0	Flexure	kip-ft	284.36	21.61	27.92	7.091	120.54
2.83	10.0	Shear	kip	92.75	6.76	9.87	6.572	111.72
5.66	20.0	Flexure	kip-ft	304.65	38.40	48.27	4.090	69.54
5.66	20.0	Shear	kip	85.08	5.11	8.53	7.097	120.64
8.49	30.0	Flexure	kip-ft	304.65	50.23	61.05	3.047	51.81
8.49	30.0	Shear	kip	85.08	3.30	7.19	8.658	147.19
11.32	40.0	Flexure	kip-ft	304.65	57.22	66.26	2.706	46.01
11.32	40.0	Shear	kip	85.08	1.65	5.86	10.907	185.42
14.15	50.0	Flexure	kip-ft	304.65	59.54	63.91	2.771	47.11
14.15	50.0	Shear	kip	-85.08	-0.00	-4.52	14.485	246.24
16.98	60.0	Flexure	kip-ft	304.65	57.20	66.26	2.707	46.01
16.98	60.0	Shear	kip	-85.08	-1.65	-5.86	10.906	185.40
19.80	70.0	Flexure	kip-ft	304.65	50.19	61.05	3.048	51.82
19.80	70.0	Shear	kip	-85.08	-3.30	-7.19	8.657	147.18
22.63	80.0	Flexure	kip-ft	304.65	38.37	48.27	4.091	69.54
22.63	80.0	Shear	kip	-85.08	-5.12	-8.53	7.096	120.63
25.46	90.0	Flexure	kip-ft	291.74	21.57	27.92	7.296	124.03
25.46	90.0	Shear	kip	-89.88	-6.76	-9.8 7	6.347	107.90
26.81	94.8	Flexure	kip-ft	256.36	11.90	15.54	11.954	203.21
26.81	94.8	Shear	kip	-118.33	-7.55	-10.51	7.973	135.54
27.11	95.8	Shear	kip	-125.83	-7.72	-10.65	8.394	142.71
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	129.09	7.72	18.97	4.842	159.80
1.69	6.0	Flexure	kip-ft	243.32	13.52	31.22	5.579	184.12
1.69	6.0	Shear	kip	118.17	7.42	18.50	4.528	149.43
2.83	10.0	Flexure	kip-ft	284.36	21.61	49.37	4.009	132.31
2.83	10.0	Shear	kip	92.75	6.76	17.45	3.716	122.62

5.66	20.0	Flexure	kip-ft	304.65	38.40	84.06	2.349	77.51
5.66	20.0	Shear	kip	85.08	5.11	14.86	4.075	134.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	104.05	1.788	59.01
8.49	30.0	Shear	kip	85.08	3.30	12.26	5.080	167.65
11.32	40.0	Flexure	kip-ft	304.65	57.22	116.56	1.538	50.77
11.32	40.0	Shear	kip	85.08	1.65	9.66	6.609	218.10
14.15	50.0	Flexure	kip-ft	304.65	59.54	118.00	1.501	49.53
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	292.67
16.98	60.0	Flexure	kip-ft	304.65	57.20	116.56	1.539	50.77
16.98	60.0	Shear	kip	-85.08	-1.65	-9.66	6.609	218.08
19.80	70.0	Flexure	kip-ft	304.65	50.19	104.05	1.788	59.02
19.80	70.0	Shear	kip	-85.08	-3.30	-12.26	5.080	167.63
22.63	80.0	Flexure	kip-ft	304.65	38.37	84.06	2.349	77.52
22.63	80.0	Shear	kip	-85.08	-5.12	-14.86	4.075	134.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	49.37	4.125	136.14
25.46	90.0	Shear	kip	-89.88	-6.76	-17.45	3.589	118.44
26.81	94.8	Flexure	kip-ft	256.36	11.90	27.65	6.719	221.73
26.81	94.8	Shear	kip	-118.33	-7.55	-18.69	4.482	147.89
27.11	95.8	Shear	kip	-125.83	-7.72	-18.96	4.713	155.53
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	129.09	7.72	19.76	4.649	162.71
1.69	6.0	Flexure	kip-ft	243.32	13.52	32.50	5.359	187.56
1.69	6.0	Shear	kip	118.17	7.42	19.26	4.349	152.22
2.83	10.0	Flexure	kip-ft	284.36	21.61	51.35	3.855	134.94
2.83	10.0	Shear	kip	92.75	6.76	18.15	3.573	125.06
5.66	20.0	Flexure	kip-ft	304.65	38.40	87.11	2.266	79.32
5.66	20.0	Shear	kip	85.08	5.11	15.40	3.932	137.62
8.49	30.0	Flexure	kip-ft	304.65	50.23	111.07	1.675	58.63
8.49	30.0	Shear	kip	85.08	3.30	12.64	4.926	172.42

11.32	40.0	Flexure	kip-ft	304.65	57.22	127.15	1.410	49.36
11.32	40.0	Shear	kip	84.27	1.65	9.99	6.330	221.56
14.15	50.0	Flexure	kip-ft	304.65	59.54	127.65	1.387	48.56
14.15	50.0	Shear	kip	-85.08	-0.00	-7.78	8.408	294.29
16.98	60.0	Flexure	kip-ft	304.65	57.20	127.15	1.411	49.37
16.98	60.0	Shear	kip	-84.29	-1.65	-9.99	6.331	221.58
19.80	70.0	Flexure	kip-ft	304.65	50.19	111.07	1.675	58.64
19.80	70.0	Shear	kip	-85.08	-3.30	-12.64	4.926	172.40
22.63	80.0	Flexure	kip-ft	304.65	38.37	87.11	2.267	79.33
22.63	80.0	Shear	kip	-85.08	-5.12	-15.40	3.932	137.61
25.46	90.0	Flexure	kip-ft	291.74	21.57	51.35	3.967	138.84
25.46	90.0	Shear	kip	-89.88	-6.76	-18.15	3.451	120.79
26.81	94.8	Flexure	kip-ft	256.36	11.90	28.79	6.452	225.84
26.81	94.8	Shear	kip	-118.33	-7.55	-19.46	4.304	150.63
27.11	95.8	Shear	kip	-125.83	-7.72	-19.75	4.525	158.36
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3465.00

Note: *Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal **NBI Structure ID:** 874294 **Bridge ID:** 874294

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 15:31:36 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 15:32:03

Structure Definition Name: INT Span 2 - PS Conc PSU **Member Name:** G3 **Member Alternative Name:** 17"x36" INT PSU - Existing Condition

Report by Action: 🗹 Flexure 🗹 Concrete Stresses 🗹 Shear 🗹 Critical

Detailed Rating Results 17"x36" INT PSU - Existing Condition HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

							Inventory Inventory Operating Operatin			
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	182.43	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	1.08	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	112.74	10.73	48.83	1.162	41.84	1.507	54.24
1.48	3.8	Flexure	kip-ft	408.30	16.29	71.63	3.095	111.40	4.011	144.41
1.48	3.8	Shear	kip	106.69	10.52	48.15	1.110	39.96	1.439	51.80
1.48	3.8	Concrete Stresses	ksi	2.45	0.12	0.53	5.535	199.26		
3.85	10.0	Flexure	kip-ft	462.73	39.60	171.07	1.380	49.69	1.789	64.41
3.85	10.0	Shear	kip	76.71	9.14	43.77	0.852	30.69	1.159	41.74
3.85	10.0	Concrete Stresses	ksi	2.45	0.29	1.26	2.147	77.31		
7.70	20.0	Flexure	kip-ft	462.73	70.46	292.21	0.733	26.37	0.950	34.19
7.70	20.0	Shear	kip	32.51	6.89	36.77	0.371	13.37	0.771	27.74
7.70	20.0	Concrete Stresses	ksi	2.45	0.52	2.15	1.125	40.50		
11.55	30.0	Flexure	kip-ft	462.73	92.31	365.43	0.543	19.55	0.704	25.35
11.55	30.0	Shear	kip	24.35	4.49	30.09	0.356	12.81	0.698	25.14
11.55	30.0	Concrete Stresses	ksi	2.45	0.68	2.69	0.825	29.70		
15.40	40.0	Flexure	kip-ft	462.73	105.27	402.57	0.470	16.92	0.609	21.94
15.40	40.0	Shear	kip	22.39	2.24	24.02	0.466	16.78	0.839	30.20
15.40	40.0	Concrete Stresses	ksi	2.45	0.77	2.96	0.709	25.51		
19.25	50.0	Flexure	kip- ft	462.73	109.59	400.72	0.465	16.72	0.602	21.68
19.25	50.0	Shear	kip	-22.39	0.00	-18.10	0.707	25.46	1.251	45.02
19.25	50.0		ksi	2.45	0.81	2.95	0.698	25.14		

		Concrete Stresses						
23.10	60.0	Flexure kip-fi	462.73	105.27 402.57	0.470	16.92	0.609	21.94
23.10	60.0	Shear kip	-22.39	-2.24 -24.02	0.466	16.78	0.839	30.20
23.10	60.0	Concrete Stresses ksi	2.45	0.77 2.96	0.709	25.51		
26.95	70.0	Flexure kip-f	480.13	92.31 365.43	0.570	20.53	0.739	26.62
26.95	70.0	Shear kip	-27.52	-4.49 -30.09	0.416	14.98	0.781	28.10
26.95	70.0	Concrete Stresses ksi	2.45	0.68 2.69	0.825	29.70		
30.80	80.0	Flexure kip-f	462.73	70.46 292.21	0.733	26.37	0.950	34.19
30.80	80.0	Shear kip	-32.51	-6.89 -36.77	0.371	13.37	0.771	27.74
30.80	80.0	Concrete Stresses ksi	2.45	0.52 2.15	1.125	40.50		
34.65	90.0	Flexure kip-f	462.73	39.60 171.07	1.380	49.69	1.789	64.41
34.65	90.0	Shear kip	-76.71	-9.14 -43.77	0.852	30.69	1.159	41.74
34.65	90.0	Concrete Stresses ksi	2.45	0.29 1.26	2.147	77.31		
37.02	96.2	Flexure kip-f	408.30	16.29 71.63	3.095	111.41	4.012	144.41
37.02	96.2	Shear kip	-106.69	-10.52 -48.15	1.110	39.96	1.439	51.80
37.02	96.2	Concrete Stresses ksi	2.45	0.12 0.53	5.535	199.26		
37.39	97.1	Shear kip	-112.75	-10.73 -48.84	1.162	41.84	1.507	54.24
38.50	100.0	Flexure kip- ft	157.45	0.00 0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses ksi	1.08	0.00 0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Condition HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

							Inventory	Inventory	Operating	Operating
Location	I						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00							99.000		99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	1.08	-0.00	0.00	99.000	3564.00		

1.12	2.9	Shear kip	112.74	10.73 43.64	1.300	46.82	1.686	60.69
1.48	3.8	Flexure kip-ft		16.29 64.20	3.453	124.30	4.476	161.14
1.48	3.8	Shear kip	106.69	10.52 43.13	1.239	44.62	1.607	57.84
1.48	3.8	Concrete Stresses ksi	2.45	0.12 0.47	6.176	222.33		
3.85	10.0	Flexure kip-ft		39.60 155.89	1.515	54.53	1.964	70.69
3.85	10.0	Shear kip	79.93	9.14 39.82	0.983	35.39	1.274	45.87
3.85	10.0	Concrete Stresses ksi	2.45	0.29 1.15	2.357	84.84		
7.70	20.0	Flexure kip-ft		70.46 275.36	0.777	27.99	1.008	36.28
7.70	20.0	Shear kip	35.22	6.89 34.58	0.440	15.83	0.919	33.10
7.70	20.0	Concrete Stresses ksi	2.45	0.52 2.02	1.194	42.98		
11.55	30.0	Flexure kip-ft	462.73	92.31 358.42	0.554	19.94	0.718	25.84
11.55	30.0	Shear kip	24.98	4.49 29.48	0.375	13.52	0.734	26.44
11.55	30.0	Concrete Stresses ksi	2.45	0.68 2.64	0.841	30.28		
15.40	40.0	Flexure kip-ft	462.73	105.27 405.06	0.467	16.82	0.606	21.80
15.40	40.0	Shear kip	22.39	2.24 24.53	0.456	16.43	0.813	29.28
15.40	40.0	Concrete Stresses ksi	2.45	0.77 2.98	0.704	25.35		
19.25	50.0	Flexure kip- ft	462.73	109.59 415.29	0.448	16.14	0.581	20.92
19.25	50.0	Shear kip	-22.39	0.00 -19.73	0.649	23.36	1.095	39.40
19.25	50.0	Concrete Stresses ksi	2.45	0.81 3.05	0.674	24.26		
23.10	60.0	Flexure kip-ft	462.73	105.27 405.06	0.467	16.82	0.606	21.80
23.10	60.0	Shear kip	-22.39	-2.24 -24.53	0.456	16.43	0.813	29.28
23.10	60.0	Concrete Stresses ksi	2.45	0.77 2.98	0.704	25.35		
26.95	70.0	Flexure kip-ft	480.13	92.31 358.42	0.582	20.93	0.754	27.14
26.95	70.0	Shear kip	-28.16	-4.49 -29.48	0.437	15.74	0.819	29.47
26.95	70.0	Concrete Stresses ksi	2.45	0.68 2.64	0.841	30.28		
30.80	80.0	Flexure kip-ft		70.46 275.36	0.777	27.99	1.008	36.28
30.80	80.0	Shear kip	-35.22	-6.89 -34.58	0.440	15.83	0.919	33.10
30.80	80.0	Concrete Stresses ksi	2.45	0.52 2.02	1.194	42.98		
34.65	90.0	Flexure kip-ft	462.73	39.60 155.89	1.515	54.53	1.964	70.69
34.65	90.0	Shear kip	-79.93	-9.14 -39.82	0.983	35.39	1.274	45.87
34.65	90.0	Concrete Stresses ksi	2.45	0.29 1.15	2.357	84.84		
37.02	96.2	Flexure kip-ft		16.29 64.20	3.453	124.30	4.476	161.14
37.02	96.2	Shear kip	-106.69	-10.52 -43.13	1.239	44.62	1.607	57.84
37.02	96.2	Concrete Stresses ksi	2.45	0.12 0.47	6.176	222.33		

37.39	97.1	Shear	kip	-112.75	-10.73	-43.64	1.301	46.82	1.686	60.69
38.50	100.0	Flexure	kip- ft	157.45	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	1.08	0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	112.74	10.73	26.81	2.850	79.79
1.48	3.8	Flexure	kip-ft	408.30	16.29	39.03	7.645	214.05
1.48	3.8	Shear	kip	106.69	10.52	26.39	2.727	76.35
3.85	10.0	Flexure	kip-ft	462.73	39.60	91.00	3.493	97.80
3.85	10.0	Shear	kip	79.93	9.14	23.64	2.229	62.42
7.70	20.0	Flexure	kip-ft	462.73	70.46	147.98	1.947	54.53
7.70	20.0	Shear	kip	79.93	6.89	19.22	2.854	79.92
11.55	30.0	Flexure	kip-ft	462.73	92.31	190.63	1.402	39.24
11.55	30.0	Shear	kip	79.93	4.49	16.51	3.464	96.98
15.40	40.0	Flexure	kip-ft	462.73	105.27	215.01	1.185	33.17
15.40	40.0	Shear	kip	79.93	2.24	13.79	4.301	120.44
19.25	50.0	Flexure	kip-ft	462.73	109.59	213.27	1.175	32.90
19.25	50.0	Shear	kip	79.93	0.00	11.08	5.550	155.39
23.10	60.0	Flexure	kip-ft	462.73	105.27	215.01	1.185	33.17
23.10	60.0	Shear	kip	-79.93	-2.24	-13.79	4.301	120.44
26.95	70.0	Flexure	kip-ft	480.13	92.31	190.63	1.472	41.21
26.95	70.0	Shear	kip	-80.21	-4.49	-16.51	3.477	97.35
30.80	80.0	Flexure	kip-ft	462.73	70.46	147.98	1.947	54.53
30.80	80.0	Shear	kip	-79.93	-6.89	-19.22	2.854	79.92
34.65	90.0	Flexure	kip-ft	462.73	39.60	91.00	3.493	97.80
34.65	90.0	Shear	kip	-79.93	-9.14	-23.64	2.229	62.42
37.02	96.2	Flexure	kip-ft	408.30	16.29	39.03	7.645	214.05
37.02	96.2	Shear	kip	-106.69	-10.52	-26.39	2.727	76.35
37.39	97.1	Shear	kip	-112.75	-10.73	-26.81	2.850	79.79
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 4 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	112.74	10.73	37.60	2.032	74.48
1.48	3.8	Flexure	kip-ft	408.30	16.29	54.79	5.446	199.60
1.48	3.8	Shear	kip	106.69	10.52	37.04	1.943	71.19
3.85	10.0	Flexure	kip-ft	462.73	39.60	129.53	2.454	89.94
3.85	10.0	Shear	kip	79.93	9.14	33.65	1.566	57.40
7.70	20.0	Flexure	kip-ft	462.73	70.46	218.51	1.319	48.34
7.70	20.0	Shear	kip	79.93	6.89	28.38	1.933	70.84
11.55	30.0	Flexure	kip-ft	462.73	92.31	266.94	1.001	36.68
11.55	30.0	Shear	kip	55.52	4.49	23.11	1.661	60.88
15.40	40.0	Flexure	kip-ft	462.73	105.27	295.17	0.863	31.63
15.40	40.0	Shear	kip	46.74	2.24	19.17	1.763	64.63
19.25	50.0	Flexure	kip-ft	462.73	109.59	301.38	0.831	30.47
19.25	50.0	Shear	kip	-45.84	0.00	-15.66	2.252	82.55
23.10	60.0	Flexure	kip-ft	462.73	105.27	295.17	0.863	31.63
23.10	60.0	Shear	kip	-46.74	-2.24	-19.17	1.763	64.63
26.95	70.0	Flexure	kip-ft	480.13	92.31	266.94	1.051	38.52
26.95	70.0	Shear	kip	-58.64	-4.49	-23.11	1.765	64.69
30.80	80.0	Flexure	kip-ft	462.73	70.46	218.51	1.319	48.34
30.80	80.0	Shear	kip	-79.93	-6.89	-28.38	1.933	70.84
34.65	90.0	Flexure	kip-ft	462.73	39.60	129.53	2.454	89.94
34.65	90.0	Shear	kip	-79.93	-9.14	-33.65	1.566	57.40
37.02	96.2	Flexure	kip-ft	408.30	16.29	54.79	5.446	199.60
37.02	96.2	Shear	kip	-106.69	-10.52	-37.04	1.943	71.19
37.39	97.1	Shear	kip	-112.75	-10.73	-37.60	2.032	74.48
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - Existing Condition C 5

Page 8 of 13

Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	112.74	10.73	37.64	2.030	81.19
1.48	3.8	Flexure	kip-ft	408.30	16.29	54.90	5.436	217.43
1.48	3.8	Shear	kip	106.69	10.52	37.11	1.939	77.55
3.85	10.0	Flexure	kip-ft	462.73	39.60	129.65	2.452	98.07
3.85	10.0	Shear	kip	79.93	9.14	33.67	1.565	62.59
7.70	20.0	Flexure	kip-ft	462.73	70.46	216.28	1.332	53.30
7.70	20.0	Shear	kip	79.93	6.89	28.09	1.953	78.12
11.55	30.0	Flexure	kip-ft	462.73	92.31	268.72	0.994	39.77
11.55	30.0	Shear	kip	54.91	4.49	23.27	1.630	65.20
15.40	40.0	Flexure	kip-ft	462.73	105.27	300.26	0.848	33.93
15.40	40.0	Shear	kip	45.69	2.24	19.28	1.711	68.45
19.25	50.0	Flexure	kip-ft	462.73	109.59	310.88	0.806	32.24
19.25	50.0	Shear	kip	-44.19	0.00	-14.79	2.298	91.91
23.10	60.0	Flexure	kip-ft	462.73	105.27	300.26	0.848	33.93
23.10	60.0	Shear	kip	-45.69	-2.24	-19.28	1.711	68.45
26.95	70.0	Flexure	kip-ft	480.13	92.31	268.72	1.044	41.76
26.95	70.0	Shear	kip	-58.05	-4.49	-23.27	1.734	69.36
30.80	80.0	Flexure	kip-ft	462.73	70.46	216.28	1.332	53.30
30.80	80.0	Shear	kip	-79.93	-6.89	-28.09	1.953	78.12
34.65	90.0	Flexure	kip-ft	462.73	39.60	129.65	2.452	98.07
34.65	90.0	Shear	kip	-79.93	-9.14	-33.67	1.565	62.59
37.02	96.2	Flexure	kip-ft	408.30	16.29	54.90	5.436	217.43
37.02	96.2	Shear	kip	-106.69	-10.52	-37.11	1.939	77.55
37.39	97.1	Shear	kip	-112.75	-10.73	-37.64	2.030	81.19
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	5940.00
1.48	3.8	Flexure	kip-ft	408.30	16.29	84.85	3.810	228.59
3.85	10.0	Flexure	kip-ft	462.73	39.60	201.93	1.705	102.32
7.70	20.0	Flexure	kip-ft	462.73	70.46	342.42	0.912	54.71
11.55	30.0	Flexure	kip-ft	462.73	92.31	424.27	0.682	40.93
15.40	40.0	Flexure	kip-ft	462.73	105.27	464.01	0.595	35.68
19.25	50.0	Flexure	kip-ft	462.73	109.59	457.59	0.593	35.59
23.10	60.0	Flexure	kip-ft	462.73	105.27	464.01	0.595	35.68
26.95	70.0	Flexure	kip-ft	480.13	92.31	424.27	0.716	42.98
30.80	80.0	Flexure	kip-ft	462.73	70.46	342.42	0.912	54.71
34.65	90.0	Flexure	kip-ft	462.73	39.60	201.93	1.705	102.32
37.02	96.2	Flexure	kip-ft	408.30	16.29	84.85	3.810	228.59
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	112.74	10.73	34.38	2.222	88.88
1.48	3.8	Flexure	kip-ft	408.30	16.29	50.25	5.938	237.52
1.48	3.8	Shear	kip	106.69	10.52	33.97	2.118	84.72
3.85	10.0	Flexure	kip-ft	462.73	39.60	120.59	2.636	105.44
3.85	10.0	Shear	kip	79.93	9.14	31.32	1.682	67.30
7.70	20.0	Flexure	kip-ft	462.73	70.46	207.99	1.386	55.42
7.70	20.0	Shear	kip	79.93	6.89	27.01	2.031	81.23
11.55	30.0	Flexure	kip-ft	462.73	92.31	262.21	1.019	40.76
11.55	30.0	Shear	kip	57.20	4.49	22.70	1.748	69.93
15.40	40.0	Flexure	kip-ft	462.73	105.27	294.75	0.864	34.57
15.40	40.0	Shear	kip	47.00	2.24	18.39	1.848	73.94

19.25	50.0	Flexure	kip-ft	462.73	109.59	299.85	0.836	33.43
19.25	50.0	Shear	kip	-46.49	0.00	-14.08	2.539	101.56
23.10	60.0	Flexure	kip-ft	462.73	105.27	294.75	0.864	34.57
23.10	60.0	Shear	kip	-47.00	-2.24	-18.39	1.848	73.94
26.95	70.0	Flexure	kip-ft	480.13	92.31	262.21	1.070	42.80
26.95	70.0	Shear	kip	-60.25	-4.49	-22.70	1.851	74.05
30.80	80.0	Flexure	kip-ft	462.73	70.46	207.99	1.386	55.42
30.80	80.0	Shear	kip	-79.93	-6.89	-27.01	2.031	81.23
34.65	90.0	Flexure	kip-ft	462.73	39.60	120.59	2.636	105.44
34.65	90.0	Shear	kip	-79.93	-9.14	-31.32	1.682	67.30
37.02	96.2	Flexure	kip-ft	408.30	16.29	50.25	5.938	237.52
37.02	96.2	Shear	kip	-106.69	-10.52	-33.97	2.118	84.72
37.39	97.1	Shear	kip	-112.75	-10.73	-34.38	2.222	88.89
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	1683.00
1.12	2.9	Shear	kip	112.74	10.73	23.11	3.306	56.19
1.48	3.8	Flexure	kip-ft	408.30	16.29	33.81	8.827	150.05
1.48	3.8	Shear	kip	106.69	10.52	22.86	3.148	53.52
3.85	10.0	Flexure	kip-ft	462.73	39.60	81.56	3.897	66.25
3.85	10.0	Shear	kip	79.93	9.14	21.19	2.487	42.29
7.70	20.0	Flexure	kip-ft	462.73	70.46	142.24	2.026	34.44
7.70	20.0	Shear	kip	79.93	6.89	18.47	2.970	50.48
11.55	30.0	Flexure	kip-ft	462.73	92.31	182.02	1.468	24.95
11.55	30.0	Shear	kip	79.93	4.49	15.76	3.628	61.67
15.40	40.0	Flexure	kip-ft	462.73	105.27	200.90	1.268	21.55
15.40	40.0	Shear	kip	79.93	2.24	13.05	4.547	77.31
19.25	50.0	Flexure	kip-ft	462.73	109.59	198.90	1.260	21.42
19.25	50.0	Shear	kip	79.93	0.00	10.33	5.950	101.16
23.10	60.0	Flexure	kip-ft	462.73	105.27	200.90	1.268	21.55
23.10	60.0	Shear	kip	-79.93	-2.24	-13.05	4.547	77.31

26.95	70.0	Flexure	kip-ft	480.13	92.31	182.02	1.541	26.20
26.95	70.0	Shear	kip	-80.21	-4.49	-15.76	3.641	61.90
30.80	80.0	Flexure	kip-ft	462.73	70.46	142.24	2.026	34.44
30.80	80.0	Shear	kip	-79.93	-6.89	-18.47	2.970	50.48
34.65	90.0	Flexure	kip-ft	462.73	39.60	81.56	3.897	66.25
34.65	90.0	Shear	kip	-79.93	-9.14	-21.19	2.487	42.29
37.02	96.2	Flexure	kip-ft	408.30	16.29	33.81	8.827	150.05
37.02	96.2	Shear	kip	-106.69	-10.52	-22.86	3.148	53.52
37.39	97.1	Shear	kip	-112.75	-10.73	-23.11	3.306	56.20
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	112.74	10.73	42.33	1.805	59.57
1.48	3.8	Flexure	kip-ft	408.30	16.29	61.87	4.823	159.16
1.48	3.8	Shear	kip	106.69	10.52	41.83	1.720	56.77
3.85	10.0	Flexure	kip-ft	462.73	39.60	148.55	2.140	70.61
3.85	10.0	Shear	kip	79.93	9.14	38.58	1.366	45.07
7.70	20.0	Flexure	kip-ft	462.73	70.46	256.55	1.123	37.07
7.70	20.0	Shear	kip	62.13	6.89	33.32	1.236	40.77
11.55	30.0	Flexure	kip-ft	462.73	92.31	323.99	0.825	27.21
11.55	30.0	Shear	kip	41.63	4.49	28.05	0.988	32.59
15.40	40.0	Flexure	kip-ft	462.73	105.27	365.51	0.697	23.00
15.40	40.0	Shear	kip	35.37	2.24	22.78	1.099	36.28
19.25	50.0	Flexure	kip-ft	462.73	109.59	373.79	0.670	22.12
19.25	50.0	Shear	kip	-34.84	0.00	-17.52	1.530	50.49
23.10	60.0	Flexure	kip-ft	462.73	105.27	365.51	0.697	23.00
23.10	60.0	Shear	kip	-35.37	-2.24	-22.78	1.099	36.28
26.95	70.0	Flexure	kip-ft	480.13	92.31	323.99	0.866	28.58
26.95	70.0	Shear	kip	-45.02	-4.49	-28.05	1.081	35.66
30.80	80.0	Flexure	kip-ft	462.73	70.46	256.55	1.123	37.07
30.80	80.0	Shear	kip	-62.13	-6.89	-33.32	1.236	40.77

34.65	90.0	Flexure	kip-ft	462.73	39.60	148.55	2.140	70.61
34.65	90.0	Shear	kip	-79.93	-9.14	-38.58	1.366	45.07
37.02	96.2	Flexure	kip-ft	408.30	16.29	61.87	4.823	159.16
37.02	96.2	Shear	kip	-106.69	-10.52	-41.83	1.720	56.77
37.39	97.1	Shear	kip	-112.75	-10.73	-42.33	1.805	59.57
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - Existing Condition SU 4 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.43	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	112.74	10.73	44.35	1.723	60.29
1.48	3.8	Flexure	kip-ft	408.30	16.29	64.83	4.603	161.11
1.48	3.8	Shear	kip	106.69	10.52	43.83	1.642	57.46
3.85	10.0	Flexure	kip-ft	462.73	39.60	155.49	2.044	71.55
3.85	10.0	Shear	kip	79.93	9.14	40.39	1.305	45.67
7.70	20.0	Flexure	kip-ft	462.73	70.46	267.96	1.075	37.64
7.70	20.0	Shear	kip	57.26	6.89	34.80	1.075	37.63
11.55	30.0	Flexure	kip-ft	462.73	92.31	345.07	0.774	27.10
11.55	30.0	Shear	kip	38.34	4.49	29.21	0.862	30.16
15.40	40.0	Flexure	kip-ft	462.73	105.27	394.80	0.645	22.58
15.40	40.0	Shear	kip	32.21	2.24	23.63	0.957	33.51
19.25	50.0	Flexure	kip-ft	462.73	109.59	401.52	0.624	21.84
19.25	50.0	Shear	kip	-31.95	0.00	-18.04	1.362	47.67
23.10	60.0	Flexure	kip-ft	462.73	105.27	394.80	0.645	22.58
23.10	60.0	Shear	kip	-32.21	-2.24	-23.63	0.957	33.51
26.95	70.0	Flexure	kip-ft	480.13	92.31	345.07	0.813	28.46
26.95	70.0	Shear	kip	-41.72	-4.49	-29.21	0.951	33.28
30.80	80.0	Flexure	kip-ft	462.73	70.46	267.96	1.075	37.64
30.80	80.0	Shear	kip	-57.26	-6.89	-34.80	1.075	37.63
34.65	90.0	Flexure	kip-ft	462.73	39.60	155.49	2.044	71.55
34.65	90.0	Shear	kip	-79.93	-9.14	-40.39	1.305	45.67
37.02	96.2	Flexure	kip-ft	408.30	16.29	64.83	4.603	161.11
37.02	96.2	Shear	kip	-106.69	-10.52	-43.83	1.642	57.46

37.39	97.1	Shear	kip	-112.75	-10.73	-44.36	1.723	60.29
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal **NBI Structure ID:** 874294 **Bridge ID:** 874294

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 15:34:40 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 15:35:19

Structure Definition Name: INT Span 2 - PS Conc PSU Member Name: G10 Member Alternative Name: 17"x36" INT PSU - w/ post Tensioning

Report by Action: 🗹 Flexure 🗹 Concrete Stresses 🗹 Shear 🗹 Critical

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

	Inventory Inventory Operating Operat								Operating	
Location	I						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	182.46	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	1.08	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	112.73	10.73	20.86	2.720	97.92	3.526	126.94
1.48	3.8	Flexure	kip-ft	408.30	16.29	30.61	7.243	260.75	9.389	338.01
1.48	3.8	Shear	kip	106.69	10.52	20.57	2.598	93.53	3.368	121.24
1.48	3.8	Concrete Stresses	ksi	2.45	0.12	0.23	12.955	466.37		
3.85	10.0	Flexure	kip-ft	462.73	39.60	73.09	3.231	116.30	4.188	150.76
3.85	10.0	Shear	kip	79.93	9.14	18.70	2.093	75.36	2.714	97.69
3.85	10.0	Concrete Stresses	ksi	2.45	0.29	0.54	5.026	180.94		
7.70	20.0	Flexure	kip- ft	462.73	70.46	124.85	1.715	61.73	2.223	80.02
7.70	20.0	Shear	kip	79.93	6.89	15.71	2.594	93.38	3.363	121.05
7.70	20.0	Concrete Stresses	ksi	2.45	0.52	0.92	2.633	94.80		
11.55	30.0	Flexure	kip- ft	462.73	92.31	156.13	1.271	45.76	1.648	59.32
11.55	30.0	Shear	kip	79.93	4.49	12.85	3.304	118.93	4.283	154.17
11.55	30.0	Concrete Stresses	ksi	2.45	0.68	1.15	1.931	69.51		
15.40	40.0	Flexure	kip- ft	462.73	105.27	172.00	1.100	39.61	1.426	51.34
15.40	40.0	Shear	kip	70.23	2.24	10.26	3.754	135.16	5.567	200.41
15.40	40.0	Concrete Stresses	ksi	2.45	0.77	1.26	1.659	59.71		
19.25	50.0	Flexure	kip- ft	462.73	109.59	171.21	1.087	39.14	1.409	50.74

10.25	50.0	Chase	1	71.00	0.00	7 72	5 200	101.00	7 (57	275 64
19.25	50.0	Shear	kip	-71.82	0.00	-7.73	5.308	191.08	7.657	275.64
19.25	50.0	Concrete Stresses	ksi	2.45	0.81	1.26	1.635	58.85		
23.10	60.0	Flexure	kip- ft	462.73	105.27	172.00	1.100	39.61	1.426	51.34
23.10	60.0	Shear	kip	-70.23	-2.24	-10.26	3.754	135.16	5.567	200.41
23.10	60.0	Concrete Stresses	ksi	2.45	0.77	1.26	1.659	59.71		
26.95	70.0	Flexure	kip- ft	480.13	92.31	156.13	1.335	48.06	1.730	62.30
26.95	70.0	Shear	kip	-80.21	-4.49	-12.85	3.316	119.38	4.299	154.75
26.95	70.0	Concrete Stresses	ksi	2.45	0.68	1.15	1.931	69.51		
30.80	80.0	Flexure	kip- ft	462.73	70.46	124.85	1.715	61.73	2.223	80.02
30.80	80.0	Shear	kip	-79.93	-6.89	-15.71	2.594	93.38	3.363	121.05
30.80	80.0	Concrete Stresses	ksi	2.45	0.52	0.92	2.633	94.80		
34.65	90.0	Flexure	kip-ft	462.73	39.60	73.09	3.231	116.30	4.188	150.76
34.65	90.0	Shear	kip	-79.93	-9.14	-18.70	2.093	75.36	2.714	97.69
34.65	90.0	Concrete Stresses	ksi	2.45	0.29	0.54	5.026	180.94		
37.02	96.2	Flexure	kip-ft	408.30	16.29	30.61	7.243	260.75	9.389	338.01
37.02	96.2	Shear	kip	-106.69	-10.52	-20.57	2.598	93.53	3.368	121.24
37.02	96.2	Concrete Stresses	ksi	2.45	0.12	0.23	12.955	466.37		
37.39	97.1	Shear	kip	-112.75	-10.73	-20.87	2.720	97.93	3.526	126.95
38.50	100.0	Flexure	kip- ft	157.45	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	1.08	0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Span 2

					Inventory			
Location	l				Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units Capacity	DL + Adj- LL*				(Ton)

0.00	0.0	Flexure kip ft	- 182.46	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses ksi	1.08	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear kip	112.73	10.73	18.65	3.044	109.57	3.945	142.04
1.48	3.8	Flexure kip-		16.29		8.082	290.94	10.476	377.14
1.48	3.8	Shear kip	106.69	10.52	18.43	2.901	104.43	3.760	135.37
1.48	3.8	Concrete Stresses ksi		0.12	0.20	14.455	520.38		
3.85	10.0	Flexure kip-		39.60		3.545	127.63	4.596	165.45
3.85	10.0	Shear kip		9.14	17.02	2.301	82.82	2.982	107.36
3.85	10.0	Stresses	2.45	0.29	0.49	5.516	198.56		
7.70	20.0	Flexure kip ft	462.73	70.46	117.65	1.820	65.51	2.359	84.92
7.70	20.0	Shear kip	79.93	6.89	14.77	2.758	99.29	3.575	128.71
7.70	20.0	Concrete Stresses ksi	2.45	0.52	0.86	2.795	100.61		
11.55	30.0	Flexure kip ft	462.73	92.31	153.13	1.296	46.66	1.680	60.48
11.55	30.0	Shear kip	79.93	4.49	12.60	3.372	121.38	4.371	157.35
11.55	30.0	Concrete Stresses ksi	2.45	0.68	1.13	1.969	70.87		
15.40	40.0	Flexure kip ft	462.73	105.27	173.06	1.093	39.36	1.417	51.02
15.40	40.0	Shear kip	69.26	2.24	10.48	3.623	130.44	5.451	196.25
15.40	40.0	Concrete Stresses ksi	2.45	0.77	1.27	1.648	59.34		
19.25	50.0	Flexure kip ft	462.73	109.59	177.43	1.049	37.77	1.360	48.96
19.25	50.0	Shear kip	-66.70	0.00	-8.43	4.523	162.82	7.025	252.91
19.25	50.0	Concrete Stresses ksi	2.45	0.81	1.30	1.577	56.78		
23.10	60.0	Flexure kip ft	462.73	105.27	173.06	1.093	39.36	1.417	51.02
23.10	60.0	Shear kip	-69.26	-2.24	-10.48	3.623	130.44	5.451	196.25
23.10	60.0	Concrete Stresses ksi	2.45	0.77	1.27	1.648	59.34		
26.95	70.0	Flexure kip ft	480.13	92.31	153.13	1.361	49.00	1.764	63.52
26.95	70.0	Shear kip	-80.21	-4.49	-12.60	3.384	121.84	4.387	157.94
26.95	70.0	Concrete Stresses ksi	2.45	0.68	1.13	1.969	70.87		
30.80	80.0	Flexure kip ft	462.73	70.46	117.65	1.820	65.51	2.359	84.92
30.80	80.0	Shear kip	-79.93	-6.89	-14.77	2.758	99.29	3.575	128.71
30.80	80.0	ksi	2.45	0.52	0.86	2.795	100.61		

		Concrete Stresses								
34.65	90.0	Flexure	kip-ft	462.73	39.60	66.60	3.545	127.63	4.596	165.45
34.65	90.0	Shear	kip	-79.93	-9.14	-17.02	2.301	82.82	2.982	107.36
34.65	90.0	Concrete Stresses	ksi	2.45	0.29	0.49	5.516	198.56		
37.02	96.2	Flexure	kip-ft	408.30	16.29	27.43	8.082	290.94	10.476	377.14
37.02	96.2	Shear	kip	-106.69	-10.52	-18.43	2.901	104.43	3.760	135.37
37.02	96.2	Concrete Stresses	ksi	2.45	0.12	0.20	14.455	520.38		
37.39	97.1	Shear	kip	-112.75	-10.73	-18.65	3.044	109.58	3.946	142.05
38.50	100.0	Flexure	kip- ft	157.45	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	1.08	0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning C 3 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	112.73	10.73	11.46	6.669	186.74
1.48	3.8	Flexure	kip-ft	408.30	16.29	16.68	17.893	501.00
1.48	3.8	Shear	kip	106.69	10.52	11.27	6.382	178.70
3.85	10.0	Flexure	kip-ft	462.73	39.60	38.88	8.175	228.91
3.85	10.0	Shear	kip	79.93	9.14	10.10	5.218	146.10
7.70	20.0	Flexure	kip-ft	462.73	70.46	63.23	4.558	127.63
7.70	20.0	Shear	kip	79.93	6.89	8.21	6.680	187.05
11.55	30.0	Flexure	kip-ft	462.73	92.31	81.45	3.280	91.85
11.55	30.0	Shear	kip	79.93	4.49	7.05	8.107	226.99
15.40	40.0	Flexure	kip-ft	462.73	105.27	91.86	2.773	77.64
15.40	40.0	Shear	kip	79.93	2.24	5.89	10.068	281.90
19.25	50.0	Flexure	kip-ft	462.73	109.59	91.12	2.750	77.00
19.25	50.0	Shear	kip	79.93	0.00	4.73	12.989	363.70
23.10	60.0	Flexure	kip-ft	462.73	105.27	91.86	2.773	77.64
23.10	60.0	Shear	kip	-79.93	-2.24	-5.89	10.068	281.90

26.95	70.0	Flexure	kip-ft	480.13	92.31	81.45	3.445	96.45
26.95	70.0	Shear	kip	-80.21	-4.49	-7.05	8.137	227.84
30.80	80.0	Flexure	kip-ft	462.73	70.46	63.23	4.558	127.63
30.80	80.0	Shear	kip	-79.93	-6.89	-8.21	6.680	187.05
34.65	90.0	Flexure	kip-ft	462.73	39.60	38.88	8.175	228.91
34.65	90.0	Shear	kip	-79.93	-9.14	-10.10	5.218	146.10
37.02	96.2	Flexure	kip-ft	408.30	16.29	16.68	17.893	501.00
37.02	96.2	Shear	kip	-106.69	-10.52	-11.27	6.382	178.70
37.39	97.1	Shear	kip	-112.75	-10.73	-11.46	6.670	186.75
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	112.73	10.73	16.06	4.756	174.32
1.48	3.8	Flexure	kip-ft	408.30	16.29	23.41	12.747	467.17
1.48	3.8	Shear	kip	106.69	10.52	15.83	4.547	166.63
3.85	10.0	Flexure	kip-ft	462.73	39.60	55.34	5.744	210.50
3.85	10.0	Shear	kip	79.93	9.14	14.37	3.666	134.35
7.70	20.0	Flexure	kip-ft	462.73	70.46	93.36	3.087	113.13
7.70	20.0	Shear	kip	79.93	6.89	12.12	4.524	165.81
11.55	30.0	Flexure	kip-ft	462.73	92.31	114.05	2.343	85.86
11.55	30.0	Shear	kip	79.93	4.49	9.87	5.790	212.19
15.40	40.0	Flexure	kip-ft	462.73	105.27	126.11	2.020	74.03
15.40	40.0	Shear	kip	79.93	2.24	8.19	7.244	265.51
19.25	50.0	Flexure	kip-ft	462.73	109.59	128.76	1.946	71.32
19.25	50.0	Shear	kip	79.93	0.00	6.69	9.192	336.87
23.10	60.0	Flexure	kip-ft	462.73	105.27	126.11	2.020	74.03
23.10	60.0	Shear	kip	-79.93	-2.24	-8.19	7.244	265.51
26.95	70.0	Flexure	kip-ft	480.13	92.31	114.05	2.460	90.16
26.95	70.0	Shear	kip	-80.21	-4.49	-9.87	5.811	212.98
30.80	80.0	Flexure	kip-ft	462.73	70.46	93.36	3.087	113.13
30.80	80.0	Shear	kip	-79.93	-6.89	-12.12	4.524	165.81

34.65	90.0	Flexure	kip-ft	462.73	39.60	55.34	5.744	210.50
34.65	90.0	Shear	kip	-79.93	-9.14	-14.37	3.666	134.35
37.02	96.2	Flexure	kip-ft	408.30	16.29	23.41	12.747	467.17
37.02	96.2	Shear	kip	-106.69	-10.52	-15.83	4.547	166.63
37.39	97.1	Shear	kip	-112.75	-10.73	-16.06	4.757	174.33
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	112.73	10.73	16.08	4.750	190.02
1.48	3.8	Flexure	kip-ft	408.30	16.29	23.46	12.722	508.90
1.48	3.8	Shear	kip	106.69	10.52	15.86	4.538	181.51
3.85	10.0	Flexure	kip-ft	462.73	39.60	55.39	5.739	229.54
3.85	10.0	Shear	kip	79.93	9.14	14.39	3.663	146.51
7.70	20.0	Flexure	kip-ft	462.73	70.46	92.41	3.119	124.75
7.70	20.0	Shear	kip	79.93	6.89	12.00	4.571	182.83
11.55	30.0	Flexure	kip-ft	462.73	92.31	114.81	2.327	93.08
11.55	30.0	Shear	kip	79.93	4.49	9.94	5.751	230.04
15.40	40.0	Flexure	kip-ft	462.73	105.27	128.28	1.986	79.42
15.40	40.0	Shear	kip	79.93	2.24	8.24	7.203	288.14
19.25	50.0	Flexure	kip-ft	462.73	109.59	132.83	1.886	75.46
19.25	50.0	Shear	kip	79.93	0.00	6.32	9.727	389.09
23.10	60.0	Flexure	kip-ft	462.73	105.27	128.28	1.986	79.42
23.10	60.0	Shear	kip	-79.93	-2.24	-8.24	7.203	288.14
26.95	70.0	Flexure	kip-ft	480.13	92.31	114.81	2.444	97.75
26.95	70.0	Shear	kip	-80.21	-4.49	-9.94	5.773	230.90
30.80	80.0	Flexure	kip-ft	462.73	70.46	92.41	3.119	124.75
30.80	80.0	Shear	kip	-79.93	-6.89	-12.00	4.571	182.83
34.65	90.0	Flexure	kip-ft	462.73	39.60	55.39	5.739	229.54
34.65	90.0	Shear	kip	-79.93	-9.14	-14.39	3.663	146.51
37.02	96.2	Flexure	kip-ft	408.30	16.29	23.46	12.722	508.90
37.02	96.2	Shear	kip	-106.69	-10.52	-15.86	4.538	181.51

37.39	97.1	Shear	kip	-112.75	-10.73	-16.08	4.751	190.03
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	5940.00
1.48	3.8	Flexure	kip-ft	408.30	16.29	35.85	9.016	540.99
3.85	10.0	Flexure	kip-ft	462.73	39.60	85.33	4.036	242.14
7.70	20.0	Flexure	kip-ft	462.73	70.46	144.69	2.158	129.47
11.55	30.0	Flexure	kip-ft	462.73	92.31	179.27	1.615	96.8 7
15.40	40.0	Flexure	kip-ft	462.73	105.27	196.07	1.407	84.45
19.25	50.0	Flexure	kip-ft	462.73	109.59	193.35	1.404	84.24
23.10	60.0	Flexure	kip-ft	462.73	105.27	196.07	1.407	84.45
26.95	70.0	Flexure	kip-ft	480.13	92.31	179.27	1.695	101.73
30.80	80.0	Flexure	kip-ft	462.73	70.46	144.69	2.158	129.47
34.65	90.0	Flexure	kip-ft	462.73	39.60	85.33	4.036	242.14
37.02	96.2	Flexure	kip-ft	408.30	16.29	35.85	9.016	540.99
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning ST 5 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3960.00

1.12	2.9	Shear	kip	112.73	10.73	14.69	5.201	208.03
1.48	3.8	Flexure	kip-ft	408.30	16.29	21.47	13.898	555.92
1.48	3.8	Shear	kip	106.69	10.52	14.52	4.957	198.29
3.85	10.0	Flexure	kip-ft	462.73	39.60	51.52	6.170	246.79
3.85	10.0	Shear	kip	79.93	9.14	13.38	3.938	157.51
7.70	20.0	Flexure	kip-ft	462.73	70.46	88.86	3.243	129.72
7.70	20.0	Shear	kip	79.93	6.89	11.54	4.753	190.12
11.55	30.0	Flexure	kip-ft	462.73	92.31	112.03	2.385	95.39
11.55	30.0	Shear	kip	79.93	4.49	9.70	5.894	235.75
15.40	40.0	Flexure	kip-ft	462.73	105.27	125.93	2.023	80.91
15.40	40.0	Shear	kip	79.93	2.24	7.86	7.549	301.96
19.25	50.0	Flexure	kip-ft	462.73	109.59	128.11	1.956	78.24
19.25	50.0	Shear	kip	79.93	0.00	6.02	10.217	408.69
23.10	60.0	Flexure	kip-ft	462.73	105.27	125.93	2.023	80.91
23.10	60.0	Shear	kip	-79.93	-2.24	-7.86	7.549	301.96
26.95	70.0	Flexure	kip-ft	480.13	92.31	112.03	2.504	100.17
26.95	70.0	Shear	kip	-80.21	-4.49	-9.70	5.916	236.64
30.80	80.0	Flexure	kip-ft	462.73	70.46	88.86	3.243	129.72
30.80	80.0	Shear	kip	-79.93	-6.89	-11.54	4.753	190.12
34.65	90.0	Flexure	kip-ft	462.73	39.60	51.52	6.170	246.79
34.65	90.0	Shear	kip	-79.93	-9.14	-13.38	3.938	157.51
37.02	96.2	Flexure	kip-ft	408.30	16.29	21.47	13.898	555.92
37.02	96.2	Shear	kip	-106.69	-10.52	-14.52	4.957	198.28
37.39	97.1	Shear	kip	-112.75	-10.73	-14.69	5.201	208.05
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	1683.00
1.12	2.9	Shear	kip	112.73	10.73	9.8 7	7.737	131.52
1.48	3.8	Flexure	kip-ft	408.30	16.29	14.44	20.659	351.20
1.48	3.8	Shear	kip	106.69	10.52	9.77	7.369	125.27
3.85	10.0	Flexure	kip-ft	462.73	39.60	34.85	9.121	155.07

3.85	10.0	Shear	kip	79.93	9.14	9.05	5.822	98.9 7
7.70	20.0	Flexure	kip-ft	462.73	70.46	60.77	4.742	80.62
7.70	20.0	Shear	kip	79.93	6.89	7.89	6.950	118.15
11.55	30.0	Flexure	kip-ft	462.73	92.31	77.77	3.436	58.41
11.55	30.0	Shear	kip	79.93	4.49	6.73	8.491	144.34
15.40	40.0	Flexure	kip-ft	462.73	105.27	85.84	2.968	50.45
15.40	40.0	Shear	kip	79.93	2.24	5.57	10.644	180.94
19.25	50.0	Flexure	kip-ft	462.73	109.59	84.98	2.949	50.13
19.25	50.0	Shear	kip	79.93	0.00	4.41	13.927	236.76
23.10	60.0	Flexure	kip-ft	462.73	105.27	85.84	2.968	50.45
23.10	60.0	Shear	kip	-79.93	-2.24	-5.57	10.644	180.94
26.95	70.0	Flexure	kip-ft	480.13	92.31	77.77	3.608	61.33
26.95	70.0	Shear	kip	-80.21	-4.49	-6.73	8.523	144.88
30.80	80.0	Flexure	kip-ft	462.73	70.46	60.77	4.742	80.62
30.80	80.0	Shear	kip	-79.93	-6.89	-7.89	6.950	118.15
34.65	90.0	Flexure	kip-ft	462.73	39.60	34.85	9.122	155.07
34.65	90.0	Shear	kip	-79.93	-9.14	-9.05	5.822	98.97
37.02	96.2	Flexure	kip-ft	408.30	16.29	14.44	20.659	351.20
37.02	96.2	Shear	kip	-106.69	-10.52	-9.77	7.369	125.27
37.39	97.1	Shear	kip	-112.75	-10.73	-9.88	7.737	131.54
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	112.73	10.73	18.08	4.225	139.42
1.48	3.8	Flexure	kip-ft	408.30	16.29	26.43	11.289	372.52
1.48	3.8	Shear	kip	106.69	10.52	17.87	4.026	132.87
3.85	10.0	Flexure	kip-ft	462.73	39.60	63.47	5.008	165.27
3.85	10.0	Shear	kip	79.93	9.14	16.49	3.197	105.48
7.70	20.0	Flexure	kip-ft	462.73	70.46	109.61	2.629	86.76
7.70	20.0	Shear	kip	79.93	6.89	14.24	3.853	127.16
11.55	30.0	Flexure	kip-ft	462.73	92.31	138.43	1.930	63.69

11.55	30.0	Shear	kip	79.93	4.49	11.98	4.770	157.41
15.40	40.0	Flexure	kip-ft	462.73	105.27	156.17	1.631	53.83
15.40	40.0	Shear	kip	79.93	2.24	9.73	6.094	201.11
19.25	50.0	Flexure	kip-ft	462.73	109.59	159.70	1.569	51.78
19.25	50.0	Shear	kip	79.93	0.00	7.48	8.215	271.09
23.10	60.0	Flexure	kip-ft	462.73	105.27	156.17	1.631	53.83
23.10	60.0	Shear	kip	-79.93	-2.24	-9.73	6.094	201.11
26.95	70.0	Flexure	kip-ft	480.13	92.31	138.43	2.027	66.89
26.95	70.0	Shear	kip	-80.21	-4.49	-11.98	4.788	158.00
30.80	80.0	Flexure	kip-ft	462.73	70.46	109.61	2.629	86.76
30.80	80.0	Shear	kip	-79.93	-6.89	-14.24	3.853	127.16
34.65	90.0	Flexure	kip-ft	462.73	39.60	63.47	5.008	165.27
34.65	90.0	Shear	kip	-79.93	-9.14	-16.49	3.196	105.48
37.02	96.2	Flexure	kip-ft	408.30	16.29	26.43	11.289	372.52
37.02	96.2	Shear	kip	-106.69	-10.52	-17.87	4.026	132.87
37.39	97.1	Shear	kip	-112.75	-10.73	-18.08	4.225	139.43
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	112.73	10.73	18.95	4.032	141.10
1.48	3.8	Flexure	kip-ft	408.30	16.29	27.70	10.774	377.09
1.48	3.8	Shear	kip	106.69	10.52	18.72	3.843	134.50
3.85	10.0	Flexure	kip-ft	462.73	39.60	66.43	4.785	167.47
3.85	10.0	Shear	kip	79.93	9.14	17.26	3.054	106.89
7.70	20.0	Flexure	kip-ft	462.73	70.46	114.49	2.517	88.10
7.70	20.0	Shear	kip	79.93	6.89	14.87	3.689	129.12
11.55	30.0	Flexure	kip-ft	462.73	92.31	147.43	1.812	63.43
11.55	30.0	Shear	kip	79.93	4.49	12.48	4.580	160.30
15.40	40.0	Flexure	kip-ft	462.73	105.27	168.68	1.510	52.85
15.40	40.0	Shear	kip	79.93	2.24	10.10	5.877	205.68
19.25	50.0	Flexure	kip-ft	462.73	109.59	171.55	1.461	51.12

19.25	50.0	Shear	kip	79.93	0.00	7.71	7.976	279.15
23.10	60.0	Flexure	kip-ft	462.73	105.27	168.68	1.510	52.85
23.10	60.0	Shear	kip	-79.93	-2.24	-10.10	5.877	205.68
26.95	70.0	Flexure	kip-ft	480.13	92.31	147.43	1.903	66.61
26.95	70.0	Shear	kip	-80.21	-4.49	-12.48	4.597	160.90
30.80	80.0	Flexure	kip-ft	462.73	70.46	114.49	2.517	88.10
30.80	80.0	Shear	kip	-79.93	-6.89	-14.87	3.689	129.12
34.65	90.0	Flexure	kip-ft	462.73	39.60	66.43	4.785	167.47
34.65	90.0	Shear	kip	-79.93	-9.14	-17.26	3.054	106.89
37.02	96.2	Flexure	kip-ft	408.30	16.29	27.70	10.774	377.09
37.02	96.2	Shear	kip	-106.69	-10.52	-18.72	3.843	134.50
37.39	97.1	Shear	kip	-112.75	-10.73	-18.95	4.032	141.12
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294D Bridge ID: 874294D

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 20:30:58 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 20:33:15

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU **Member Name:** G8 **Member Alternative Name:** 17"x36" INT PSU - Existing Deteriorated

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

					Inventory Inventory Operating Operating					
Location						Rating	Load Rating	Rating	Load Rating	
(ft) Perc	ent Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)	
0.00 0.	0 Flexure	kip- ft	83.08	0.00	0.00	99.000	3564.00	99.000	3564.00	
0.00 0.	0 Concrete Stresses	KS1	0.70	-0.00	0.00	99.000	3564.00			
1.17 4.	1 Shear	kip	129.02	7.72	41.31	1.651	59.44	2.140	77.05	
1.69 6.	0 Flexure	kip-ft	229.80	13.52	68.34	1.780	64.09	2.308	83.08	
1.69 6.	0 Shear	kip	118.17	7.42	40.19	1.548	55.74	2.007	72.25	
1.69 6.	0 Concrete Stresses	K S 1	1.63	0.10	0.50	3.813	137.28			
2.83 10	.0 Flexure	kip-ft	268.56	21.61	108.12	1.277	45.96	1.655	59.57	
2.83 10	.0 Shear	kip	61.52	6.76	37.73	0.804	28.94	1.655	59.58	
2.83 10	.0 Concrete Stresses	KS1	1.63	0.16	0.79	2.317	83.40			
5.66 20	.0 Flexure	kip-ft	287.73	38.40	184.27	0.743	26.76	0.964	34.69	
5.66 20	.0 Shear	kip	29.08	5.11	31.70	0.409	14.73	0.815	29.35	
5.66 20	.0 Concrete Stresses	KS1	1.63	0.28	1.35	1.245	44.84			
8.49 30	.0 Flexure	kip-ft	287.73	50.23	228.45	0.563	20.25	0.729	26.26	
8.49 30	.0 Shear	kip	23.84	3.30	25.78	0.437	15.74	0.795	28.63	
8.49 30	.0 Concrete Stresses	KS1	1.63	0.37	1.68	0.940	33.83			
11.32 40	.0 Flexure	kip- ft	287.73	57.22	240.66	0.513	18.48	0.665	23.96	
11.32 40	.0 Shear	kip	23.84	1.65	19.96	0.623	22.45	1.044	37.59	
11.32 40	.0 Concrete Stresses	KS1	1.63	0.42	1.77	0.856	30.81			
14.15 50	.0 Flexure	kip- ft	287.73	59.54	221.36	0.551	19.82	0.714	25.69	
14.15 50										

14.15	50.0	Concrete ksi Stresses	1.63	0.44 1.63	0.917	33.02		
16.98	60.0	Flexure kip- ft	287.73	57.20 240.66	0.513	18.48	0.666	23.96
16.98	60.0	Shear kip	-23.84	-1.65 -19.96	0.623	22.44	1.044	37.58
16.98	60.0	Concrete Stresses ksi	1.63	0.42 1.77	0.856	30.81		
19.80	70.0	Flexure kip-ft	287.73	50.19 228.45	0.563	20.26	0.730	26.26
19.80	70.0	Shear kip	-23.84	-3.30 -25.78	0.437	15.73	0.795	28.63
19.80	70.0	Concrete Stresses ksi	1.63	0.37 1.68	0.940	33.84		
22.63	80.0	Flexure kip-ft	287.73	38.37 184.27	0.743	26.77	0.964	34.70
22.63	80.0	Shear kip	-29.09	-5.12 -31.70	0.409	14.73	0.815	29.34
22.63	80.0	Concrete Stresses ksi	1.63	0.28 1.35	1.246	44.84		
25.46	90.0	Flexure kip-ft	275.54	21.57 108.12	1.314	47.29	1.703	61.31
25.46	90.0	Shear kip	-58.55	-6.76 -37.73	0.759	27.31	1.599	57.55
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.79	2.317	83.42		
26.81	94.8	Flexure kip-ft	242.12	11.90 60.52	2.146	77.24	2.781	100.13
26.81	94.8	Shear kip	-118.33	-7.55 -40.64	1.531	55.11	1.985	71.44
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.44	4.340	156.22		
27.11	95.8	Shear kip	-125.83	-7.72 -41.29	1.608	57.88	2.084	75.03
28.29	100.0	Flexure kip- ft	81.43	0.00 0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Span 1

Inventory Inventory Operating Operating

Location	I						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00								3564.00		3564.00
0.00	0.0		ksi	0.70	-0.00	0.00	99.000	3564.00		

		Concrete Stresses						
1.17	4.1	Shear kip	129.02	7.72 40.42	1.688	60.75	2.188	78.75
1.69	6.0	Flexure kip-ft	229.80	13.52 67.18	1.811	65.20	2.348	84.52
1.69	6.0	Shear kip	118.17	7.42 39.50	1.575	56.71	2.042	73.51
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.49	3.879	139.66		
2.83	10.0	Flexure kip-ft	268.56	21.61 107.45	1.285	46.25	1.665	59.95
2.83	10.0	Shear kip	62.22	6.76 37.49	0.820	29.51	1.666	59.96
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.79	2.331	83.92		
5.66	20.0	Flexure kip-ft	287.73	38.40 189.24	0.724	26.06	0.938	33.78
5.66	20.0	Shear kip	28.06	5.11 32.58	0.380	13.69	0.759	27.32
5.66	20.0	Concrete Stresses ksi	1.63	0.28 1.39	1.213	43.66		
8.49	30.0	Flexure kip-ft	287.73	50.23 245.39	0.524	18.86	0.679	24.44
8.49	30.0	Shear kip	23.84	3.30 27.77	0.406	14.61	0.663	23.87
8.49	30.0	Concrete Stresses ksi	1.63	0.37 1.80	0.875	31.50		
11.32	40.0	Flexure kip- ft	287.73	57.22 275.88	0.448	16.12	0.580	20.90
11.32	40.0	Shear kip	23.84	1.65 23.07	0.539	19.42	0.747	26.88
11.32	40.0	Concrete Stresses ksi	1.63	0.42 2.03	0.747	26.88		
14.15	50.0	Flexure kip- ft	287.73	59.54 280.73	0.434	15.63	0.563	20.26
14.15	50.0	Shear kip	-23.84	-0.00 -18.49	0.737	26.52	1.013	36.48
14.15	50.0	Concrete Stresses ksi	1.63	0.44 2.06	0.723	26.04		
16.98	60.0	Flexure kip- ft	287.73	57.20 275.88	0.448	16.12	0.581	20.90
16.98	60.0	Shear kip	-23.84	-1.65 -23.07	0.539	19.41	0.746	26.87
16.98	60.0	Concrete Stresses ksi	1.63	0.42 2.03	0.747	26.88		
19.80	70.0	Flexure kip-ft	287.73	50.19 245.39	0.524	18.86	0.679	24.45
19.80	70.0	Shear kip	-23.84	-3.30 -27.77	0.406	14.60	0.663	23.87
19.80	70.0	Concrete Stresses ksi	1.63	0.37 1.80	0.875	31.51		
22.63	80.0	Flexure kip-ft	287.73	38.37 189.24	0.724	26.06	0.938	33.79
22.63	80.0	Shear kip	-28.06	-5.12 -32.58	0.380	13.68	0.759	27.32
22.63	80.0	Concrete Stresses ksi	1.63	0.28 1.39	1.213	43.66		
25.46	90.0	Flexure kip-ft	275.54	21.57 107.45	1.322	47.59	1.714	61.69
25.46	90.0	Shear kip	-59.25	-6.76 -37.49	0.774	27.87	1.609	57.92
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.79	2.332	83.94		

26.81	94.8	Flexure kip-ft	242.12	11.90 59.38	2.187	78.73	2.835	102.06
26.81	94.8	Shear kip	-118.33	-7.55 -39.87	1.561	56.18	2.023	72.83
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.44	4.423	159.23		
27.11	95.8	Shear kip	-125.83	-7.72 -40.40	1.643	59.16	2.130	76.68
28.29	100.0	Flexure kip- ft	81.43	0.00 0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	129.02	7.72	22.62	4.059	113.64
1.69	6.0	Flexure	kip-ft	229.80	13.52	37.34	4.386	122.80
1.69	6.0	Shear	kip	118.17	7.42	22.13	3.785	105.99
2.83	10.0	Flexure	kip-ft	268.56	21.61	59.51	3.122	87.42
2.83	10.0	Shear	kip	92.75	6.76	21.03	3.083	86.32
5.66	20.0	Flexure	kip-ft	287.73	38.40	103.67	1.779	49.81
5.66	20.0	Shear	kip	85.08	5.11	18.32	3.304	92.52
8.49	30.0	Flexure	kip-ft	287.73	50.23	132.47	1.306	36.57
8.49	30.0	Shear	kip	76.05	3.30	15.61	3.545	99.26
11.32	40.0	Flexure	kip-ft	287.73	57.22	145.92	1.140	31.91
11.32	40.0	Shear	kip	62.92	1.65	12.89	3.631	101.66
14.15	50.0	Flexure	kip-ft	287.73	59.54	144.02	1.139	31.90
14.15	50.0	Shear	kip	-66.11	-0.00	-10.18	4.994	139.84
16.98	60.0	Flexure	kip-ft	287.73	57.20	145.92	1.140	31.92
16.98	60.0	Shear	kip	-62.92	-1.65	-12.89	3.631	101.66
19.80	70.0	Flexure	kip-ft	287.73	50.19	132.47	1.306	36.58
19.80	70.0	Shear	kip	-76.08	-3.30	-15.61	3.546	99.29
22.63	80.0	Flexure	kip-ft	287.73	38.37	103.67	1.779	49.82
22.63	80.0	Shear	kip	-85.08	-5.12	-18.32	3.304	92.51
25.46	90.0	Flexure	kip-ft	275.54	21.57	59.51	3.213	89.97

25.46	90.0	Shear	kip	-89.88	-6.76	-21.03	2.978	83.37
26.81	94.8	Flexure	kip-ft	242.12	11.90	33.03	5.292	148.19
26.81	94.8	Shear	kip	-118.33	-7.55	-22.33	3.751	105.04
27.11	95.8	Shear	kip	-125.83	-7.72	-22.61	3.952	110.66
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	129.02	7.72	31.76	2.891	105.94
1.69	6.0	Flexure	kip-ft	229.80	13.52	51.99	3.150	115.46
1.69	6.0	Shear	kip	118.17	7.42	30.81	2.719	99.65
2.83	10.0	Flexure	kip-ft	268.56	21.61	82.09	2.263	82.96
2.83	10.0	Shear	kip	92.75	6.76	29.02	2.235	81.91
5.66	20.0	Flexure	kip-ft	287.73	38.40	144.31	1.278	46.83
5.66	20.0	Shear	kip	64.26	5.11	25.50	1.746	63.98
8.49	30.0	Flexure	kip-ft	287.73	50.23	186.66	0.927	33.97
8.49	30.0	Shear	kip	43.25	3.30	21.99	1.369	50.17
11.32	40.0	Flexure	kip-ft	287.73	57.22	209.15	0.795	29.14
11.32	40.0	Shear	kip	37.57	1.65	18.48	1.478	54.17
14.15	50.0	Flexure	kip-ft	287.73	59.54	211.77	0.775	28.40
14.15	50.0	Shear	kip	-37.74	-0.00	-14.97	1.939	71.07
16.98	60.0	Flexure	kip-ft	287.73	57.20	209.15	0.795	29.15
16.98	60.0	Shear	kip	-37.57	-1.65	-18.48	1.478	54.16
19.80	70.0	Flexure	kip-ft	287.73	50.19	186.66	0.927	33.98
19.80	70.0	Shear	kip	-43.26	-3.30	-21.99	1.369	50.17
22.63	80.0	Flexure	kip-ft	287.73	38.37	144.31	1.278	46.84
22.63	80.0	Shear	kip	-64.27	-5.12	-25.50	1.746	63.98
25.46	90.0	Flexure	kip-ft	275.54	21.57	82.09	2.329	85.37
25.46	90.0	Shear	kip	-89.88	-6.76	-29.02	2.159	79.11
26.81	94.8	Flexure	kip-ft	242.12	11.90	46.14	3.788	138.84
26.81	94.8	Shear	kip	-118.33	-7.55	-31.19	2.685	98.4 1
27.11	95.8	Shear	kip	-125.83	-7.72	-31.75	2.815	103.17

28.29 100.0 Flexure kip-ft 81.43 0.00 0.00 99.000 3628.	28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	3628.35
---	-------	-------	---------	--------	-------	------	------	--------	---------

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 5 Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.02	7.72	31.90	2.878	115.13
1.69	6.0	Flexure	kip-ft	229.80	13.52	52.61	3.113	124.53
1.69	6.0	Shear	kip	118.17	7.42	31.17	2.687	107.48
2.83	10.0	Flexure	kip-ft	268.56	21.61	83.64	2.221	88.86
2.83	10.0	Shear	kip	92.75	6.76	29.56	2.193	87.74
5.66	20.0	Flexure	kip-ft	287.73	38.40	144.70	1.274	50.98
5.66	20.0	Shear	kip	63.93	5.11	25.57	1.731	69.24
8.49	30.0	Flexure	kip-ft	287.73	50.23	183.19	0.945	37.78
8.49	30.0	Shear	kip	44.39	3.30	21.58	1.435	57.41
11.32	40.0	Flexure	kip-ft	287.73	57.22	199.10	0.835	33.41
11.32	40.0	Shear	kip	40.03	1.65	17.59	1.660	66.42
14.15	50.0	Flexure	kip-ft	287.73	59.54	209.06	0.785	31.39
14.15	50.0	Shear	kip	-38.66	-0.00	-13.61	2.185	87.39
16.98	60.0	Flexure	kip-ft	287.73	57.20	199.10	0.835	33.42
16.98	60.0	Shear	kip	-40.04	-1.65	-17.59	1.660	66.40
19.80	70.0	Flexure	kip-ft	287.73	50.19	183.19	0.945	37.79
19.80	70.0	Shear	kip	-44.40	-3.30	-21.58	1.435	57.41
22.63	80.0	Flexure	kip-ft	287.73	38.37	144.70	1.275	50.98
22.63	80.0	Shear	kip	-63.94	-5.12	-25.57	1.731	69.24
25.46	90.0	Flexure	kip-ft	275.54	21.57	83.64	2.286	91.45
25.46	90.0	Shear	kip	-89.88	-6.76	-29.56	2.119	84.74
26.81	94.8	Flexure	kip-ft	242.12	11.90	46.55	3.755	150.22
26.81	94.8	Shear	kip	-118.33	-7.55	-31.47	2.662	106.47
27.11	95.8	Shear	kip	-125.83	-7.72	-31.89	2.803	112.11
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	3960.00

Detailed Rating Results

17"x36" INT PSU - Existing Deteriorated FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	229.80	13.52	82.89	2.140	128.42
2.83	10.0	Flexure	kip-ft	268.56	21.61	130.88	1.538	92.28
5.66	20.0	Flexure	kip-ft	287.73	38.40	221.65	0.901	54.08
8.49	30.0	Flexure	kip-ft	287.73	50.23	272.30	0.688	41.30
11.32	40.0	Flexure	kip-ft	287.73	57.22	282.85	0.637	38.22
14.15	50.0	Flexure	kip-ft	287.73	59.54	253.93	0.700	42.00
16.98	60.0	Flexure	kip-ft	287.73	57.20	282.85	0.637	38.22
19.80	70.0	Flexure	kip-ft	287.73	50.19	272.30	0.689	41.31
22.63	80.0	Flexure	kip-ft	287.73	38.37	221.65	0.901	54.09
25.46	90.0	Flexure	kip-ft	275.54	21.57	130.88	1.583	94.96
26.81	94.8	Flexure	kip-ft	242.12	11.90	73.43	2.579	154.73
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.02	7.72	31.15	2.947	117.90
1.69	6.0	Flexure	kip-ft	229.80	13.52	51.25	3.196	127.83
1.69	6.0	Shear	kip	118.17	7.42	30.37	2.758	110.34
2.83	10.0	Flexure	kip-ft	268.56	21.61	81.00	2.294	91.76

2.83	10.0	Shear	kip	92.75	6.76	28.63	2.265	90.60
5.66	20.0	Flexure	kip-ft	287.73	38.40	137.61	1.340	53.60
5.66	20.0	Shear	kip	70.68	5.11	24.32	2.034	81.35
8.49	30.0	Flexure	kip-ft	287.73	50.23	169.84	1.019	40.75
8.49	30.0	Shear	kip	49.43	3.30	20.01	1.742	69.68
11.32	40.0	Flexure	kip-ft	287.73	57.22	189.17	0.879	35.16
11.32	40.0	Shear	kip	43.13	1.65	15.70	2.012	80.49
14.15	50.0	Flexure	kip-ft	287.73	59.54	189.87	0.864	34.56
14.15	50.0	Shear	kip	-43.86	-0.00	-12.33	2.735	109.41
16.98	60.0	Flexure	kip-ft	287.73	57.20	189.17	0.879	35.17
16.98	60.0	Shear	kip	-43.13	-1.65	-15.70	2.012	80.48
19.80	70.0	Flexure	kip-ft	287.73	50.19	169.84	1.019	40.76
19.80	70.0	Shear	kip	-49.44	-3.30	-20.01	1.742	69.68
22.63	80.0	Flexure	kip-ft	287.73	38.37	137.61	1.340	53.61
22.63	80.0	Shear	kip	-70.70	-5.12	-24.32	2.034	81.36
25.46	90.0	Flexure	kip-ft	275.54	21.57	81.00	2.361	94.43
25.46	90.0	Shear	kip	-89.88	-6.76	-28.63	2.188	87.51
26.81	94.8	Flexure	kip-ft	242.12	11.90	45.39	3.851	154.05
26.81	94.8	Shear	kip	-118.33	-7.55	-30.68	2.730	109.19
27.11	95.8	Shear	kip	-125.83	-7.72	-31.14	2.870	114.81
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	129.02	7.72	21.61	4.249	72.24
1.69	6.0	Flexure	kip-ft	229.80	13.52	35.63	4.596	78.14
1.69	6.0	Shear	kip	118.17	7.42	21.11	3.967	67.45
2.83	10.0	Flexure	kip-ft	268.56	21.61	56.64	3.281	55.77
2.83	10.0	Shear	kip	92.75	6.76	20.02	3.239	55.07
5.66	20.0	Flexure	kip-ft	287.73	38.40	97.92	1.883	32.01
5.66	20.0	Shear	kip	85.08	5.11	17.31	3.498	59.47
8.49	30.0	Flexure	kip-ft	287.73	50.23	123.85	1.397	23.75

8.49	30.0	Shear	kip	85.08	3.30	14.59	4.268	72.55
11.32	40.0	Flexure	kip-ft	287.73	57.22	134.43	1.237	21.03
11.32	40.0	Shear	kip	73.19	1.65	11.88	4.606	78.31
14.15	50.0	Flexure	kip-ft	287.73	59.54	129.66	1.265	21.51
14.15	50.0	Shear	kip	-81.47	-0.00	-9.17	6.837	116.23
16.98	60.0	Flexure	kip-ft	287.73	57.20	134.43	1.237	21.03
16.98	60.0	Shear	kip	-73.20	-1.65	-11.88	4.606	78.31
19.80	70.0	Flexure	kip-ft	287.73	50.19	123.85	1.397	23.76
19.80	70.0	Shear	kip	-85.08	-3.30	-14.59	4.267	72.55
22.63	80.0	Flexure	kip-ft	287.73	38.37	97.92	1.884	32.02
22.63	80.0	Shear	kip	-85.08	-5.12	-17.31	3.498	59.46
25.46	90.0	Flexure	kip-ft	275.54	21.57	56.64	3.376	57.40
25.46	90.0	Shear	kip	-89.88	-6.76	-20.02	3.129	53.19
26.81	94.8	Flexure	kip-ft	242.12	11.90	31.53	5.545	94.26
26.81	94.8	Shear	kip	-118.33	-7.55	-21.31	3.930	66.81
27.11	95.8	Shear	kip	-125.83	-7.72	-21.60	4.138	70.34
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	129.02	7.72	38.49	2.386	78.73
1.69	6.0	Flexure	kip-ft	229.80	13.52	63.33	2.586	85.34
1.69	6.0	Shear	kip	118.17	7.42	37.53	2.232	73.66
2.83	10.0	Flexure	kip-ft	268.56	21.61	100.16	1.855	61.22
2.83	10.0	Shear	kip	92.75	6.76	35.40	1.832	60.44
5.66	20.0	Flexure	kip-ft	287.73	38.40	170.52	1.081	35.69
5.66	20.0	Shear	kip	48.49	5.11	30.14	1.075	35.47
8.49	30.0	Flexure	kip-ft	287.73	50.23	211.09	0.820	27.05
8.49	30.0	Shear	kip	36.73	3.30	24.87	1.009	33.28
11.32	40.0	Flexure	kip-ft	287.73	57.22	236.48	0.703	23.21
11.32	40.0	Shear	kip	32.38	1.65	19.60	1.190	39.27
14.15	50.0	Flexure	kip-ft	287.73	59.54	239.38	0.685	22.62

14.15	50.0	Shear	kip	-32.67	-0.00	-14.97	1.678	55.39
16.98	60.0	Flexure	kip-ft	287.73	57.20	236.48	0.703	23.21
16.98	60.0	Shear	kip	-32.38	-1.65	-19.60	1.190	39.26
19.80	70.0	Flexure	kip-ft	287.73	50.19	211.09	0.820	27.06
19.80	70.0	Shear	kip	-36.74	-3.30	-24.87	1.009	33.28
22.63	80.0	Flexure	kip-ft	287.73	38.37	170.52	1.082	35.69
22.63	80.0	Shear	kip	-48.50	-5.12	-30.14	1.075	35.47
25.46	90.0	Flexure	kip-ft	275.54	21.57	100.16	1.909	63.00
25.46	90.0	Shear	kip	-89.88	-6.76	-35.40	1.769	58.38
26.81	94.8	Flexure	kip-ft	242.12	11.90	56.09	3.117	102.85
26.81	94.8	Shear	kip	-118.33	-7.55	-37.92	2.209	72.90
27.11	95.8	Shear	kip	-125.83	-7.72	-38.47	2.323	76.66
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	83.08	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	129.02	7.72	40.09	2.290	80.16
1.69	6.0	Flexure	kip-ft	229.80	13.52	65.94	2.484	86.93
1.69	6.0	Shear	kip	118.17	7.42	39.07	2.144	75.03
2.83	10.0	Flexure	kip-ft	268.56	21.61	104.17	1.784	62.43
2.83	10.0	Shear	kip	92.75	6.76	36.82	1.761	61.64
5.66	20.0	Flexure	kip-ft	287.73	38.40	176.73	1.043	36.52
5.66	20.0	Shear	kip	45.97	5.11	31.23	0.975	34.12
8.49	30.0	Flexure	kip-ft	287.73	50.23	225.32	0.768	26.88
8.49	30.0	Shear	kip	33.93	3.30	25.65	0.894	31.29
11.32	40.0	Flexure	kip-ft	287.73	57.22	257.95	0.645	22.57
11.32	40.0	Shear	kip	29.18	1.65	20.27	1.029	36.03
14.15	50.0	Flexure	kip-ft	287.73	59.54	258.96	0.634	22.18
14.15	50.0	Shear	kip	-29.65	-0.00	-15.79	1.444	50.54
16.98	60.0	Flexure	kip-ft	287.73	57.20	257.95	0.645	22.57
16.98	60.0	Shear	kip	-29.18	-1.65	-20.27	1.029	36.02
19.80	70.0	Flexure	kip-ft	287.73	50.19	225.32	0.768	26.88

19.80	70.0	Shear	kip	-33.93	-3.30	-25.65	0.894	31.29
22.63	80.0	Flexure	kip-ft	287.73	38.37	176.73	1.044	36.53
22.63	80.0	Shear	kip	-45.98	-5.12	-31.23	0.975	34.12
25.46	90.0	Flexure	kip-ft	275.54	21.57	104.17	1.836	64.25
25.46	90.0	Shear	kip	-89.88	-6.76	-36.82	1.701	59.54
26.81	94.8	Flexure	kip-ft	242.12	11.90	58.40	2.993	104.75
26.81	94.8	Shear	kip	-118.33	-7.55	-39.48	2.121	74.25
27.11	95.8	Shear	kip	-125.83	-7.72	-40.07	2.230	78.06
28.29	100.0	Flexure	kip-ft	81.43	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294D Bridge ID: 874294D

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 11:44:40 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 11:45:40

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU Member Name: G9 Member Alternative Name: 17"x36" INT PSU - w/ Conc Repair + Post Tensioning

Report by Action: 🗹 Flexure 🗹 Concrete Stresses 🗹 Shear 🗹 Critical

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

					Ĩ				_	
							Inventory	e	Operating	Operating
Location	l						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	88.32	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.70	-0.00	0.00	99.000	3564.00		
1.17	4.1	Shear	kip	129.09	7.72	20.37	3.351	120.64	4.344	156.39
1.69	6.0	Flexure	kip-ft	243.32	13.52	33.69	3.841	138.27	4.979	179.24
1.69	6.0	Shear	kip	118.17	7.42	19.81	3.141	113.07	4.072	146.57
1.69	6.0	Concrete Stresses	ksi	1.63	0.10	0.25	7.736	278.50		
2.83	10.0	Flexure	kip-ft	284.36	21.61	53.30	2.759	99.33	3.577	128.76
2.83	10.0	Shear	kip	92.75	6.76	18.60	2.590	93.25	3.358	120.88
2.83	10.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.700	169.19		
5.66	20.0	Flexure	kip- ft	304.65	38.40	90.83	1.615	58.13	2.093	75.35
5.66	20.0	Shear	kip	85.08	5.11	15.62	2.878	103.61	3.731	134.31
5.66	20.0	Concrete Stresses	ksi	1.63	0.28	0.67	2.527	90.96		
8.49	30.0	Flexure	kip- ft	304.65	50.23	112.61	1.227	44.18	1.591	57.27
8.49	30.0	Shear	kip	59.51	3.30	12.71	2.491	89.69	4.720	169.93
8.49	30.0	Concrete Stresses	ksi	1.63	0.37	0.83	1.907	68.64		
11.32	40.0	Flexure	kip- ft	304.65	57.22	118.63	1.123	40.43	1.456	52.41
11.32	40.0	Shear	kip	54.86	1.65	9.84	3.066	110.39	6.250	225.00
11.32	40.0	Concrete Stresses	ksi	1.63	0.42	0.87	1.736	62.51		
14.15	50.0	Flexure		304.65	59.54	109.11	1.206	43.40	1.563	56.26

		kip- ft						
14.15	50.0	Shear kip	-64.58	-0.00 -7.0	03 5.251	189.03	8.967	322.81
14.15	50.0	Concrete Stresses ksi	1.63	0.44 0.8	0 1.861	67.00		
16.98	60.0	Flexure kip- ft	304.65	57.20 118.	63 1.123	40.43	1.456	52.41
16.98	60.0	Shear kip	-54.87	-1.65 -9.8	3.066	110.38	6.249	224.98
16.98	60.0	Concrete Stresses ksi	1.63	0.42 0.8	7 1.737	62.51		
19.80	70.0	Flexure kip- ft	304.65	50.19 112.	61 1.228	44.19	1.591	57.29
19.80	70.0	Shear kip	-59.53	-3.30 -12.	71 2.492	89.71	4.720	169.91
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.8	3 1.907	68.66		
22.63	80.0	Flexure kip- ft	304.65	38.37 90.8	83 1.615	58.13	2.093	75.36
22.63	80.0	Shear kip	-85.08	-5.12 -15.	62 2.878	103.60	3.730	134.30
22.63	80.0	Concrete Stresses ksi	1.63	0.28 0.6	2.527	90.97		
25.46	90.0	Flexure kip-	ft 291.74	21.57 53.3	30 2.839	102.20	3.680	132.49
25.46	90.0	Shear kip	-89.88	-6.76 -18.	60 2.502	90.07	3.243	116.75
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.3	9 4.701	169.23		
26.81	94.8	Flexure kip-t		11.90 29.8		166.53	5.996	215.87
26.81	94.8	Shear kip	-118.33	-7.55 -20.	03 3.106	111.81	4.026	144.94
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.2	2 8.804	316.93		
27.11	95.8	Shear kip		-7.72 -20.	35 3.262	117.43	4.228	152.22
28.29	100.0	Flexure kip- ft	86.22	0.00 0.0	0 99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.0	0 99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Span 1

				Inventory Inventory Operating Operat				
Locatio	n			Rating	Load Rating	Rating	Load Rating	
(ft)	Percent	Units Capacity	LL	Factor	(Ton)	Factor	(Ton)	

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

		Limit State		DL + Adj- LL*				
0.00	0.0	Flexure kip- ft	88.32	0.00 0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses ksi	0.70	-0.00 0.00	99.000	3564.00		
1.17	4.1	Shear kip	129.09	7.72 19.93	3.425	123.31	4.440	159.85
1.69	6.0	Flexure kip-f	243.32	13.52 33.11	3.907	140.67	5.065	182.34
1.69	6.0	Shear kip	118.17	7.42 19.47	3.196	115.05	4.143	149.13
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.24	7.870	283.33		
2.83	10.0	Flexure kip-f	284.36	21.61 52.96	2.777	99.96	3.599	129.57
2.83	10.0	Shear kip	92.75	6.76 18.48	2.607	93.85	3.379	121.65
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.39	4.729	170.26		
5.66	20.0	Flexure kip- ft	304.65	38.40 93.28	1.572	56.60	2.038	73.37
5.66	20.0	Shear kip	85.08	5.11 16.06	2.801	100.82	3.630	130.69
5.66	20.0	Concrete Stresses ksi	1.63	0.28 0.69	2.460	88.57		
8.49	30.0	Flexure kip- ft	304.65	50.23 120.96	1.143	41.13	1.481	53.32
8.49	30.0	Shear kip	53.03	3.30 13.69	2.042	73.50	4.381	157.72
8.49	30.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.90		
11.32	40.0	Flexure kip- ft	304.65	57.22 135.99	0.980	35.27	1.270	45.71
11.32	40.0	Shear kip	45.04	1.65 11.37	2.159	77.74	4.245	152.83
11.32	40.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
14.15	50.0	Flexure kip- ft	304.65	59.54 138.38	0.951	34.23	1.232	44.37
14.15	50.0	Shear kip	-44.95	-0.00 -9.11	2.818	101.46	5.444	195.99
14.15	50.0	Concrete Stresses ksi	1.63	0.44 1.02	1.467	52.83		
16.98	60.0	Flexure kip- ft	304.65	57.20 135.99	0.980	35.27	1.270	45.72
16.98	60.0	Shear kip	-45.04	-1.65 -11.37	2.159	77.73	4.245	152.83
16.98	60.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
19.80	70.0	Flexure kip- ft	304.65	50.19 120.96	1.143	41.14	1.481	53.33
19.80	70.0	Shear kip	-53.04	-3.30 -13.69	2.042	73.50	4.381	157.70
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.92		
22.63	80.0	Flexure	304.65	38.37 93.28	1.572	56.61	2.038	73.38

		kip- ft						
22.63	80.0	Shear kip	-85.08	-5.12 -16.06	2.800	100.81	3.630	130.68
22.63	80.0	Concrete Stresses ksi	1.63	0.28 0.69	2.461	88.58		
25.46	90.0	Flexure kip-f	t 291.74	21.57 52.96	2.857	102.85	3.703	133.32
25.46	90.0	Shear kip	-89.88	-6.76 -18.48	2.518	90.64	3.264	117.50
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.39	4.730	170.30		
26.81	94.8	Flexure kip-f	t 256.36	11.90 29.27	4.715	169.73	6.112	220.02
26.81	94.8	Shear kip	-118.33	-7.55 -19.65	3.166	113.97	4.104	147.74
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.22	8.973	323.03		
27.11	95.8	Shear kip	-125.83	-7.72 -19.91	3.334	120.01	4.321	155.57
28.29	100.0	Flexure kip- ft	86.22	0.00 0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	129.09	7.72	11.15	8.238	230.67
1.69	6.0	Flexure	kip-ft	243.32	13.52	18.41	9.462	264.94
1.69	6.0	Shear	kip	118.17	7.42	10.91	7.679	215.03
2.83	10.0	Flexure	kip-ft	284.36	21.61	29.33	6.749	188.96
2.83	10.0	Shear	kip	92.75	6.76	10.37	6.254	175.13
5.66	20.0	Flexure	kip-ft	304.65	38.40	51.10	3.864	108.18
5.66	20.0	Shear	kip	85.08	5.11	9.03	6.703	187.69
8.49	30.0	Flexure	kip-ft	304.65	50.23	65.30	2.849	79.78
8.49	30.0	Shear	kip	85.08	3.30	7.69	8.095	226.66
11.32	40.0	Flexure	kip-ft	304.65	57.22	71.93	2.493	69.81
11.32	40.0	Shear	kip	85.08	1.65	6.36	10.048	281.34
14.15	50.0	Flexure	kip-ft	304.65	59.54	70.99	2.495	69.85

14.15	50.0	Shear	kip	-85.08	-0.00	-5.02	13.040	365.13
16.98	60.0	Flexure	kip-ft	304.65	57.20	71.93	2.493	69.82
16.98	60.0	Shear	kip	-85.08	-1.65	-6.36	10.047	281.31
19.80	70.0	Flexure	kip-ft	304.65	50.19	65.30	2.850	79.80
19.80	70.0	Shear	kip	-85.08	-3.30	-7.69	8.094	226.64
22.63	80.0	Flexure	kip-ft	304.65	38.37	51.10	3.864	108.20
22.63	80.0	Shear	kip	-85.08	-5.12	-9.03	6.702	187.67
25.46	90.0	Flexure	kip-ft	291.74	21.57	29.33	6.944	194.42
25.46	90.0	Shear	kip	-89.88	-6.76	-10.37	6.041	169.14
26.81	94.8	Flexure	kip-ft	256.36	11.90	16.28	11.410	319.48
26.81	94.8	Shear	kip	-118.33	-7.55	-11.01	7.610	213.09
27.11	95.8	Shear	kip	-125.83	-7.72	-11.15	8.018	224.49
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 4 Axle Load

Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	129.09	7.72	15.66	5.867	215.02
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.63	6.797	249.10
1.69	6.0	Shear	kip	118.17	7.42	15.19	5.516	202.17
2.83	10.0	Flexure	kip-ft	284.36	21.61	40.46	4.892	179.30
2.83	10.0	Shear	kip	92.75	6.76	14.30	4.534	166.17
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.13	2.775	101.72
5.66	20.0	Shear	kip	85.08	5.11	12.57	4.815	176.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	92.01	2.022	74.11
8.49	30.0	Shear	kip	85.08	3.30	10.84	5.745	210.55
11.32	40.0	Flexure	kip-ft	304.65	57.22	103.09	1.739	63.75
11.32	40.0	Shear	kip	85.08	1.65	9.11	7.010	256.93
14.15	50.0	Flexure	kip-ft	304.65	59.54	104.38	1.697	62.18
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	325.04
16.98	60.0	Flexure	kip-ft	304.65	57.20	103.09	1.740	63.76
16.98	60.0	Shear	kip	-85.08	-1.65	-9.11	7.010	256.90
19.80	70.0	Flexure	kip-ft	304.65	50.19	92.01	2.022	74.12

19.80	70.0	Shear	kip	-85.08	-3.30	-10.84	5.744	210.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.13	2.776	101.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.57	4.815	176.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	40.46	5.034	184.49
25.46	90.0	Shear	kip	-89.88	-6.76	-14.30	4.379	160.50
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.74	8.167	299.32
26.81	94.8	Shear	kip	-118.33	-7.55	-15.38	5.447	199.65
27.11	95.8	Shear	kip	-125.83	-7.72	-15.65	5.711	209.30
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.73	5.842	233.70
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.93	6.717	268.67
1.69	6.0	Shear	kip	118.17	7.42	15.37	5.451	218.06
2.83	10.0	Flexure	kip-ft	284.36	21.61	41.23	4.802	192.06
2.83	10.0	Shear	kip	92.75	6.76	14.57	4.450	178.00
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.33	2.768	110.72
5.66	20.0	Shear	kip	85.08	5.11	12.61	4.802	192.09
8.49	30.0	Flexure	kip-ft	304.65	50.23	90.30	2.060	82.42
8.49	30.0	Shear	kip	85.08	3.30	10.64	5.854	234.15
11.32	40.0	Flexure	kip-ft	304.65	57.22	98.14	1.827	73.09
11.32	40.0	Shear	kip	85.08	1.65	8.67	7.364	294.57
14.15	50.0	Flexure	kip-ft	304.65	59.54	103.05	1.719	68.74
14.15	50.0	Shear	kip	-85.08	-0.00	-6.71	9.756	390.22
16.98	60.0	Flexure	kip-ft	304.65	57.20	98.14	1.827	73.10
16.98	60.0	Shear	kip	-85.08	-1.65	-8.67	7.364	294.54
19.80	70.0	Flexure	kip-ft	304.65	50.19	90.30	2.061	82.43
19.80	70.0	Shear	kip	-85.08	-3.30	-10.64	5.853	234.13
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.33	2.768	110.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.61	4.802	192.07
25.46	90.0	Flexure	kip-ft	291.74	21.57	41.23	4.940	197.62

25.46	90.0	Shear	kip	-89.88	-6.76	-14.57	4.298	171.92
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.94	8.096	323.85
26.81	94.8	Shear	kip	-118.33	-7.55	-15.51	5.400	216.01
27.11	95.8	Shear	kip	-125.83	-7.72	-15.72	5.686	227.44
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	243.32	13.52	40.86	4.618	277.07
2.83	10.0	Flexure	kip-ft	284.36	21.61	64.51	3.324	199.45
5.66	20.0	Flexure	kip-ft	304.65	38.40	109.25	1.958	117.46
8.49	30.0	Flexure	kip-ft	304.65	50.23	134.22	1.502	90.10
11.32	40.0	Flexure	kip-ft	304.65	57.22	139.42	1.393	83.60
14.15	50.0	Flexure	kip-ft	304.65	59.54	125.17	1.533	91.97
16.98	60.0	Flexure	kip-ft	304.65	57.20	139.42	1.394	83.61
19.80	70.0	Flexure	kip-ft	304.65	50.19	134.22	1.502	90.12
22.63	80.0	Flexure	kip-ft	304.65	38.37	109.25	1.958	117.47
25.46	90.0	Flexure	kip-ft	291.74	21.57	64.51	3.420	205.22
26.81	94.8	Flexure	kip-ft	256.36	11.90	36.20	5.560	333.58
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning ST 5 Axle Load Impact: With Impact Lane: Single Lane

Span 1

Legal	Legal
Dating	Load
Rating	Rating

Location

(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.36	5.983	239.30
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.26	6.895	275.80
1.69	6.0	Shear	kip	118.17	7.42	14.97	5.596	223.84
2.83	10.0	Flexure	kip-ft	284.36	21.61	39.92	4.958	198.33
2.83	10.0	Shear	kip	92.75	6.76	14.11	4.595	183.81
5.66	20.0	Flexure	kip-ft	304.65	38.40	67.83	2.911	116.42
5.66	20.0	Shear	kip	85.08	5.11	11.99	5.050	201.99
8.49	30.0	Flexure	kip-ft	304.65	50.23	83.72	2.222	88.89
8.49	30.0	Shear	kip	85.08	3.30	9.86	6.314	252.56
11.32	40.0	Flexure	kip-ft	304.65	57.22	93.25	1.923	76.92
11.32	40.0	Shear	kip	85.08	1.65	7.74	8.252	330.08
14.15	50.0	Flexure	kip-ft	304.65	59.54	93.59	1.892	75.69
14.15	50.0	Shear	kip	-85.08	-0.00	-6.08	10.765	430.60
16.98	60.0	Flexure	kip-ft	304.65	57.20	93.25	1.923	76.93
16.98	60.0	Shear	kip	-85.08	-1.65	-7.74	8.251	330.04
19.80	70.0	Flexure	kip-ft	304.65	50.19	83.72	2.223	88.91
19.80	70.0	Shear	kip	-85.08	-3.30	-9.86	6.313	252.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	67.83	2.911	116.44
22.63	80.0	Shear	kip	-85.08	-5.12	-11.99	5.049	201.97
25.46	90.0	Flexure	kip-ft	291.74	21.57	39.92	5.102	204.07
25.46	90.0	Shear	kip	-89.88	-6.76	-14.11	4.438	177.53
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.37	8.303	332.11
26.81	94.8	Shear	kip	-118.33	-7.55	-15.13	5.538	221.51
27.11	95.8	Shear	kip	-125.83	-7.72	-15.35	5.823	232.91
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

Span 1

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	129.09	7.72	10.65	8.625	146.63

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

1.69	6.0	Flexure	kip-ft	243.32	13.52	17.56	9.917	168.59
1.69	6.0	Shear	kip	118.17	7.42	10.41	8.049	136.83
2.83	10.0	Flexure	kip-ft	284.36	21.61	27.92	7.091	120.54
2.83	10.0	Shear	kip	92.75	6.76	9.8 7	6.572	111.72
5.66	20.0	Flexure	kip-ft	304.65	38.40	48.27	4.090	69.54
5.66	20.0	Shear	kip	85.08	5.11	8.53	7.097	120.64
8.49	30.0	Flexure	kip-ft	304.65	50.23	61.05	3.047	51.81
8.49	30.0	Shear	kip	85.08	3.30	7.19	8.658	147.19
11.32	40.0	Flexure	kip-ft	304.65	57.22	66.26	2.706	46.01
11.32	40.0	Shear	kip	85.08	1.65	5.86	10.907	185.42
14.15	50.0	Flexure	kip-ft	304.65	59.54	63.91	2.771	47.11
14.15	50.0	Shear	kip	-85.08	-0.00	-4.52	14.485	246.24
16.98	60.0	Flexure	kip-ft	304.65	57.20	66.26	2.707	46.01
16.98	60.0	Shear	kip	-85.08	-1.65	-5.86	10.906	185.40
19.80	70.0	Flexure	kip-ft	304.65	50.19	61.05	3.048	51.82
19.80	70.0	Shear	kip	-85.08	-3.30	-7.19	8.657	147.18
22.63	80.0	Flexure	kip-ft	304.65	38.37	48.27	4.091	69.54
22.63	80.0	Shear	kip	-85.08	-5.12	-8.53	7.096	120.63
25.46	90.0	Flexure	kip-ft	291.74	21.57	27.92	7.296	124.03
25.46	90.0	Shear	kip	-89.88	-6.76	-9.87	6.347	107.90
26.81	94.8	Flexure	kip-ft	256.36	11.90	15.54	11.954	203.21
26.81	94.8	Shear	kip	-118.33	-7.55	-10.51	7.973	135.54
27.11	95.8	Shear	kip	-125.83	-7.72	-10.65	8.394	142.71
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	129.09	7.72	18.97	4.842	159.80
1.69	6.0	Flexure	kip-ft	243.32	13.52	31.22	5.579	184.12
1.69	6.0	Shear	kip	118.17	7.42	18.50	4.528	149.43
2.83	10.0	Flexure	kip-ft	284.36	21.61	49.37	4.009	132.31
2.83	10.0	Shear	kip	92.75	6.76	17.45	3.716	122.62

5.66	20.0	Flexure	kip-ft	304.65	38.40	84.06	2.349	77.51
5.66	20.0	Shear	kip	85.08	5.11	14.86	4.075	134.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	104.05	1.788	59.01
8.49	30.0	Shear	kip	85.08	3.30	12.26	5.080	167.65
11.32	40.0	Flexure	kip-ft	304.65	57.22	116.56	1.538	50.77
11.32	40.0	Shear	kip	85.08	1.65	9.66	6.609	218.10
14.15	50.0	Flexure	kip-ft	304.65	59.54	118.00	1.501	49.53
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	292.67
16.98	60.0	Flexure	kip-ft	304.65	57.20	116.56	1.539	50.77
16.98	60.0	Shear	kip	-85.08	-1.65	-9.66	6.609	218.08
19.80	70.0	Flexure	kip-ft	304.65	50.19	104.05	1.788	59.02
19.80	70.0	Shear	kip	-85.08	-3.30	-12.26	5.080	167.63
22.63	80.0	Flexure	kip-ft	304.65	38.37	84.06	2.349	77.52
22.63	80.0	Shear	kip	-85.08	-5.12	-14.86	4.075	134.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	49.37	4.125	136.14
25.46	90.0	Shear	kip	-89.88	-6.76	-17.45	3.589	118.44
26.81	94.8	Flexure	kip-ft	256.36	11.90	27.65	6.719	221.73
26.81	94.8	Shear	kip	-118.33	-7.55	-18.69	4.482	147.89
27.11	95.8	Shear	kip	-125.83	-7.72	-18.96	4.713	155.53
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	129.09	7.72	19.76	4.649	162.71
1.69	6.0	Flexure	kip-ft	243.32	13.52	32.50	5.359	187.56
1.69	6.0	Shear	kip	118.17	7.42	19.26	4.349	152.22
2.83	10.0	Flexure	kip-ft	284.36	21.61	51.35	3.855	134.94
2.83	10.0	Shear	kip	92.75	6.76	18.15	3.573	125.06
5.66	20.0	Flexure	kip-ft	304.65	38.40	87.11	2.266	79.32
5.66	20.0	Shear	kip	85.08	5.11	15.40	3.932	137.62
8.49	30.0	Flexure	kip-ft	304.65	50.23	111.07	1.675	58.63
8.49	30.0	Shear	kip	85.08	3.30	12.64	4.926	172.42

11.32	40.0	Flexure	kip-ft	304.65	57.22	127.15	1.410	49.36
11.32	40.0	Shear	kip	84.27	1.65	9.99	6.330	221.56
14.15	50.0	Flexure	kip-ft	304.65	59.54	127.65	1.387	48.56
14.15	50.0	Shear	kip	-85.08	-0.00	-7.78	8.408	294.29
16.98	60.0	Flexure	kip-ft	304.65	57.20	127.15	1.411	49.37
16.98	60.0	Shear	kip	-84.29	-1.65	-9.99	6.331	221.58
19.80	70.0	Flexure	kip-ft	304.65	50.19	111.07	1.675	58.64
19.80	70.0	Shear	kip	-85.08	-3.30	-12.64	4.926	172.40
22.63	80.0	Flexure	kip-ft	304.65	38.37	87.11	2.267	79.33
22.63	80.0	Shear	kip	-85.08	-5.12	-15.40	3.932	137.61
25.46	90.0	Flexure	kip-ft	291.74	21.57	51.35	3.967	138.84
25.46	90.0	Shear	kip	-89.88	-6.76	-18.15	3.451	120.79
26.81	94.8	Flexure	kip-ft	256.36	11.90	28.79	6.452	225.84
26.81	94.8	Shear	kip	-118.33	-7.55	-19.46	4.304	150.63
27.11	95.8	Shear	kip	-125.83	-7.72	-19.75	4.525	158.36
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3465.00

Note: *Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294D Bridge ID: 874294D

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 20:33:28 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 20:35:00

Structure Definition Name: INT Span 2 - PS Conc PSU Member Name: G8 Member Alternative Name: 17"x36" INT PSU - Existing Deteriorated

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

							Inventory Inventory Operating Operating				
Location							Rating	Load Rating	Rating	Load Rating	
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)	
0.00	0.0	Flexure	kip- ft	127.58	0.00	0.00	99.000	3564.00	99.000	3564.00	
0.00	0.0	Concrete Stresses	ksi	0.86	-0.00	0.00	99.000	3564.00			
1.12	2.9	Shear	kip	94.16	10.73	48.82	0.945	34.03	1.225	44.11	
1.48	3.8	Flexure	kip-ft	277.16	16.30	71.63	2.048	73.74	2.655	95.59	
1.48	3.8	Shear	kip	89.01	10.52	48.15	0.900	32.40	1.167	42.01	
1.48	3.8	Concrete Stresses	ksi	1.77	0.12	0.53	3.928	141.41			
3.85	10.0	Flexure	kip-ft	325.50	39.61	171.07	0.922	33.19	1.195	43.02	
3.85	10.0	Shear	kip	28.01	9.14	43.77	0.216	7.79	0.522	18.79	
3.85	10.0	Concrete Stresses	ksi	1.77	0.29	1.26	1.474	53.08			
7.70	20.0	Flexure	kip-ft	325.50	70.48	292.21	0.464	16.71	0.602	21.66	
7.70	20.0	Shear	kip	17.93	6.90	36.77	0.145	5.21	0.229	8.25	
7.70	20.0	Concrete Stresses	ksi	1.77	0.52	2.15	0.731	26.32			
11.55	30.0	Flexure	kip-ft	325.50	92.34	365.43	0.328	11.83	0.426	15.33	
11.55	30.0	Shear	kip	17.93	4.49	30.09	0.234	8.42	0.303	10.92	
11.55	30.0	Concrete Stresses	ksi	1.77	0.68	2.69	0.510	18.35			
15.40	40.0	Flexure	kip- ft	325.50	105.30	402.57	0.275	9.91	0.357	12.84	
15.40	40.0	Shear	kip	17.93	2.24	24.02	0.360	12.96	0.466	16.79	
15.40	40.0	Concrete Stresses	ksi	1.77	0.77	2.96	0.423	15.21			
19.25	50.0	Flexure	kip- ft	325.50	109.62	400.72	0.269	9.68	0.348	12.54	
19.25	50.0	Shear	kip	-17.93	0.00	-18.10	0.566	20.38	0.734	26.42	

19.25	50.0	Concrete ksi Stresses	1.77	0.81 2.9	0.411	14.80		
23.10	60.0	Flexure kip- ft	325.50	105.30 402.	.57 0.275	9.91	0.357	12.84
23.10	60.0	Shear kip	-17.93	-2.24 -24.	02 0.360	12.96	0.466	16.79
23.10	60.0	Concrete Stresses ksi	1.77	0.77 2.9	0.423	15.21		
26.95	70.0	Flexure kip-ft	341.96	92.34 365.	43 0.354	12.75	0.459	16.53
26.95	70.0	Shear kip	-18.03	-4.49 -30.	09 0.236	8.49	0.311	11.19
26.95	70.0	Concrete Stresses ksi	1.77	0.68 2.6	0.510	18.35		
30.80	80.0	Flexure kip-ft	325.50	70.48 292.	21 0.464	16.71	0.602	21.66
30.80	80.0	Shear kip	-17.93	-6.90 -36.	77 0.145	5.21	0.229	8.25
30.80	80.0	Concrete Stresses ksi	1.77	0.52 2.1	5 0.731	26.32		
34.65	90.0	Flexure kip-ft	325.50	39.61 171.	07 0.922	33.19	1.195	43.02
34.65	90.0	Shear kip	-28.01	-9.14 -43.	77 0.216	7.79	0.522	18.79
34.65	90.0	Concrete Stresses ksi	1.77	0.29 1.2	.6 1.474	53.08		
37.02	96.2	Flexure kip-ft	277.16	16.30 71.	63 2.048	73.74	2.655	95.59
37.02	96.2	Shear kip	-89.01	-10.52 -48.	15 0.900	32.40	1.167	42.01
37.02	96.2	Concrete Stresses ksi	1.77	0.12 0.5	3 3.928	141.41		
37.38	97.1	Shear kip	-94.28	-10.73 -48.	83 0.946	34.07	1.227	44.16
38.50	100.0	Flexure kip- ft	102.41	0.00 0.0	0 99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses ksi	0.86	0.00 0.0	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Span 2

							Inventory Inventory Operating Operating				
Location							Rating	Load Rating	Rating	Load Rating	
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)	
0.00								3564.00	99.000	3564.00	
0.00	0.0		ksi	0.86	-0.00	0.00	99.000	3564.00			

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

		Concrete Stresses						
1.12	2.9	Shear kip	94.16	10.73 43.63	1.058	38.07	1.371	49.35
1.48	3.8	Flexure kip-ft	277.16	16.30 64.20	2.286	82.28	2.963	106.66
1.48	3.8	Shear kip	89.01	10.52 43.13	1.005	36.18	1.303	46.90
1.48	3.8	Concrete Stresses ksi	1.77	0.12 0.47	4.383	157.78		
3.85	10.0	Flexure kip-ft	325.50	39.61 155.89	1.012	36.42	1.311	47.21
3.85	10.0	Shear kip	32.15	9.14 39.82	0.297	10.71	0.729	26.24
3.85	10.0	Concrete Stresses ksi	1.77	0.29 1.15	1.618	58.25		
7.70	20.0	Flexure kip-ft		70.48 275.36	0.493	17.74	0.639	22.99
7.70	20.0	Shear kip	17.93	6.90 34.58	0.154	5.54	0.278	10.00
7.70	20.0	Concrete Stresses ksi	1.77	0.52 2.02	0.776	27.93		
11.55	30.0	Flexure kip-ft		92.34 358.42	0.335	12.06	0.434	15.63
11.55	30.0	Shear kip	17.93	4.49 29.48	0.239	8.60	0.310	11.14
11.55	30.0	Concrete Stresses ksi	1.77	0.68 2.64	0.520	18.71		
15.40	40.0	Flexure kip- ft	325.50	105.30 405.06	0.273	9.85	0.355	12.76
15.40	40.0	Shear kip	17.93	2.24 24.53	0.352	12.69	0.457	16.44
15.40	40.0	Concrete Stresses ksi	1.77	0.77 2.98	0.420	15.12		
19.25	50.0	Flexure kip- ft	325.50	109.62 415.29	0.259	9.34	0.336	12.10
19.25	50.0	Shear kip	-17.93	0.00 -19.73	0.519	18.70	0.673	24.24
19.25	50.0	Concrete Stresses ksi	1.77	0.81 3.05	0.397	14.28		
23.10	60.0	Flexure kip- ft	325.50	105.30 405.06	0.273	9.85	0.355	12.76
23.10	60.0	Shear kip	-17.93	-2.24 -24.53	0.352	12.69	0.457	16.44
23.10	60.0	Concrete Stresses ksi	1.77	0.77 2.98	0.420	15.12		
26.95	70.0	Flexure kip-ft	341.96	92.34 358.42	0.361	13.00	0.468	16.85
26.95	70.0	Shear kip	-18.03	-4.49 -29.48	0.241	8.66	0.328	11.79
26.95	70.0	Concrete Stresses ksi	1.77	0.68 2.64	0.520	18.71		
30.80	80.0	Flexure kip-ft		70.48 275.36	0.493	17.74	0.639	22.99
30.80	80.0	Shear kip	-17.93	-6.90 -34.58	0.154	5.54	0.278	10.00
30.80	80.0	Concrete Stresses ksi	1.77	0.52 2.02	0.776	27.93		
34.65	90.0	Flexure kip-ft		39.61 155.89	1.012	36.42	1.311	47.21
34.65	90.0	Shear kip	-32.15	-9.14 -39.82	0.297	10.71	0.729	26.24
34.65	90.0	Concrete Stresses ksi	1.77	0.29 1.15	1.618	58.25		

37.02	96.2	Flexure kip-f	t 277.16	16.30 64	.20 2.286	82.28	2.963	106.66
37.02		Shear kip					1.303	46.90
37.02	96.2	Concrete Stresses ksi	1.77	0.12 0.	47 4.383	157.78		
		Shear kip					1.373	49.41
38.50	100.0	Flexure kip- ft	102.41	0.00 0.	.00 99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses ksi	0.86	0.00 0.	.00 99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	94.16	10.73	26.80	2.317	64.89
1.48	3.8	Flexure	kip-ft	277.16	16.30	39.03	5.060	141.69
1.48	3.8	Shear	kip	89.01	10.52	26.39	2.211	61.91
3.85	10.0	Flexure	kip-ft	325.50	39.61	91.00	2.333	65.32
3.85	10.0	Shear	kip	70.05	9.14	23.64	1.908	53.42
7.70	20.0	Flexure	kip-ft	325.50	70.48	147.98	1.234	34.55
7.70	20.0	Shear	kip	56.12	6.90	19.22	1.901	53.23
11.55	30.0	Flexure	kip-ft	325.50	92.34	190.63	0.848	23.73
11.55	30.0	Shear	kip	34.48	4.49	16.51	1.345	37.67
15.40	40.0	Flexure	kip-ft	325.50	105.30	215.01	0.694	19.42
15.40	40.0	Shear	kip	28.84	2.24	13.79	1.452	40.66
19.25	50.0	Flexure	kip-ft	325.50	109.62	213.27	0.680	19.03
19.25	50.0	Shear	kip	-29.24	0.00	-11.08	2.030	56.84
23.10	60.0	Flexure	kip-ft	325.50	105.30	215.01	0.694	19.42
23.10	60.0	Shear	kip	-28.84	-2.24	-13.79	1.452	40.66
26.95	70.0	Flexure	kip-ft	341.96	92.34	190.63	0.914	25.59
26.95	70.0	Shear	kip	-38.79	-4.49	-16.51	1.546	43.29
30.80	80.0	Flexure	kip-ft	325.50	70.48	147.98	1.234	34.55
30.80	80.0	Shear	kip	-56.12	-6.90	-19.22	1.901	53.23
34.65	90.0	Flexure	kip-ft	325.50	39.61	91.00	2.333	65.32
34.65	90.0	Shear	kip	-70.05	-9.14	-23.64	1.908	53.42

37.02	96.2	Flexure	kip-ft	277.16	16.30	39.03	5.060	141.69
37.02	96.2	Shear	kip	-89.01	-10.52	-26.39	2.211	61.91
37.38	97.1	Shear	kip	-94.28	-10.73	-26.81	2.320	64.96
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	94.16	10.73	37.58	1.653	60.57
1.48	3.8	Flexure	kip-ft	277.16	16.30	54.79	3.605	132.12
1.48	3.8	Shear	kip	89.01	10.52	37.04	1.575	57.73
3.85	10.0	Flexure	kip-ft	325.50	39.61	129.53	1.639	60.07
3.85	10.0	Shear	kip	70.05	9.14	33.65	1.340	49.12
7.70	20.0	Flexure	kip-ft	325.50	70.48	218.51	0.836	30.63
7.70	20.0	Shear	kip	30.43	6.90	28.38	0.591	21.66
11.55	30.0	Flexure	kip-ft	325.50	92.34	266.94	0.605	22.19
11.55	30.0	Shear	kip	22.81	4.49	23.11	0.573	20.98
15.40	40.0	Flexure	kip-ft	325.50	105.30	295.17	0.505	18.52
15.40	40.0	Shear	kip	19.93	2.24	19.17	0.687	25.19
19.25	50.0	Flexure	kip-ft	325.50	109.62	301.38	0.481	17.63
19.25	50.0	Shear	kip	-19.60	0.00	-15.66	0.963	35.29
23.10	60.0	Flexure	kip-ft	325.50	105.30	295.17	0.505	18.52
23.10	60.0	Shear	kip	-19.93	-2.24	-19.17	0.687	25.19
26.95	70.0	Flexure	kip-ft	341.96	92.34	266.94	0.653	23.92
26.95	70.0	Shear	kip	-26.73	-4.49	-23.11	0.703	25.77
30.80	80.0	Flexure	kip-ft	325.50	70.48	218.51	0.836	30.63
30.80	80.0	Shear	kip	-30.43	-6.90	-28.38	0.591	21.66
34.65	90.0	Flexure	kip-ft	325.50	39.61	129.53	1.639	60.07
34.65	90.0	Shear	kip	-70.05	-9.14	-33.65	1.340	49.12
37.02	96.2	Flexure	kip-ft	277.16	16.30	54.79	3.605	132.12
37.02	96.2	Shear	kip	-89.01	-10.52	-37.04	1.575	57.73
37.38	97.1	Shear	kip	-94.28	-10.73	-37.59	1.655	60.64
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated C 5 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	37.63	1.651	66.02
1.48	3.8	Flexure	kip-ft	277.16	16.30	54.90	3.598	143.92
1.48	3.8	Shear	kip	89.01	10.52	37.11	1.572	62.89
3.85	10.0	Flexure	kip-ft	325.50	39.61	129.65	1.638	65.50
3.85	10.0	Shear	kip	70.05	9.14	33.67	1.339	53.57
7.70	20.0	Flexure	kip-ft	325.50	70.48	216.28	0.844	33.77
7.70	20.0	Shear	kip	30.85	6.90	28.09	0.609	24.35
11.55	30.0	Flexure	kip-ft	325.50	92.34	268.72	0.601	24.05
11.55	30.0	Shear	kip	22.63	4.49	23.27	0.563	22.51
15.40	40.0	Flexure	kip-ft	325.50	105.30	300.26	0.497	19.87
15.40	40.0	Shear	kip	19.55	2.24	19.28	0.668	26.72
19.25	50.0	Flexure	kip-ft	325.50	109.62	310.88	0.466	18.65
19.25	50.0	Shear	kip	-18.99	0.00	-14.79	0.987	39.49
23.10	60.0	Flexure	kip-ft	325.50	105.30	300.26	0.497	19.87
23.10	60.0	Shear	kip	-19.55	-2.24	-19.28	0.668	26.72
26.95	70.0	Flexure	kip-ft	341.96	92.34	268.72	0.648	25.94
26.95	70.0	Shear	kip	-26.54	-4.49	-23.27	0.692	27.68
30.80	80.0	Flexure	kip-ft	325.50	70.48	216.28	0.844	33.77
30.80	80.0	Shear	kip	-30.85	-6.90	-28.09	0.609	24.35
34.65	90.0	Flexure	kip-ft	325.50	39.61	129.65	1.638	65.50
34.65	90.0	Shear	kip	-70.05	-9.14	-33.67	1.339	53.57
37.02	96.2	Flexure	kip-ft	277.16	16.30	54.90	3.598	143.92
37.02	96.2	Shear	kip	-89.01	-10.52	-37.11	1.572	62.89
37.38	97.1	Shear	kip	-94.28	-10.73	-37.64	1.653	66.10
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated FL120 Span < 200ft

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

Page 9 of 13

Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	5940.00
1.48	3.8	Flexure	kip-ft	277.16	16.30	84.85	2.522	151.31
3.85	10.0	Flexure	kip-ft	325.50	39.61	201.93	1.139	68.34
7.70	20.0	Flexure	kip-ft	325.50	70.48	342.42	0.578	34.66
11.55	30.0	Flexure	kip-ft	325.50	92.34	424.27	0.413	24.76
15.40	40.0	Flexure	kip-ft	325.50	105.30	464.01	0.348	20.89
19.25	50.0	Flexure	kip-ft	325.50	109.62	457.59	0.343	20.59
23.10	60.0	Flexure	kip-ft	325.50	105.30	464.01	0.348	20.89
26.95	70.0	Flexure	kip-ft	341.96	92.34	424.27	0.445	26.70
30.80	80.0	Flexure	kip-ft	325.50	70.48	342.42	0.578	34.66
34.65	90.0	Flexure	kip-ft	325.50	39.61	201.93	1.139	68.34
37.02	96.2	Flexure	kip-ft	277.16	16.30	84.85	2.522	151.31
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	34.37	1.807	72.28
1.48	3.8	Flexure	kip-ft	277.16	16.30	50.25	3.931	157.22
1.48	3.8	Shear	kip	89.01	10.52	33.97	1.717	68.70
3.85	10.0	Flexure	kip-ft	325.50	39.61	120.59	1.761	70.42
3.85	10.0	Shear	kip	70.05	9.14	31.32	1.440	57.59
7.70	20.0	Flexure	kip-ft	325.50	70.48	207.99	0.878	35.12

7.70	20.0	Shear	kip	32.53	6.90	27.01	0.681	27.24
11.55	30.0	Flexure	kip-ft	325.50	92.34	262.21	0.616	24.65
11.55	30.0	Shear	kip	23.31	4.49	22.70	0.600	23.99
15.40	40.0	Flexure	kip-ft	325.50	105.30	294.75	0.506	20.24
15.40	40.0	Shear	kip	20.02	2.24	18.39	0.720	28.80
19.25	50.0	Flexure	kip-ft	325.50	109.62	299.85	0.483	19.34
19.25	50.0	Shear	kip	-19.83	0.00	-14.08	1.083	43.33
23.10	60.0	Flexure	kip-ft	325.50	105.30	294.75	0.506	20.24
23.10	60.0	Shear	kip	-20.02	-2.24	-18.39	0.720	28.80
26.95	70.0	Flexure	kip-ft	341.96	92.34	262.21	0.665	26.58
26.95	70.0	Shear	kip	-27.25	-4.49	-22.70	0.733	29.33
30.80	80.0	Flexure	kip-ft	325.50	70.48	207.99	0.878	35.12
30.80	80.0	Shear	kip	-32.53	-6.90	-27.01	0.681	27.24
34.65	90.0	Flexure	kip-ft	325.50	39.61	120.59	1.761	70.42
34.65	90.0	Shear	kip	-70.05	-9.14	-31.32	1.440	57.59
37.02	96.2	Flexure	kip-ft	277.16	16.30	50.25	3.931	157.22
37.02	96.2	Shear	kip	-89.01	-10.52	-33.97	1.717	68.70
37.38	97.1	Shear	kip	-94.28	-10.73	-34.38	1.809	72.37
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	1683.00
1.12	2.9	Shear	kip	94.16	10.73	23.11	2.688	45.70
1.48	3.8	Flexure	kip-ft	277.16	16.30	33.81	5.843	99.32
1.48	3.8	Shear	kip	89.01	10.52	22.86	2.553	43.40
3.85	10.0	Flexure	kip-ft	325.50	39.61	81.56	2.603	44.25
3.85	10.0	Shear	kip	70.05	9.14	21.19	2.129	36.19
7.70	20.0	Flexure	kip-ft	325.50	70.48	142.24	1.284	21.83
7.70	20.0	Shear	kip	60.86	6.90	18.47	2.175	36.98
11.55	30.0	Flexure	kip-ft	325.50	92.34	182.02	0.888	15.09
11.55	30.0	Shear	kip	36.63	4.49	15.76	1.514	25.74
15.40	40.0	Flexure	kip-ft	325.50	105.30	200.90	0.742	12.62

15.40	10.0	C1	1.	21.00	0.04	12.05	1 (75	00.40
15.40	40.0	Shear	kip	31.22	2.24	13.05	1.675	28.48
19.25	50.0	Flexure	kip-ft	325.50	109.62	198.90	0.729	12.39
19.25	50.0	Shear	kip	-31.73	0.00	-10.33	2.362	40.16
23.10	60.0	Flexure	kip-ft	325.50	105.30	200.90	0.742	12.62
23.10	60.0	Shear	kip	-31.22	-2.24	-13.05	1.675	28.48
26.95	70.0	Flexure	kip-ft	341.96	92.34	182.02	0.957	16.28
26.95	70.0	Shear	kip	-40.95	-4.49	-15.76	1.725	29.33
30.80	80.0	Flexure	kip-ft	325.50	70.48	142.24	1.284	21.83
30.80	80.0	Shear	kip	-60.86	-6.90	-18.47	2.175	36.98
34.65	90.0	Flexure	kip-ft	325.50	39.61	81.56	2.603	44.25
34.65	90.0	Shear	kip	-70.05	-9.14	-21.19	2.129	36.19
37.02	96.2	Flexure	kip-ft	277.16	16.30	33.81	5.843	99.32
37.02	96.2	Shear	kip	-89.01	-10.52	-22.86	2.553	43.40
37.38	97.1	Shear	kip	-94.28	-10.73	-23.11	2.691	45.75
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	94.16	10.73	42.31	1.468	48.44
1.48	3.8	Flexure	kip-ft	277.16	16.30	61.87	3.193	105.35
1.48	3.8	Shear	kip	89.01	10.52	41.83	1.395	46.03
3.85	10.0	Flexure	kip-ft	325.50	39.61	148.55	1.429	47.16
3.85	10.0	Shear	kip	61.06	9.14	38.58	0.990	32.65
7.70	20.0	Flexure	kip-ft	325.50	70.48	256.55	0.712	23.49
7.70	20.0	Shear	kip	24.68	6.90	33.32	0.371	12.23
11.55	30.0	Flexure	kip-ft	325.50	92.34	323.99	0.499	16.46
11.55	30.0	Shear	kip	18.01	4.49	28.05	0.340	11.22
15.40	40.0	Flexure	kip-ft	325.50	105.30	365.51	0.408	13.46
15.40	40.0	Shear	kip	17.93	2.24	22.78	0.511	16.85
19.25	50.0	Flexure	kip-ft	325.50	109.62	373.79	0.388	12.80
19.25	50.0	Shear	kip	-17.93	0.00	-17.52	0.787	25.98
23.10	60.0	Flexure	kip-ft	325.50	105.30	365.51	0.408	13.46

23.10	60.0	Shear	kip	-17.93	-2.24	-22.78	0.511	16.85
26.95	70.0	Flexure	kip-ft	341.96	92.34	323.99	0.538	17.75
26.95	70.0	Shear	kip	-21.67	-4.49	-28.05	0.440	14.54
30.80	80.0	Flexure	kip-ft	325.50	70.48	256.55	0.712	23.49
30.80	80.0	Shear	kip	-24.68	-6.90	-33.32	0.371	12.23
34.65	90.0	Flexure	kip-ft	325.50	39.61	148.55	1.429	47.16
34.65	90.0	Shear	kip	-61.06	-9.14	-38.58	0.990	32.65
37.02	96.2	Flexure	kip-ft	277.16	16.30	61.87	3.193	105.35
37.02	96.2	Shear	kip	-89.01	-10.52	-41.83	1.395	46.03
37.38	97.1	Shear	kip	-94.28	-10.73	-42.32	1.470	48.50
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - Existing Deteriorated SU 4 Axle Load Impact: With Impact Lane: Single Lane

Location							Legal Rating	Legal Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	127.58	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	94.16	10.73	44.34	1.401	49.03
1.48	3.8	Flexure	kip-ft	277.16	16.30	64.83	3.047	106.64
1.48	3.8	Shear	kip	89.01	10.52	43.83	1.331	46.60
3.85	10.0	Flexure	kip-ft	325.50	39.61	155.49	1.365	47.79
3.85	10.0	Shear	kip	54.81	9.14	40.39	0.826	28.92
7.70	20.0	Flexure	kip-ft	325.50	70.48	267.96	0.681	23.85
7.70	20.0	Shear	kip	23.34	6.90	34.80	0.325	11.39
11.55	30.0	Flexure	kip-ft	325.50	92.34	345.07	0.468	16.39
11.55	30.0	Shear	kip	17.93	4.49	29.21	0.324	11.35
15.40	40.0	Flexure	kip-ft	325.50	105.30	394.80	0.378	13.22
15.40	40.0	Shear	kip	17.93	2.24	23.63	0.492	17.24
19.25	50.0	Flexure	kip-ft	325.50	109.62	401.52	0.361	12.64
19.25	50.0	Shear	kip	-17.93	0.00	-18.04	0.765	26.76
23.10	60.0	Flexure	kip-ft	325.50	105.30	394.80	0.378	13.22
23.10	60.0	Shear	kip	-17.93	-2.24	-23.63	0.492	17.23
26.95	70.0	Flexure	kip-ft	341.96	92.34	345.07	0.505	17.67
26.95	70.0	Shear	kip	-20.25	-4.49	-29.21	0.386	13.50
30.80	80.0	Flexure	kip-ft	325.50	70.48	267.96	0.681	23.85

30.80	80.0	Shear	kip	-23.34	-6.90	-34.80	0.325	11.39
34.65	90.0	Flexure	kip-ft	325.50	39.61	155.49	1.365	47.79
34.65	90.0	Shear	kip	-54.81	-9.14	-40.39	0.826	28.92
37.02	96.2	Flexure	kip-ft	277.16	16.30	64.83	3.047	106.64
37.02	96.2	Shear	kip	-89.01	-10.52	-43.83	1.331	46.60
37.38	97.1	Shear	kip	-94.28	-10.73	-44.35	1.402	49.09
38.50	100.0	Flexure	kip-ft	102.41	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal NBI Structure ID: 874294D Bridge ID: 874294D

Analyzed By: BrR Analyze Date: Wednesday, October 06, 2021 10:33:34 Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002 Analysis Preference Setting: None

Report By: BrR Report Date: Wednesday, October 06, 2021 10:41:31

Structure Definition Name: INT Span 2 - PS Conc PSU Member Name: G10 Member Alternative Name: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

Report by Action: 🗹 Flexure 🗹 Concrete Stresses 🗹 Shear 🗹 Critical

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

				Inventory Inventory Operating Operating						
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	135.08	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.86	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	94.16	10.73	20.86	2.212	79.64	2.868	103.23
1.12	2.9	Shear	kip	445.93	-5.24	67.36	6.698	241.12	9.343	336.35
1.48	3.8	Flexure	kip-ft	293.46	16.30	30.61	5.099	183.55	6.609	237.94
1.48	3.8	Shear	kip	89.01	10.52	20.57	2.107	75.84	2.731	98.32
1.48	3.8	Shear	kip	436.13	4.78	85.59	5.040	181.43	7.371	265.36
1.48	3.8	Concrete Stresses	ksi	1.77	0.12	0.23	9.193	330.96		
3.85	10.0	Flexure	kip-ft	344.64	39.61	73.09	2.307	83.06	2.991	107.68
3.85	10.0	Shear	kip	70.05	9.14	18.70	1.791	64.49	2.322	83.60
3.85	10.0	Shear	kip	424.83	54.28	180.89	2.049	73.75	2.753	99.11
3.85	10.0	Concrete Stresses	ksi	1.77	0.29	0.54	3.451	124.23		
7.70	20.0	Flexure	kip- ft	344.64	70.48	124.85	1.174	42.27	1.522	54.79
7.70	20.0	Shear	kip	44.94	6.90	15.71	1.321	47.56	2.897	104.28
7.70	20.0	Shear	kip	424.83	93.06	265.36	1.250	45.01	1.664	59.89
7.70	20.0	Concrete Stresses	ksi	1.77	0.52	0.92	1.711	61.60		
11.55	30.0	Flexure	kip- ft	344.64	92.34	156.13	0.839	30.20	1.087	39.15
11.55	30.0	Shear	kip	30.63	4.49	12.85	1.112	40.04	2.168	78.03
11.55	30.0	Shear	kip	424.83	120.65	313.56	0.970	34.92	1.283	46.19
11.55	30.0	Concrete Stresses	ksi	1.77	0.68	1.15	1.193	42.96		
15.40	40.0	Flexure		344.64	105.30	172.00	0.708	25.48	0.917	33.03

]	kip- ft							
15.40	40.0	Shear	kip	26.59	2.24	10.26	1.325	47.69	2.415	86.93
15.40	40.0	Shear	kip	424.83	135.52	336.40	0.860	30.96	1.138	40.96
15.40	40.0	Concrete Stresses	ksi	1.77	0.77	1.26	0.989	35.61		
19.25	50.0	Flexure	kip- ft	344.64	109.62	171.21	0.693	24.95	0.898	32.34
19.25	50.0	Shear	kip	-26.93	0.00	-7.73	1.990	71.66	3.511	126.41
19.25	50.0	Shear	kip	424.83	137.84	329.53	0.871	31.35	1.120	40.33
19.25	50.0	Concrete Stresses	ksi	1.77	0.81	1.26	0.962	34.63		
23.10	60.0	Flexure	kip- ft	344.64	105.30	172.00	0.708	25.48	0.917	33.03
23.10	60.0	Shear	kip	-26.59	-2.24	-10.26	1.325	47.69	2.415	86.93
23.10	60.0	Shear	kip	424.83	135.52	336.40	0.860	30.96	1.138	40.96
23.10	60.0	Concrete Stresses	ksi	1.77	0.77	1.26	0.989	35.61		
26.95	70.0	Flexure	kip- ft	362.07	92.34	156.13	0.903	32.50	1.170	42.13
26.95	70.0	Shear	kip	-34.86	-4.49	-12.85	1.300	46.81	2.412	86.83
26.95	70.0	Shear	kip	441.60	118.83	312.68	1.032	37.16	1.367	49.23
26.95	70.0	Concrete Stresses	ksi	1.77	0.68	1.15	1.193	42.96		
30.80	80.0	Flexure	kip- ft	344.64	70.48	124.85	1.174	42.27	1.522	54.79
30.80	80.0		kip	-44.94		-15.71	1.321	47.56	2.897	104.28
30.80	80.0	Shear	kip	424.83	93.06	265.36	1.250	45.01	1.664	59.89
30.80	80.0	Concrete Stresses	ksi	1.77	0.52	0.92	1.711	61.60		
34.65	90.0	Flexure k	-			73.09	2.307	83.06	2.991	107.68
34.65	90.0		kip	-70.05		-18.70	1.791	64.49	2.322	83.60
34.65	90.0		kip	424.83	54.28	180.89	2.049	73.75	2.753	99.11
34.65	90.0	Concrete Stresses	ksi	1.77	0.29	0.54	3.451	124.23		
37.02	96.2	Flexure k	•	293.46		30.61	5.099	183.56	6.610	237.94
37.02	96.2		kip	-89.01		-20.57	2.107	75.84	2.731	98.32
37.02	96.2		kip	436.13	4.78	85.59	5.040	181.43	7.371	265.36
37.02	96.2	Concrete Stresses	ksi	1.77	0.12	0.23	9.193	330.97		
37.38	97.1		kip	-94.28		-20.86	2.215	79.73	2.871	103.36
37.38	97.1		kip Irin	446.33	-3.46	66.97	6.747	242.88	9.399	338.38
38.50	100.0	riexure	kip- ft	108.44	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	0.86	0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning HL-93 (US) Tandem + Lane Impact: With Impact Lane: Single Lane

Inventory Inventory Operating Op							Operating			
Location	I						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	135.08	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.86	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	94.16	10.73	18.64	2.475	89.11	3.209	115.51
1.12	2.9	Shear	kip	445.93	-3.06	57.34	7.831	281.92	10.728	386.19
1.48	3.8	Flexure	kip-ft	293.46	16.30	27.43	5.689	204.81	7.375	265.49
1.48	3.8	Shear	kip	89.01	10.52	18.43	2.352	84.68	3.049	109.77
1.48	3.8	Shear	kip	436.13	4.78	72.19	5.975	215.10	8.391	302.09
1.48	3.8	Concrete Stresses	ksi	1.77	0.12	0.20	10.258	369.29		
3.85	10.0	Flexure	kip-ft	344.64	39.61	66.60	2.532	91.16	3.282	118.17
3.85	10.0	Shear	kip	70.05	9.14	17.02	1.969	70.88	2.552	91.88
3.85	10.0	Shear	kip	424.83	54.28	162.82	2.276	81.93	3.071	110.55
3.85	10.0	Concrete Stresses	ksi	1.77	0.29	0.49	3.787	136.33		
7.70	20.0	Flexure	kip- ft	344.64	70.48	117.65	1.246	44.86	1.615	58.15
7.70	20.0	Shear	kip	49.78	6.90	14.77	1.592	57.31	3.080	110.88
7.70	20.0	Shear	kip	424.83	92.32	249.52	1.333	47.98	1.778	64.00
7.70	20.0	Concrete Stresses	ksi	1.77	0.52	0.86	1.816	65.37		
11.55	30.0	Flexure	kip- ft	344.64	92.34	153.13	0.855	30.79	1.109	39.92
11.55	30.0	Shear	kip	31.38	4.49	12.60	1.169	42.09	2.286	82.29
11.55	30.0	Shear	kip	424.83	120.44	307.44	0.990	35.64	1.311	47.21
11.55	30.0	Concrete Stresses	ksi	1.77	0.68	1.13	1.217	43.80		
15.40	40.0	Flexure	kip- ft	344.64	105.30	173.06	0.703	25.32	0.912	32.82
15.40	40.0	Shear	kip	26.38	2.24	10.48	1.285	46.27	2.342	84.31

15.40	40.0	Shear	kip	424.83	135.61	338.85	0.854	30.73	1.130	40.67
15.40	40.0	Concrete Stresses	ksi	1.77	0.77	1.27	0.983	35.39		
19.25	50.0	Flexure	kip- ft	344.64	109.62	177.43	0.669	24.07	0.867	31.20
19.25	50.0	Shear	kip	-25.78	0.00	-8.43	1.748	62.93	3.074	110.67
19.25	50.0	Shear	kip	424.83	138.07	342.40	0.838	30.15	1.082	38.96
19.25	50.0	Concrete Stresses	ksi	1.77	0.81	1.30	0.928	33.42		
23.10	60.0	Flexure	kip- ft	344.64	105.30	173.06	0.703	25.32	0.912	32.82
23.10	60.0	Shear	kip	-26.38	-2.24	-10.48	1.285	46.27	2.342	84.31
23.10	60.0	Shear	kip	424.83	135.61	338.85	0.854	30.73	1.130	40.67
23.10	60.0	Concrete Stresses	ksi	1.77	0.77	1.27	0.983	35.39		
26.95	70.0	Flexure	kip- ft	362.07	92.34	153.13	0.920	33.13	1.193	42.95
26.95	70.0	Shear	kip	-35.63	-4.49	-12.60	1.362	49.04	2.533	91.17
26.95	70.0	Shear	kip	441.60	118.62	306.50	1.054	37.94	1.398	50.31
26.95	70.0	Concrete Stresses	ksi	1.77	0.68	1.13	1.217	43.80		
			lin							
30.80	80.0	Flexure	kip- ft	344.64	70.48	117.65	1.246	44.86	1.615	58.15
30.80 30.80	80.0 80.0	Flexure Shear		344.64 -49.78		117.65 -14.77	1.246 1.592	44.86 57.31	1.615 3.080	58.15 110.88
			ft		-6.90					
30.80	80.0	Shear	ft kip	-49.78	-6.90	-14.77	1.592	57.31	3.080	110.88
30.80 30.80	80.0 80.0	Shear Shear Concrete	ft kip kip ksi	-49.78 424.83	-6.90 92.32	-14.77 249.52	1.592 1.333	57.31 47.98	3.080	110.88
30.80 30.80 30.80	80.0 80.0 80.0	Shear Shear Concrete Stresses	ft kip kip ksi	-49.78 424.83 1.77	-6.90 92.32 0.52 39.61	-14.77 249.52 0.86	1.592 1.333 1.816	57.31 47.98 65.37	3.080 1.778	110.88 64.00
30.80 30.80 30.80 34.65	80.0 80.0 80.0 90.0	Shear Shear Concrete Stresses Flexure	ft kip kip ksi kip-ft	-49.78 424.83 1.77 344.64	-6.90 92.32 0.52 39.61 -9.14	-14.77 249.52 0.86 66.60	1.592 1.333 1.816 2.532	57.31 47.98 65.37 91.16	3.080 1.778 3.282	110.88 64.00 118.17
30.80 30.80 30.80 34.65 34.65	 80.0 80.0 80.0 90.0 90.0 	Shear Shear Concrete Stresses Flexure Shear	ft kip kip ksi kip-ft kip	-49.78 424.83 1.77 344.64 -70.05	-6.90 92.32 0.52 39.61 -9.14	-14.77 249.52 0.86 66.60 -17.02	1.592 1.333 1.816 2.532 1.969	57.31 47.98 65.37 91.16 70.88	3.080 1.778 3.282 2.552	110.88 64.00 118.17 91.88
30.80 30.80 30.80 34.65 34.65 34.65	 80.0 80.0 80.0 90.0 90.0 	Shear Shear Concrete Stresses Flexure Shear Shear Concrete	ft kip ksi ksi kip-ft kip ksi	-49.78 424.83 1.77 344.64 -70.05 424.83	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29	-14.77 249.52 0.86 66.60 -17.02 162.82	1.592 1.333 1.816 2.532 1.969 2.276	57.31 47.98 65.37 91.16 70.88 81.93	3.080 1.778 3.282 2.552	110.88 64.00 118.17 91.88
30.80 30.80 30.80 34.65 34.65 34.65 34.65	 80.0 80.0 80.0 90.0 90.0 90.0 	Shear Shear Concrete Stresses Flexure Shear Shear Concrete Stresses	ft kip ksi ksi kip-ft kip ksi	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49	1.592 1.333 1.816 2.532 1.969 2.276 3.787	57.31 47.98 65.37 91.16 70.88 81.93 136.33	3.080 1.778 3.282 2.552 3.071	 110.88 64.00 118.17 91.88 110.55
30.80 30.80 30.80 34.65 34.65 34.65 34.65 37.02	 80.0 80.0 80.0 90.0 90.0 90.0 90.0 96.2 	Shear Shear Concrete Stresses Flexure Shear Shear Concrete Stresses Flexure	ft kip kip ksi kip-ft kip ksi ksi	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81	 3.080 1.778 3.282 2.552 3.071 7.375 	 110.88 64.00 118.17 91.88 110.55 265.49
30.80 30.80 34.65 34.65 34.65 34.65 34.65 37.02 37.02	 80.0 80.0 80.0 90.0 90.0 90.0 90.0 96.2 96.2 96.2 	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear	ft kip kip ksi kip-ft kip ksi kip-ft kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352	 57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 	 3.080 1.778 3.282 2.552 3.071 7.375 3.049 	 110.88 64.00 118.17 91.88 110.55 265.49 109.77
30.80 30.80 34.65 34.65 34.65 34.65 37.02 37.02 37.02	 80.0 80.0 80.0 90.0 90.0 90.0 90.0 96.2 96.2 96.2 	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Shear Concrete	ft kip kip ksi kip-ft kip ksi kip-ft kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01 436.13	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52 4.78 0.12	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975	 57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10 	 3.080 1.778 3.282 2.552 3.071 7.375 3.049 	 110.88 64.00 118.17 91.88 110.55 265.49 109.77
30.80 30.80 34.65 34.65 34.65 34.65 37.02 37.02 37.02 37.02	 80.0 80.0 80.0 90.0 90.0 90.0 90.0 96.2 96.2 96.2 96.2 96.2 	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Shear Shear	ft kip kip ksi kip-ft kip ksi kip kip ksi	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01 436.13 1.77	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52 4.78 0.12	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19 0.20	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975 10.258	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10 369.29	 3.080 1.778 3.282 2.552 3.071 7.375 3.049 8.391 	 110.88 64.00 118.17 91.88 110.55 265.49 109.77 302.09
30.80 30.80 34.65 34.65 34.65 34.65 37.02 37.02 37.02 37.02 37.02	 80.0 80.0 80.0 90.0 90.0 90.0 96.2 96.2 96.2 96.2 96.2 96.2 97.1 	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Shear Concrete Stresses	ft kip kip ksi kip-ft kip ksi kip-ft kip kip kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01 436.13 1.77 -94.28	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52 4.78 0.12 -10.73	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19 0.20 -18.65	 1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975 10.258 2.478 	 57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10 369.29 89.22 	 3.080 1.778 3.282 2.552 3.071 7.375 3.049 8.391 3.212 	 110.88 64.00 118.17 91.88 110.55 265.49 109.77 302.09 115.65

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

C 3

Axle Load

Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	94.16	10.73	11.45	5.424	151.88
1.12	2.9	Shear	kip	445.93	14.71	18.70	23.057	645.59
1.48	3.8	Flexure	kip-ft	293.46	16.30	16.68	12.596	352.68
1.48	3.8	Shear	kip	89.01	10.52	11.27	5.175	144.91
1.48	3.8	Shear	kip	436.13	19.99	24.38	17.070	477.97
3.85	10.0	Flexure	kip-ft	344.64	39.61	38.88	5.839	163.49
3.85	10.0	Shear	kip	70.05	9.14	10.10	4.465	125.03
3.85	10.0	Shear	kip	424.83	54.28	58.80	6.302	176.46
7.70	20.0	Flexure	kip-ft	344.64	70.48	63.23	3.121	87.39
7.70	20.0	Shear	kip	70.05	6.90	8.21	5.755	161.13
7.70	20.0	Shear	kip	424.83	92.25	90.04	3.694	103.43
11.55	30.0	Flexure	kip-ft	344.64	92.34	81.45	2.165	60.61
11.55	30.0	Shear	kip	70.05	4.49	7.05	7.029	196.82
11.55	30.0	Shear	kip	424.83	119.98	116.90	2.608	73.02
15.40	40.0	Flexure	kip-ft	344.64	105.30	91.86	1.784	49.94
15.40	40.0	Shear	kip	70.05	2.24	5.89	8.778	245.79
15.40	40.0	Shear	kip	424.83	136.02	132.69	2.176	60.94
19.25	50.0	Flexure	kip-ft	344.64	109.62	91.12	1.753	49.08
19.25	50.0	Shear	kip	70.05	0.00	4.73	11.384	318.75
19.25	50.0	Shear	kip	424.83	140.50	132.96	2.139	59.88
23.10	60.0	Flexure	kip-ft	344.64	105.30	91.86	1.784	49.94
23.10	60.0	Shear	kip	-70.05	-2.24	-5.89	8.778	245.79
23.10	60.0	Shear	kip	424.83	136.02	132.69	2.177	60.94
26.95	70.0	Flexure	kip-ft	362.07	92.34	81.45	2.329	65.22
26.95	70.0	Shear	kip	-70.42	-4.49	-7.05	7.069	197.94
26.95	70.0	Shear	kip	441.60	119.34	116.31	2.771	77.58
30.80	80.0	Flexure	kip-ft	344.64	70.48	63.23	3.121	87.39
30.80	80.0	Shear	kip	-70.05	-6.90	-8.21	5.755	161.13
30.80	80.0	Shear	kip	424.83	92.25	90.04	3.694	103.43
34.65	90.0	Flexure	kip-ft	344.64	39.61	38.88	5.839	163.49
34.65	90.0	Shear	kip	-70.05	-9.14	-10.10	4.465	125.03
34.65	90.0	Shear	kip	424.83	54.28	58.80	6.302	176.46

37.02	96.2	Flexure	kip-ft	293.46	16.30	16.68	12.596	352.68
37.02	96.2	Shear	kip	-89.01	-10.52	-11.27	5.175	144.91
37.02	96.2	Shear	kip	436.13	19.99	24.38	17.071	477.98
37.38	97.1	Shear	kip	-94.28	-10.73	-11.45	5.430	152.05
37.38	97.1	Shear	kip	446.33	14.60	18.58	23.237	650.64
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning C 4 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	94.16	10.73	16.06	3.868	141.77
1.12	2.9	Shear	kip	445.93	8.71	31.65	13.814	506.27
1.48	3.8	Flexure	kip-ft	293.46	16.30	23.41	8.973	328.87
1.48	3.8	Shear	kip	89.01	10.52	15.83	3.687	135.12
1.48	3.8	Shear	kip	436.13	14.06	39.54	10.674	391.20
3.85	10.0	Flexure	kip-ft	344.64	39.61	55.34	4.102	150.34
3.85	10.0	Shear	kip	70.05	9.14	14.37	3.137	114.97
3.85	10.0	Shear	kip	424.83	54.28	92.85	3.991	146.27
7.70	20.0	Flexure	kip-ft	344.64	70.48	93.36	2.114	77.47
7.70	20.0	Shear	kip	70.05	6.90	12.12	3.897	142.84
7.70	20.0	Shear	kip	424.83	89.96	139.88	2.394	87.74
11.55	30.0	Flexure	kip-ft	344.64	92.34	114.05	1.546	56.66
11.55	30.0	Shear	kip	70.05	4.49	9.87	5.020	183.98
11.55	30.0	Shear	kip	424.83	116.31	165.94	1.859	68.14
15.40	40.0	Flexure	kip-ft	344.64	105.30	126.11	1.299	47.62
15.40	40.0	Shear	kip	59.28	2.24	8.19	5.304	194.41
15.40	40.0	Shear	kip	424.83	133.38	182.99	1.593	58.37
19.25	50.0	Flexure	kip-ft	344.64	109.62	128.76	1.240	45.46
19.25	50.0	Shear	kip	-57.11	0.00	-6.69	6.568	240.71
19.25	50.0	Shear	kip	424.83	138.44	187.41	1.528	56.01
23.10	60.0	Flexure	kip-ft	344.64	105.30	126.11	1.299	47.62
23.10	60.0	Shear	kip	-59.28	-2.24	-8.19	5.304	194.41
23.10	60.0	Shear	kip	424.83	133.38	182.99	1.593	58.37

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

26.95	70.0	Flexure	kip-ft	362.07	92.34	114.05	1.664	60.97
26.95	70.0	Shear	kip	-70.42	-4.49	-9.87	5.049	185.03
26.95	70.0	Shear	kip	441.60	115.66	165.11	1.974	72.35
30.80	80.0	Flexure	kip-ft	344.64	70.48	93.36	2.114	77.47
30.80	80.0	Shear	kip	-70.05	-6.90	-12.12	3.897	142.84
30.80	80.0	Shear	kip	424.83	89.96	139.88	2.394	87.74
34.65	90.0	Flexure	kip-ft	344.64	39.61	55.34	4.102	150.34
34.65	90.0	Shear	kip	-70.05	-9.14	-14.37	3.137	114.97
34.65	90.0	Shear	kip	424.83	54.28	92.85	3.991	146.27
37.02	96.2	Flexure	kip-ft	293.46	16.30	23.41	8.973	328.87
37.02	96.2	Shear	kip	-89.01	-10.52	-15.83	3.687	135.12
37.02	96.2	Shear	kip	436.13	14.06	39.54	10.674	391.21
37.38	97.1	Shear	kip	-94.28	-10.73	-16.06	3.873	141.93
37.38	97.1	Shear	kip	446.33	8.60	31.48	13.905	509.61
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	16.08	3.863	154.53
1.12	2.9	Shear	kip	445.93	8.69	31.72	13.785	551.38
1.48	3.8	Flexure	kip-ft	293.46	16.30	23.46	8.956	358.24
1.48	3.8	Shear	kip	89.01	10.52	15.86	3.680	147.19
1.48	3.8	Shear	kip	436.13	14.02	39.64	10.648	425.91
3.85	10.0	Flexure	kip-ft	344.64	39.61	55.39	4.099	163.94
3.85	10.0	Shear	kip	70.05	9.14	14.39	3.134	125.37
3.85	10.0	Shear	kip	424.83	54.28	92.95	3.987	159.47
7.70	20.0	Flexure	kip-ft	344.64	70.48	92.41	2.136	85.42
7.70	20.0	Shear	kip	70.05	6.90	12.00	3.938	157.50
7.70	20.0	Shear	kip	424.83	89.96	138.23	2.423	96.90
11.55	30.0	Flexure	kip-ft	344.64	92.34	114.81	1.536	61.43
11.55	30.0	Shear	kip	70.05	4.49	9.94	4.987	199.46
11.55	30.0	Shear	kip	424.83	116.22	167.09	1.847	73.88

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

15.40	40.0	Flexure	kip-ft	344.64	105.30	128.28	1.277	51.09
15.40	40.0	Shear	kip	57.66	2.24	8.24	5.123	204.94
15.40	40.0	Shear	kip	424.83	133.39	186.01	1.567	62.67
19.25	50.0	Flexure	kip-ft	344.64	109.62	132.83	1.202	48.09
19.25	50.0	Shear	kip	-54.70	0.00	-6.32	6.658	266.30
19.25	50.0	Shear	kip	424.83	139.00	192.50	1.485	59.39
23.10	60.0	Flexure	kip-ft	344.64	105.30	128.28	1.277	51.09
23.10	60.0	Shear	kip	-57.66	-2.24	-8.24	5.123	204.94
23.10	60.0	Shear	kip	424.83	133.39	186.01	1.567	62.67
26.95	70.0	Flexure	kip-ft	362.07	92.34	114.81	1.652	66.10
26.95	70.0	Shear	kip	-70.42	-4.49	-9.94	5.015	200.60
26.95	70.0	Shear	kip	441.60	115.57	166.25	1.961	78.44
30.80	80.0	Flexure	kip-ft	344.64	70.48	92.41	2.136	85.42
30.80	80.0	Shear	kip	-70.05	-6.90	-12.00	3.938	157.50
30.80	80.0	Shear	kip	424.83	89.96	138.23	2.423	96.90
34.65	90.0	Flexure	kip-ft	344.64	39.61	55.39	4.099	163.94
34.65	90.0	Shear	kip	-70.05	-9.14	-14.39	3.134	125.37
34.65	90.0	Shear	kip	424.83	54.28	92.95	3.987	159.47
37.02	96.2	Flexure	kip-ft	293.46	16.30	23.46	8.956	358.24
37.02	96.2	Shear	kip	-89.01	-10.52	-15.86	3.680	147.19
37.02	96.2	Shear	kip	436.13	14.02	39.64	10.648	425.91
37.38	97.1	Shear	kip	-94.28	-10.73	-16.08	3.868	154.72
37.38	97.1	Shear	kip	446.33	8.57	31.55	13.876	555.03
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	5940.00
1.12	2.9	Shear	kip	445.93	0.11	50.24	8.873	532.40
1.48	3.8	Flexure	kip-ft	293.46	16.30	35.85	6.347	380.83
1.48	3.8	Shear	kip	436.13	5.52	61.36	7.018	421.08
3.85	10.0	Flexure	kip-ft	344.64	39.61	85.33	2.882	172.94
3.85	10.0	Shear	kip	424.83	54.28	141.29	2.623	157.36

7.70	20.0	Flexure	kip-ft	344.64	70.48	144.69	1.478	88.65
7.70	20.0	Shear	kip	424.83	89.96	209.42	1.599	95.94
11.55	30.0	Flexure	kip-ft	344.64	92.34	179.27	1.065	63.93
11.55	30.0	Shear	kip	424.83	117.79	246.37	1.246	74.78
15.40	40.0	Flexure	kip-ft	344.64	105.30	196.07	0.905	54.32
15.40	40.0	Shear	kip	424.83	132.33	262.21	1.116	66.93
19.25	50.0	Flexure	kip-ft	344.64	109.62	193.35	0.895	53.69
19.25	50.0	Shear	kip	424.83	137.71	257.32	1.116	66.95
23.10	60.0	Flexure	kip-ft	344.64	105.30	196.07	0.905	54.32
23.10	60.0	Shear	kip	424.83	132.33	262.21	1.116	66.93
26.95	70.0	Flexure	kip-ft	362.07	92.34	179.27	1.146	68.79
26.95	70.0	Shear	kip	441.60	116.18	245.09	1.328	79.67
30.80	80.0	Flexure	kip-ft	344.64	70.48	144.69	1.478	88.65
30.80	80.0	Shear	kip	424.83	89.96	209.42	1.599	95.94
34.65	90.0	Flexure	kip-ft	344.64	39.61	85.33	2.882	172.94
34.65	90.0	Shear	kip	424.83	54.28	141.29	2.623	157.36
37.02	96.2	Flexure	kip-ft	293.46	16.30	35.85	6.347	380.83
37.02	96.2	Shear	kip	436.13	5.52	61.36	7.018	421.09
37.38	97.1	Shear	kip	446.33	-0.01	50.00	8.926	535.58
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	14.69	4.229	169.18
1.12	2.9	Shear	kip	445.93	10.50	27.85	15.637	625.49
1.48	3.8	Flexure	kip-ft	293.46	16.30	21.47	9.784	391.34
1.48	3.8	Shear	kip	89.01	10.52	14.52	4.020	160.79
1.48	3.8	Shear	kip	436.13	15.76	35.17	11.951	478.03
3.85	10.0	Flexure	kip-ft	344.64	39.61	51.52	4.406	176.26
3.85	10.0	Shear	kip	70.05	9.14	13.38	3.370	134.79
3.85	10.0	Shear	kip	424.83	54.28	84.94	4.363	174.50
7.70	20.0	Flexure	kip-ft	344.64	70.48	88.86	2.221	88.83

7.70	20.0	Shear	kip	70.05	6.90	11.54	4.094	163.78
7.70	20.0	Shear	kip	424.83	89.96	132.11	2.535	101.39
11.55	30.0	Flexure	kip-ft	344.64	92.34	112.03	1.574	62.95
11.55	30.0	Shear	kip	70.05	4.49	9.70	5.110	204.41
11.55	30.0	Shear	kip	424.83	116.53	162.91	1.893	75.70
15.40	40.0	Flexure	kip-ft	344.64	105.30	125.93	1.301	52.05
15.40	40.0	Shear	kip	59.67	2.24	7.86	5.566	222.66
15.40	40.0	Shear	kip	424.83	133.78	182.35	1.596	63.85
19.25	50.0	Flexure	kip-ft	344.64	109.62	128.11	1.247	49.86
19.25	50.0	Shear	kip	-58.06	0.00	-6.02	7.422	296.87
19.25	50.0	Shear	kip	424.83	139.22	185.71	1.538	61.52
23.10	60.0	Flexure	kip-ft	344.64	105.30	125.93	1.301	52.05
23.10	60.0	Shear	kip	-59.67	-2.24	-7.86	5.566	222.66
23.10	60.0	Shear	kip	424.83	133.78	182.35	1.596	63.85
26.95	70.0	Flexure	kip-ft	362.07	92.34	112.03	1.694	67.74
26.95	70.0	Shear	kip	-70.42	-4.49	-9.70	5.140	205.58
26.95	70.0	Shear	kip	441.60	115.89	162.09	2.009	80.38
30.80	80.0	Flexure	kip-ft	344.64	70.48	88.86	2.221	88.83
30.80	80.0	Shear	kip	-70.05	-6.90	-11.54	4.094	163.78
30.80	80.0	Shear	kip	424.83	89.96	132.11	2.535	101.39
34.65	90.0	Flexure	kip-ft	344.64	39.61	51.52	4.406	176.26
34.65	90.0	Shear	kip	-70.05	-9.14	-13.38	3.370	134.79
34.65	90.0	Shear	kip	424.83	54.28	84.94	4.363	174.50
37.02	96.2	Flexure	kip-ft	293.46	16.30	21.47	9.784	391.35
37.02	96.2	Shear	kip	-89.01	-10.52	-14.52	4.020	160.79
37.02	96.2	Shear	kip	436.13	15.76	35.17	11.951	478.03
37.38	97.1	Shear	kip	-94.28	-10.73	-14.69	4.235	169.38
37.38	97.1	Shear	kip	446.33	10.39	27.69	15.745	629.81
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	1683.00

1.12	2.9	Shear	kip	94.16	10.73	9.87	6.291	106.96
1.12	2.9	Shear	kip	445.93	16.77	14.32	29.967	509.43
1.48	3.8	Flexure	kip-ft	293.46	16.30	14.44	14.543	247.23
1.48	3.8	Shear	kip	89.01	10.52	9.77	5.975	101.58
1.48	3.8	Shear	kip	436.13	21.95	19.35	21.406	363.90
3.85	10.0	Flexure	kip-ft	344.64	39.61	34.85	6.515	110.75
3.85	10.0	Shear	kip	70.05	9.14	9.05	4.982	84.70
3.85	10.0	Shear	kip	424.83	54.28	50.46	7.344	124.85
7.70	20.0	Flexure	kip-ft	344.64	70.48	60.77	3.247	55.20
7.70	20.0	Shear	kip	70.05	6.90	7.89	5.987	101.78
7.70	20.0	Shear	kip	424.83	92.66	86.20	3.853	65.51
11.55	30.0	Flexure	kip-ft	344.64	92.34	77.77	2.267	38.54
11.55	30.0	Shear	kip	70.05	4.49	6.73	7.362	125.15
11.55	30.0	Shear	kip	424.83	120.40	111.36	2.734	46.47
15.40	40.0	Flexure	kip-ft	344.64	105.30	85.84	1.909	32.45
15.40	40.0	Shear	kip	70.05	2.24	5.57	9.280	157.76
15.40	40.0	Shear	kip	424.83	136.44	123.89	2.328	39.57
19.25	50.0	Flexure	kip-ft	344.64	109.62	84.98	1.879	31.95
19.25	50.0	Shear	kip	70.05	0.00	4.41	12.206	207.50
19.25	50.0	Shear	kip	424.83	140.92	124.00	2.290	38.92
23.10	60.0	Flexure	kip-ft	344.64	105.30	85.84	1.909	32.45
23.10	60.0	Shear	kip	-70.05	-2.24	-5.57	9.280	157.76
23.10	60.0	Shear	kip	424.83	136.44	123.89	2.328	39.57
26.95	70.0	Flexure	kip-ft	362.07	92.34	77.77	2.440	41.47
26.95	70.0	Shear	kip	-70.42	-4.49	-6.73	7.404	125.87
26.95	70.0	Shear	kip	441.60	119.75	110.79	2.905	49.38
30.80	80.0	Flexure	kip-ft	344.64	70.48	60. 77	3.247	55.20
30.80	80.0	Shear	kip	-70.05	-6.90	-7.89	5.987	101.78
30.80	80.0	Shear	kip	424.83	92.66	86.20	3.853	65.51
34.65	90.0	Flexure	kip-ft	344.64	39.61	34.85	6.515	110.75
34.65	90.0	Shear	kip	-70.05	-9.14	-9.05	4.982	84.69
34.65	90.0	Shear	kip	424.83	54.28	50.46	7.344	124.85
37.02	96.2	Flexure	kip-ft	293.46	16.30	14.44	14.543	247.23
37.02	96.2	Shear	kip	-89.01	-10.52	-9.77	5.975	101.58
37.02	96.2	Shear	kip	436.13	21.95	19.35	21.406	363.90
37.38	97.1	Shear	kip	-94.28	-10.73	-9.87	6.299	107.09
37.38	97.1	Shear	kip	446.33	16.66	14.21	30.232	513.94
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning SU 3 Axle Load Impact: With Impact

file:///C:/Users/yamisial/Documents/AASHTOWARE/BrDR684/Reports/LRFRReport.XML 10/6/2021

Lane: Single Lane

Location							Legal Rating	Legal Load
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	Rating (Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	94.16	10.73	18.08	3.436	113.37
1.12	2.9	Shear	kip	445.93	6.08	37.39	11.765	388.24
1.48	3.8	Flexure	kip-ft	293.46	16.30	26.43	7.947	262.24
1.48	3.8	Shear	kip	89.01	10.52	17.87	3.265	107.75
1.48	3.8	Shear	kip	436.13	11.39	46.35	9.163	302.38
3.85	10.0	Flexure	kip-ft	344.64	39.61	63.47	3.577	118.04
3.85	10.0	Shear	kip	70.05	9.14	16.49	2.735	90.27
3.85	10.0	Shear	kip	424.83	54.28	109.65	3.379	111.52
7.70	20.0	Flexure	kip-ft	344.64	70.48	109.61	1.800	59.41
7.70	20.0	Shear	kip	70.05	6.90	14.24	3.319	109.54
7.70	20.0	Shear	kip	424.83	89.96	168.00	1.993	65.78
11.55	30.0	Flexure	kip-ft	344.64	92.34	138.43	1.274	42.03
11.55	30.0	Shear	kip	55.12	4.49	11.98	3.177	104.85
11.55	30.0	Shear	kip	424.83	115.19	202.93	1.526	50.35
15.40	40.0	Flexure	kip-ft	344.64	105.30	156.17	1.049	34.63
15.40	40.0	Shear	kip	43.05	2.24	9.73	3.180	104.94
15.40	40.0	Shear	kip	424.83	132.50	225.69	1.295	42.74
19.25	50.0	Flexure	kip-ft	344.64	109.62	159.70	1.000	33.00
19.25	50.0	Shear	kip	-41.98	0.00	-7.48	4.315	142.38
19.25	50.0	Shear	kip	424.83	138.48	230.42	1.243	41.01
23.10	60.0	Flexure	kip-ft	344.64	105.30	156.17	1.049	34.63
23.10	60.0	Shear	kip	-43.05	-2.24	-9.73	3.180	104.94
23.10	60.0	Shear	kip	424.83	132.50	225.69	1.295	42.74
26.95	70.0	Flexure	kip-ft	362.07	92.34	138.43	1.371	45.23
26.95	70.0	Shear	kip	-58.59	-4.49	-11.98	3.401	112.22
26.95	70.0	Shear	kip	441.60	113.94	201.66	1.625	53.62
30.80	80.0	Flexure	kip-ft	344.64	70.48	109.61	1.800	59.41
30.80	80.0	Shear	kip	-70.05	-6.90	-14.24	3.319	109.54
30.80	80.0	Shear	kip	424.83	89.96	168.00	1.993	65.78
34.65	90.0	Flexure	kip-ft	344.64	39.61	63.47	3.577	118.04
34.65	90.0	Shear	kip	-70.05	-9.14	-16.49	2.735	90.27
34.65	90.0	Shear	kip	424.83	54.28	109.65	3.379	111.52
37.02	96.2	Flexure	kip-ft	293.46	16.30	26.43	7.947	262.24
37.02	96.2	Shear	kip	-89.01	-10.52	-17.87	3.265	107.75
37.02	96.2	Shear	kip	436.13	11.39	46.35	9.163	302.38

37.38	97.1	Shear	kip	-94.28	-10.73	-18.08	3.440	113.51
37.38	97.1	Shear	kip	446.33	5.96	37.19	11.840	390.72
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	94.16	10.73	18.94	3.279	114.75
1.12	2.9	Shear	kip	445.93	4.95	39.82	11.074	387.60
1.48	3.8	Flexure	kip-ft	293.46	16.30	27.70	7.584	265.45
1.48	3.8	Shear	kip	89.01	10.52	18.72	3.116	109.07
1.48	3.8	Shear	kip	436.13	10.28	49.20	8.656	302.96
3.85	10.0	Flexure	kip-ft	344.64	39.61	66.43	3.417	119.61
3.85	10.0	Shear	kip	70.05	9.14	17.26	2.613	91.47
3.85	10.0	Shear	kip	424.83	54.28	115.78	3.200	112.02
7.70	20.0	Flexure	kip-ft	344.64	70.48	114.49	1.724	60.33
7.70	20.0	Shear	kip	70.05	6.90	14.87	3.178	111.23
7.70	20.0	Shear	kip	424.83	89.96	176.43	1.898	66.43
11.55	30.0	Flexure	kip-ft	344.64	92.34	147.43	1.196	41.86
11.55	30.0	Shear	kip	49.78	4.49	12.48	2.722	95.28
11.55	30.0	Shear	kip	424.83	116.12	216.90	1.423	49.81
15.40	40.0	Flexure	kip-ft	344.64	105.30	168.68	0.971	34.00
15.40	40.0	Shear	kip	38.99	2.24	10.10	2.757	96.49
15.40	40.0	Shear	kip	424.83	132.50	243.11	1.202	42.09
19.25	50.0	Flexure	kip-ft	344.64	109.62	171.55	0.931	32.58
19.25	50.0	Shear	kip	-38.35	0.00	-7.71	3.827	133.94
19.25	50.0	Shear	kip	424.83	138.59	246.79	1.160	40.60
23.10	60.0	Flexure	kip-ft	344.64	105.30	168.68	0.971	34.00
23.10	60.0	Shear	kip	-38.99	-2.24	-10.10	2.757	96.49
23.10	60.0	Shear	kip	424.83	132.50	243.11	1.202	42.09
26.95	70.0	Flexure	kip-ft	362.07	92.34	147.43	1.287	45.04
26.95	70.0	Shear	kip	-53.70	-4.49	-12.48	2.964	103.73
26.95	70.0	Shear	kip	441.60	114.73	215.57	1.516	53.07

30.80	80.0	Flexure	kip-ft	344.64	70.48	114.49	1.724	60.33
30.80	80.0	Shear	kip	-70.05	-6.90	-14.87	3.178	111.23
30.80	80.0	Shear	kip	424.83	89.96	176.43	1.898	66.43
34.65	90.0	Flexure	kip-ft	344.64	39.61	66.43	3.417	119.61
34.65	90.0	Shear	kip	-70.05	-9.14	-17.26	2.613	91.47
34.65	90.0	Shear	kip	424.83	54.28	115.78	3.200	112.02
37.02	96.2	Flexure	kip-ft	293.46	16.30	27.70	7.584	265.45
37.02	96.2	Shear	kip	-89.01	-10.52	-18.72	3.116	109.07
37.02	96.2	Shear	kip	436.13	10.28	49.20	8.656	302.96
37.38	97.1	Shear	kip	-94.28	-10.73	-18.95	3.283	114.89
37.38	97.1	Shear	kip	446.33	4.83	39.62	11.144	390.04
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3465.00

Note:

*Adj-LL is only applicable for Permit load rating.

٥	4
(C
U	Ó
Z	Ζ
()
ĩ)
	-

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DEAD LOAD MOMENT & SHEAR REACTIONS (SPAN 2)

Project #: D210107FL00.00	YRA	Nov-21	MP	Nov-21	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	I

						Total DC		
Sel	Sel	Sel	Self Weight			Selfweight of Slab	Total DC (Railing	
)		<u> </u>	(Interior		DC - Curb/	Unit alone	+ Sidewalk) per	Total DC per
% of DC Slab Unit dia		dià	diagrams)	DC - Railing	Sidewalk	(per Slab Unit)	Slab Unit	Slab Unit
(KIP-FT) (H		÷	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0			0	0	0	0	0	00.0
0.1	1		0.3	0.7	2.6	12.9	3.3	16.20
0.3	3		0.7	1.8	6.3	31.5	8.1	39.60
0.5	5		1.4	3.2	11.2	56.1	14.4	70.50
0.7	2		1.6	4.2	14.7	73.4	18.9	92.30
0.8	8		1.6	4.8	16.8	83.7	21.6	105.30
0.8	8		1.6	5	17.5	87.1	22.5	109.60
0.8	8		1.6	4.8	16.8	83.7	21.6	105.30
0.7	2		1.6	4.2	14.7	73.4	18.9	92.30
0.5	5		1.4	3.2	11.2	56.1	14.4	70.50
0.3	3		0.7	1.8	6.3	31.5	8.1	39.60
0.1	1		0.3	0.7	2.6	12.9	3.3	16.20
c			c	c	C	c	C	0.00

** Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

۵	2
C)
2	2
4	
C)
()
Ø	-

I

Project #:D210107FL00.00Designed By:YRADesign Date:Nov-21Checked By:MPCheck Date:Nov-21

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DEAD LOAD MOMENT & SHEAR REACTIONS (SPAN 2)

	-		<u>۲</u>																I
			Total DC per	Slab Unit	(KIP)	11.72	10.52	9.13	68.9	4.50	2.24	00.0	-2.24	-4.50	-6.89	-9.13	-10.52	-11.72	e slab units.
		Total DC (Railing	+ Sidewalk) per	Slab Unit	(KIP)	2.34	2.16	1.86	1.4	0.94	0.46	0	-0.46	-0.94	-1.4	-1.86	-2.16	-2.34	the bottom face of th
·R (SPAN 2)	Total DC	Selfweight of Slab	Unit alone	(per Slab Unit)	(KIP)	9.38	8.36	7.27	5.49	3.56	1.78	0	-1.78	-3.56	-5.49	-7.27	-8.36	-9.38	the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units
E Br																			ollin
M AASHTOWAR			DC - Curb/	Sidewalk	(KIP)	1.82	1.68	1.45	1.09	0.73	0.36	0	-0.36	-0.73	-1.09	-1.45	-1.68	-1.82	count for the contr
DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR (SPAN 2)				DC - Railing	(KIP)	0.52	0.48	0.41	0.31	0.21	0.1	0	-0.1	-0.21	-0.31	-0.41	-0.48	-0.52	ior stirrup leg to acc
EAD LOAD SHEAR		Self Weight	(Interior	diagrams)	(KIP)	0.49	0.16	0.16	0.16	0	0	0	0	0	-0.16	-0.16	-0.16	-0.49	trands, and 1 exter
D				% of DC Slab Unitx	(KIP)	60.0	0.08	0.07	0.05	0.04	0.02	0	-0.02	-0.04	-0.05	-0.07	-0.08	-0.09	mes the removal of 7 s
			Self Weight	(Slab Unit)	(KIP)	8.8	8.12	7.04	5.28	3.52	1.76	0	-1.76	-3.52	-5.28	-7.04	-8.12	-8.8	** Existing condition assumes
					Location	0	1.48	3.85	7.7	11.55	15.4	19.25	23.1	26.95	30.8	34.65	37.02	38.5	** Existing

Project #:D210107FL00.00Designed By:YRADesign Date:Jan-22Checked By:MPCheck Date:Jan-22

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

* Minimum Required capacity to meet a minimin Inventory Rating Factor of 1.1, conservatively.

** Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

ĸ	
0	
ZS/	
Ó	
Ŭ	
6	

D210107FL00.00	YRA	Nov-21	MP	Nov-21	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

I

Notes:

 Gross Section Properties from AASHTOWare Bridge Rating Software:

PS Box Beam - Circular Void

Name:	17"x36" PSU	
Description:	17"x36" Prestressed Slab Unit (Typ.)	
Si Or Us Type:	US Customary	
Box Beam Type:	Circular Void	
Top Width:	35.0000 in	
Number Circular Voids:	2	
Three Void Box Shape Indicator:	FALSE	
Ctc Distance Voids:	16.0000 in	
Void Diameter:	10.0000 in	
Interior Void Diameter:		
Exterior Void Diameter:	ш.	
Depth:	17.0000 in	
Distance To Cg Void Bot:	9.0000 in	
Bot Width:	36.0000 in	
Shear Key Vertical Loc:	2.0000 in	
Shear Key Height:	6.0000 in	
Shear Key Depth:	1.5000 in	
Area:	438.822 in^2	5
Nominal Weight Or Mass:	457.107 Ib/ft	Ŧ
Ixx:	13330.101 in^4	4
Distance Y To Cg:	8.1667 in	
Sxx Top:	1509.078 in^3	Ś
Sxx Bot:	1632.246 in^3	Ś
Nominal Depth:	17.0000 in	
Volume Surface Ratio:	3.175 in	
Half Depth Area Pos Flex:	in^2	5
Half Depth Area Neg Flex:	in^2	5
St Venant Torsional Constant:	14593.772 in^4	4

3	Δ	<
1	C)
		2
	Ĉ	5
	Ū)
(-

Project #: D210107FL00.00	YRA	Nov-21	MP	Nov-21	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

Concrete Material

Name: Description: Si Or Us Type:	Class P (5000) Class 5000 cement concrete US Customary
28 Day Compressive Strength:	5.000 ksi
Initial Compressive Strength:	4.000 ksi
Density For DL:	0.150 kcf
Density For Modulus Of Elasticity:	0.145 kcf
Std Modulus Of Elasticity:	4074.28 ksi
Std Initial Modulus Of Elasticity:	3644.15 ksi
Coefficient Of Thermal Expansion:	0.0000060000 1/F
Poissons Ratio:	0.200
Composition Type:	Normal
Modulus Of Rupture:	0.537 ksi
Shear Factor:	1.000

2	۲
(C
2	0
4	4
(C
(ر
	6

D210107FL00.00	YRA	Nov-21	MP	Nov-21	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	1

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

Reinforcing Steel Material

Name:	Grade 40	
Description:	40 ksi reinforcing steel	teel
Si Or Us Type:	US Customary	
Yield Strength:	40.000	ksi
Modulus Of Elasticity:	29000.00	ksi
Ultimate Strength:	70.000	ksi
Reinforcing Bar Type:	Plain	

Prestress Strand Material

Name:	7/16" (7W-250) SR
Description:	Stress relieved 7/16"/Seven Wire/fpu = 250
Si Or Us Type:	US Customary
Strand Diameter:	0.4375 in
Strand Area:	0.108 in^2
Strand Type:	Stress Relieved
Ultimate Tensile Strength:	250.000 ksi
Yield Strength:	212.500 ksi
Modulus Of Elasticity:	28500.00 ksi
Transfer Length Std:	21.8750 in
Transfer Length LRFD:	26.2500 in
Unit Load Per Length:	0.367 Ib/ft
Epoxy Coated Indicator:	FALSE

2.0 SONOVOID SLAB UNIT STRENGTHENING - CFRP WRAPS EVALUATION

OBJECTIVE

Design of externally bonded Carbon FRP reinforcement in order to increase the Flexural Capacity of Sonovoid Slab Units 2-8 and 2-9, Bridge No.874294. Load rate CFRP strengthened slab units using LRFR Strength II for controlling FL-Legal Truck (SU4).

CODES AND SPECIFICATIONS

- "FDOT Bridge Load Rating Manual, "Florida Department of Transportation (FDOT) ", January 2021, FDOT BLRM, 2021 edition used for project consistency
- "FDOT Structures Design Guidelines (SDG). Structures Manual Vol.1", January 2021, FDOT
- "AASHTO LRFD Bridge Design Specifications, "American Association of State Highway and Transportation Officials (AASHTO), 9th Edition 2020
- "Fiber Reinforced Polymer Guidelines (FRPG). Structures Design Manual Vol.4", January 2021, FDOT
- "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures ", ACI 440.2R-08, ACI, 2008

Assumptions/Notes:

1. Assume all prestressing strands are bonded for flexural analysis

2. Calculations are an addendum to the AASHTOWare BrR Analysis

3. CFRP Strengthening will use the U-Wrap Method described in (ACI 440.2R-08, Chapter 11) and Flexural Strengthing analysis techniques in (ACI 440.2R-08, Chapter 10)

Procedure:

- 1. Input Original Beam Geometry, Material Properties, Strength and Load Effects
- 2. AASHTOWARE BrR Refined Analysis Results Input
 - a. Moment
- 3. FRP Reinforcement Properties
- 4. Design of Externally Bonded FRP Reinforcement
 - a. Development Length of FRP
 - b. Flexural Capacity
 - c. Service Check
 - d. FRP Fatigue Check
- 5. Calculate Operating Ratings
- 6. Summary

Legend:

INPUT <-----Data Input

<-----Reference Checks and Design Results Output OUTPUT

INPUT DATA

Resistance factor for FRP (ACI 440.2R-08, Table 11.1)	$\psi_{f} \coloneqq 0.85$
System Factor (FDOT BLRM Table 6A.4.2.4-1)	$\phi_{S} := 1.0$
Condition Factor for Shear (AASHTO MBE 6A.4.2.3)	$\phi_{\mathbf{C}} \coloneqq 0.90$
Load Factors per Table 6A.4.2.2-1 FDOT Load Rating Manual, January 2021	
Load factor for Dead Load	$\gamma_{\rm DC} \coloneqq 1.25$
Load factor for Live Load - Inventory (1.75) and FL-120 (1.35)	$\gamma_{\mathrm{INV}} \coloneqq 1.75$
Load factor for Live Load - Operating	$\gamma_{\text{OPT}} := 1.35$ $\gamma_{\text{FL120}} := 1.35$
Load factor for Live Load - FL-120	$\gamma_{\mathrm{FL120}} \coloneqq 1.35$

Load factor for Live Load - Legal - Operating

Material Properties

Concrete Information:

Correction factor for source of aggregate. (AASHTO 5.4.2.4-1. & FDOT SDG. 1.4.1-A)	$K_1 := 1.0$
Nominal compressive strength of concrete Slab Unit (non-composite).	$f_{c_bm} := 5.0 \cdot ksi$

Slab Unit concrete strength at final (FDOT BLRM Table 6A.5.2.1-1)

Deck Slab concrete strength at final (FDOT BLRM Table 6A.5.2.1-1)

Weight of concrete and humidity (AASHTO Table 3.5.1-1 & FDOT SDG 1.4.1-A & 4.6.6)

Modulus of elasticity for normalweight concrete Deck Slab. (AASHTO 5.4.2.4-2).

$$\mathbf{E_{c}} \coloneqq 120000 \cdot \mathbf{K_{1}} \cdot \left(\mathbf{w_{c}} \cdot \frac{\mathbf{ft}^{3}}{\mathbf{kip}}\right)^{2.0} \cdot \left(\mathbf{fcslab} \cdot \frac{1}{\mathbf{ksi}}\right)^{0.33} \cdot \mathbf{ksi} = 0 \cdot \mathbf{ksi}$$

fc := 5.0ksi

fcslab := 0ksi

 $w_c := 0.145 \frac{kip}{m}$

 ft^3

 $\gamma_{\text{FLSU OPT}} \coloneqq 1.35$

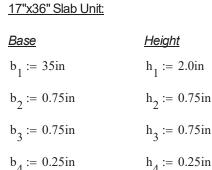
Modulus of elasticity for normalweight concrete Slab Unit. (AASHTO 5.4.2.4-2).

$$\mathbf{E_{c_bm}} \coloneqq 120000 \cdot \mathbf{K_1} \cdot \left(\mathbf{w_c} \cdot \frac{\mathbf{ft}^3}{\mathbf{kip}} \right)^{2.0} \cdot \left(\mathbf{f_{c_bm}} \cdot \frac{1}{\mathbf{ksi}} \right)^{0.33} \cdot \mathbf{ksi} = 4.291 \times 10^3 \cdot \mathbf{ksi}$$

a a

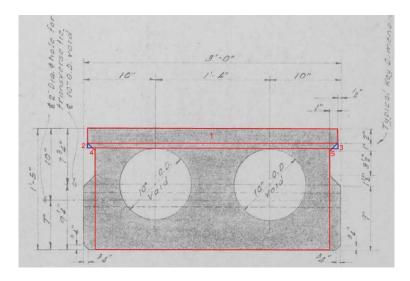
Humidity := 75

CONSOR ENGINEERS, LLC.


CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Modular Ratio	$n_{trans} := \frac{E_c}{E_{c_bm}} = 0$	
Concrete cracking stress (AASHTO 5.4.2.6)	$f_r := 0.24 \cdot \sqrt{\frac{f_c_bm}{ksi}} \cdot ksi = 0.537 \cdot ksi$	
<i>Geometry Information:</i> Span length (CL bearing to CL bearing, Span 2)	$L_{Span} := 38.50 ft$	(See Asbui l : Plans, PG. 8 of 13 of pdf)
Slab Section Properties - [Not Applicable to this Design]		
Deck thickness (Assumed for Asphalt W.S.)	t _{slab} := 0in	
Effective Deck Width	$b_s := 0.0 ft$	
Transformed Width	$b_{\text{transf}} := n_{\text{trans}} \cdot b_{\text{s}} = 0 \cdot \text{in}$	
Height of the section (Slab Unit + Deck Slab)	$h_c := 17in + t_{slab} = 17 \cdot in$	
Tranformed Area	$A_{ts} := t_{slab} \cdot b_{transf} = 0 \cdot in^2$	
Slab Unit Properties	Non-composite	(Tranformed) Composite
Slab Unit height	$h_{nc} := 17in$	$h_c = 17 \cdot in$
Size of Void	$d_{void} := 10in$	
Bottom flange width	$b_{f_bot} := 36in$	
Top flange width	$b_{f_{top}} := 35in$	
Web width (assume effective web width)	$\mathbf{b}_{\mathbf{W}} \coloneqq \mathbf{b}_{\mathbf{f}_{top}} - 2 \cdot 1 \text{ in } - 2 \cdot \left(\frac{\pi \cdot \mathbf{d}_{\text{void}}}{4}\right)$	b _w = 17.292 ⋅ in
Cross sectional area (From AASHTOWARE BrR)	$A_{nc} := 438.822 in^2$	$A := A_{nc} + b_{transf} \cdot t_{slab}$ $A = 438.822 \cdot in^{2}$
Moment of inertia	$I_{nc} := 13330.101 \text{ in}^4$	$I := 13330.101 \text{ in}^4$
C.G (from bottom)	$y_{b_nc} := 8.1667 in$	y _b := 8.1667in
Top fiber to C.G.	$y_{t_nc} \coloneqq h_{nc} - y_{b_nc} = 8.833 \cdot in$	$y_{t} := h_{c} - y_{b} = 8.833 \cdot in$
Section modulus at top fiber	$S_{t_nc} \coloneqq \frac{I_{nc}}{y_{t_nc}} = 1.509 \times 10^3 \cdot in^3$	$S_t := \frac{I}{y_t} = 1.509 \times 10^3 \cdot in^3$
Section modulus at top of slab unit once section becomes composite	$S_{top_girder_c} := \frac{I}{y_t - t_{slab}} = 1.509 >$	$< 10^3 \cdot in^3$

Section modulus at bottom fiber	$S_{b_nc} := \frac{I_{nc}}{y_{b_nc}} = 1.632 \times 10^3 \cdot in^3$	$S_b := \frac{I}{y_b} = 1.632 \times 10^3 \cdot in^3$
Radius of gyration	$r := \sqrt{\frac{I_{nc}}{A_{nc}}} = 5.512 \cdot in$	


▼ Slab Unit/Girder Dimensions (For Nominal Bending Strength)

Slab Unit Dimensions (Used for Flexural Design):

b₅ := 0.25in

Slab Unit/Girder Dimensions (For Nominal Bending Strength)

Steel Information:

Strand Info: (7/16" seven-wire strand, Grade 250)

 $h_5 := 0.25 in$

Strand diameter. (7/16")

Strand area.

Specified tensile strength of prestressing steel (ksi). (MBE Table 6A.5.2.3-1)

Yield strength of prestressing steel (ksi).

Modulus of elasticity for prestressing strands (ksi). (MBE Table 6A.5.2.3-1)

Total number of strands at critical section

Area of existing prestressing steel.

Total Losses to prestresing steel (Assumed).

 $d_s := 0.4375 in$ $A_s := 0.108 in^2$ f_{pu} := 250ksi $f_{pv} := 0.9 \cdot f_{pu} = 225 \cdot ksi$ E_p := 28500ksi $N_{Total str} := 15$ $A_{ps} := N_{Total str} \cdot A_s = 1.62 \cdot in^2$ $\Delta f_{pT} := 0.75 \cdot f_{pu} \cdot 13.43\% = 25.181 \cdot ksi$

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Effective stress in prestressing steel after losses.

Effective force in prestressing steel after losses.

Effective prestress strain.

Strand Layout - Interior Units 2-8 & 2-9:

(Note: Assumed strand layout for Design, accounting for removal of severed/deteriorated strands per damages reported in the most current Inspection Reports, plus 50% of the adjacent strands)

 $y_{ps} :=$

Strand Locations (Measured inches From the Bottom)

 $f_{pe} := 0.75 f_{pu} - \Delta f_{pT} = 162.319 \cdot ksi$

 $P_{pe} := A_{ps} \cdot f_{pe} = 262.956 \cdot kip$

 $\varepsilon_{\text{pe}} \coloneqq \frac{f_{\text{pe}}}{E_{\text{p}}} = 0.0057$

"Location"	"From Bottom"	"No. Strands""
"Top Row"	14.5	4
"3rd Row"	6.5	0
"2nd Row"	4.5	5
"Bottom Row"	2.5	10

C.G. of PS to bottom fiber of slab unit at mid-span

Prestressing strand eccentricity.

Distance from the extreme compression fiber to the centoid of prestressing tendons.

Area of transverse reinforcement #4 stirrups (Assume 3-legs of Transverse reinforcement)

Yield strength of stirrups (FDOT BLRM Table 6A.5.2.2-1)

$$\mathbf{e_{nc}} \coloneqq \mathbf{y_{b_nc}} - \mathbf{y_{ps}} = 5.00 \cdot \mathbf{in}$$

 $\mathbf{e} := \mathbf{y}_{\mathbf{b}} - \mathbf{y}_{\mathbf{ps}} = 5.00 \cdot \mathrm{in}$

 $d_p := h_c - y_{ps} = 13.83 \cdot in$

$$d_{p_nc} := h_{nc} - y_{ps} = 13.83 \cdot in$$

 $\frac{A_{s} \cdot \left(d_{strand_{3,2}} \cdot d_{strand_{3,1}} \text{ in } + d_{strand_{4,2}} \cdot d_{strand_{4,1}} \text{ in}\right)}{\left(d_{strand_{3,2}} + d_{strand_{4,2}}\right) \cdot A_{s}} = 3.17 \cdot \text{in}$

$$= 3(0.2) \text{ in}^2 = 0.6 \cdot \text{in}^2$$

 $f_v := 40 ksi$

AASHTOWARE BrR-Inputs (Moment)

oment due to additional precast components oment due dead load of deck slab ot Applicable] oment due to additional structural components otal DC Railing & Sidewalk/Curb moment from ASHTOWare BrR) ead load moment from structural components and on-structural attachments.
ot Applicable] oment due to additional structural components otal DC Railing & Sidewalk/Curb moment from ASHTOWare BrR) ead load moment from structural components and in-structural attachments.
otal DC Railing & Sidewalk/Curb moment from ASHTOWare BrR) ead load moment from structural components and in-structural attachments.
on-structural attachments.
, and the second s
otApplicable]
re load distribution factor for moment from ASHTOWare BrR Refined Analysis ote: Distribution Factor assuming post-tensioning is paired/restored)
re load moment from controlling HL-93 truck. otApplicable]
ve load moment from controlling FL-Legal truck: <u>SU4</u> .

 $M_{Ser_FL.Legal} \coloneqq 1.0 \cdot M_{DC} + 1.0 \cdot M_{DW} + 1.0 \cdot M_{LL_FL.Legal} = (281.1) \cdot kip \cdot ft$ Service moment (Service I). AASHTO LRFD Table 3.4.1-1.

 $M_{Str_FL.Legal} \coloneqq 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL_FL.Legal} = (368.6) \cdot kip \cdot f \texttt{Strength moment (Strength II)}.$ AASHTO LRFD Table 3.4.1-1.

 ϕM_n no wrap := (344.64kip·ft)

Capacity of member before FRP wrap is applied

AASHTOWARE BrR-Inputs (Moment)

3. CFRP Reinforcement Properties	
The amount of the CFRP reinforcement and its material properties are given a	as per net-fiber.
Thickness of the CFRP strip (V-Wrap TM - C200HM)	$t_f := 0.04 in$
Ultimate tensile strength of the CFRP	f _{fu_pre} := 155ksi
Rupture strain	$\varepsilon_{\mathrm{fu}}$ re := 0.011
Modulus of elasticity of CFRP	$E_{f} := 14 \cdot 10^{6} psi = 14000 \cdot ksi$
Number of plies of CFRP sheets (Per preliminary recommendations)	n := 2
Width of the CFRP sheet (36" per preliminary recommendation from Structural Technologies)	$w_f := 36in$
CFRP orientation	$\alpha_{f} := 90 \text{deg}$
Spacing of CFRP [Not Applicable]	s _{FRP} := 0in
Area of FRP for shear . (ACI 440.2R Eq. 11-4) [Not Applicable]	$A_{fv} := 0 in^2$
Area of FRP for flexure (U-wrap)	$A_{ff} := n \cdot t_f \cdot b_{f_{bot}} = 2.88 \cdot in^2$
Environmental reduction factor for CFRP. (ACI 440.2R Table 9.1)	C _E := 0.85
Design ultimate tensile strength of CFRP. (ACI 440.2R Eq. 9-3)	$f_{fu} := C_E \cdot f_{fu_pre} = 131.75 \cdot ksi$
Ultimate rupture strain of CFRP reinforcement. (ACI 440.2R Eq. 9-4)	$\varepsilon_{\text{fu}} := C_{\text{E}} \cdot \varepsilon_{\text{fu}} \text{pre} = 0.0093 \cdot \frac{\text{in}}{\text{in}}$

4. DESIGN OF EXTERNALLY BONDED FRP REINFORCEMENT

(ACI 440.2R-08, Chapter 11)

The CFRP sheets will be applied along the bottom face of the deteriorated slab units, along the full length and across the entire width of the slab units.

FRP Strength Criteria (Moment)

CFRP Development Length

FRP Reinforcement - Development Length

Determine length of CFRP needed to develop full bond capacity. Overlap length of CFRP sheets must be provided by manufactor ACI 440.2R-08 13.2

Page 8 of 18

$$l_{df} := 0.057 \cdot \sqrt{\frac{n \cdot E_{f} \cdot t_{f}}{\sqrt{\frac{f'c_bm}{psi}} \cdot psi \cdot in}} \cdot in = 7.174 \cdot in$$

Development length needed to develop full bond strength of CFRP ACI 440.2R-08 (13-2)

CFRP Development Length

Ultimate Flexural Strength Pt.1 FRP Reinforcement - Flexural Capacity

Design material properties:	$f_{fu} = 131.75 \cdot ksi$ $\varepsilon_{fu} = 9.35 \times 10^{-3}$
Area of the CFRP reinforcement	$A_{fv} = 5.76 \cdot in^2$
Effective depth of CFRP (ACI 440.2R-08 Fig 11.2)	$d_{vFRP} := \left(d_p - t_{slab} - 2in\right) = 11.833 \cdot in$
Active bond length (ACI 440.2R-08 11.4.1.2)	$L_e := \frac{2500 \text{in}}{\left(n \cdot \frac{t_f}{\text{in}} \cdot \frac{E_f}{\text{psi}}\right)^{0.58}} = 0.775 \cdot \text{in}$
Bond reduction coefficients (ACI 440.2R-08 11.4.1	.2)
$k_1 := \left(\frac{fc}{psi \cdot 4000}\right)^{\frac{2}{3}} = 1.16 \qquad \qquad k_2 := \frac{d_{vFRP}}{d_{vFR}}$	$\frac{-L_e}{P} = 0.934$ for U-Wrap
$\kappa_{v} := \frac{k_{1} \cdot k_{2} \cdot \frac{L_{e}}{in}}{468 \cdot \varepsilon_{fu}} = 0.192$	
$\kappa_{\rm W} := \min(0.75, \kappa_{\rm V}) = 0.192$	
Effective strain of the CFRP reinforcement (ACI 440.2R-08 11.4.1.2)	$\varepsilon_{\text{fe}} := \min(\kappa_v \cdot \varepsilon_{\text{fu}}, 0.004) = 0.0018$

 $f_{fe} := \varepsilon_{fe} \cdot E_f = 25.145 \cdot ksi$

Effective strength of the CFRP reinforcement (ACI 440.2R Eq. 11-5)

Determine the existing state of strain

Determine strain at soffit during installation of CFRP. Tension is positive and compression is negative.

$$\varepsilon_{bi} := \frac{-P_{pe}}{E_{c \ bm} \cdot A_{nc}} + \frac{-P_{pe} \cdot e_{nc} + M_{g} + M_{pc}}{E_{c \ bm} \cdot S_{b \ nc}} + \frac{M_{c}}{E_{c \ bm} \cdot S_{b}} = \left(-1.396 \times 10^{-4}\right)$$

Determine the design strain of the FRP system

Determine strain at which debonding of CFRP may occur

$$\varepsilon_{\rm fd} := \min\left(0.083 \cdot \sqrt{\frac{f_{\rm c_bm} \cdot {\rm psi} \cdot {\rm in}}{n \cdot {\rm E}_{\rm f} \cdot {\rm t}_{\rm f} \cdot {\rm psi}}}, 0.9 \cdot \varepsilon_{\rm fu}\right) = 5.546 \times 10^{-3}$$

ACI 440.2R-08 (10-2)

Determine flexure capacity of section

The determination of flexural capacity for prestressed slab units repaired with CFRP wraps makes use of strain compatability which is an iterative process. Each iteration involves the assumption of a neutral axis depth. Once an assumption is made, the strains in the compressive concrete face, CFRP wrap, and strands are determined based on a linear strain relationship. The calculated strains are then converted into compressive and tensile forces that are used to check if equilibrium within the cross section is obtained, iterations continue until equilibrium is reached. It is assumed all strands are bonded at the section of interest.

Guess neutral axis depth (reasonable guess is 0.1*depth of section):

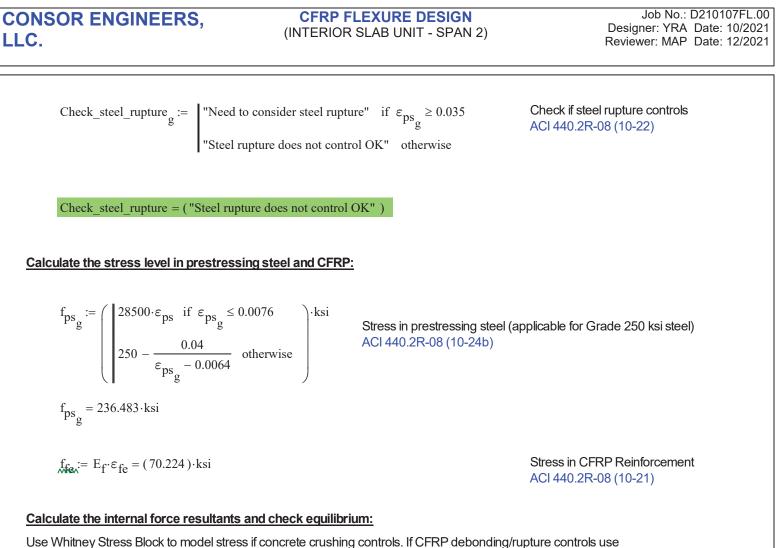
$$c := (6.475in)$$

Assumed depth from top of section to neutral axis

Determine the effective level of strain in the CFRP reinforcement:

$$d_f := h_c = 17 \cdot in$$

 $\varepsilon_{\text{for } i \in g}$


$$\varepsilon_{\mathrm{fe}_{i}} \leftarrow \min \left[0.003 \cdot \left(\frac{\mathrm{d}_{\mathrm{f}} - \mathrm{c}_{i}}{\mathrm{c}_{i}} \right) - \varepsilon_{\mathrm{bi}_{i}}, \varepsilon_{\mathrm{fd}} \right]$$

$$\varepsilon_{\rm fe} = \left(5.016 \times 10^{-3}\right)$$

Depth from top of section to CFRP reinforcement

Strain in CFRP reinforcement ACI 440.2R-08 (10-16)

Controlling Failure := for i e g
Controlling Failure := "CFRP debonding/rupture controls" if
$$|e_{16}| = e_{16}$$

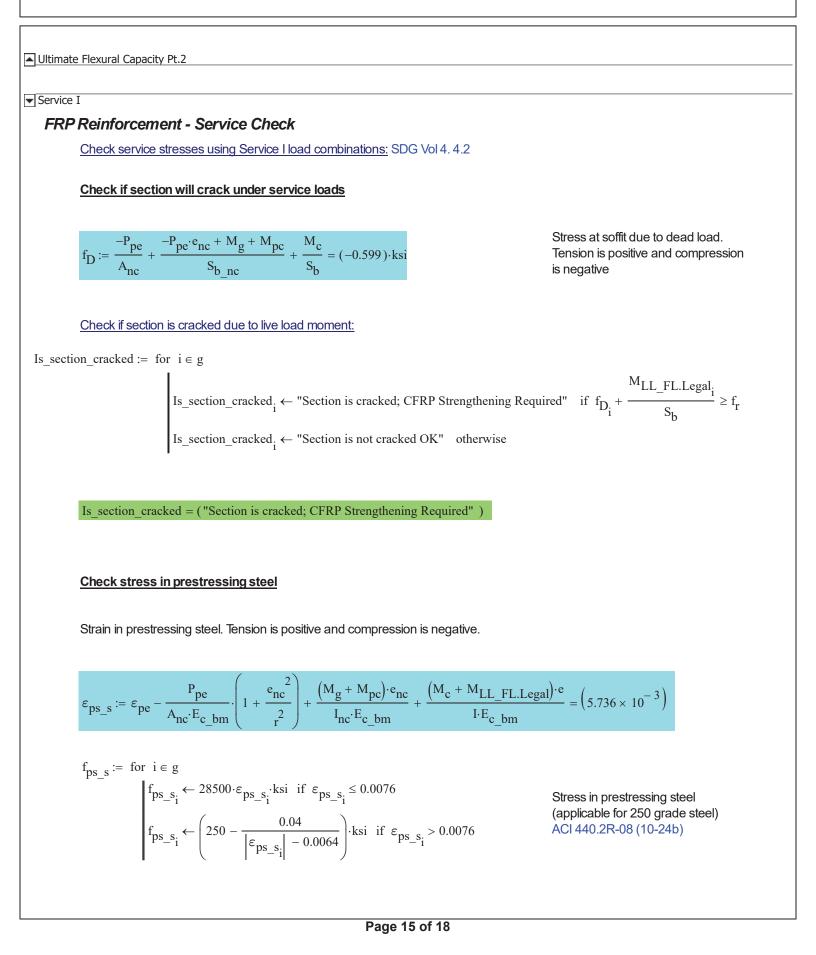
Controlling Failure := "Concrete crushing controls" otherwise
Controlling Failure := "Concrete crushing controls" otherwise
Controlling Failure := "Concrete crushing controls" otherwise
 $e_{c} := for i \in g$
 $|e_{c_1} \leftarrow (e_{16_1} + e_{01_1}) - \frac{e_{1}}{d_1 - e_{1}}$ if $e_{16_1} = e_{16}$ CFRP debonding/rupture
 $e_{c_1} \leftarrow 0.003$ otherwise Concrete crushing
 $e_{c_1} \leftarrow (0.003$ otherwise Concrete crushing
 $e_{c_1} = (3 \times 10^{-3})$ Strain at extreme compression fiber
CERP debonding/rupture
 $e_{patet} := for i \in g$
 $|e_{patet_1} \leftarrow (e_{16_1} + e_{01_1}) (\frac{d_p - e_{1}}{d_1 - e_{1}})$ if $e_{16_2} = e_{16}$ CFRP debonding/rupture
 $e_{patet_1} \leftarrow (e_{16_1} + e_{01_1}) (\frac{d_p - e_{1}}{d_1 - e_{1}})$ if $e_{16_2} = e_{16}$ CFRP debonding/rupture
 $e_{patet_1} \leftarrow (e_{16_1} + e_{01_1}) (\frac{d_p - e_{1}}{d_1 - e_{1}})$ if $e_{16_2} = e_{16}$ CFRP debonding/rupture
 $e_{patet_1} \leftarrow (e_{16_1} + e_{16_1}) (\frac{d_p - e_{1}}{d_1 - e_{1}})$ if $e_{16_2} = e_{16}$ CFRP debonding/rupture
 $e_{10} = (3.400 \times 10^{-3})$
 $e_{pne1_1} \leftarrow (0.003 - \frac{d_p - e_{2}}{e_{3}}$ otherwise
 $e_{10} = (5.359 \times 10^{-3})$ Strain in prestressing steel
 $ACI 440.2R-08 (10-23)$

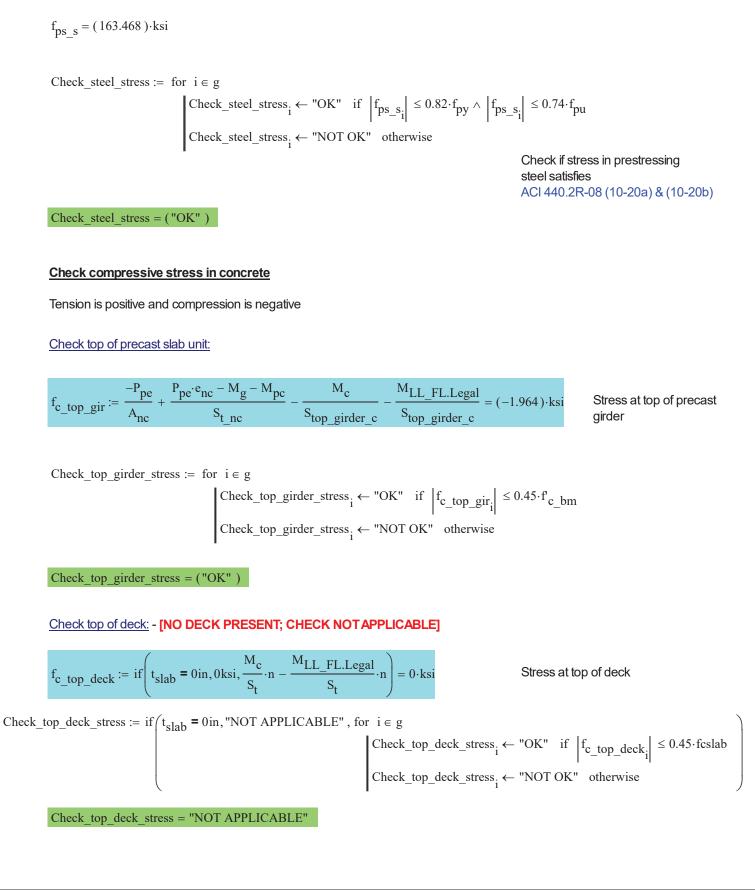
approximate stress block factors based on parabolic stress-strain relationship for concrete (see ACI 440.2R-08 15.5 Step 9)

$$\begin{split} \beta_{1_{g}} &\coloneqq \left| \begin{array}{l} \text{if } \varepsilon_{fe_{g}} = \varepsilon_{fd} \\ \\ \varepsilon_{c} \leftarrow \frac{1.7 \cdot f_{c_bm}}{E_{c_bm}} \\ \beta_{1} \leftarrow \frac{4 \cdot \varepsilon_{c} - \varepsilon_{c_{g}}}{6 \cdot \varepsilon_{c} - 2 \cdot \varepsilon_{c_{g}}} \\ \\ \beta_{1} \leftarrow \frac{4 \cdot \varepsilon_{c} - \varepsilon_{c_{g}}}{6 \cdot \varepsilon_{c} - 2 \cdot \varepsilon_{c_{g}}} \\ \\ \text{if } \varepsilon_{c_{g}} = 0.003 \\ \\ \\ \beta_{1} \leftarrow \max \left(0.85 - \frac{f_{c_bm} - 4000 \text{psi}}{1000 \cdot \text{psi}} \cdot 0.05, 0.65 \right) \text{ if } f_{c_bm} > 4000 \text{psi} \\ \\ \beta_{1} \leftarrow 0.85 \text{ if } f_{c_bm} \le 4000 \text{psi} \\ \\ \beta_{1_{g}} = 0.8 \\ \end{split} \right.$$

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

$$\begin{split} \text{Ten}_\text{Com} \coloneqq & \text{for } i \in \mathfrak{g} \\ & \text{If } \beta_{1_i} c_i \leq t_{\text{slab}} & \text{Stress block in deck} \\ & \text{Com}_i \leftarrow \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot b_{\text{transf}} \cdot \beta_{1_i} \cdot c_i \\ & \text{Ten}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} & \text{Stress block in top of flange} \\ & \text{if } \beta_{1_i} c_i \geq t_{\text{slab}} \wedge \beta_{1_i} \cdot c_i \leq h_1 + t_{\text{slab}} & \text{Stress block in top of flange} \\ & \text{Com}_i \leftarrow \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot b_{\text{transf}} \cdot t_{\text{slab}} + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot b_1 \left(\beta_{1_i} \cdot c_i - t_{\text{slab}}\right) \\ & \text{Ten}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} \\ & \text{if } \beta_{1_i} \cdot c_i > h_1 + t_{\text{slab}} \wedge \beta_{1_i} \cdot c_i \leq h_1 + h_2 + t_{\text{slab}} & \text{Stress block in first tapered section of flange} \\ & \text{Com}_i \leftarrow \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot b_{\text{transf}} \cdot t_{\text{slab}} + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot f_{\text{transf}} \cdot \left(\beta_{1_i} \cdot c_i - t_{\text{slab}}\right) \\ & \text{Ten}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} \\ & \text{if } \beta_{1_i} \cdot c_i > h_1 + h_2 + t_{\text{slab}} \wedge \beta_{1_i} \cdot c_i \leq h_1 + h_2 + t_{\text{slab}} & \text{Stress block in second tapered section of flange} \\ & \text{Icm}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} \\ & \text{if } \beta_{1_i} \cdot c_i > h_1 + h_2 + t_{\text{slab}} \wedge \beta_{1_i} \cdot c_i \leq h_1 + h_2 + h_4 + t_{\text{slab}} \\ & \text{Icm}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} \\ & \text{Stress block in second tapered section of flange} \\ & \text{if } \beta_{1_i} \cdot c_i > h_1 + h_2 + t_{\text{slab}} + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot (h_1 + h_2) \cdot f_{W} \\ & \text{transf} + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot (\beta_{1_i} \cdot c_i - t_{\text{slab}} - h_1 - h_2) \cdot (b_w + b_4) \\ & \text{Icn}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{fe_i} \\ & \text{Stress block in web} \\ & \text{if } \beta_{1_i} \cdot c_i > h_1 + h_2 + h_4 + t_{\text{slab}} \\ & \text{Icm}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{e_\text{bm}} \cdot (h_1 + h_2) \cdot f_{W} \\ & \text{transf} + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot (h_4 \cdot b_w + h_4 \cdot b_4) \cdots \\ & + \alpha_{1_i} \cdot f_{e_\text{bm}} \cdot f_{e_{1_i}} \cdot f_{e_\text{slab}} - (h_1 + h_2 + h_4) \end{bmatrix} \cdot b_W \\ \\ & \text{Ten}_i \leftarrow A_{ps} \cdot f_{ps_i} + A_{ff'} \cdot f_{e_i} \\ & \text{trum augment}(\text{Ten}, \text{Com}) \end{aligned}$$


Strain Compatability Calcs


CONSOR ENGINEERS, LLC.

➡ Ultimate Flexural Capacity Pt.2 Ten Com = (585.349 585.521) · kip Check if section is in equilibrium Tension Compression Equilibrium := $\int for i \in g$ $\begin{bmatrix} \text{Equilibrium}_{i} \leftarrow \text{"Equilibrium achieved"} & \text{if } \left| \frac{\text{Ten}_{\text{C}}\text{Com}_{i,0} - \text{Ten}_{\text{C}}\text{Com}_{i,1}}{\text{Ten}_{\text{C}}\text{Com}_{i,0}} \right| \le 1\%$ $\begin{bmatrix} \text{Equilibrium}_{i} \leftarrow \text{"Equilibrium not achieved, adjust c value"} & \text{if } \left| \frac{\text{Ten}_{\text{C}}\text{Com}_{i,0} - \text{Ten}_{\text{C}}\text{Com}_{i,1}}{\text{Ten}_{\text{C}}\text{Com}_{i,0}} \right| > 1\%$ return Equilibrium Equilibrium = ("Equilibrium achieved") Nominal flexural strength: $M_{np} := \left[A_{ps} \cdot f_{ps} \cdot \left(d_{p} - \frac{\beta_{1} \cdot c}{2} \right) \right] = (358.946) \cdot kip \cdot ft$ Prestressing steel contribution to flexural strength Percent difference of calculated nominal strength of section without CFRP vs Conspan flexural capacity. Use nominal section strength for check since AASHTO uses $\phi = 1.0$ and ACI use $\phi = 0.9$ $\left|\frac{M_{np_{g}} - \phi M_{n_{no}} wrap_{g}}{\phi M_{n_{no}} wrap_{g}}\right| = 4.151 \cdot \%$ $M_{nf} := \left[A_{ff} \cdot f_{fe} \cdot \left(d_f - \frac{\beta_1 \cdot c}{2} \right) \right] = (242.864) \cdot kip \cdot ft$ CFRP contribution to flexural strength **Design flexural strength:**
$$\begin{split} \varphi_{g} &\coloneqq \quad \left| \begin{array}{l} \varphi \leftarrow 0.9 \quad \text{if} \ \varepsilon_{ps_{g}} \geq 0.013 \\ \varphi \leftarrow 0.65 + \frac{0.25 \cdot \left(\varepsilon_{ps_{g}} - 0.010\right)}{0.013 - 0.010} \quad \text{if} \ \varepsilon_{ps_{g}} > 0.010 \wedge \varepsilon_{ps_{g}} < 0.013 \\ \varphi \leftarrow 0.65 \quad \text{if} \ \varepsilon_{ps_{g}} \leq 0.01 \end{split} \right. \end{split}$$
Strength reduction factor ACI 440.2R-08 (10-19) $\phi = (0.65)$

 $\phi \mathbf{M}_{n} := \overrightarrow{\left[\phi \cdot \left(\mathbf{M}_{np} + \psi_{f} \cdot \mathbf{M}_{nf}\right)\right]} = (367.497) \cdot kip \cdot ft$

Design strength of composite section with CFRP wrap ACI 440.2R-08 (10-26)

Check stress in CFRP

Tension is positive and compression is negative

$$f_{f_s} := \frac{E_f}{E_{c_bm}} \cdot \left(f_D + \frac{M_{LL}FL.Legal}{S_b} \right) - \varepsilon_{bi} \cdot E_f = (4.115) \cdot ksi$$

Check_FRP_stress := for $i \in g$

 $\begin{array}{ll} \text{Check_FRP_stress}_{i} \leftarrow \text{"OK"} & \text{if } \left| f_{f_s_{i}} \right| \leq 0.55 \cdot f_{fu} \\ \text{Check_FRP_stress}_{i} \leftarrow \text{"Not OK"} & \text{otherwise} \end{array}$

Stress in CFRP

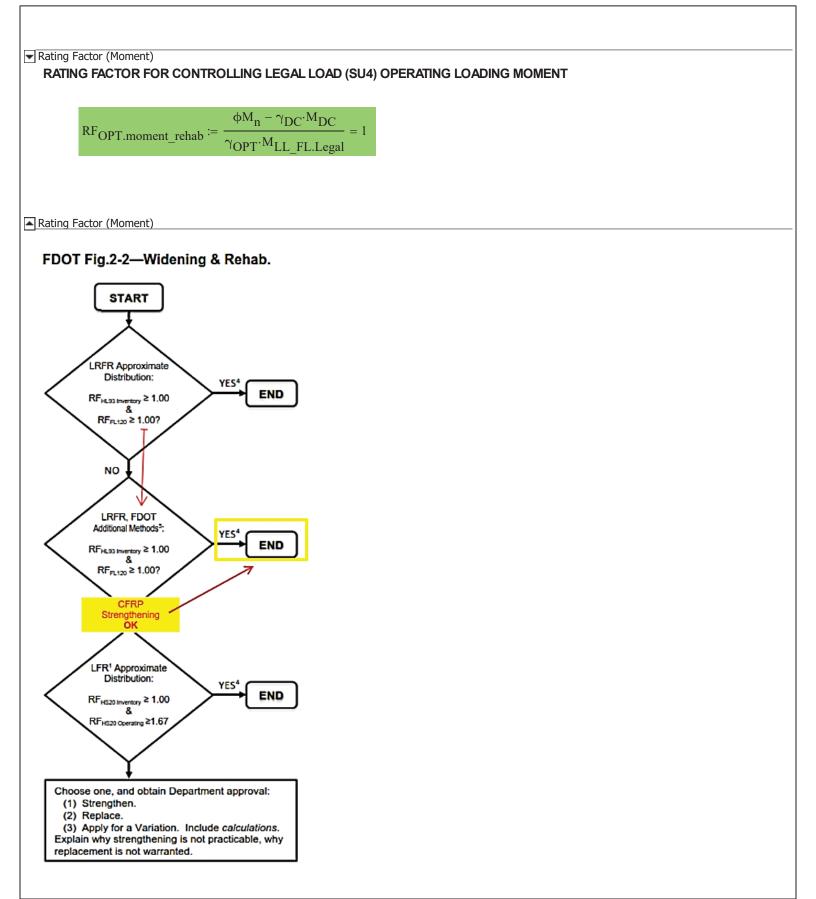
Check that stress in CFRP satisfies ACI 440.2R-08 Table 10.1

Check_FRP_stress = ("OK")

Service I

FRP Fatigue Check

FRP Reinforcement - Fatigue


SDG Vol4. 4.2 states that the standard fatigue truck from LRFD should be used to check fatigue stresses in CFRP composite. By inspection, the standard fatigue truck will produce lower stresses within the section when compared to the truck used for the Service I stress check. If Service I is satisfied, no further analysis is required. (Refer to ACI 440.2R-08 10.2.9)

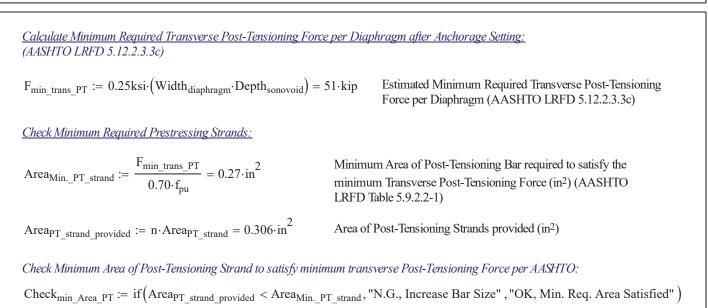
FRP Fatigue Check

Summary:

The Flexural Loading Rating (LR) controlled by SU4 Legal Strength loading which produced a LR of 0.931 was increased by CFRP strengthening along the bottom face of the slab unit length. The CFRP strengthening design consisted of U-wrap method plies which are 36" wide (C200HM) along the controlling sections. The strengthened section resulted in a flexural load rating shown below:

Number of Plies for U-Wrap Shear	Width of Plies	
n = 2	$w_f = 36 \cdot in$	
FRP Development Lengt	th	
$l_{df} = 7.174 \cdot in$		
FRP Stress Check		
Check_FRP_stress	s = ("OK")	

3.0 POST-TENSIONING ALTERNATIVES FOR REPLACEMENT OF EXISTING POST-TENSIONING WIRE


Sonovoid Bridge Evaluation Bridge No. 874294 Required Replacement Post-Tensioning Strands (All Spans)

Specifications:	AASHTO LRFD Specifications for Highway Bridges, 9th edition 2020; AASHTO ASD Specifications for Highway Bridges, 11th edition 1973 FDOT Load Rating Manual 2021
References	1) "Transverse post tensioning design and detailing of precast, prestres sed adjacent box girder bridges", Kromel E. Hanna, George Morcous, and Maher K. Tadros, PCI Journal, 2009.
Units:	U.S customary units

Existing Sonovoid Slab Post-Tensioning:

INPUT DATA

<u>Bridge Data:</u>	
$Depth_{sonovoid} := 17in$	Depth of Sonovoid Slab Unit (in.)
$Width_{sonovoid} := 36in$	Width of Sonovoid Slab Unit (in.)
y _{c_bot} := 8.1667in	Distance Y from bottom face to Cg of section (in.)
$y_{c_{top}} := Depth_{sonovoid} - y_{c_{bot}} = 0.736 ft$	Distance Y from top face to Cg of section (in.)
$L_{Span_1} \coloneqq 29.042 \mathrm{ft}$	Length of Span 1 or 3 (Brg-to-Brg.) (ft.)
$L_{Span_2} := 38.50 ft$	Length of Span 2 (Brg-to-Brg.) (ft.)
Skew := 0deg	Bridge Skew Angle (degrees)
$Width_{bridge} := 34ft$	Widht of Bridge (ft.) - (Assumed width of bridge ignoring the 6" sidewalk overhang for analysis).
$Width_{diaphragm} := 12in$	Diaphragm Width of Sonovoid Slab Unit (in.)
Post-Tensioning Strand Data:	
n := 2	Specified Number of Post-Tensioning Bar per duct
$d_{strand} := 0.50$ in	Specified Diameter of Post-Tentioning Strand (in) (See Appendix E)
$Area_{PT_strand} := 0.153in^2$	Minimum net Area of 0.50" diameter Strand (in ²) (See Appendix E)
$f_{pu} := 270 ksi$	Ultimate Strength of Post-Tensioning Strand (ksi) (See Appendix E)
$f_y := 245$ ksi	Yield Strength of Post-Tensioning Strand (ksi) (See Appendix E)
$P_{ult} := f_{pu} \cdot Area_{PT_strand} = 41.31 \cdot kip$	Minimum Ultimate Strength of Post-Tensioning Strand (kip) (See Appendix E)

Check_{min_Area_PT} = "OK, Min. Req. Area Satisfied"

 $Check_{min_Area_PT_ratio} := \frac{Area_{PT_strand_provided}}{Area_{Min_PT_strand}} = 1.134$

Sonovoid Bridge Evaluation Bridge No. 874294 Required Torque on Replacement Bar (All Spans)

Specifications:	AASHTO LRFD Specifications for Highway Bridges, 9th edition 2020; AASHTO ASD Specifications for Highway Bridges, 11th edition 1973 FDOT Load Rating Manual 2021
References	 "Analysis of Bolt Torquing", PDHonline Course S149 "Transverse post tensioning design and detailing of precast, prestressed adjacent box girder bridges", Kromel E. Hanna, George Morcous, and Maher K. Tadros, PCI Journal, 2009. Williams Form Engineering Corp., "Post-Tensioning System and Prestressing Steel Bars".
Units:	U.S customary units

Determine Force in Transverse Post-Tensioning:

INPUT DATA

Bridge Data:	
$Depth_{sonovoid} := 17in$	Depth of Sonovoid Slab Unit (in.)
$Width_{sonovoid} := 36in$	Width of Sonovoid Slab Unit (in.)
$L_{Span_1} \coloneqq 29.042 \mathrm{ft}$	Length of Span 1 or 3 (Brg-to-Brg.) (ft.)
$L_{\text{Span}_2} \coloneqq 38.50 \text{ft}$	Length of Span 2 (Brg-to-Brg.) (ft.)
Skew := 0deg	Bridge Skew Angle (degrees)
$Width_{bridge} := 34ft$	Widht of Bridge (ft.) - (Assumed width of bridge ignoring the 6" sidewalk overhang for analysis).
$Width_{diaphragm} := 12in$	Diaphragm Width of Solenoid Slab Unit (in.) -
Post-Tensioning Bar Data:	
n := 1	Specified Number of Post-Tensioning Bar per duct
$d_{bar} := 1.0in$	Specified Diameter of All-Threated Post-Tentioning Bar (in) (See Appendix E)
$pitch_{bar} := 4.0in$	Specified Pitch of All Threated Post-Tensioning Bar (in) (See Appendix E)
$Area_{PT_bar} := 0.85in^2$	Minimum net Area of 1" diameter All-threated bar (in ²) (See Appendix E)
f _{pu} := 150ksi	Ultimate Strength of Post-Tensioning Bar (ksi) (See Appendix E)
$f_y := 120ksi$	Yield Strength of Post-Tensioning Bar (ksi) (See Appendix E)
P _{ult} := 128kip	Minimum Ultimate Strength of Post-Tensioning Bar (kip) (See Appendix E)

Sonovoid Bridge Evaluation Bridge No. 874294 Required Torque on Replacement Bar (All Spans)

(All Spans)			
$P_{0.6Pu_PT_Force} := 76.5kip$	Ultimate Prestressing Force at release, 0.60Pu (kip) (See Appendix E)		
major_diameter := 1.125in	Major Bar/Bolt Diameter (in.) (See Appendix E)		
minor_diameter := $n \cdot d_{bar} = 1 \cdot in$	Minor Bar/Bolt Diameter (in)		
<u>Compute the Minimum Required Transverse Post-Tensioning P</u> (AASHTO LRFD 5.12.2.3.3c)	<u>Compute the Minimum Required Transverse Post-Tensioning Force per Diaphragm after Anchorage Setting:</u> (AASHTO LRFD 5.12.2.3.3c)		
$F_{min_trans_PT} := 0.25ksi \cdot (Width_{diaphragm} \cdot Depth_{sonovoid}) =$	Estimated Minimum Required Transverse Post-Tensioning Force per Diaphragm (AASHTO LRFD 5.12.2.3.3c)		
Check Minimum Required Prestressing Bar:			
Area _{Min_Req_PT_Bar} := $\frac{F_{min_trans_PT}}{0.70 \cdot f_{pu}} = 0.486 \cdot in^2$	Minimum Area of Post-Tensioning Bar required to satisfy the minimum Transverse Post-Tensioning Force (in ²) (AASHTO LRFD Table 5.9.2.2-1)		
$Area_{PT}Bar_{provided} := n \cdot Area_{PT}bar = 0.85 \cdot in^2$	Area of Post-Tensioning Bar provided (in ²)		
Check _{min_Area_PT} := if(Area _{PT_Bar_provided} < Area _{MinReq_PT_Bar} , "N.G., Increase Bar Size", "OK, Min. Req. Area Satisfied")			
Check _{min_Area_PT} = "OK, Min. Req. Area Satisfied"	$Check_{min_Area_PT_ratio} := \frac{Area_{PT_Bar_provided}}{Area_{Min_Req_PT_Bar}} = 1.75$		
Determine Preload Force in Post-Tensioning Bar From Applied Torque:			
Determine force in 1" bar due to 1000 lb-ft torque			
<u>Loads and Load Factors:</u> Torque := 1000·lbf·ft	Assumed Torque applied to Post-Tensioning bars to achieve the minimum required Post-Tensioning force (See Appendix E)		
$d_m := \frac{major_diameter + minor_diameter}{2} = 1.063 \cdot in$	Effective contact diameter for the threads		

TPI :=
$$\frac{8}{in}$$

Nut_OD := 1.625in
 $l_{w} = \frac{1}{TPI}$

File: 874294_Required Post-Tensioning &

Page 2 of 3

Lead

Threads per inch

(See Appendix E)

Distance between nut flats for hex nuts

$d_c := \frac{\text{major}_d\text{iameter} + \text{Nut}_OD}{2} = 1.375 \cdot \text{in}$	
$\alpha := 30 \text{deg}$	Angle of thread
$\mu := 0.15$	Coefficient of friction assuming non-lubricated steel bolt
Factor := $\frac{1}{2 \cdot \pi} + \frac{\mu \cdot d_m}{2 \cdot \cos(\alpha)} + \frac{\mu \cdot d_c}{2} = 0.018 \text{ft}$	Factor used to convert force to Torque
$P_{\text{Torque}} \coloneqq \frac{\text{Torque}}{\text{Factor}} = 55.805 \cdot \text{kip}$	Prestressing force in Post-Tensioning Bar

<u>Check Minimum Required Transverse Post-Tensioning Force per Diaphragm after Anchorage Setting:</u> (AASHTO LRFD 5.12.2.3.3c)

 $F_{min trans PT} = 51 \cdot kip$

Estimated Minimum Required Transverse Post-Tensioning Force per Diaphragm (AASHTO LRFD 5.12.2.3.3c)

 $F_{PT_perBar} \coloneqq \frac{P_{Torque}}{n} = 55.805 \cdot kip$

Estimated Force in each Transverse Post-Tensioning Bar (kip)

Check_{min trans PT Force} := if (F_{PT perBar} < F_{min trans PT}, "N.G., Increase Force", "OK, Min. Required Force Satisfied")

Check_{min_trans_PT_Force} = "OK, Min. Required Force Satisfied"

 $Check_{min_trans_PT_Force_ratio} := \frac{F_{PT_perBar}}{F_{min_trans_PT}} = 1.094$

4.0 COLUMN LOADS FOR TEMPORARY SHORING

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

Pier 2 Column Loads & LBC (RCPier) Input - Matheson Hmk Park Bridge

	(Note: On Project Tab in RCPier use S State Specifications "None" with "U.S.	Structure Type as "Pier". Use "US_LRFD" and Units".)
A1. General Variables	•	
Depth of Interior Pier Cap:	h _{cap} := 3.0 ft	
Width of Interior Bent Cap:	b _{cap} := 3.0 ft	
Length of Interior Bent Cap:	L _{cap} := 34 ft	
Pile Embedment Depth:	Pile _{embed} := 1.0 ft	
Pile Size:	Pile _{size} := 14 in	
Unit Weight of Concrete:	w _c := 150 pcf	
Length of Span 1 or 3:	L _{span1} := 30 ft	
Length of Span 1 or 3:	L _{span2} := 40 ft	
Width of Bridge:	$W_{br} := 34 \cdot ft$	
Bridge Deck Depth:	$d_{slab} := 1.292 \cdot in$	(Average Depth of Asphalt overlay used since no deck slab is present)
Bridge Skew Angle:	$\theta_{skew} \coloneqq 0$ deg	
Length of Bridge:	L _{br} := 100 ft	
Height of Bearing Pad:	$h_{bp} := \left(\frac{1}{4}\right) \cdot in$	(See Appendix A, sheetno. 7 of 12 of Asbuilt Plans)
Width of Bearing Pad	$w_{bp} := 2 \cdot ft + 0 \cdot in$	(Assumed per Asbuilt plans details)
Length of Bearing Pad:	$L_{bp} := 6 \cdot in$	
B. Geometry Tab (RCPier) B1. Pier Config.		
Pier Type:	PierType := "Multi Columns"	(Use "Multi Columns" from the Pier Configuration)
Cap Shape:	CapShape := "Straight"	(Use Cap as straight since height of pedestal will determine cross slope of bridge)
Column Shape:	ColumnShape := "Round"	(Use "Round" Column Shape)

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

Pier View:

PierView := "Upstation"

(Use "Upstation" to coincide with load directions calculated herein. Either "Upstation" or "Downstation" can be used, but load directions will need to coincide with Pier View chosen.)

(Use "Pretensioned Girders" from

Strut and Tie Model Not Used for Bent Cap Design - box not checked in RCPier

Expand for Upstation, Downstation and Skew Explanation

B2. Superstr.

Bridge Type:	BridgeType := "Pretensioned Girders"	"Pretensioned Girders" or "CIP PT Bridges".)
Number of Lanes:	N _{lanes} := 1	
Beam Height:	H _{beam} := 17 in	[Appendix A, sheet no. 8 of 12]
Beam Width:	b _{slab.unit} ≔ 36 in	[Appendix A, sheet no. 8 of 12]
Beam Section Area:	A _{beam} := 438.82 in ²	[From AASHTOWare BrR Model]
Beam Inertia (I _{xx}):	I _{bm_xx} := 13330.10 in ⁴	[From AASHTOWare BrR Model]
Beam C.G (Y _{cg}):	Y _{bm_cg} := 8.17 in	[From AASHTOWare BrR Model]
Barrier/Railing Height:	$H_{barr} := 3ft + 0in = 36 \cdot in$	[Appendix A, sheet no. 8 of 12. (Includes Railing)]
Depth of Deck	d _{slab} = 1.292⋅in	
Span Number Rear to Current Pier:	Span _{NumRear} := 1 bridge is symmetric ab	to design the interior bent since the out the midway point of Span 2 and me EL from the bulkhead cap.)
Curb to Curb Distance:	1 uct = 1/1 tr	way width per Phase 1 of the Construction heet 7 of 12 of Repair Plans)
Deck Offset:		enter of the deck and center of the Pier ight of center of Pier cap, (-) otherwise)
Span:	Span 1 L _{span1} = 30 ft W _{br} = 34 ft	
	Span 2 $L_{span2} = 40 \text{ft} W_{br} = 34 \text{ft}$	
	Span 3 L _{span1} = 30 ft W _{br} = 34 ft	
	End Bridge $W_{br} = 34 \text{ft}$	

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

B3. Cap

Straight Cap Parameters		
Cap Length (X):	$L_{cap} = 34 \text{ft}$	
Cap Height (Y):	h _{cap} = 36⋅in	
Cap Depth (Z):	b _{cap} = 36⋅in	
Skew Angle (deg.):	$\theta_{skew} = 0 \cdot deg$	
Factor for Reduced Moment of Inertia:	I _{reduce} := 1 (No reduction in moment of	of inertia)
Start Elevation:	Elev _{top_cap_start} := 15.93 .ft	(Use Pier 2 top of cap elevation from Asbuilt Plans, sheet no. 6 of 12. Refer to Appendix A)
End Elevation:	Elev _{top_cap_end} := 15.86 ft	(Use Pier 2 top of cap elevation from Asbuilt Plans, sheet no. 6 of 12. Refer to Appendix A)
Square ends of the Bent Cap are used so "Top Offset", "Fillet Radius" and "Chamfer" are not used.		

Þ

B4. Brng/Grdr

Configuration:	Num _{Bearings} := "Double"	(Select double for simply supported intermediate bent.)
Bearing Line 1		
Eccentricity from CLCap:	BearingLine := 0.75ft	(See Asbuilt Plans, sheet no. 7 of 12; Appendix A)

Bearing Line 1

Choose the "Dimension" button and input the following bearing dimensions

Length of Bearing:	$L_{bearing} := w_{bp} = 2 ft$
Width of Bearing:	$W_{bearing} := L_{bp} = 0.5 ft$
Thickness of Bearing:	$t_{bearing} := h_{bp} = 0.021 ft$
Distance Between Edge	
of Cap and Centerline of Slab Unit:	Dist _{cap_beam} := 1.50 · ft
0	-
Spacing of Beams:	Beam _{spacing} := 3.0 ·ft

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

Cross Slope of Bridge:

CS := 0.016

Distance From:

Bearing Point Input for Bearing Line 1:

Bearing Points			
Line	Point	From	Dist.
1	1	Left	1.50
	2	Left	4.50
	3	Left	7.50
	4	Left	10.50
	5	Left	13.50
	6	Left	16.50
	7	Left	19.50
	8	Left	22.50
	9	Left	25.50
	10	Left	28.50
	11	Lett	32.50

DistanceFrom := "Cap Left End"

Bearing Line 2

Bearing Line 2 Eccentricity from CL Cap:

BearingLine := -0.75ft

(See Asbuilt Plans, sheet no. 7 of 12; Appendix A)

Choose the "Dimension" button and input the following bearing dimensions

Distance Between Edge of Cap and Centerline of Beam

Spacing of Beams:

Beamspacing, := 3.0 ft

Distoaphoam := 1.50 · ft

Distance From:

DistanceFrom,:= "Cap Left End"

Bearing Point Input:

Bearing Points			
Line			
2	1	Left	1.50
	2	Left	4.50
	3	Left	7.50
	4	Left	10.50
	5	Left	13.50
	6	Left	16.50
	7	Left	19.50
	8	Left	22.50
	9	Left	25.50
	10	Left	28.50
	11	Lett	32.50

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

B5. Material

Concrete Strength		[From As-Built Plans, sheet no. 5 of 12]
Cap:	f' _{c_cap} := 5000 psi	
Pile:	f' _{c_pile} := 5000 · psi	
Footing:	f'c_footing ≔ 5000 ·psi	
Concrete Density		
Cap:	(Use for All)	
Pile:	$w_c = 150 \cdot pcf$	[SDG Table 2.2-1]
Footing:		
Concrete Modulus of Elastici		[AASHTO LRFD 5.4.2.4 & & SDG 1.4.1.A]
Cap:	$E_{c_cap} := 120000 \cdot 1.0 \cdot 0.145^2 \cdot \left(-\frac{1}{2}\right)^2$	
Pile:	E _{c_pile} ≔ 120000·1.0·0.145 ² ·	$\left(\frac{s_{pile}}{ksi}\right)^{0.33} \cdot ksi = 4291 \cdot ksi$
Footing:	E _{c_footing} := 120000.1.0.0.145 ²	$2 \cdot \left(\frac{f'c_footing}{ksi}\right)^{0.33} \cdot ksi = 4291 \cdot ksi$
Steel Yield Strength		[SDG 1.4.1.B]
Cap (flex):		
Cap (shear):	f _V := 60 ksi	(Use for all elements)
Pile:	y. com	
Footing:		
Concrete Type		
Сар:		(Use for all elements from "Normal",
Pile:	ConcreteType := "Normal"	"Sand-lightweight", "All-lightweight".)
Footing:		

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

B6. Str. Model

Additional Check Points

Add any additional points needed for checking moment and shear.

Hinge

No hinges will be added to the cap to. Design as a continuous beam.

C. Loads Tab (RCPier)

C1. DC Loads

Since bridge is simply supported, intermediate Piers 2 & 3 will experience identical dead loads.

Dead Loads for all slab units were determined from the AASHTOWare Load Rating Analysis model, and reactions along each bearing line were inputed at each bearing point for Spans 1 and 2, respectively (similar for Pier 3). Refer to "*Summary of Dead Load Shear Reactions*" from AASHTOWare BrR software for the reaction values inputted at the bearing points.

Dead Load from Temporary Type K barrier is assumed to be transferred to the bent through the bearing point at slab units 1-6 adn 2-6 and the support reactions computed below will be added to the Assume Weight

DC of a single Temporary Type K Barrier unit:	$W_{typeK} := 2.7$ ton = 5.952·kip	[FDOT Standard Plans Index no. 102-110]
Length of a single Temporary Type K Barrier unit:	L _{typeK} := 12.5 ft	[FDOT Standard Plans Index no. 102-110]
Distributed DL from Type K Barrier:	$w_{typeK} := \frac{W_{typeK}}{L_{typeK}} = 0.476 \cdot \frac{kip}{ft}$	[FDOT Standard Plans Index no. 102-110]
Estimated DC reaction of Type K Barrier from Span 1:	P _{typeK_sp1} := $\frac{-W_{typeK} \cdot L_{span1}}{2} = -7.143 \cdot kip$	
Estimated DC reaction of Type K Barrier from Span 2:	P _{typeK_sp2} := $\frac{-W_{typeK} \cdot L_{span2}}{2} = -9.524 \cdot kip$	

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT

Matheson Hammock Park over Matheson Hammock Canal Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

DC Reactions Input at Bearing Points for Bearing Line 1:

DL Reactions at Bearing Points			
Line	Bearing Point #	Dir	Load (kips)
1	1	Y	-13.89
	2	Y	-7.21
	3	Y	-7.21
	4	Y	-7.21
	5	Y	-7.21
	6	Y	-14.35
	7	Y	-7.21
	8	Y	-7.21
	9	Y	-7.21
	10	Y	-11.25
	11	Y	-15.36

* Dead Load from Superstructure components and attachments (including temporary Type K Barrier)

DL Reactions at Bearing Points			
Line	Bearing Point #	Dir	Load (kips)
2	1	Y	-18.71
	2	Y	-9.62
	3	Y	-9.62
	4	Y	-9.62
	5	Y	-9.62
	6	Y	-19.14
	7	Y	-9.62
	8	Y	-9.62
	9	Y	-9.62
	10	Y	-15.12
	11	Y	-20.72
* Dead Load from Superstructure components and attachments (including temporary Type K Barrier)			

C2. DW Loads

Per LBC reference content, "The Load from the slab, barriers and wearing surface is distributed among bearings based on each bearing/girder tributary width."

Dead Load from wearing surface is assuming an equivalent tributary load per foot of based on the average thickness of the asphalt overlay corresponding to each span as per sheet no. 7 of 12 of Asbuilt Plans (see Appendix A).

Density of Asphalt:

w_{aws} := **145**pcf

[FDOT Standard Plans Index no. 102-110]

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

DC Reactions Input at Bearing Points for Bearing Line 2:

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

^tavg_span1 := **1.167**in

Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

Average Thickness of
Wearing Surface along
Span 1 or 3:

Average Thickness of Wearing Surface along Span 2:

Tributary width for interior Slab Units:

Tributary width for interior Slab Unit 10:

Tributary width for exterior Slab Unit 1:

Distributed DW on typical interior Slab Units along Span 1 or 3:

Distributed DW on typical interior Slab Units along Span 2:

Distributed DW on interior Slab Unit 10 along Span 1 or 3:

Distributed DW on interior Slab Unit 10 along Span 2:

Distributed DW on exterior Slab Unit 1 along Span 1 or 3:

Distributed DW on exterior Slab Unit 1 along Span 2:

t _{avg_span2} := 1.292 in
^b trib_int ^{:= b} slab.unit ^{= 3 ft}
^b trib_int.10 := 1 ft
^b trib_int.1 := 1 ft
^w DW_span1_int ^{:= t} avg_span1 ^{.w} aws ^{.b} trib_int ^{= 0.0423} .klf
^w DW_span2_int ^{:= t} avg_span2 ^{.w} aws ^{.b} trib_int ^{= 0.0468.klf}
^w DW_span1_int.10 ^{:= t} avg_span1 ^{·w} aws ^{·b} trib_int.10 ^{= 0.0141·klf}
^w DW_span2_int.10 ^{:= t} avg_span2 ^{·w} aws ^{·b} trib_int.10 ^{= 0.0156} ·klf
^w DW_span1_ext.1 ^{:= t} avg_span1 ^{.w} aws ^{.b} trib_int.1 ^{= 0.0141.} klf

^wDW_span2_ext.1 ^{:=} t_{avg_span2}·w_{aws}·b_{trib_int.1} ⁼ 0.0156 ·klf

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

DW Bearing Reactions -

DW Reactions Input at Bearing Points for Bearing Line 1:

DL Reactions at Bearing Points			
Line	Bearing Point #	Dir	Load (kips)
1	1	Y	-0.21
	2	Y	-0.63
	3	Y	-0.63
	4	Y	-0.63
	5	Y	-0.63
	6	Y	-0.63
	7	Y	-0.63
	8	Y	-0.63
	9	Y	-0.63
	10	Y	-0.21
	11	Y	0.00
* Dead Load from Superstructure components and			

attachments (including temporary Type K Barrier)

Line	Bearing Point #	Dir	Load (kips)
2	1	Y	-0.31
	2	Y	-0.94
	3	Y	-0.94
	4	Y	-0.94
	5	Y	-0.94
	6	Y	-0.94
	7	Y	-0.94
	8	Y	-0.94
	9	Y	-0.94
	10	Y	-0.31
	11	Y	0.00

C3. EH Loads (End Bent Only)

No EH loads on Interior Bent.

DW Reactions Input at	
Bearing Points for	
Bearing Line 2:	

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

and tension controlled strain it

P:_V-TPD\Projects\FL\2021\D210107FL.00\1_Design\300_Calcs \340_Struct\100% Calcs\Column Loads\Pier2 - Dsn Lds RCPier 2Col 11bm.xmcd

C4. LL & BR Loads

Longitudinal Reaction

Use "Compute Simply Supported Beam Reaction" since the superstructure is simply supported.

PerAASHTO LRFD 3.6.1.3 (Use the following load truck combinations):

- Use "Design Truck"
- Use "Design Truck + Lane Load"
- Use "Design Tandem + Lane Load"

- Do not use "Two Design Trucks + Lane Load". These truck loads could control for longer continuous spans. This live load case is used for negative moment between points of contraflexure and reactions at interior piers only.

- Do not use "Two Design Tandem + Lane Load" per AASHTO C3.6.1.3.1 this case will only be investigated if multiple lanes of heavier versions of "low boy" type vehicles are considered probable.

Transverse Positioning

Loaded Lanes: Use "All combinations" to check all the different combinations of loaded lanes.

Live Load Positions: Use "Variable Spacing" with a 1ft minimum spacing between positions. This live load positioning places a wheel over each bearing point then adds additional trucks from that position. It will then repeat a similar process for each bearing.

Longitudinal Force or BR Loads

No Breaking (BR) Loads will be considered with the live loads.

C5. Centrifugal Force or CE Loads

Since the bridge is a straight structure, the centrifugal force effects are not necessary. Do not check "Generate Centrifugal Load Cases also".

C6. Water Loads or WA Loads

Since the Column axial loads are considered in this model, No Water Loads will be applied.

D. Analysis Tab - A/D Parameters Button - Analysis/Design Parameters LRFD

D1. Resistance Factors

- Use "Phi as per 2006 classification" per AASHTO LRFD 5.5.4.2.

- Use the program defaults for "Modulus of Rupture" see AASHTO LRFD 5.4.2.6.

- Use the program defaults for Strain T: 60ksi - Comp 0.002 and Tension 0.005. These ratios come from AASTHO LRFD 5.7.2.1 and AASHTO LRFD Figure C5.7.2.1-1. They use a compression controlled strain limits of 0.002

and tension controlled strain limit of .005 and similar triangles as shown in the figure.

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT

Matheson Hammock Park over Matheson Hammock Canal

Job No.: D210107FL.00 Designer: YRA Date: 11/2021 Reviewer: MAP Date: 12/2021

rate

[AASHTO LRFD 3.6.3]

[AASHTO LRFD 3.7]

CONSOR ENGINEERS, LLC.

[AASHTO LRFD 3.6.4]

PIER 2 COLUMN LOADS & LBC (RCPIER) INPUT Matheson Hammock Park over Matheson Hammock Canal

D2. Impact and Reduction

- Use the program defaults for Dynamic Load Allowance (IM) since the cap, columns, and footing will have Truck + IM for an intermediate bent. (Note: Even though there is no footing, there must be impact on the footing to get impact on the piles for a bent.) The lane will not have IM. [AASHTO LRFD 3.6.2.1] - Use program defaults for Multiple Presence Factors [AASHTO LRFD Table 3.6.1.1.2-1].

D3. Crack Control

- Use the the Crack Control Criteria "Current LRFD" per AASHTO LRFD 5.7.3.4 with the following exposure factors:

- 1. Cap 0.75
- 2. Column 0.75
- 3. Footing 1.0

Use a Class 2 exposure condition since the column (pile) and cap are exposed to water [See AASHTO LRFD 5.7.3.4 commentary and SDG 3.10.E].

- Use the program default for Fatigue "ff term" = 24 per AASHTO LRFD 5.5.3.2-1.

۵	<
C)
Ŭ	2
Z	2
C)
Ũ)
	-

Project #: D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DE	AD LOAD SHEAR	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 1-1	M AASHTOWARE	BrR - INT SL	AB UNIT 1-1		
							Total DC		
			Self Weight			PS	Selfweight of Slab	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(КІР-ЕТ)
0	6.47	0.25	0.49	2.09	4.59	0	7.21	6.68	13.89
0.5	6.24	0.24	0.49	2.02	4.42	0	6.97	6.44	13.41
0.5	6.24	0.24	0.16	2.02	4.42	0	6.64	6.44	13.08
1.69	5.69	0.22	0.16	1.84	4.04	0	6.07	5.88	11.95
2.83	5.17	0.2	0.16	1.67	3.67	0	5.53	5.34	10.87
5.66	3.88	0.15	0.16	1.26	2.75	0	4.19	4.01	8.20
6.75	3.38	0.13	0.16	1.09	2.4	0	3.67	3.49	7.16
6.75	3.38	0.13	0	1.09	2.4	0	3.51	3.49	7.00
8.49	2.59	0.1	0	0.84	1.83	0	2.69	2.67	5.36
11.32	1.29	0.05	0	0.42	0.92	0	1.34	1.34	2.68
14.15	0	0	0	0	0	0	0	0	0.00
16.98	-1.29	-0.05	0	-0.42	-0.92	0	-1.34	-1.34	-2.68
19.8	-2.59	-0.1	0	-0.84	-1.83	0	-2.69	-2.67	-5.36
21.75	-3.48	-0.13	0	-1.13	-2.47	0	-3.61	-3.6	-7.21
21.75	-3.48	-0.13	-0.17	-1.13	-2.47	0	-3.78	-3.6	-7.38
22.63	-3.88	-0.15	-0.17	-1.26	-2.75	0	-4.2	-4.01	-8.21
25.46	-5.17	-0.2	-0.17	-1.67	-3.67	0	-5.54	-5.34	-10.88
26.81	-5.79	-0.22	-0.17	-1.87	-4.11	0	-6.18	-5.98	-12.16
28	-6.33	-0.24	-0.17	-2.05	-4.49	0	-6.74	-6.54	-13.28
28	-6.33	-0.24	-0.49	-2.05	-4.49	0	-7.06	-6.54	-13.60
28.29	-6.47	-0.25	-0.49	-2.09	-4.59	0	-7.21	-6.68	-13.89
* Dead Lo	ad (Support) Be	* Dead Load (Support) Bearing Reactions							

(5
UNIT	202
$\overline{(}$	5
()
Į	5

D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

SPAN 1

		DEA	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 1-8 **	EACTIONS FROM	AASHTOWARE E	3rR - INT SLA	B UNIT 1-8 **		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(КІР-ЕТ)
0	6.47	0.25	0.49	0	0	0	7.21	0	7.21
0.5	6.24	0.24	67.0	0	0	0	6.97	0	6.97
0.5	6.24	0.24	0.16	0	0	0	6.64	0	6.64
1.69	5.69	0.22	0.16	0	0	0	6.07	0	6.07
2.83	5.17	0.2	0.16	0	0	0	5.53	0	5.53
5.66	3.88	0.15	0.16	0	0	0	4.19	0	4.19
6.75	3.38	0.13	0.16	0	0	0	3.67	0	3.67
6.75	3.38	0.13	0	0	0	0	3.51	0	3.51
8.49	2.59	0.1	0	0	0	0	2.69	0	2.69
11.32	1.29	0.05	0	0	0	0	1.34	0	1.34
14.15	0	0	0	0	0	0	0	0	0.00
16.98	-1.29	-0.05	0	0	0	0	-1.34	0	-1.34
19.8	-2.59	-0.1	0	0	0	0	-2.69	0	-2.69
21.75	-3.48	-0.13	0	0	0	0	-3.61	0	-3.61
21.75	-3.48	-0.13	-0.17	0	0	0	-3.78	0	-3.78
22.63	-3.88	-0.15	-0.17	0	0	0	-4.2	0	-4.20
25.46	-5.17	-0.2	-0.17	0	0	0	-5.54	0	-5.54
26.81	-5.79	-0.22	-0.17	0	0	0	-6.18	0	-6.18
28	-6.33	-0.24	-0.17	0	0	0	-6.74	0	-6.74
28	-6.33	-0.24	-0.49	0	0	0	-7.06	0	-7.06
28.29	-6.47	-0.25	-0.49	0	0	0	-7.21	0	-7.21
* Dead Lo	Dead Load (Support) Beari	earing Reactions							

** Slab Units 1-2 to 1-7 and 1-9 are similar.

R
0
S
Z
Ο
Û
6

D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DEA	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 1-10	REACTIONS FROM	1 AASHTOWARE	BrR - INT SL	AB UNIT 1-10		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0	6.47	0.25	0.49	0	4.04	0	7.21	4.04	11.25
0.5	6.24	0.24	0.49	0	3.9	0	6.97	3.9	10.87
0.5	6.24	0.24	0.16	0	3.9	0	6.64	3.9	10.54
1.69	5.69	0.22	0.16	0	3.56	0	6.07	3.56	9.63
2.83	5.17	0.2	0.16	0	3.23	0	5.53	3.23	8.76
5.66	3.88	0.15	0.16	0	2.42	0	4.19	2.42	6.61
6.75	3.38	0.13	0.16	0	2.11	0	3.67	2.11	5.78
6.75	3.38	0.13	0	0	2.11	0	3.51	2.11	5.62
8.49	2.59	0.1	0	0	1.62	0	2.69	1.62	4.31
11.32	1.29	0.05	0	0	0.81	0	1.34	0.81	2.15
14.15	0	0	0	0	0	0	0	0	0.00
16.98	-1.29	-0.05	0	0	-0.81	0	-1.34	-0.81	-2.15
19.8	-2.59	-0.1	0	0	-1.62	0	-2.69	-1.62	-4.31
21.75	-3.48	-0.13	0	0	-2.17	0	-3.61	-2.17	-5.78
21.75	-3.48	-0.13	-0.17	0	-2.17	0	-3.78	-2.17	-5.95
22.63	-3.88	-0.15	-0.17	0	-2.42	0	-4.2	-2.42	-6.62
25.46	-5.17	-0.2	-0.17	0	-3.23	0	-5.54	-3.23	-8.77
26.81	-5.79	-0.22	-0.17	0	-3.62	0	-6.18	-3.62	-9.80
28	-6.33	-0.24	-0.17	0	-3.96	0	-6.74	-3.96	-10.70
28	-6.33	-0.24	-0.49	0	-3.96	0	-7.06	-3.96	-11.02
28.29	-6.47	-0.25	-0.49	0	-4.04	0	-7.21	-4.04	-11.25
* Dead Lo	* Dead Load (Support) Bear	earing Reactions							

R
0
S
Z
Ο
Û
6

D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DEA	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 1-11	REACTIONS FROM	1 AASHTOWARE	BrR - INT SL	AB UNIT 1-11		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0	6.47	0.25	0.49	2.09	90.9	0	7.21	8.15	15.36
0.5	6.24	0.24	0.49	2.02	5.85	0	6.97	7.87	14.84
0.5	6.24	0.24	0.16	2.02	5.85	0	6.64	7.87	14.51
1.69	5.69	0.22	0.16	1.84	5.34	0	6.07	7.18	13.25
2.83	5.17	0.2	0.16	1.67	4.85	0	5.53	6.52	12.05
5.66	3.88	0.15	0.16	1.26	3.64	0	4.19	4.9	60.6
6.75	3.38	0.13	0.16	1.09	3.17	0	3.67	4.26	7.93
6.75	3.38	0.13	0	1.09	3.17	0	3.51	4.26	7.77
8.49	2.59	0.1	0	0.84	2.42	0	2.69	3.26	5.95
11.32	1.29	0.05	0	0.42	1.21	0	1.34	1.63	2.97
14.15	0	0	0	0	0	0	0	0	0.00
16.98	-1.29	-0.05	0	-0.42	-1.21	0	-1.34	-1.63	-2.97
19.8	-2.59	-0.1	0	-0.84	-2.42	0	-2.69	-3.26	-5.95
21.75	-3.48	-0.13	0	-1.13	-3.26	0	-3.61	-4.39	-8.00
21.75	-3.48	-0.13	-0.17	-1.13	-3.26	0	-3.78	-4.39	-8.17
22.63	-3.88	-0.15	-0.17	-1.26	-3.64	0	-4.2	-4.9	-9.10
25.46	-5.17	-0.2	-0.17	-1.67	-4.85	0	-5.54	-6.52	-12.06
26.81	-5.79	-0.22	-0.17	-1.87	-5.43	0	-6.18	-7.3	-13.48
28	-6.33	-0.24	-0.17	-2.05	-5.94	0	-6.74	-7.99	-14.73
28	-6.33	-0.24	-0.49	-2.05	-5.94	0	-7.06	-7.99	-15.05
28.29	-6.47	-0.25	-0.49	-2.09	-6.06	0	-7.21	-8.15	-15.36
* Dead Lo	 * Dead Load (Support) Beari 	earing Reactions							

R
0
S
Z
Ο
Û
6

Project #: D210107FL00.00	YRA	Jan-22	MAP	Jan-22
Project #:	Designed By:	Design Date:	Checked By:	Check Date:

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DE	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 2-1	REACTIONS FROM	M AASHTOWARE	BrR - INT SL	AB UNIT 2-1		
							Total DC		
			Self Weight			PS	Selfweight of Slab	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0	8.8	0.33	0.49	2.85	6.24	0	9.62	60.6	18.71
0.29	8.67	0.33	0.49	2.81	6.15	0	9.49	8.96	18.45
0.29	8.67	0.33	0.16	2.81	6.15	0	9.16	8.96	18.12
1.48	8.12	0.31	0.16	2.63	5.76	0	8.59	8.39	16.98
3.85	7.04	0.27	0.16	2.28	4.99	0	7.47	7.27	14.74
7.7	5.28	0.2	0.16	1.71	3.74	0	5.64	5.45	11.09
9.25	4.57	0.17	0.16	1.48	3.24	0	4.9	4.72	9.62
9.25	4.57	0.17	0	1.48	3.24	0	4.74	4.72	9.46
11.55	3.52	0.13	0	1.14	2.5	0	3.65	3.64	7.29
15.4	1.76	0.07	0	0.57	1.25	0	1.83	1.82	3.65
19.25	0	0	0	0	0	0	0	0	0.00
23.1	-1.76	-0.07	0	-0.57	-1.25	0	-1.83	-1.82	-3.65
26.95	-3.52	-0.13	0	-1.14	-2.5	0	-3.65	-3.64	-7.29
29.25	-4.57	-0.17	0	-1.48	-3.24	0	-4.74	-4.72	-9.46
29.25	-4.57	-0.17	-0.16	-1.48	-3.24	0	-4.9	-4.72	-9.62
30.8	-5.28	-0.2	-0.16	-1.71	-3.74	0	-5.64	-5.45	-11.09
34.65	-7.04	-0.27	-0.16	-2.28	-4.99	0	-7.47	-7.27	-14.74
37.02	-8.12	-0.31	-0.16	-2.63	-5.76	0	-8.59	-8.39	-16.98
38.21	-8.67	-0.33	-0.16	-2.81	-6.15	0	-9.16	-8.96	-18.12
38.21	-8.67	-0.33	-0.49	-2.81	-6.15	0	-9.49	-8.96	-18.45
38.5	-8.8	-0.33	-0.49	-2.85	-6.24	0	-9.62	-9.09	-18.71
* Dead Lo	ad (Support) Be	 Dead Load (Support) Bearing Reactions 							

(5
UNIT	202
$\overline{(}$	5
()
Į	5

D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

SPAN 2

		DEAC	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 2-8 ***	ACTIONS FROM	AASHTOWARE B	rR - INT SLA	B UNIT 2-8 ***		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(КІР-ЕТ)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(КІР-ЕТ)
0	8.8	0.33	0.49	0	0	0	9.62	0	9.62
0.29	8.67	0.33	0.49	0	0	0	9.49	0	9.49
0.29	8.67	0.33	0.16	0	0	0	9.16	0	9.16
1.48	8.12	0.31	0.16	0	0	0	8.59	0	8.59
3.85	7.04	0.27	0.16	0	0	0	7.47	0	7.47
7.7	5.28	0.2	0.16	0	0	0	5.64	0	5.64
9.25	4.57	0.17	0.16	0	0	0	4.9	0	4.90
9.25	4.57	0.17	0	0	0	0	4.74	0	4.74
11.55	3.52	0.13	0	0	0	0	3.65	0	3.65
15.4	1.76	0.07	0	0	0	0	1.83	0	1.83
19.25	0	0	0	0	0	0	0	0	0.00
23.1	-1.76	-0.07	0	0	0	0	-1.83	0	-1.83
26.95	-3.52	-0.13	0	0	0	0	-3.65	0	-3.65
29.25	-4.57	-0.17	0	0	0	0	-4.74	0	-4.74
29.25	-4.57	-0.17	-0.16	0	0	0	-4.9	0	-4.90
30.8	-5.28	-0.2	-0.16	0	0	0	-5.64	0	-5.64
34.65	-7.04	-0.27	-0.16	0	0	0	-7.47	0	-7.47
37.02	-8.12	-0.31	-0.16	0	0	0	-8.59	0	-8.59
38.21	-8.67	-0.33	-0.16	0	0	0	-9.16	0	-9.16
38.21	-8.67	-0.33	-0.49	0	0	0	-9.49	0	-9.49
38.5	-8.8	-0.33	-0.49	0	0	0	-9.62	0	-9.62
* Dead Lo	* Dead Load (Support) Beari	earing Reactions							

*** Slab Units 2-2 to 2-7 and 2-9 are similar.

R
0
Š
Z
0
Ŭ
6

Project #:D210107FL00.00Designed By:YRADesign Date:Jan-22Checked By:MAPCheck Date:Jan-22

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DEA	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 2-10	REACTIONS FROM	I AASHTOWARE	BrR - INT SL	AB UNIT 2-10		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0	8.8	0.33	0.49	0	5.5	0	9.62	5.5	15.12
0.29	8.67	0.33	0.49	0	5.41	0	9.49	5.41	14.90
0.29	8.67	0.33	0.16	0	5.41	0	9.16	5.41	14.57
1.48	8.12	0.31	0.16	0	5.08	0	8.59	5.08	13.67
3.85	7.04	0.27	0.16	0	4.4	0	7.47	4.4	11.87
<i>L.</i> 7	5.28	0.2	0.16	0	3.3	0	5.64	3.3	8.94
9.25	4.57	0.17	0.16	0	2.86	0	4.9	2.86	7.76
9.25	4.57	0.17	0	0	2.86	0	4.74	2.86	7.60
11.55	3.52	0.13	0	0	2.2	0	3.65	2.2	5.85
15.4	1.76	0.07	0	0	1.1	0	1.83	1.1	2.93
19.25	0	0	0	0	0	0	0	0	0.00
23.1	-1.76	-0.07	0	0	-1.1	0	-1.83	-1.1	-2.93
26.95	-3.52	-0.13	0	0	-2.2	0	-3.65	-2.2	-5.85
29.25	-4.57	-0.17	0	0	-2.86	0	-4.74	-2.86	-7.60
29.25	-4.57	-0.17	-0.16	0	-2.86	0	-4.9	-2.86	-7.76
30.8	-5.28	-0.2	-0.16	0	-3.3	0	-5.64	-3.3	-8.94
34.65	-7.04	-0.27	-0.16	0	-4.4	0	-7.47	-4.4	-11.87
37.02	-8.12	-0.31	-0.16	0	-5.08	0	-8.59	-5.08	-13.67
38.21	-8.67	-0.33	-0.16	0	-5.41	0	-9.16	-5.41	-14.57
38.21	-8.67	-0.33	-0.49	0	-5.41	0	-9.49	-5.41	-14.90
38.5	-8.8	-0.33	-0.49	0	-5.5	0	-9.62	-5.5	-15.12
* Dead Lo	 * Dead Load (Support) Bear 	earing Reactions							

R
0
Š
Z
0
Ŭ
6

D210107FL00.00	YRA	Jan-22	MAP	Jan-22	
Project #:	Designed By:	Design Date:	Checked By:	Check Date:	

The following Dead Load Shear reactions were extracted from the AASHTOWare BrR Rating model. The Slab unit superstructure system is assumed to be simply supported, and the reactions at the begin and end locations along the span represent the support reactions at the bearing points for each slab unit. Note:

		DEA	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR - INT SLAB UNIT 2-11	REACTIONS FROM	I AASHTOWARE	BrR - INT SL	AB UNIT 2-11		
							Total DC		
			Self Weight			PS	Selfweight of Slab Total DC (Railing	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Transfer	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk	Forces	(per Slab Unit)	Slab Unit	Slab Unit *
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)
0	8.8	0.33	0.49	2.85	8.25	0	9.62	11.1	20.72
0.29	8.67	0.33	0.49	2.81	8.12	0	9.49	10.93	20.42
0.29	8.67	0.33	0.16	2.81	8.12	0	9.16	10.93	20.09
1.48	8.12	0.31	0.16	2.63	7.61	0	8.59	10.24	18.83
3.85	7.04	0.27	0.16	2.28	6.6	0	7.47	88.8	16.35
7.7	5.28	0.2	0.16	1.71	4.95	0	5.64	99.9	12.30
9.25	4.57	0.17	0.16	1.48	4.28	0	4.9	5.76	10.66
9.25	4.57	0.17	0	1.48	4.28	0	4.74	5.76	10.50
11.55	3.52	0.13	0	1.14	3.3	0	3.65	4.44	8.09
15.4	1.76	0.07	0	0.57	1.65	0	1.83	2.22	4.05
19.25	0	0	0	0	0	0	0	0	0.00
23.1	-1.76	-0.07	0	-0.57	-1.65	0	-1.83	-2.22	-4.05
26.95	-3.52	-0.13	0	-1.14	-3.3	0	-3.65	-4.44	-8.09
29.25	-4.57	-0.17	0	-1.48	-4.28	0	-4.74	-5.76	-10.50
29.25	-4.57	-0.17	-0.16	-1.48	-4.28	0	-4.9	-5.76	-10.66
30.8	-5.28	-0.2	-0.16	-1.71	-4.95	0	-5.64	-6.66	-12.30
34.65	-7.04	-0.27	-0.16	-2.28	-6.6	0	-7.47	-8.88	-16.35
37.02	-8.12	-0.31	-0.16	-2.63	-7.61	0	-8.59	-10.24	-18.83
38.21	-8.67	-0.33	-0.16	-2.81	-8.12	0	-9.16	-10.93	-20.09
38.21	-8.67	-0.33	-0.49	-2.81	-8.12	0	-9.49	-10.93	-20.42
38.5	-8.8	-0.33	-0.49	-2.85	-8.25	0	-9.62	-11.1	-20.72
* Dead Lo	 * Dead Load (Support) Bear 	earing Reactions							

	Project #: D	210107FL.00
	Designed By:	YRA
CONSON	Design Date:	Nov-21
	Checked By:	MAP
Matheson Hmk Road over Matheson Hammock Canal	Check Date:	Dec-21

Dead Load Reactions from LBC (RCPIER) Model

	LBC (RCPIER)	COLUMN TO	P LOADS - DC1 S	Superstructure &	Attachments	(UNFACTORED)*
Memb	Node	Fx	Fy	Fz	Mx	My	Mz
1	2	-2.8	-119.4	-0.004246	-13.26	0.04451	-24.5
2	4	2.8	-126.9	0.004246	-13.52	0.04467	23.15

* Includes DL from Temporary Type K barrier.

		LBC (RCPIEF	R) COLUMN TO	P LOADS - DW1 (UNFACTORED)	
Memb	Node	Fx	Fy	Fz	Mx	My	Mz
1	2	-0.9183	-8.072	0.001265	-1.044	-0.01326	-7.59
2	4	0.9183	-5.528	-0.001265	-0.966	-0.01331	8.041

LBC (RCPIER) COLUMN TOP LOADS - Self (Substructure) (UNFACTORED) Memb Node Fx Fy Fz Mx My Mz 1 2 -1.193 -22.95 0 0 0 -10.16 2 4 1.193 -22.95 0 0 0 10.15

LBC (RCPIER) COLUMN TOP LOADS - TOTAL FACTORED DL

Memb	Node	Fx	Fy	Fz	Mx	My	Mz
1	2	-6.3687	-190.0455	-0.00341	-18.141	0.035748	-54.71
2	4	4.9113	-195.6045	0.002981	-14.486	0.03136	41.341

X is along the pier (transverse direction) Z along direction opposite to stationing (longitudinal direction) Y is vertical

Project #: D210107FL.00 Designed By: YRA Design Date: Nov-21 Checked By: MAP Check Date: Dec-21

Matheson Hmk Road over Matheson Hammock Canal LBC (RCPIER) COLUMN TOP LOADS - FACTORED LOADS WITH IMPACT *

Memb	Node	Fx	Fy(Max/Min)	Fz	Mx	My	Mz
1	2	-4.191	-133.4	-0.00300	-12.62	0.0314	-36.13
		-7.455	-394.3	-0.09098	-3.037	0.9534	-58.06
2	4	4.191	-138.5	0.00300	-12.8	0.0316	35.20
		24.49	-239.9	0.06353	-7.769	0.6684	200.70

* Includes DL from Temporary Type K barrier.

LBC (RCPIER) COLUMN TOP LOADS - SERVICE LOADS WITH IMPACT *

Memb	Node	Fx	Fy(Max/Min)	Fz	Mx	My	Mz
1	2	-4.911	-150.5	-0.00298	-14.31	0.0312	-42.26
		-5.532	-267.2	-0.05302	-5.674	0.5556	-44.17
2	4	4.911	-155.4	0.00298	-14.49	0.0314	41.34
		15.27	-180.7	0.03734	-8.44	0.3928	125.4

* Includes DL from Temporary Type K barrier.

X is along the pier (transverse direction)

Z along direction opposite to stationing (longitudinal direction)

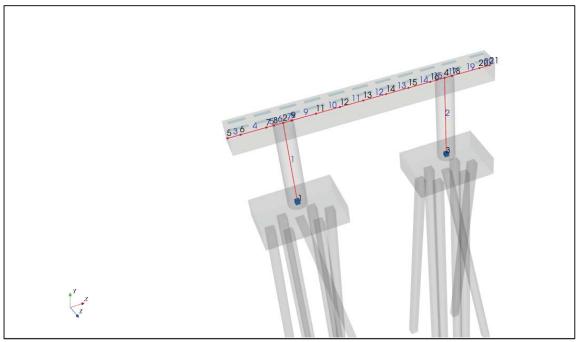
Y is vertical

Project #:	D210107FL.00
Designed By:	YRA
Design Date:	Nov-21
Checked By:	MAP
Check Date:	Dec-21

COLUMN LOADS FOR TEMPORARY SHORING

Matheson Hmk Road over Matheson Hammock Canal

NOTE: Below is a summary of the maximum reactions computed at the top of the columns at Pier no. 2. Temporary Shoring will be installed at Column no. 2 to accommodate the column repairs. Highlighted in green are the estimated factored and service loads that will be supported by the temporary shoring.

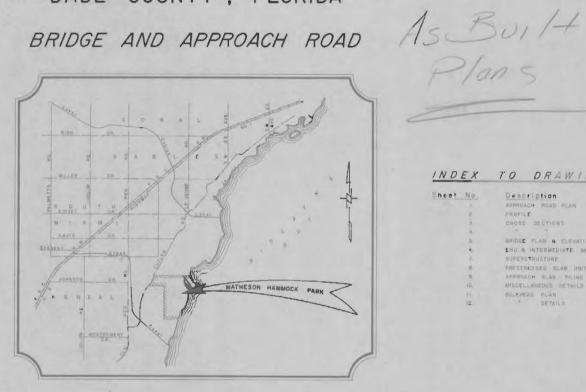

	Maximum DL Reactions - Pier Column Loads from RCPier (kips) COLUMN TOP DEAD LOADS							
	Mz (kip-ft)	My (kip-ft)	Mx (kip-ft)	Fz (kips)	Fy (kips)	Fx (kips)	Node	Column No.
[Ma	-68.3875	0.044684375	-22.67625	-0.0043	-191.0	-7.960875	2	1
[Ma	51.67625	0.0392	-18.1075	0.00373	-196.0	6.139125	4	2

Maximum LL Reactions - Pier Column Loads from RCPier (kips) COLUMN TOP LL LOADS WITH IMPACT							
Column No.	Node	Fx (kips)	Fy (kips)	Fz (kips)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
1	2	-0.871575	-204.0	-0.0848	18.07325	0.888825625	-1.0575
2	4	19.728325	-44.0	0.05791	8.8895	0.609235	161.08525

Maximum Strength Envelope - Pier Column Loads from RCPier (kips) COLUMN TOP LOADS WITH IMPACT)	
Memb	Node	Fx (kips)	Fy (kips)	Fz (kips)	Mx (kip-ft)	My (kip-ft)	Mz (kip-ft)
1	2	-8.83245	-394.3	-0.0891	-4.603	0.93351	-69.445
2	4	25.86745	-239.9	0.06163	-9.218	0.648435	212.7615

Maximum Service Envelope - Pier Column Loads from RCPier (kips) COLUMN TOP LOADS WITH IMPACT							
Mz (kip-ft)	My (kip-ft)	Mx (kip-ft)	Fz (kips)	Fy (kips)	Fx (kips)	Node	Memb
-51.76	0.54234	-6.718	-0.0518	-267.2	-6.4503	2	1
133.441	0.37949	-9.406	0.03608	-180.7	16.1883	4	2

Pier 2 RC-Pier Model, looking upstation:

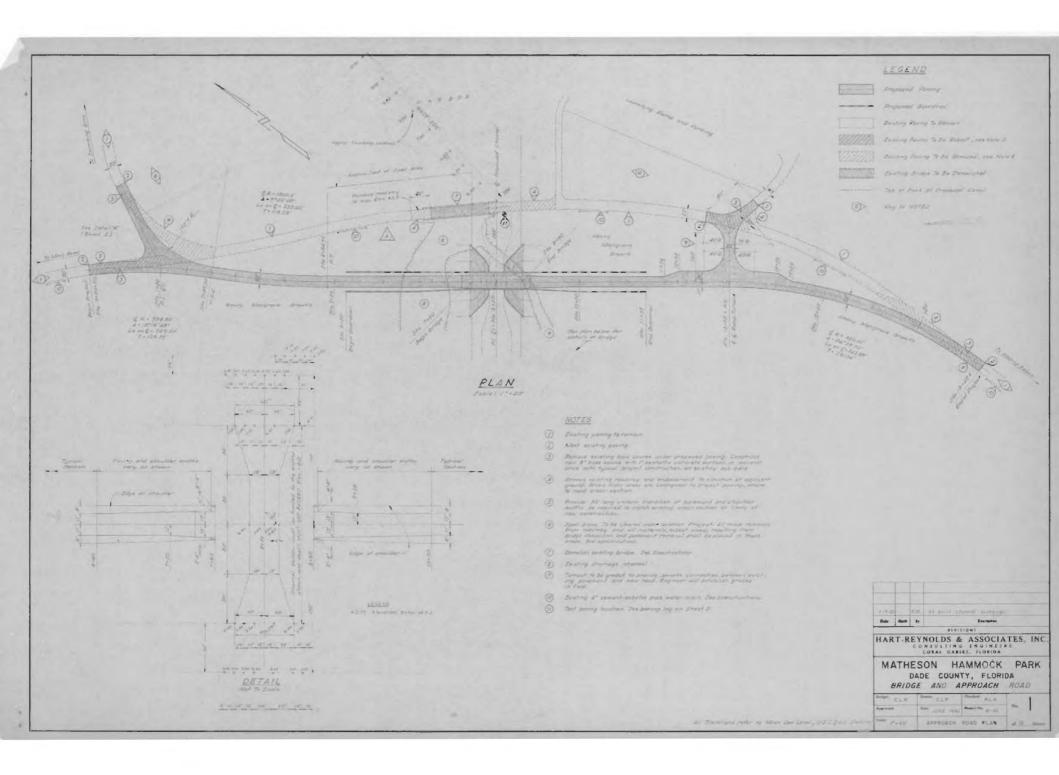

APPENDICES

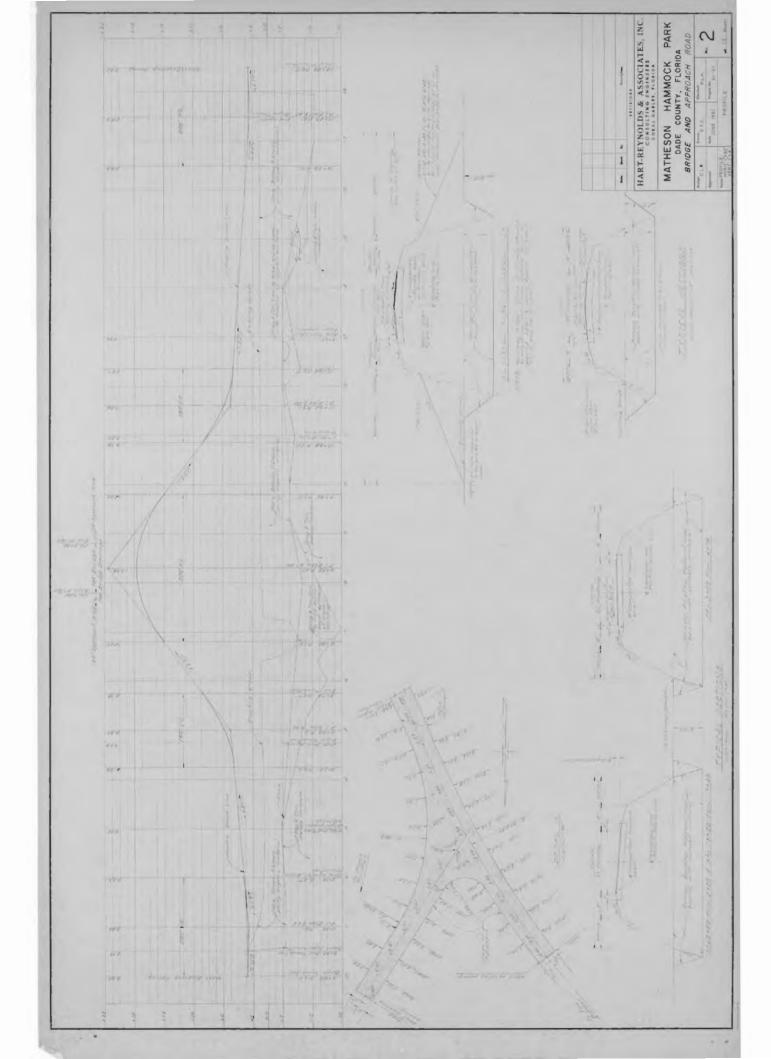
APPENDIX A – AS-BUILT BRIDGE PLANS

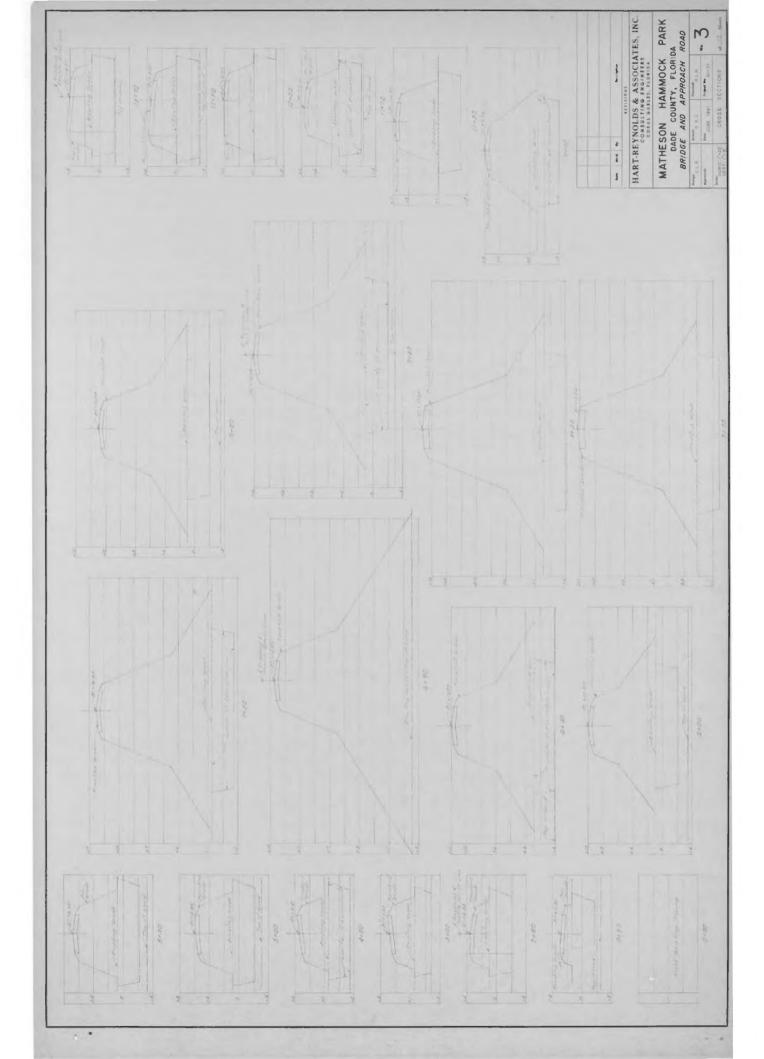
MATHESON HAMMOCK PARK

DADE COUNTY, FLORIDA

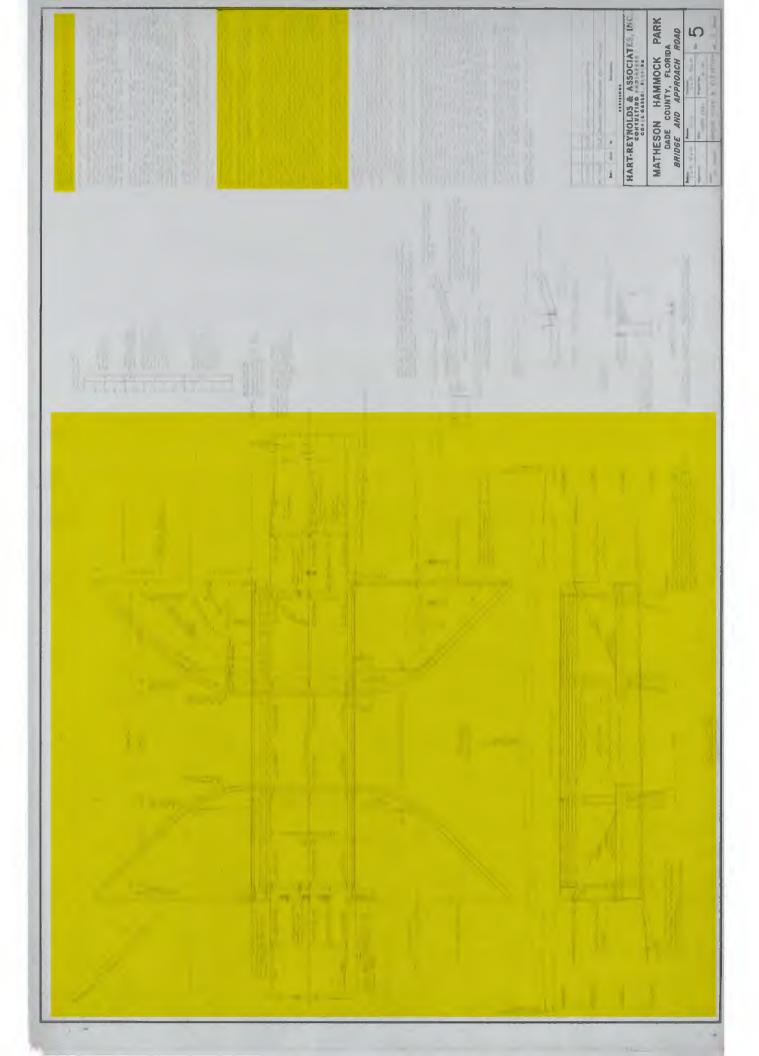
BRIDGE AND APPROACH ROAD

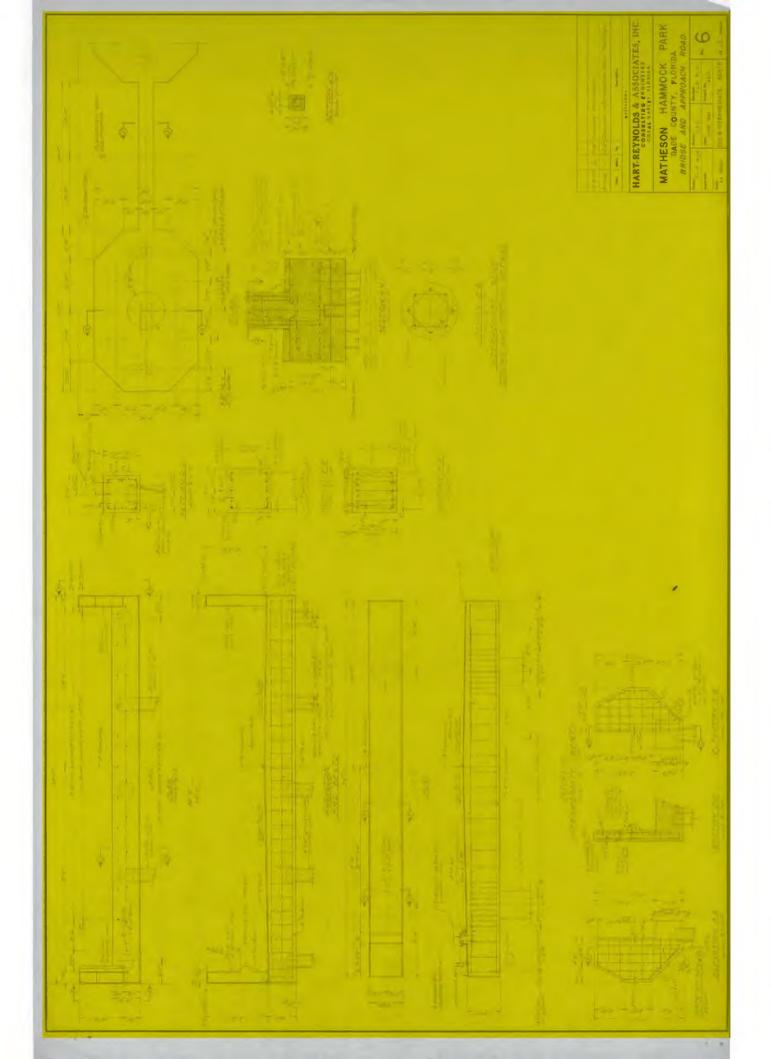


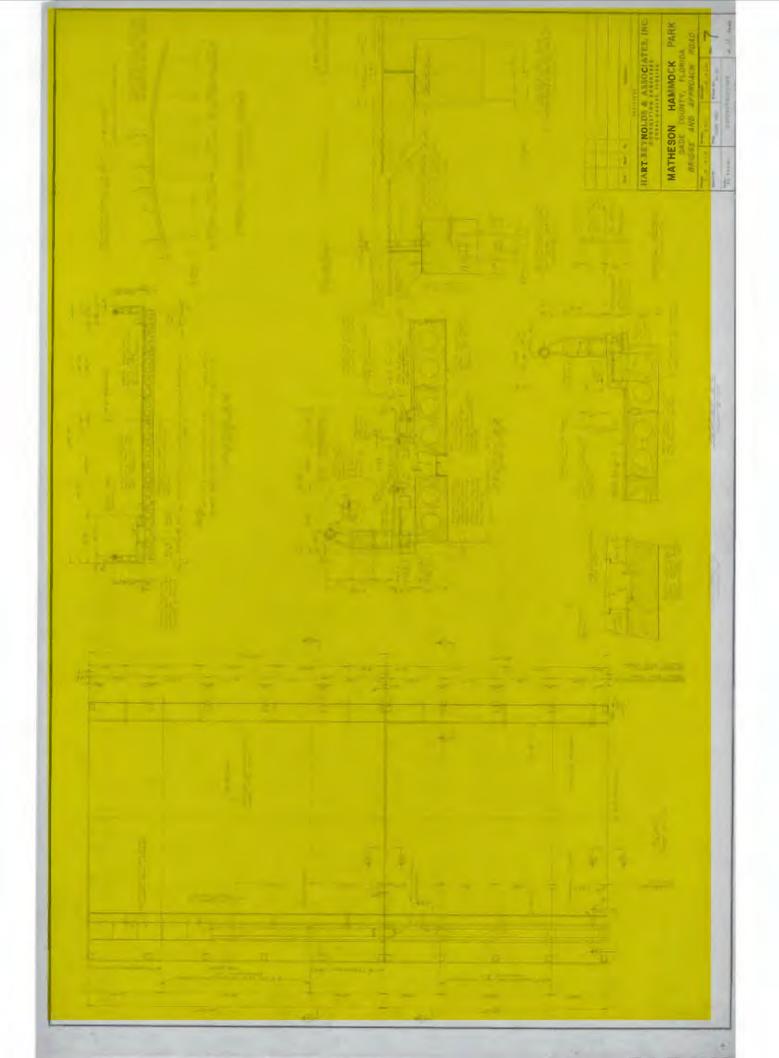

Sheet No.	Description
	APPROACH HOAD PLAN
z	PROFILE
3.	CROSE SECTIONS
	× +
6	BRIDGE FLAN & ELEVATION
K	END & INTERMEDIATE BENTS
6	SUPERSTRUCTURE
	PRESTREASED BLAB DNITS
	APPROACH SLAB - PILINA
10,	MISCELLANEOUS DETAILS
н	BULKHEAD FLAN
12.	* DETAILS

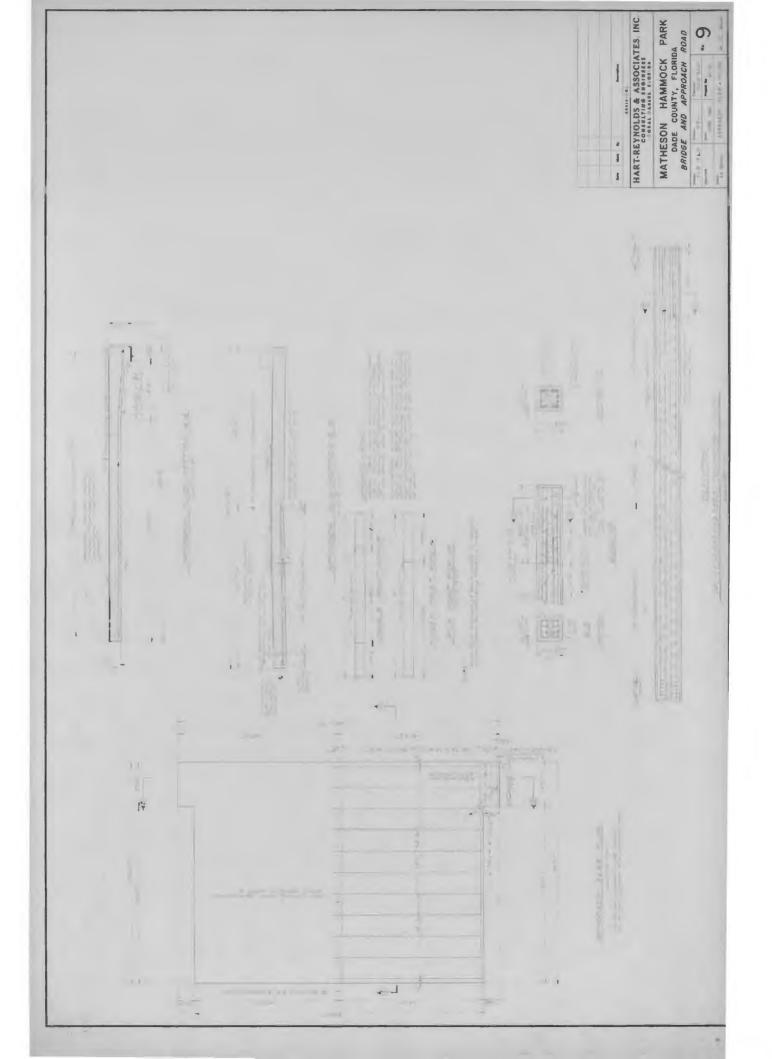

SITE NUMBER 294

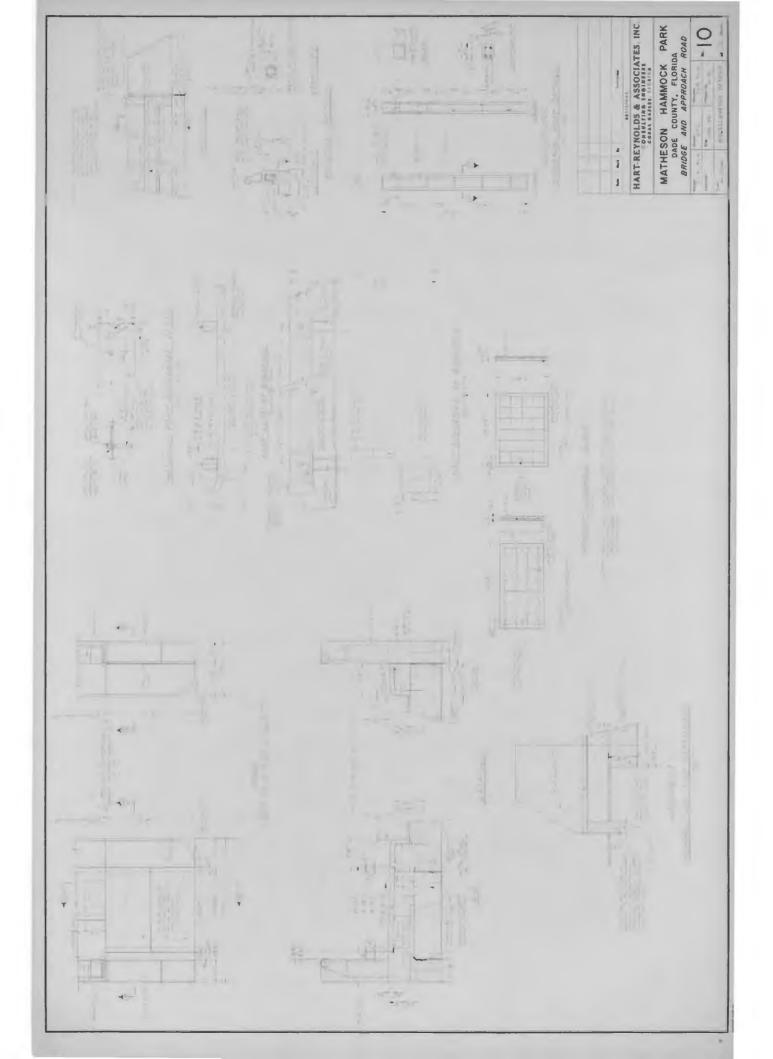
HART-REYNOLDS & ASSOCIATES, INC

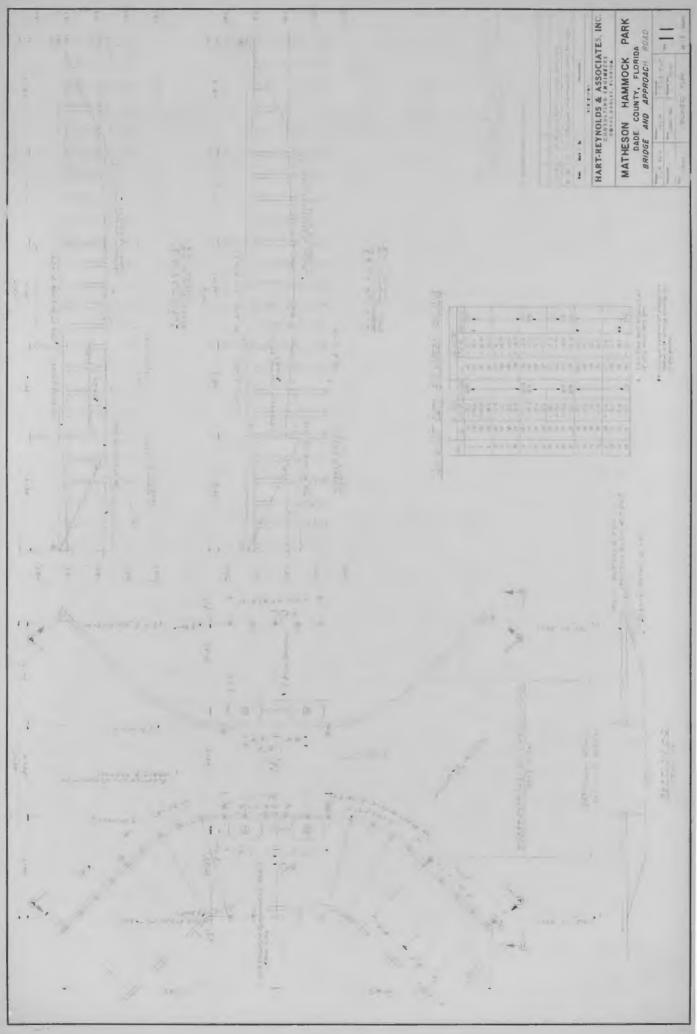

CONSULTING ENGINEERS CORAL GABLES, FLORIDA

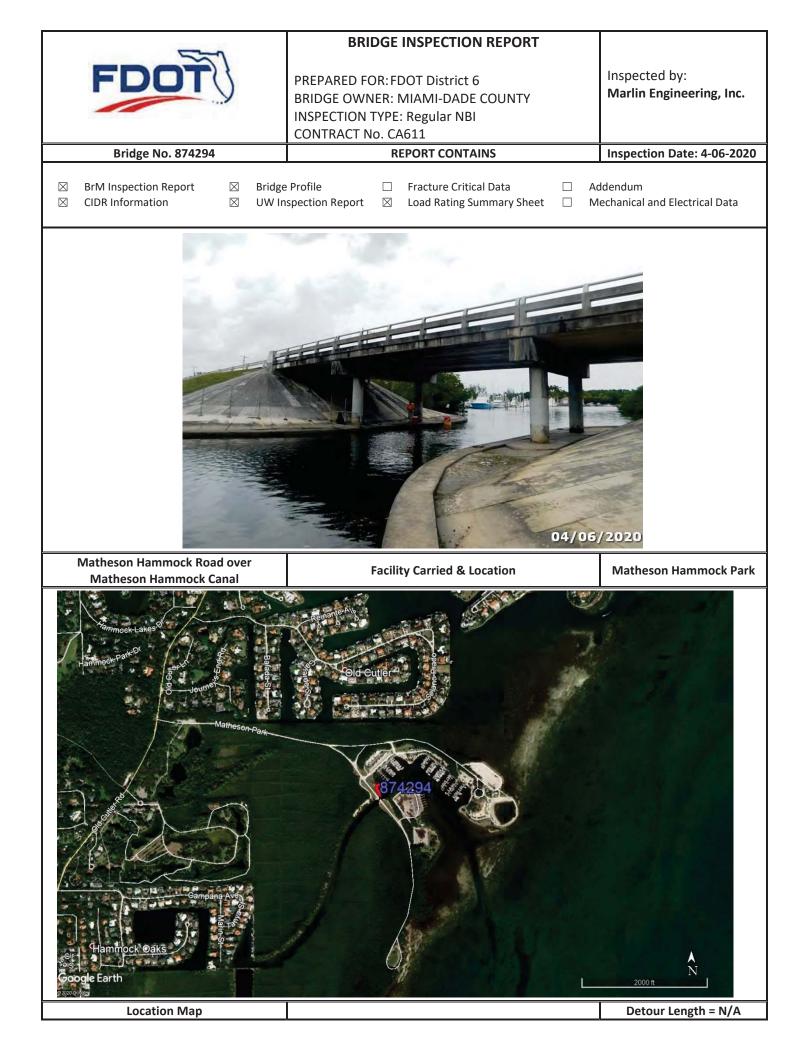





	MATHESON HAMMOCK PARK BRIDGE AND APPROACH ROAD MATHESON HAMMOCK PARK DADE COUNTY, FLORIDA BRIDGE AND APPROACH ROAD MATHESON HAMMOCK PARK DADE COUNTY, MARKEN AND APPROACH ROAD MATHESON HAMMOCK PARK
And the second s	and
The second	The set of







APPENDIX B – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

BY:	Marlin Engineering, Inc.	STRUCTURE NAME:	Not recorded
OWNER:	2 County Hwy Agency	YEAR BUILT:	1967
MAINTAINED BY:	2 County Hwy Agency	SECTION NO .:	87 000 757
STRUCTURE TYPE:	5 Prestressed Concrete - 01 Slab	MP:	0.080
LOCATION:	Matheson Hammock Park	ROUTE:	00000
SERV. TYPE ON:	5 Highway-pedestrian	FACILITY CARRIED:	Matheson Hmk Road
SERV. TYPE UNDER:	5 Waterway	FEATURE INTERSECTED:	Matheson Hammock Canal

FUNCTIONALLY OBSOLETE

X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Regular NBI

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 4/6/2020 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5 HEALTH INDEX: 86.68

Structure ID: 874294

DISTRICT: D6 - Miami		INS	PECTION DATE: 4/6/2020 GZJW							
BY: Marlin Engineering, Inc. OWNER: 2 County Hwy Agency MAINTAINED BY: 2 County Hwy Agency STRUCTURE TYPE: 5 Prestressed Concrete - 01 LOCATION: Matheson Hammock Park SERV. TYPE ON: 5 Highway-pedestrian SERV. TYPE UNDER: 5 Waterway THIS BRIDGE CONTAINS FRACTURE CRITICAL C THIS BRIDGE IS SCOUR CRITICAL		ROUTE: FACILITY CARRIED: FEATURE INTERSECTED:	0.080							
THIS BRIDGE IS SCO	UR CRITICAL									
X THIS REPORT IDENTIFIES DEFICIENCIES WHICH REQUIRE PROMPT CORRECTIVE ACTION										
FUNCTIONALLY OBS	OLETE	X STRUCTURALLY DEFICIENT								
TYPE OF INSPECTION: DATE FIELD INSPECTION OVERALL NBI RATINGS:	Regular NBI WAS PERFORMED: ABO	VE WATER: 4/6/2020 UNDERWATER:	4/6/2020							
DECK: 3	Serious	CHANNEL: 6 Bank Slumping								
SUPERSTRUCTURE: 3		CULVERT: N N/A (NBI)								
SUBSTRUCTURE: 4	Poor	SUFF. RATING: 15.5								
PERF. RATING: P	Poor	HEALTH INDEX: 86.68								
FIELD PERSONNEL / TITL	E / NUMBER:		INITIALS							
Porras, Omar - Senior Diver	Bridge Inspector (CBI#0368)	(lead)								
Gomez, Hiram - Bridge Insp										
Jacob Popp - Bridge Inspec										
Burgos, Daniel - Bridge Insp										
Campo, Luis - Bridge Inspec	ctor Assistant									
REVIEWING BRIDGE INSE	PECTION SUPERVISOR									

REVIEWING BRIDGE INSPECTION SUPERVISOR:

Rego, Alexis - Bridge Inspector (CBI#00409)

CONFIRMING REGISTERED PROFESSIONAL ENGINEER:

Vers, Julie - Structural Design Manager (P.E. # 77896) Marlin Engineering 1700 NW 66 Avenue Suite 106 Plantation Florida 33313	ULLE ANN VERS
SIGNATURE:	E★: No. 77896 :★E
DATE:	
The official record of this package has been electronically signed and sealed by Julie A. Vers, P.E. on the date adjacent to the seal as required by Rule 61 G15-23.004, F.A.C Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.	SIONAL ENGLISH

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

All Elements

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3178	89.88	114	3.22	244	6.9	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		114	59.07	79	40.93	0		193 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110/3	Cracking (PSC)	0		0		144	100	0		144 (SF)
0	510/3	Wearing Surfaces	1929	73.23	0	· ·	705	26.77	0		2634 sq.ft
0	3220 / 3	3 Crack (Wearing Surface)	0	· .	0	·	705	100	0		705 sq.ft

Element Inspection Notes:

8099/3 Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

_Object markers and centerline raised pavement markers are missing on the structure. Refer to Photo 01. NO CHANGE. _Sidewalk panels are loose and moves under pedestrian load. Refer to Photo 02. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Replace the southern utility access panel of Span 1.

_Shim all sidewalk panels throughout the structure.

_Rehab/replace slab units 1-7, 1-8, 2-7, 2-8, 3-7 and 3-8.

_Clean efflorescence on slab units 1-6 and 1-7 to monitor the cracks.

______Repair cracks on slab units 1-6, 1-9, 2-6, 2-9, 3-6.

_Repair spalled/delaminated areas on slab units 1-6, 1-9, 2-6, 2-9, and 3-6 as needed.

CORRECTIVE ACTION EVALUATION:

_The recommendation noted above was completed. _The recommendation noted above was not completed. Recommendation will be repeated. _The recommendation noted above was not completed. Recommendation will be repeated _The recommendation noted above was not completed. Recommendation will be repeated. _The recommendation noted above was not completed. Recommendation will be repeated.

Refer to Defects 1080, 1090, 1100, and 1110 for additional deficiencies.

1080/3 CS-3:

_Slab Unit 1-8 east edge has a spall/delamination 4ft. L x 15in. W x 2in. D and associated cracks with corrosion bleed-out near mid-span. Previously noted a delamination with associated cracks. (Total 8 SF) Refer to Photo 03. INCREASE. _Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2in. D over Abutment 1. (Total 6 SF) Refer to Photo 04. NO CHANGE. _Slab Unit 3-7 has an unsound repaired area 11ft. L x 2ft. W starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (Total 22 SF) Refer to Photo 05. NO CHANGE. _Slab Unit 3-8 has a spall/delamination up to 7ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (Total 21 SF) Refer to Photo 06. NO CHANGE. _Slab Unit 3-8 west edge has an unsound repaired area 11ft. L x 18in. W starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence. (Total 22 SF) NO CHANGE.

CS-2:

Structure ID: 874294

DISTRICT: D6 - Miami

1090/3

1100/3

1110/3

INSPECTION DATE: 4/6/2020 GZJW

Slab Unit 1-6, east edge has a delamination up to full length x 12in. W starting at Pier_ 2 cap. Previously noted as 3in. W. (Total 30 SF) INCREASE. _Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, starting at Pier 2 cap. (Total 7 SF) NEW. _Slab Unit 1-9, west edge has a delamination up to 10ft. L x 14in. W, starting at Pier 2 cap. (Total 10 SF) NO CHANGE. Slab Unit 2-6, east edge has a delamination 30in. L x 4in. W starting at Pier 2 cap. (Total 3 SF). Refer to Photo 07. NO CHANGE. _Slab Unit 2-7, west edge has a delamination up to 24in. L x 4in. W starting at Pier 2 cap. (Total 2 SF) Refer to Photo 07. NO CHANGE. _Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends. (Total 60 SF). Refer to Photo 08. NO CHANGE. _Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3. (Total 2 SF) NO CHANGE. CS-3: _Slab Unit 1-6 exhibits a spall with exposed rebar up to 15in. L x 6in. W x 1/2in. D with evidence of previous failed repair, at 9ft. from Abutment 1. (Total 1 SF) Refer to Photo 09. NO CHANGE. CS-3: _Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads). (Total 20 SF) Refer to Photos 08 and 10. NO CHANGE. CS-3: Slab Unit 1-6 east edge has a delamination area full length x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. Previously noted as a delamination full length x 3in. W. (Total 30 SF) INCREASE. Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. No corrosion bleed out was previously noted. (Total 2 SF) Refer to Photo 11. INCREASE. _Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W with associated cracks up to 1/8in. W with efflorescence and corrosion bleed-out, starting at Abutment 1. (Total 15 SF) Refer to Photo 11. NO CHANGE. Slab Unit 1-8 has a delaminated area up to 7ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (Total 21 SF) NO CHANGE. Slab Unit 1-9 west edge has a delaminated area 8ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (Total 8 SF) NO CHANGE. Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width). (Total 38 SF) NO CHANGE. Slab Unit 2-9 west edge has a delaminated area up to 5ft. L x 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (Total 5 SF). NO CHANGE. Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Total 25 SF) NO CHANGE. PREVIOUS RECOMMENDED CORRECTIVE ACTION: Repair the asphalt overlay over the expansion joints and slab unit joints as needed. CORRECTIVE ACTION EVALUATION: The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 3220 for deficiencies.

3220/3 CS-3:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

510/3

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

_The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated rutting over the slab unit joints with upheaving up to 1in. H at the shoulders, possibly indicating independent slab units movement. (Total 600 SF) Refer to Photo 12. NO CHANGE.

_The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. H and vegetation growth over the expansion joints. (Total 105 SF) Refer to Photo 13. NO CHANGE.

DECKS: Joints

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0		104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

Element Inspection Notes:

301/3 Note: The roadway joints are not visible due to an asphalt overlay.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Clean and seal the expansion joints.

CORRECTIVE ACTION EVALUATION: __The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 2310 and 2330 for deficiencies.

2310/3 CS-3:

_There is evidence of moderate to heavy water seepage through the expansion joints on bents and abutment caps. (Total 104 LF) Refer to Photo 14. NO CHANGE. NCAR.

2330/3 CS-4:

_The sealant along the sidewalk expansion joints has deteriorated. (Total 36 LF) Refer to Photo 15. NO CHANGE.

MISCELLANEOUS: Channel

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8290 / 3	Channel	0		0		1	100	0		1 (EA)
0	9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

Element Inspection Notes:

8290/3 FROM THE 2020 UNDERWATER INSPECTION:

Divers conducting the Underwater Inspection. Refer to Photo 16.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: Repair undermining areas at the north seawall.

CORRECTIVE ACTION EVALUATION: The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 9150 for deficiencies.

9150/3 CS-3:

_There are two areas of undermining up to 22ft. L x 3in. H x 21in. of penetration with backfill migration under the north seawall, below Slab Units 2-2 and 2-5. Previously noted

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

undermining up to 22ft. L x 9in. H x 21in. of penetration. (Total 1 ea.) Refer to Photo 17. NO CHANGE.

MISCELLANEOUS: Other Elements

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0	510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
0	3220 / 3	3 Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

Element Inspection Notes:

321/3 Note: The approach slabs are not visible due to an asphalt overlay.

SECONDARY:

_There are several approach roadway guardrails posts spalled/delaminated up to 14in. H x 3.5in. W x 1-1/4in D with exposed and corroded rebars at the following locations: NW guardrail, Posts 1, 2, 3, and 4, SW guardrail, Posts 2 and 4 from the bridge, SE guardrail, Post 1 from the bridge. Post 4 in NW guardrail was not previously noted. Refer to Photo 18. INCREASE.

_The approach guardrail panels exhibit moderate to heavy corrosion with numerous corrosion holes throughout. Refer to Photo 19. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Replace the approach guardrail panels and posts.

CORRECTIVE ACTION EVALUATION: _The corrective action noted above was not completed. Recommendation will be repeated.

510/3 Refer to Defect 3220 for deficiencies.

3220/3 CS-3:

_The asphalt over the north approach slab has two longitudinal ravel cracks up to slab length x 1/8in. W in Lanes 1 and Lane 2. Previously noted cracks up to 1/16in. W (Total 40 SF) INCREASE. NCAR. _The asphalt in both approach slab to approach roadway transitions has a transverse crack

up to roadway width x 1/4in. W. (Total 53 SF) NO CHANGE. NCAR.

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

Element Inspection Notes:

205/3 Note: At high tide, the seawater reaches the lower section of the columns.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Repair delaminated areas in columns.

CORRECTIVE ACTION EVALUATION: The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1090 and 1130 for deficiencies.

1090/3 CS-3:

Column 2-2, south face has a spall/delamination up to 7ft. H x 3ft. W x 3in. D with one

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

exposed rebar and one stirrup, having areas of up to 80% section remaining. Additionally, there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W. No exposed rebar was previously noted. (Total 1 ea.) Refer to Photo 20. INCREASE.

1130/3 CS-3:

_Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height x 1/16in. W, as a result of corrosion of the steel reinforcement. (Total 3 ea.) Refer to Photo 21. NO CHANGE.

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

Element Inspection Notes:

215/3 Refer to Defect 1080 for deficiencies.

1080/3 CS-3:

_Abutment 4 cap has a spall/delamination up to 5ft. L x full height x 2in. D with associated cracks up to 1/16in. W under Slab Units 3-10 and 3-11. (Total 5 LF) Refer to Photo 22. NEW.

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

Element Inspection Notes:

234/3 SECONDARY:

_Bents 2 and 3 caps have vegetation growth along the west end. Refer to Photo 23. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Remove vegetation from west end of caps. _Repair delaminations in Pier 2 and 3 caps.

CORRECTIVE ACTION EVALUATION: _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 1080 for additional deficiencies.

1080/3 CS-3:

_Bent 2 cap has a spall/delamination up to 3ft. L x 16in. H x 1 in. D on the south face over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. Previously noted only a delamination 3ft. L x 16in. H. (Total 3 LF) Refer to Photo 24. INCREASE. Bent 3 cap, bottom and north faces has two unsound repaired areas with multidirectional

cracks up to 1/64in. W. No unsound concrete with cracks was previously noted. (Total 4 LF) INCREASE.

CS-2: _Pier 3 cap has intermittent delaminated areas up to 3ft. L x 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges. Previously noted delaminations up to 3ft. L

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

x 16in. H totaling 5 LF. (Total 12 LF) INCREASE.

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Materia	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft
0	6000 / 3	Scour	0		0		40	100	0		40 ft

Element Inspection Notes:

8393/3 Note: This element represents the concrete seawall that lines both sides of the channel. The seawall is underwater during high tide. The seawalls have a total of 44 piles; 22 piles at each seawall.

SECONDARY:

_The brackets and fasteners attaching the clearance gauges to the seawalls exhibit heavy to severe corrosion. Refer to Photo 25.

FROM THE 2020 UNDERWATER INSPECTION:

SECONDARY:

_SE and NW clearance gauges have moderate decay at bottom 3ft. Refer to Photo 26. NO CHANGE.

_The south seawall has two open joints up to 4in. W with backfill leakage behind Piles 15 and 18 from west. Refer to Photo 27. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Clean & seal cracks & repair delaminations/spalls in seawall caps. _Seal open joints at the south seawall behind Piles 15 and 18.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1130 and 6000 for additional deficiencies.

1130/3 CS-3:

The seawall caps on the north and south walls have up to 1/4in W cracks, with associated delaminations/spalls throughout their entire lengths. (Total 314 LF) Refer to Photo 28. NO CHANGE. The south seawall at Pile 13, SE corner has a spall 14in. H x 3-1/2in. W x 1in. D, 3ft. 9in. below cap. NO CHANGE. NCAR. South seawall piles have vertical cracks up to 31in. L x 1/8in. W, some with corrosion bleed out as follows: NO CHANGE. NCAR. -Pile 3, NE corner has a crack, and west, north and east faces have cracks with corrosion bleed out. -Pile 4, north face has a crack with corrosion bleed out. -Pile 16, east face has a crack with corrosion bleed out. -Pile 17, west, north and east faces have cracks with corrosion bleed out. -Piles 19, 20 and 21, SW and SE corners have cracks. North seawall piles have vertical cracks intermittently throughout, up to 34in. L x 1/16in. W, some with corrosion bleed out as follows: NO CHANGE. NCAR. -Piles 5 and 6, SW and SE corners have cracks with corrosion bleed out. -Pile 3, SW corner has a crack. -Pile 4, NW corner has a crack. -Piles 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23 have cracks in the SW and SE

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

corners.

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

-Pile 11, SE corner has a crack.

6000/3 From the 2020 Underwater Inspection:

CS-3:

_There are two areas of undermining up to 22ft. L x 9in. H x 21in. of penetration with backfill migration under the north seawall, below Slab Units 2 and 5. Refer to Element 8290 for related comments and recommended corrective actions. (Total 40 LF) NO CHANGE.

SUBSTRUCTURE : Substructure

S	tr Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
	0	1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
	0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

Element Inspection Notes:

8394/3 Note: At high tide, the seawater reaches the lower section of the concrete slope pavement.

SECONDARY:

_There is vegetation growth in the joints between the panels of slope protection in several locations. NO CHANGE. NCAR.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Repair settled & fractured sections of slope pavement.

CORRECTIVE ACTION EVALUATION: _The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1130 and 4000 for additional deficiencies.

1130/3 CS-3:

_The slope pavement has multidirectional cracks up to 5ft. L x 1/8in. W along the NE corner near the toe. (Total 320 SF) NO CHANGE. NCAR.

4000/3 CS-3:

_The top slope pavement section along the SW and NW corners has settled up to 4in. H. (Total 933 SF) NO CHANGE.

_The slope protection toe has a fractured and settled area of 15ft. x 7ft. x 2ft deep at the NW corner behind the seawall cap. Possibly due to water reaching this area at high tide, no undermining or backfill migration are noted in the channel adjacent area. (Total 105 SF) Refer to Photo 29. NO CHANGE. _The SW slope protection toe has 5 fractured panels that have settled up to 3in. H. Possibly due to water reaching this area at high tide, no undermining or backfill migration are noted in the channel adjacent area. (Total 50 SF) Refer to Photo 30. NO

CHANGE

SUPERSTRUCTURE :	Superstructure
------------------	----------------

Str Un	it El	lem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	33	33 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0		1000 / 3	Corrosion	0		30	100	0		0		30 ft
0		1020 / 3	Connection	0		3	100	0		0		3 ft

Element Inspection Notes:

333/3 Note: This element represents the concrete post and beam bridge rail with

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

aluminum handrail on top across both sides of the structure. CS-1: _The concrete bridge rail beams have 1/64in W cracks at the junctures with the posts in several locations. NO CHANGE. NCAR. PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Replace the approach guardrail panels and posts. _Replace the missing railing nuts on left side of Bent 3. _Clean & coat the corroded nuts of railing. CORRECTIVE ACTION EVALUATION: _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. Refer to Defects 1000 and 1020 for additional deficiencies. 1000/3 CS-2: The rail anchor bolt nuts and washers have moderate corrosion at random locations: 25 nuts at west railing, and 5 nuts at east railing. (Total 30 LF) Refer to Photo 31. NO CHANGE. 1020/3 CS-2: _There are several missing anchor bolt nuts at the aluminium rail posts at the following locations: (Total 3 ea.) Refer to Photo 32. INCREASE. _West rail, Post 1-1 is missing 1 of 4 nuts. NEW.

_West rail, Post 1-1 is missing 1 of 4 nuts. New. _West rail, Post 2-6 is missing 2 of 4 nuts. NO CHANGE. _East rail, Post 1-5 is missing 1 of 4 nuts. NEW.

Total Number of Elements*: 10

*excluding defects/protective systems

Structure ID: 874	294		
DISTRICT: D6 - M	liami	INSPECTION D	ATE: 4/6/2020 GZJW
	Inspector Recommendations		
<u>UNIT: 0</u>	DECKS		
ELEMENT/ENV:	301:2330 / 3 Seal Damage	ELEM CATEGORY:	Joints
CONDITION STATE			PRIORITY
4	MMS Quantity: 36 If Element Estimated Quantity: 36 ft		3
WORK OF	RDER RECOMMENDATION:		
Insta	Il new sealant along the sidewalk expansion joints. Photo 15		
ELEMENT/ENV:	8099 / 3 PS Conc Slab (Sonovoid)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
1,2,3	MMS Quantity: 4 sf Element Estimated Quantity: 4 (SF)		3
WORK OF	RDER RECOMMENDATION:		
Repl	ace missing object markers at the four corners of the bridge. Photo 01		
1 , 2 , 3	MMS Quantity: 300 sf Element Estimated Quantity: 300 (SF)		3
WORK OF	DER RECOMMENDATION:		
Prop	erly secure the sidewalk panels. Photo 02		
ELEMENT/ENV:	8099:510:3220 / 3 Crack (Wearing Surface)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
3	MMS Quantity: 600 sf Element Estimated Quantity: 600 sq.ft		0
WORK OF	RDER RECOMMENDATION:		
Moni	itor the slab units for independent movement. Photo 12		
3	MMS Quantity: 600 sf Element Estimated Quantity: 600 sq.ft		3
WORK OF	RDER RECOMMENDATION:		
Repa	air cracks on the asphalt along the slab unit joints. Photo 12		
3	MMS Quantity: 105 sf Element Estimated Quantity: 105 sq.ft		3
WORK OF	RDER RECOMMENDATION:		
Clea	n and repair cracks and rutting along the expansion joints. Photo 13		
ELEMENT/ENV:	8099:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY:	Decks/Slabs

CONDITION STATE			PRIORITY
2,3	MMS Quantity: 338 sf	Element Estimated Quantity: 338 (SF)	3
WORK ORD	ER RECOMMENDATION		

Repair spalls delaminations and cracks along the underside of the slabs units. Photos 03 to 11

Structure ID: 874294

DISTRICT: D6 - M	liami	INSPECTION D	ATE: 4/6/2020 GZJW
	Inspector Recommendations	6	
<u>UNIT: 0</u>	DECKS		
ELEMENT/ENV:	8099:1100 / 3 Exposed Prestressing	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
3	MMS Quantity: 20 sf Element Estimated Quantity: 20 (SF)		3
	DER RECOMMENDATION:		
Clea	n and coat exposed prestressing and reinforce Slab Unit 2-8. Photos	08 and 10	
<u>UNIT: 0</u>	MISCELLANEOUS		
ELEMENT/ENV:	321 / 3 Re Conc Approach Slab	ELEM CATEGORY:	Other Elements
CONDITION STATE			PRIORITY
1	MMS Quantity: 80 sf Element Estimated Quantity: 80 sq.ft		3
WORK OF	DER RECOMMENDATION:		
Repl	ace all the approach guardrail panels. Photo 19		
1	MMS Quantity: 7 sf Element Estimated Quantity: 7 sq.ft		3
WORK OF	DER RECOMMENDATION:		
Repl	ace spalled and delaminated posts along the roadway approach guar	drails. Photo 18	
ELEMENT/ENV:	8290:9150 / 3 Bank Erosion	ELEM CATEGORY:	Channel
CONDITION STATE			PRIORITY
3	MMS Quantity: 8 mh Element Estimated Quantity: 1 (EA)		3
WORK OF	DER RECOMMENDATION:		
Repa	air undermining areas at the north seawall. Photo 17		
<u>UNIT: 0</u>	SUBSTRUCTURE		
ELEMENT/ENV:	205:1090 / 3 Exposed Rebar	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 16 mh Element Estimated Quantity: 1 each		3
	DER RECOMMENDATION:		
Rem	ove any loose concrete and repair delaminations and spalls along the	e Column 2-2. Photo 20	

DISTRICT: D6 - M	liami	ELEM CATEGORY: Substrue PR antity: 4 each uotos 20 and 21 uantity: 4 each d 3 columns. Photo 21 Area ELEM CATEGORY: Substrue PR antity: 5 ft b Units 3-10 and 3-11. Photo 22 ELEM CATEGORY: Substrue PR antity: 2 ft 1 3 caps. Photo 23	ATE: 4/6/2020 GZJW
	Inspector Recommendations		
<u>UNIT: 0</u>	SUBSTRUCTURE		
ELEMENT/ENV:	205:1130 / 3 Cracking (RC and Other)	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 8 mh Element Estimated Quantity: 4 each		3
WORK OF	DER RECOMMENDATION:		
Insta	Il cathodic protection to Bents 2 and 3 columns. Photos 20 and 21		
3	MMS Quantity: 80 mh Element Estimated Quantity: 4 each		3
WORK OF	DER RECOMMENDATION:		
Repa	air delaminations and seal cracks along Bents 2 and 3 columns. Photo	21	
ELEMENT/ENV:	215:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 8 mh Element Estimated Quantity: 5 ft		3
WORK OF	DER RECOMMENDATION:		
Repa	air spall/delamination on Abutment 4 cap under Slab Units 3-10 and 3-	11. Photo 22	
ELEMENT/ENV:	234 / 3 Re Conc Pier Cap	ELEM CATEGORY	Substructure
CONDITION			ouserractare
STATE			PRIORITY
1 , 2 , 3	MMS Quantity: 2 mh Element Estimated Quantity: 2 ft		3
WORK OF	DER RECOMMENDATION:		
Rem	ove vegetation growing on west end of Bents 2 and 3 caps. Photo 23		
ELEMENT/ENV:	234:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
2,3	MMS Quantity: 16 mh Element Estimated Quantity: 19 ft		3
WORK OF	DER RECOMMENDATION:		
Repa	air spalls and delaminations along Bents 2 and 3 caps. Photo 24		
ELEMENT/ENV:	8393 / 3 Bulkhead Seawall Any Material	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 8 mh Element Estimated Quantity: 4 ft		3
WORK OF	DER RECOMMENDATION:		
	ace the clearance gauges and hardware on the seawall at both sides on the seawall at both sides on 26	of the channel. Photos	

	<i>l</i> iami	INSPECTION D	ATE: 4/6/2020 G
	Inspector Recommendations	5	
<u>UNIT: 0</u>	SUBSTRUCTURE		
ELEMENT/ENV:	8393 / 3 Bulkhead Seawall Any Material	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 8 mh Element Estimated Quantity: 2 ft		3
	RDER RECOMMENDATION:		
Seal	open joints at the south seawall behind Piles 15 and 18. Photo 27		
ELEMENT/ENV:	8393:1130 / 3 Cracking (RC and Other)	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 40 mh Element Estimated Quantity: 314 ft		3
WORK OF	RDER RECOMMENDATION:		
Rep	air delaminations and spalls along the seawall caps. Photo 28		
ELEMENT/ENV:	8394:4000 / 3 Settlement	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
	MMS Quantity: 160 mh Element Estimated Quantity: 1088 (SF	=)	PRIORITY 3
STATE 3	MMS Quantity: 160 mh Element Estimated Quantity: 1088 (SF RDER RECOMMENDATION:	=)	_
STATE 3 WORK OF			_
3 WORK OF Repa	RDER RECOMMENDATION:		_
STATE 3 WORK OF Repa	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29		3
STATE 3 WORK OF Repa	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29	and 30	3 Superstructure
STATE 3 WORK OF Repa JNIT: 0 ELEMENT/ENV: CONDITION	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29	and 30	3
STATE 3 WORK OF Repa JNIT: 0 ELEMENT/ENV: CONDITION STATE 2	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 <u>SUPERSTRUCTURE</u> 333:1000 / 3 Corrosion	and 30	3 Superstructure PRIORITY
STATE 3 WORK OF Rep UNIT: 0 ELEMENT/ENV: CONDITION STATE 2 WORK OF	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 <u>SUPERSTRUCTURE</u> <u>333:1000 / 3 Corrosion</u> MMS Quantity: 30 If Element Estimated Quantity: 30 ft	and 30 ELEM CATEGORY:	3 Superstructure PRIORITY
STATE 3 WORK OF Rep UNIT: 0 ELEMENT/ENV: CONDITION STATE 2 WORK OF	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 SUPERSTRUCTURE 333:1000 / 3 Corrosion MMS Quantity: 30 If Element Estimated Quantity: 30 ft RDER RECOMMENDATION:	and 30 ELEM CATEGORY:	3 Superstructure PRIORITY 3
STATE 3 WORK OF Repa UNIT: 0 ELEMENT/ENV: CONDITION STATE 2 WORK OF Clea	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 <u>SUPERSTRUCTURE</u> 333:1000 / 3 Corrosion MMS Quantity: 30 If Element Estimated Quantity: 30 ft RDER RECOMMENDATION: an and paint or replace corroded hardware along the bridge aluminium	and 30 ELEM CATEGORY:	3 Superstructure PRIORITY 3
STATE 3 WORK OF Repa JNIT: 0 ELEMENT/ENV: CONDITION STATE 2 WORK OF Clea ELEMENT/ENV: CONDITION STATE	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 SUPERSTRUCTURE 333:1000 / 3 Corrosion MMS Quantity: 30 If Element Estimated Quantity: 30 ft RDER RECOMMENDATION: an and paint or replace corroded hardware along the bridge aluminium 333:1020 / 3 Connection	and 30 ELEM CATEGORY:	3 Superstructure PRIORITY 3 Superstructure PRIORITY
STATE 3 WORK OF Reparation STATE 2 WORK OF Clear ELEMENT/ENV: CONDITION STATE 2 WORK OF Clear ELEMENT/ENV: CONDITION STATE 2	RDER RECOMMENDATION: air settled and fractured areas along the slope protections. Photos 29 <u>SUPERSTRUCTURE</u> 333:1000 / 3 Corrosion MMS Quantity: 30 If Element Estimated Quantity: 30 ft RDER RECOMMENDATION: an and paint or replace corroded hardware along the bridge aluminium	and 30 ELEM CATEGORY:	3 Superstructure PRIORITY 3 Superstructure

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north.

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 33 and 34.

REVIEWED BY:

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

INSPECTION NOTES: GZJW

Sufficiency Rating Calculation Accepted by knmeira at 5/13/2020 9:36:35 AM

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020)

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020)

4/6/2020

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020)

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/06/2020 per Julie A.Vers, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

Element 8475 R/Conc Walls was replaced by 8393 Bulkhead Seawall Any Material during this inspection cycle. All previous notes were transferred accordingly. (04/06/2020)

The following elements were inspected underwater by the divers: 8290 Channel 8393 Bulkhead Seawall Any Material

LEGEND: NCAR: NO CORRECTIVE ACTION RECOMMENDED. RT: Right LT: Left NC: No Change INC: Increase CAT: Corrective Action Taken L: Long W: Wide H: High D: Deep UW: Underwater S.L.: Section Loss in.: Inches ft.: Feet

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 01 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Object markers and centerline raised pavement markers are missing on the structure.

WORK ORDER RECOMMENDATION: Replace missing object markers at the four corners of the bridge.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 02 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Sidewalk panels are loose and moves under pedestrian load.

WORK ORDER RECOMMENDATION: Properly secure the sidewalk panels.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 03 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-8 east edge has a spall/delamination 4ft. L x 15in. W x 2in. D and associated cracks with corrosion bleed-out near mid-span.

WORK ORDER RECOMMENDATION: Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 04 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2in. D over Abutment 1.

WORK ORDER RECOMMENDATION: Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 05 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 11ft. L x 2ft. W starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 06 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 7ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

WORK ORDER RECOMMENDATION: Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 07 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Units 2-6 and 2-7, east and west edges have delaminations up to 30in. L x 4in. W, starting at Pier 2 cap.

WORK ORDER RECOMMENDATION: Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 08 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, and at midspan has a spall 10ft. L x 24in. W x up to 4in. D with exposed strands. Refer to Photo 10 for additional information.

WORK ORDER RECOMMENDATION: Clean and coat exposed prestressing and reinforce Slab Unit 2-8. Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 09 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-6 exhibits a spall with exposed rebar up to 15in. L x 6in. W x 1/2in. D with evidence of previous failed repair, at 9ft. from Abutment 1.

WORK ORDER RECOMMENDATION: Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 10 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads).

WORK ORDER RECOMMENDATION: Clean and coat exposed prestressing and reinforce Slab Unit 2-8. Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 11 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleedout over Abutment 1. Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W with associated cracks up to 1/8in. W with efflorescence and corrosion bleed-out, starting at Abutment 1.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 12 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated rutting over the slab unit joints with upheaving up to 1in. H at the shoulders, possibly indicating independent slab units movement.

WORK ORDER RECOMMENDATION: Repair cracks on the asphalt along the slab unit joints. Monitor the slab units for independent movement.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 13 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. H and vegetation growth over the expansion joints.

WORK ORDER RECOMMENDATION: Clean and repair cracks and rutting along the expansion joints.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 14 Element/Env 301/3: Pourable Joint Seal

There is evidence of moderate to heavy water seepage through the expansion joints on bents and abutment caps.

WORK ORDER RECOMMENDATION: None.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 15 Element/Env 301/3: Pourable Joint Seal

The sealant along the sidewalk expansion joints has deteriorated.

WORK ORDER RECOMMENDATION: Install new sealant along the sidewalk expansion joints.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

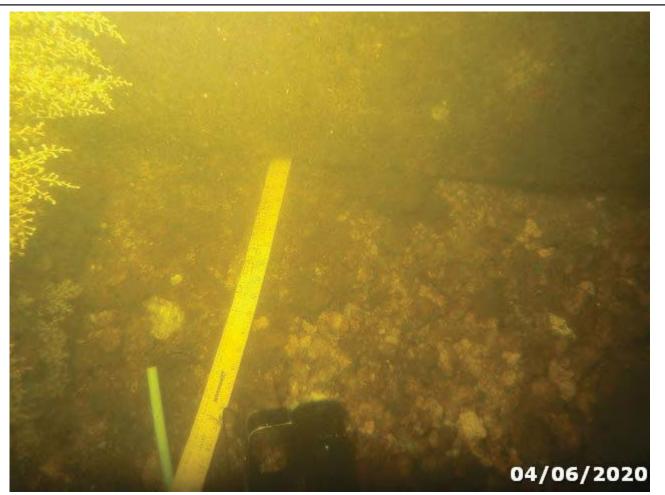


Photo 16 Element/Env 8290/3: Channel

Divers conducting the Underwater Inspection.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 17 Element/Env 8290/3: Channel

There are two areas of undermining up to 22ft. L x 3in. H x 21in. of penetration with backfill migration under the north seawall, below Slab Units 2-2 and 2-5.

WORK ORDER RECOMMENDATION: Repair undermining areas at the north seawall.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 18 Element/Env 321/3: R/Conc Approach Slab

There are several approach roadway guardrails posts spalled/delaminated up to 14in. H x 3.5in. W x 1-1/4in D with exposed and corroded rebars. Shown Post 1 at NW approach guardrail.

WORK ORDER RECOMMENDATION:

Replace spalled and delaminated posts along the roadway approach guardrails.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 19 Element/Env 321/3: R/Conc Approach Slab

The approach guardrail panels exhibit moderate to heavy corrosion with numerous corrosion holes throughout.

WORK ORDER RECOMMENDATION: Replace all the approach guardrail panels.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 20 Element/Env 205/3: Re Conc Column

Column 2-2, south face has a spall/delamination up to 7ft. H x 3ft. W x 3in. D with one exposed rebar and one stirrup, having areas of up to 80% section remaining. Additionally, there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W.

WORK ORDER RECOMMENDATION: Remove any loose concrete and repair delaminations and spalls along the Column 2-2. Install cathodic protection to Bents 2 and 3 columns.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 21 Element/Env 205/3: Re Conc Column

Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height x 1/16in. W, as a result of corrosion of the steel reinforcement.

WORK ORDER RECOMMENDATION: Install cathodic protection to Bents 2 and 3 columns. Repair delaminations and seal cracks along Bents 2 and 3 columns.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 22 Element/Env 215/3: Re Conc Abutment

Abutment 4 cap has a spall/delamination up to 5ft. L x full height x 2in. D with associated cracks up to 1/16in. W under Slab Units 3-10 and 3-11.

WORK ORDER RECOMMENDATION: Repair spall/delamination on Abutment 4 cap under Slab Units 3-10 and 3-11.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 23 Element/Env 234/3: Re. Concrete Pier Cap

Bents 2 and 3 caps have vegetation growth along the west end.

WORK ORDER RECOMMENDATION: Remove vegetation growing on west end of Bents 2 and 3 caps.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 24 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap has a spall/delamination up to 3ft. L x 16in. H x 1 in. D on the south face over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H.

WORK ORDER RECOMMENDATION: Repair spalls and delaminations along Bents 2 and 3 caps.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

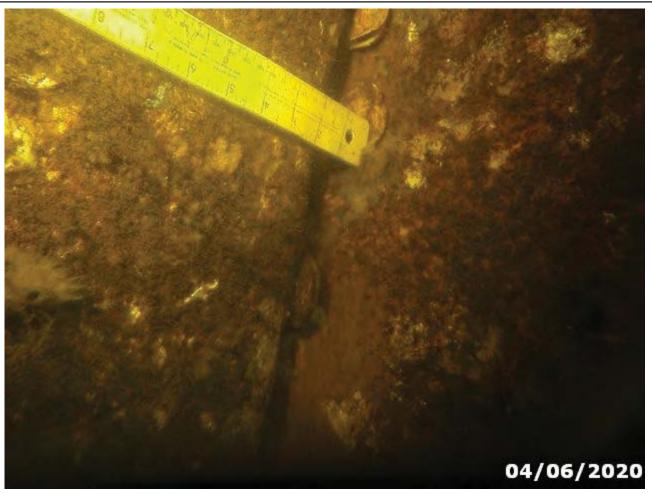
Photo 25 Element/Env 8393/3: Bulkhead Seawall Any Material

The brackets and fasteners attaching the clearance gauges to the seawalls exhibit heavy to severe corrosion.

WORK ORDER RECOMMENDATION: Replace the clearance gauges and hardware on the seawall at both sides of the channel.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW


Photo 26 Element/Env 8393/3: Bulkhead Seawall Any Material

SE and NW clearance gauges have moderate decay at bottom 3ft.

WORK ORDER RECOMMENDATION: Replace the clearance gauges and hardware on the seawall at both sides of the channel.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 27 Element/Env 8393/3: Bulkhead Seawall Any Material

The south seawall has two open joints up to 4in. W with backfill leakage behind Piles 15 and 18 from west.

WORK ORDER RECOMMENDATION: Seal open joints at the south seawall behind Piles 15 and 18.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 28 Element/Env 8393/3: Bulkhead Seawall Any Material

The seawall caps on the north and south walls have up to 1/4in W cracks, with associated delaminations/spalls throughout their entire lengths.

WORK ORDER RECOMMENDATION: Repair delaminations and spalls along the seawall caps.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 29 Element/Env 8394/3: R/Conc Abut Slope Protection

The slope protection toe has a fractured and settled area of 15ft. x 7ft. x 2ft deep at the NW corner behind the seawall cap. The channel water reach this area at high tide.

WORK ORDER RECOMMENDATION: Repair settled and fractured areas along the slope protections.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 30 Element/Env 8394/3: R/Conc Abut Slope Protection

The SW slope protection toe has 5 fractured panels that have settled up to 3in. H. The channel water reach this area at high tide.

WORK ORDER RECOMMENDATION: Repair settled and fractured areas along the slope protections.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 31 Element/Env 333/3: Other Bridge Railing

The rail anchor bolt nuts and washers have moderate corrosion at random locations: 25 nuts at west railing, and 5 nuts at east railing.

WORK ORDER RECOMMENDATION: Clean and paint or replace corroded hardware along the bridge aluminium rail.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 32 Element/Env 333/3: Other Bridge Railing

There are several missing anchor bolt nuts at the aluminium rail posts: west rail, Posts 1-1 and 2-6; and east rail, Post 1-5.

WORK ORDER RECOMMENDATION: Replace missing nuts at the aluminium rail post connections.

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 33 STRUCTURE NOTES: South Approach Posting Sign

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Photo 34 STRUCTURE NOTES: North Approach Posting Sign

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW



SCOUR EVALUATION

Channel looking West

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

SCOUR EVALUATION

Channel looking East

F. FIELD PREPARATION and CHECKLIST

Structure ID: <u>874294</u>

Inspection Date: 04/06/2020				Underwater: <u>04/06/2020</u>					
A. Tools and Ed	auipm	ent							
Full Size Cargo Van:	Yes:	Х	No:		Pick-up Truck:	Yes:	Х	No:	
Automobile:	Yes:		No:	Х					
Camera:	Yes:	Х	No:		Video:	Yes:	_	No: <u>X</u>	
NDT Equipment:	Yes:		No:	Х					
NDT Type:	<u>N/A</u>								
Binoculars:	Yes:		No:	Х					
Diving Performed: Dive Mode: <u>SCUBA</u> Hand Tools:	Yes:	Х	No:		Max Depth: <u>10.6 ft.</u>		Current:	<u>Moderate</u>	
1. Standard Ir 3. Inspection 5. Folding Rul Other:	Hand To		3		 Chipping Hammer Flashlight 				
B. Services Flag Crew: <u>N/A</u> Electrician: <u>N/A</u>					Snooper: <u>N/A</u> Other:		-		
C. Scheduling (Brief Explanation) Routine Inspection, no special scheduling needed. Man Hours: <u>0 hrs.</u> Dive Time: <u>2 hrs.</u> Travel Time: <u>1 hr.</u> Office Time: <u>1 hr.</u>									
D. Site Conditi Boat Needed: <u>NO</u>		of Boat:	<u>N/A</u>						
Location of Boat Ram	p: <u>N/A</u>	_							

Lengthy Travel Required: <u>N/A</u> Difficult Access: <u>NO</u> Water Obviously Polluted: <u>NO</u> Water quality is fair: <u>Yes</u> Strong Water Current: <u>Yes</u>

Other: <u>N/A</u>

E. UNDERWATER ELEMENTS INSPECTED:

- 8290 Channel 1ea.
- 8393 Bulkhead Seawall Any Material 354 ft.

Bridge No.	874294	Analysis Method: LRFR-LRFD	
Location	Matheson hammock	Road over matheson Hammock Canal	FDOT Bridge Load Rating Summary Form (Page 1 of 1)
Description	3 Spans, 2-30'&1-40'	, Prestressed voided slab beams 36"x17"	

Rating Type Rating Type Gross Axle (tons)		Moment/Shear/Service		Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF·Weight (tons)	
Level	Vehicle	Weight	Member Type	Limit	Limit DC	LL	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600			-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S16-44		Performed by:	Mengyuan Chen		Date:	01/13/20	
Rating Type, Analysis	LRFR-LRFD		Checked by:	Juan A. So	brino	Date:	01/13/20	
Distribution Method	Others		Sealed By:	Juan A. Sol	brino	Date:	01/13/20	
Impact Factor	33.0%	(axle loading)	FL P.E. No.:	73121				
FL120 Gov. Span Length	38.3	(feet)	Cert. Auth. No.:	27244				
Minimum Span Length	28.3	(feet)	Phone & email:	(+1) 305 648	00 10, miami@pedelta	a.om		
Recommended Posting	> 39.9% below (0.000-	0.600) (Required)	Company:	Pedelta Inc.				
Recommended SU Posting*	11	(tons)	Address:	2000 Ponce c 33134, USA	le Leon Blvd., Suite 62	4, Coral Gab	iles. Florida	
Recommended C Posting	16	(tons)	$P \not \in S(c), Commute intervention (Single$	Engineer	Digitally	signe	d by	
Recommended ST5 Posting	18	(tons)	Juan Sob		-			
Owner	02 County Highway Ag	gency					-	
Location	Neither interstate traf reasonable access to a		Sobri	no	15:58:25			
EV Posting	No. EV posting is not a FAST Act does not app	recommended. The	Juan A. Sobrino, State of Florida, Professional Engineer, License No 73121.					
Floor Beam Present?	No							
Segmental Bridge?	No		 This document has been electronically signed and sealed by Sobrino on January 13th, 2020 using a SHA authentication or 					
Project No. & Reason	432907-1-72-02	Deterioration	Printed copies of this document are not considered signed and s and the SHA authentication code must be verified on any electro					
Plans Status	Built	- 27 2	copies.			,		

This 10-11-2019 summary follows the FDOT Bridge Load Rating Manual (BLRM), and the FDOT BMS Coding Guide. *Recommended SU Posting levels for Florida SU trucks adequately restricts AASHTO SU trucks; see BLRM Chapter 7. Page 54 of 63

fdot.gov/maintenance/LoadRating.shtm

REPORT ID: INSP005

Structure ID: 874294

CIDR

DATE PRINTED: 5/18/2020

Description

Structure Unit Identification

Bridge/Unit Key: 874294 0 Structure Name: Description: SPANS 1 THRU 3 Type: M - Main

Roadway Identification

NBI Structure No (8):	874294	
Position/Prefix (5):	1 - Route On Structu	re
Kind Hwy (Rte Prefix):	4 County Hwy	
Design Level of Service:	8 Service Road	
Route Number/Suffix:	00000 / 0 N/A (NBI)	
Feature Intersect (6):	Matheson Hammock	Canal
Critical Facility:	Not Defense-crit	
Facility Carried (7):	Matheson Hmk Road	1
Mile Point (11):	0.08	
Latitude (16):	025d40'44.2"	Long (17): 080d15'43.8"

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS National base Net (12): 0 - Not on Base Network LRS Inventory Rte (13a): 87 000 757 Sub Rte (13b): 00 Functional Class (26): 09 Rural Local Federal Aid System: OFF Defense Hwy (100): 0 Not a STRAHNET hwy Direction of Traffic (102): 2 2-way traffic Emergency: X

NBI Project Data

Proposed Work (075A): Not Applicable (P) Work To Be Done By (075B): Not Applicable (P) Improvement Length (076): 0 ft

NBI Rating

Channel (61): 6 Bank Slumping Deck (58): 3 Serious Superstructure (59): 3 Serious Substructure (60): 4 Poor

Roadway Traffic and Accidents

Lanes (28): 2	Medians: 0	Speed: 15 mph
ADT Class	s: 2 ADT Class 2	
Recent ADT (29): 736	Year (30): 2014
Future ADT (114): 1168	Year (115): 2036
Truck % ADT (109): 1	
Detour Length (19): 99 mi	
Detour Speed	1:	
Accident Coun	t: -1	Rate:

Roadway Clearances

- Vertical (10): 99.99 ft
 - Horiz. (47): 26.25 ft
- Truck Network (110): 0 Not part of natl netwo
- Toll Facility (20): 3 On free road Fed. Lands Hwy (105): 0 N/A (NBI)
 - School Bus Route:

Appr. Road (32): 26.25 ft Roadway (51): 26.25 ft

- Improvement Cost (094): \$ 0.00 Roadway Improvement Cost (095): \$ 0.00 Total Cost (096): \$ 0.00 Year of Estimate (097):
 - Culvert (62): N N/A (NBI) Waterway (71): 8 Equal Desirable Unrepaired Spalls: -1 sq.ft. Review Required: X

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

CIDR

DATE PRINTED: 5/18/2020

•

Structure Identification

Admin Area: Miami-Dade District (2): D6 - Miami County (3): (87)Miami-Dade Place Code (4): South Miami Heights Location (9): Matheson Hammock Park Border Br St/Reg (98): Not Applicable (P) Share: 0 % Border Struct No (99): FIPS State/Region (1): 12 Florida Region 4-Atlanta NBIS Bridge Len (112): Y - Meets NBI Length Parallel Structure (101): No || bridge exists Temp. Structure (103): Not Applicable (P)

Maint. Resp. (21): 2 County Hwy Agency Owner (22): 2 County Hwy Agency Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft Bridge Median (33): 0 No median Main Span Material (43A): 5 Prestressed Concrete Appr Span Material (44A): Not Applicable (P) Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load Deck Geometry (68): 5 Above Tolerable Underclearances (69): N Not applicable (NBI) Approach Alignment (72): 8-No Speed Red thru Curv Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft Under (reference) (54a): N Feature not hwy or RR Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 04/06/2020 Inspector: KNMEIOP - Omar Porras Bridge Group: CA611 Alt. Bridge Group: Primary Type: Regular NBI Review Required: X

<u>Geometrics</u>

Spans in Main Unit (45): 3 Approach Spans (46): 0 Length of Max Span (48): 38.3 ft Structure Length (49): 100.33 ft Total Length: 140.33 ft Deck Area: 3536 sqft Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0 Type of Service On (42a): 5 Highway-pedestrian Under (42b): 5 Waterway Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft Skew (34): 0 deg Deck Type (107): 2 Concrete Precast Panel Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 86.68 Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

NBI: 04/06/2022 Element: 10/06/2020 Fracture Critical: Underwater: 04/06/2022 Other/Special: 10/06/2020 Inventory Photo Update Due: 04/06/2024

Page 57 of 63

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Structure ID: 874294	inopoonoi " on			C				DATE PRINTED: 5/18/2020
Schedule Cont.								
<u>Inspection Types</u> <u>Performed</u>	NBI 🔀 Ele	ement	Х	Fra	cture Critical		Underwater X C	other Special X
Inspection Intervals	<u>Required (92)</u>	<u>Freq</u>	uency	<u>ı (92)</u>	Last Date	<u>(93)</u>	Inspection Resourc	<u>es</u>
Fracture Critical			mos				Crew Hours:	4
Underwater	X	24	mos		04/06/2020		Flagger Hours:	0
Other Special	X	6	mos		04/06/2020		Helper Hours:	0
NBI		24	mos	(91)	04/06/2020	(90)	Snooper Hours:	0
							Special Crew Hours:	3
Bridge Related							Special Equip Hours:	0
General Bridge Informa	ation							
Parallel Bridge Seq:						Bridge	Rail 1: Conc parapet-alum-	rail
Channel Depth:						0	Rail 2: Not applicable-No ra	ail
Radio Frequency:					Ele		evices: No electric service	
Phone Number: Exception Date:					Mai		: Type: Not applicable • Yard: Not FDOT Maintaine	ad
Exception Type:							/ OFF: No Routes on FIHS	eu
Accepted By Maint:						vious Stru		
Warranty Expiration:					2nd Prev	vious Stru	ucture:	
Performance Rating:	Poor				Replace	ment Stru	ucture:	
Permitted Utilities: Power	Water X	Gas	\square	Fiber	Optic	Sewage	e 🗙 Other	
Bridge Load Rating Inf	formation		_					
Inventory Type (065):		Fact			Invento	ry Rating	(066): 7.6 tons	
Operating Type (063):	3 LRFR Load & Res	Fact			Operatir	ng Rating	(064): 11.9 tons	
Original Design Load (031):							Rating: 16.2 tons	
	01/13/2020			ł			Rating: 16.2 tons	
Initials:							ercent: 33 %	
Load Rating Rev. Recom.: Load Rating Plans Status:							ength: 38.3 ft ength: 28.3 ft	
							ethod: Others	
Load Rating Notes:								
LEGAL LOADS				PO	<u>STING</u>			
SU2:	11.7 tons					m. SU Po	osting: 11 tons	
SU3:	12.2 tons				Red	com. C Po	osting: 16 tons	
	11.9 tons						osting: 18 tons	
	18.2 tons						osting: 11 tons	
	16.9 tons 17.6 tons						osting: 16 tons osting: 18 tons	
	18.4 tons						osting: 99 tons	
	2 20.0-29.9%below						ehicle: 1 EV inapplicable	
Open/Posted/Closed (041):								
FLOOR BEAM (FB)	FB Present: No			SE	GMENTAL (SE	<u>G)</u>		
FB Span Length, Gov:	0.0 ft				S	EG Wing-	-Span: -1.0 ft	
FB Spacing, Gov:	0.0 ft				SEG Wel	b-to-Web	Span: -1.0 ft	
FB OPR Rating:				SE	G Transverse ⊦	IL93 Ope	rating: -1.00 RF	
FB SU4 OPR Rating:								
FB FL120 Rating:								
Bridge Scour and Stor					0. 7			
Pile Driving Record: Foundation Type:	No pile driving record	S					nded I: Unknown ded II: Unknown	
Mode of Flow:							ded III: Unknown	
Rating Scour Eval:							vation: -1 ft	
Highest Scour Eval:							vation: -1 ft	
Scour Evaluation Method:					Ste	orm Frequ	uency: -1	

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

REPORT ID: INSP005

Structure ID: 874294

CIDR

DATE PRINTED: 5/18/2020

Elements

Inspection Date: 04/06/2020 GZJW

DECKS : Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
D	8099 / 3	PS Conc Slab (Sonovoid)	3178	89.88	114	3.22	244	6.9	0	· ·	3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		114	59.07	79	40.93	0		193 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0	· ·	20 (SF)
0	1110/3	Cracking (PSC)	0		0		144	100	0	· ·	144 (SF)
0	510 / 3	Wearing Surfaces	1929	73.23	0		705	26.77	0	· ·	2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		705	100	0	·	705 sq.ft

DECKS : Joints

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0		104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

MISCELLANEOUS : Channel

S	tr Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		8290 / 3	Channel	0	-	0		1	100	0		1 (EA)
	0	9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS: Other Elements

Str	Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0)	510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
	0	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215/3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Structure	e ID: 874294	-	-	С	IDR				DA		FED: 5/18/2020
0	6000 / 3	Scour	0		0	•	40	100	0		40 ft
SUBST	RUCTURE	: Substructure									
Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
Str Unit 0	Elem/Env 8394 / 3	Description R/Conc Abut Slope Protection	Qty1 3968	%1 73.81	Qty2	%2 ·	Qty3 1408	%3 26.19	Qty4	%4 ·	T Qty 5376 (SF)
Str Unit 0 0	-					%2 ·				%4	

SUPERSTRUCTURE : Superstructure

04/06/2020

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0		0		3 ft

Total Number of Elements*: 10

*excluding defects/protective systems

Inspection Information

Inspection Date:

REPORT ID: INSP005

Type: Regular NBI

Sufficiency Rating Calculation Accepted by knmeira at 5/13/2020 9:36:35 AM

Inspector: KNMEIOP - Omar Porras

Inspection Notes:

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020)

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020)

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020)

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/06/2020 per Julie A.Vers, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

Element 8475 R/Conc Walls was replaced by 8393 Bulkhead Seawall Any Material during this inspection cycle. All previous notes were transferred accordingly. (04/06/2020)

The following elements were inspected underwater by the divers: 8290 Channel 8393 Bulkhead Seawall Any Material

LEGEND: NCAR: NO CORRECTIVE ACTION RECOMMENDED. RT: Right LT: Left NC: No Change INC: Increase CAT: Corrective Action Taken L: Long W: Wide H: High D: Deep UW: Underwater S.L.: Section Loss in.: Inches ft: Feet

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) CIDR

DATE PRINTED: 5/18/2020

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north.

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

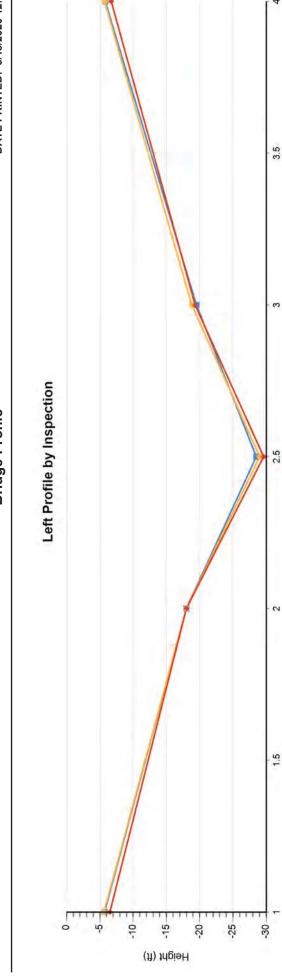
Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.


TRAFFIC RESTRICTIONS:

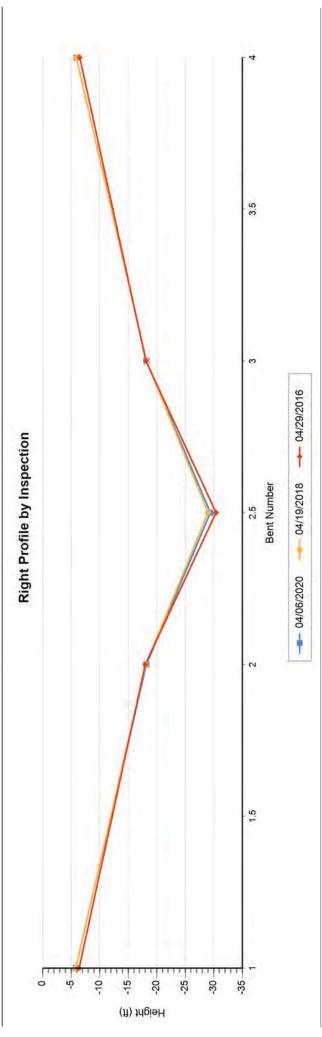
Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 33 and 34.

REVIEWED BY:

Schedule Notes


The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR/Bridge Profile Report with PDF attachment(s) **Bridge Profile**


DATE PRINTED: 5/18/2020 12:12:35 PM

Page 61 of 63

Bent Number

REPORT ID : INSP005 Structure ID : 874394	FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDP/Bridge Profile Penort with DDF attachment(s)	EPARTMENT OF TRANSPORTATION BRIDGE MANAGEME	ATION BRIDGE N	MANAGEMENT SY	Page 62 of 63 STEM
		Bridge Profile	Profile	ימכוווופווו(פ)	DATE PRINTED: 5/18/2020 12:12:35 PM
		Profile Data - Nume	Data - Numerical Summary		
Inspection Date and Key: 4/6/2020	GZJW	Bent #	Left Height	Right Height	(All Heights are in Feet)
		~	5.70	5.80	
		7	18.00	18.20	
		2.5	28.50	29.40	
		r	19.50	18.20	
		4	5.80	5.90	
Air Temp: 82 Profile Notes:					
Measurements were referenced from the top of the concrete barriers. Waterline taken at mid channel: Left = 18.7 ft. and Right = 18.8 ft. Maximum channel depth: 10.6 ft.	b of the concrete barriers. ft. and Right = 18.8 ft.				
Inspection Date and Key: 4/19/2018	ODLG				
		-	5.60	5.80	
		2	18.00	18.10	
		2.5	29.00	29.00	
		3	18.80	18.20	
		4	5.70	5.90	
Air Temp: 74 Profile Notes:					
Measurements were referenced from the top of the concrete barriers. Waterline taken at mid channel: Left = 18.3 ft, and Right = 18.4 ft. Maximum channel depth: 10.7 ft.	o of the concrete barriers. ft. and Right = 18.4 ft.				

Page 62 of 63

REPORT ID : INSP005 Structure ID : 874294	FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Bridge Profile	DF TRANSPORTATION R/Bridge Profile Report Bridge Profile	N BRIDGE MA rt with PDF attac e	NAGEMENT SYS chment(s)	TEM DATE PRINTED: 5/18/2020 12:12:35 PM
		Profile Data - Numerical Summary	Summary		
Inspection Date and Key: 4/29/2016	MQSY	Bent #	Left Height	Right Height	(All Heights are in Feet)
		~	6.50	6.40	
		2	18.00	18.00	
		2.5	29.60	30.40	
		б	19.30	18.10	
		4	6.70	6.50	
Air Temp: 1 Profile Notes:					
Measurements referenced from the top of the concrete bridge rail. Waterline at C/L of Channel = 19.2ft. Water depth = 11.2ft.	concrete bridge rail.				

Page 63 of 63

Structure Inventory Photo Due Date : 04/06/2024

Bridge Number - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Typical Bridge Rail - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Southeast Oncoming Transition - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Northwest Oncoming Transition - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Southwest Off-Going Transition - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Northeast Off-Going Transition - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

South Approach Looking North - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

South Approach Looking South - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

North Approach Looking South - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

North Approach Looking North - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

West Elevation - 4/25/2014

BRIDGE ID : 874294

Structure Inventory Photo Due Date : 04/06/2024

East Elevation - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Typical Underside - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Channel Looking West - 4/25/2014

BRIDGE ID: 874294

Structure Inventory Photo Due Date : 04/06/2024

Channel Looking East - 4/25/2014

	BRIDGE INSPECTION REPORT	
FDOT	PREPARED FOR: FDOT District 6	Inspected by:
	BRIDGE OWNER: Miami-Dade County	LARS Engineering, Inc.
	INSPECTION TYPE: Interim CONTRACT No. CA611	
Bridge No. 874294	REPORT CONTAINS	Inspection Date: 10-22-20
	0	ddendum Iechanical and Electrical Data
Matheson Hammock Road over Matheson Hammock Canal	Facility Carried & Location	Matheson Hammock Park
SW-Gen-St Fairchild Way Google Earth	e de la contraction de la cont	
Location Map		Detour Length = 3.13 mi.

Inspection

Structure ID: 874294		Inspection	
DISTRICT: D6 - Miami		INS	PECTION DATE: 10/22/2020 MIGV
BY:	LARS Engineering, Inc.	STRUCTURE NAME	Not recorded
OWNER:	2 County Hwy Agency	YEAR BUILT	: 1967
MAINTAINED BY:	2 County Hwy Agency	SECTION NO.	87 000 757

	2 County Twy Agency	OLOHON NO	01 000 131
STRUCTURE TYPE:	5 Prestressed Concrete - 01 Slab	MP:	0.080
LOCATION:	Matheson Hammock Park	ROUTE:	00000
SERV. TYPE ON:	5 Highway-pedestrian	FACILITY CARRIED:	Matheson Hmk Road
SERV. TYPE UNDER:	5 Waterway	FEATURE INTERSECTED:	Matheson Hammock Canal

FUNCTIONALLY OBSOLETE

X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Interim

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 10/22/2020 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5 HEALTH INDEX: 85.67

Structure ID: 874294 DISTRICT: D6 - Miami	Ins	spection INSPE	CTION DATE: 10/22/2020 MIGV
OWNER: MAINTAINED BY: STRUCTURE TYPE: LOCATION: SERV. TYPE ON: SERV. TYPE UNDER: THIS BRIDGE CONTA THIS BRIDGE IS SCO X THIS REPORT IDENT	INS FRACTURE CRITICAL COMPONE UR CRITICAL IFIES DEFICIENCIES WHICH REQUIR	ROUTE: FACILITY CARRIED: FEATURE INTERSECTED: ENTS	0.080 00000 Matheson Hmk Road Matheson Hammock Canal
FUNCTIONALLY OBS	OLETE X	STRUCTURALLY DEFICIENT	
TYPE OF INSPECTION: DATE FIELD INSPECTION OVERALL NBI RATINGS :	Interim WAS PERFORMED: ABOVE WATE	R: 10/22/2020 UNDERWATE	R: 4/6/2020
DECK: 3 SUPERSTRUCTURE: 3 SUBSTRUCTURE: 4 PERF. RATING: F	Serious CL Poor SUFF. F	IANNEL: 6 Bank Slumping JLVERT: N N/A (NBI) RATING: 15.5 I INDEX: 85.67	
FIELD PERSONNEL / TITL	E / NUMBER:		INITIALS
Lledias, Jorge - Bridge Insp			
REVIEWING BRIDGE INSP	PECTION SUPERVISOR:		
Leon, Adrian - Professional	Engineer (P.E. #83827)		

CONFIRMING REGISTERED PROFESSIONAL ENGINEER:

Marquez, Loren - Professional Engineer (P.E. # 85631) LARS Engineering, Inc. 7225 NW 25th Street Suite 211 Miami Florida 33122	No 85631
SIGNATURE:	
DATE:	
The official record of this package has been electronically signed and sealed by Loren Marquez, P.E. on the date adjacent to the seal as required by Rule 61G15-23.004, F.A.C. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.	THE STATE OF STATE OF CONTINUES

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami

INSPECTION DATE: 10/22/2020 MIGV

All Elements

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3122	88.29	5	0.14	409	11.57	0	•	3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		5	45.45	6	54.55	0		11 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510/3	Wearing Surfaces	1629	61.85	0	· ·	1005	38.15	0		2634 sq.ft
0	3220 / 3	3 Crack (Wearing Surface)	0		0		1005	100	0		1005 sq.ft

Element Inspection Notes:

8099/3 Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

_Object markers and centerline raised pavement markers are missing on the structure. (14 SF). - NO CHANGE. Refer to Photo 01.

_Sidewalk panels are loose and move under pedestrian load. (300 SF). - NO CHANGE.

_The slab unit joints show evidence of water seepage. - NO CHANGE. NCAR.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

1_Replace missing object markers at the four corners of the bridge.
 2_Properly secure the sidewalk panels.
 3_Repair spalls, delaminations, and cracks along the underside of the slab units.

4_Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

CORRECTIVE ACTION EVALUATION: 1_Work not completed. Recommendation will be repeated. 2_Work not completed. Recommendation will be repeated. 3_Work not completed. Recommendation will be repeated. 4_Work not completed. Recommendation will be repeated.

For additional deficiencies refer to Defects 1080, 1090, 1100, 1110, and 1900.

1080/3 CS-3: _Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup. (6 SF). - INCREASE. Refer to Photo 02.

> CS-2: _Slab Unit 2-6, east edge has a delamination 30in. L x 4in. W starting at Pier 2 cap. (3 SF). - NO CHANGE.

_Slab Unit 2-7, west edge has a delamination up to 24in. L x 4in. W starting at Pier 2 cap. (2 SF). - NO CHANGE.

1090/3 CS-3: _Slab Unit 1-6 exhibits a spall with exposed rebar up to 11in. L x 5in. W x 1/8in. D with minor section loss and evidence of previous failed repair, at 9ft. from Abutment 1. (1

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami

INSPECTION DATE: 10/22/2020 MIGV

SF). - NO CHANGE. Refer to Photo 03.

1100/3 CS-3:

_Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads). (20 SF). – NO CHANGE. Refer to Photo 04.

1110/3 CS-3:

_Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Previously noted as a delamination full length x 12in. W.) (14 SF). - DECREASE. Refer to Photos 05 and 06.

_Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. (2 SF). - NO CHANGE. Refer to Photo 07.

_Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap. (7 SF). – INCREASE. Refer to Photo 08.

_Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1. (Spalling was previously noted as spall/delamination on the east edge) (19 SF). - INCREASE. Refer to Photos 09 and 10.

_Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2. (Previously noted as spall/delamination near mid-span). (5 SF). - DECREASE. Refer to Photo 11.

_Slab Unit 1-8 has a delaminated area up to 8ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2. (24 SF). – INCREASE. Refer to Photo 12.

_Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (9 SF). - NO CHANGE. Refer to Photo 13.

_Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks. (38 SF). - NO CHANGE. Refer to Photo 14.

_Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W. (60 SF). - NO CHANGE. Refer to Photo 15.

_Slab Unit 2-9 west edge has a delaminated area up to 5ft. L x 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (5 SF). - NO CHANGE.

_Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W. (2 SF). - INCREASE. Refer to Photo 16.

_Slab Unit 3-6 east edge has a delaminated area up to 42in. L x 8in. W with associated cracks up to 1/16in. W. (4 SF). - NEW. Refer to Photo 17.

_Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (25 SF). – NO CHANGE. Refer to Photos 18 and 19.

Structure ID:	: 874294 Inspection	
DISTRICT: D	-	020 MIGV
	_Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W wit efflorescence and corrosion bleed-out. (30 SF). – INCREASE. Refer to Photo 20.	:h
	_Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (24 SF). – INCREASE. Refer to Photo 21.	
	_Slab Unit 3-8 has an unsound repair/delamination up to 42in. L x 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4. (9 SF). – INCREASE. Refer to Photo 22.	I
	_Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4 (15 SF). – INCREASE. Refer to Photo 23.	
1900/3	CS-3: _Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. (90 SF). – NO CHANGE. Refer to Photo 24.	
510/3	PREVIOUS RECOMMENDED CORRECTIVE ACTION: 1_Monitor the slab units for independent movement. 2_Repair cracks on the asphalt along the slab unit joints. 3_Clean and repair cracks and rutting along the expansion joints.	
	CORRECTIVE ACTION EVALUATION: 1_Work not completed. Recommendation will be repeated. 2_Work not completed. Recommendation will be repeated. 3_Work not completed. Recommendation will be repeated.	
	For deficiencies refer to Defect 3220.	
3220/3	CS-3: _The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement. (600 SF). – NO CHANGE. Refer to Photo 25 and 26.	
	_The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a 19.5ft L x 11ft. W area with hollow-sounding starting 1 ft. from the right sidewalk. (300 SF). – NEW. Refer to Photo 27.	

_The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. W and vegetation growth over the expansion joints. (105 SF). – NO CHANGE. Refer to Photo 28.

Total Number of Elements*: 1

*excluding defects/protective systems

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Structure ID: 874294

DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

Inspector Recommendations

<u>UNIT: 0</u>	DECKS			
ELEMENT/ENV:	8099 / 3 PS Conc Slab (Sonovoi	d)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE				PRIORITY
1 , 2 , 3	MMS Quantity: 14 sf Element Es	imated Quantity: 14 (SF)		3
	DER RECOMMENDATION:			
	lace missing object markers at the four ghout the bridge. Refer to Photo 01.	corners of the bridge and provi	de missing RPMs	
1,2,3	MMS Quantity: 300 sf Element E	stimated Quantity: 300 (SF)		3
WORK OF	DER RECOMMENDATION:			
_Pro	perly secure the sidewalk panels.			
LEMENT/ENV:	8099:510:3220 / 3 Crack (Wearin	g Surface)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE				PRIORITY
3	MMS Quantity: 900 sf Element E	stimated Quantity: 900 sq.ft		3
WORK OF	DER RECOMMENDATION:			
_Sea Spai	l cracks on the asphalt along the slab u s 1 and 2. Refer to Photos 25, 26, and 2	nit joints and multi-directional c ?7.	racks on Lane 2 (NB) in	
3	MMS Quantity: 105 sf Element E	stimated Quantity: 105 sq.ft		3
WORK OF	DER RECOMMENDATION:			
_Cle	an and seal cracks and rutting along the	expansion joints. Refer to Pho	to 28.	
3	MMS Quantity: 600 sf Element E	stimated Quantity: 600 sq.ft		3
WORK OF	DER RECOMMENDATION:			
	nitor cracks along slab unit joints for inden nd 26.	pendent movement of the slab	o units. Refer to Photos	
LEMENT/ENV:	8099:1080 / 3 Delamination/Spa	I/Patched Area	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE				PRIORITY
2,3	MMS Quantity: 303 sf Element E	stimated Quantity: 303 (SF)		3
	DER RECOMMENDATION:			
	air spalls, delaminations, and cracks alo)5 through 23.	ng the underside of the slab u	nits. Refer to Photos 02	
ELEMENT/ENV:	8099:1090 / 3 Exposed Rebar		ELEM CATEGORY:	Decks/Slabs
CONDITION STATE				PRIORITY
3	MMS Quantity: 1 sf Element Estin	nated Quantity: 1 (SF)		3
WORK OF	DER RECOMMENDATION:			
	an and coat exposed rebar and repair s _i ment 1. Refer to Photo 03.	all along the underside of slab	unit 1-6, 9ft. from	

Structure ID: 874294 Inspection **DISTRICT: D6 - Miami** INSPECTION DATE: 10/22/2020 MIGV Inspector Recommendations UNIT: 0 DECKS **ELEMENT/ENV:** 8099:1100 / 3 Exposed Prestressing **ELEM CATEGORY: Decks/Slabs** CONDITION STATE PRIORITY MMS Quantity: 20 sf Element Estimated Quantity: 20 (SF) 3 3 WORK ORDER RECOMMENDATION: Clean and coat exposed prestressing and reinforce Slab Unit 2-8. Refer to Photo 04. ELEMENT/ENV: 8099:1900 / 3 Distortion ELEM CATEGORY: Decks/Slabs

CONDITION STATE			PRIORITY
3	MMS Quantity: 90 sf	Element Estimated Quantity: 90 (SF)	3
WORK OF	RDER RECOMMENDATIO	N:	
Mo	nitor slab unit 1-1 for possil	ole independent movement on the slab unit. Refer to Photo 24	4.

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

Element 8475/3 R/Conc Walls notes have been replaced by Element 8393/3 Bulkhead Seawall Any Material on 04/06/2020.

The NBI Rating for Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020).

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020).

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020).

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 29 and 30.

REVIEWED BY:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

.

Structure ID: 874294

DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

INSPECTION NOTES: MIGV

<u>10/22/2020</u>

Sufficiency Rating Calculation Accepted by KNLREJP at 11/18/2020 2:56:35 PM

This Interim inspection (10/22/2020) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 10/22/2020 per Loren Marquez, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (10/22/2020).

LEGEND: NCAR: NO CORRECTIVE ACTION RECOMMENDED RT: Right LT: Left L: Long W: Wide H: High D: Deep in.: Inches ft.: Feet LF: Linear Feet SF: Square Feet NE: Northeast NW: Northwest SE: Southeast SW: Southwest

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 01: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Object markers and centerline raised pavement markers are missing on the structure.

REPAIR RECOMMENDATION: Replace missing object markers at the four corners of the bridge and provide missing RPMs throughout the bridge.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 02: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 03: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 exhibits a spall with exposed rebar up to 11in. L x 5in. W x 1/8in. D with minor section loss and evidence of previous failed repair, at 9ft. from Abutment 1.

REPAIR RECOMMENDATION:

Clean and coat exposed rebar and repair spall along the underside of slab unit 1-6, 9ft. from Abutment 1.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 04: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads).

REPAIR RECOMMENDATION: Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 05: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Abutment 1 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 06: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Pier Cap 2 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 07: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleedout over Abutment 1.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

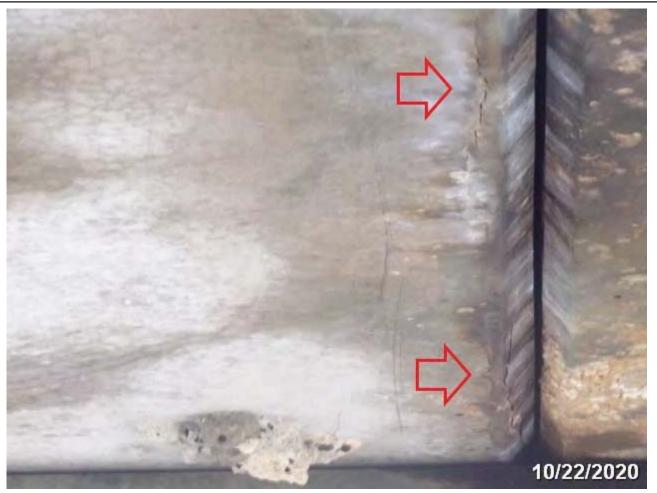


PHOTO 08: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 09: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 10: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 11: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 12: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 has a delaminated area up to 8ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 13: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 14: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 15: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 16: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 17: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-6 east edge has a delaminated area up to 42in. L x 8in. W with associated cracks up to 1/16in. W.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 18: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Pier 3 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 19: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Mid-span shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 20: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow-sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 21: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 22: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has an unsound repair/delamination up to 42in. L x 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4.

REPAIR RECOMMENDATION: Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 23: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 24: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure.

REPAIR RECOMMENDATION:

Monitor slab unit 1-1 for possible independent movement of the slab unit.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 25: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

REPAIR RECOMMENDATION:

1) Monitor cracks along slab unit joints for independent movement of the slab units.

2) Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 26: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

REPAIR RECOMMENDATION:

1) Monitor cracks along slab unit joints for independent movement of the slab units.

2) Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 27: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a 19.5ft L x 11ft. W area with hollow-sounding starting 1 ft. from the right sidewalk.

REPAIR RECOMMENDATION:

Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 28: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. W and vegetation growth over the expansion joints.

REPAIR RECOMMENDATION: Clean and seal cracks and rutting along the expansion joints.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 29: STRUCTURE NOTES

South Approach Posting Sign.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 10/22/2020 MIGV

PHOTO 30: STRUCTURE NOTES

North Approach Posting Sign.

Bridge No.	FDOT B		
Location	Matheson hammo	ock Road over matheson Hammock Canal	FDOT Bridge Load Rating Summary Form (Page 1 of 1)
Description	3 Spans, 2-30'&1-4	10', Prestressed voided slab beams 36"x17"	

Rating Type	Rating Type	Gross Axle Weight (tons)	Moment/Shear,	/Service	Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF•Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	ш	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600			-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S16	-44	Performed by:	Mengyuan	Chen	Date:	01/13/20
Rating Type, Analysis	LRFR-LRFD		Checked by:	Juan A. So	brino	Date:	01/13/20
Distribution Method	Others		Sealed By:	Juan A. Sol	brino	Date:	01/13/20
Impact Factor	33.0%	(axle loading)	FL P.E. No.:	73121			
FL120 Gov. Span Length	38.3	(feet)	Cert. Auth. No.:	27244			
Minimum Span Length	28.3	(feet)	Phone & email:	(+1) 305 648	00 10, miami@pedel	lta.om	
Recommended Posting	> 39.9% below (0.000-	0.600) (Required)	Company:	Pedelta Inc.			
Recommended SU Posting*	11	(tons)	Address:	2000 Ponce c 33134, USA	le Leon Blvd., Suite 6	24, Coral Gab	iles. Florida
Recommended C Posting	16	(tons)	$P \not \in Stell_s Commute int$	Engineer	Digitally	/ signe	d by
Recommended ST5 Posting	18	(tons)	Juan		Juan So	-	
Owner	02 County Highway Ag	ency			Date: 20		13
Location	Neither interstate trafi reasonable access to a		Sobri	no	15:58:25		
EV Posting	No. EV posting is not r FAST Act does not app	ecommended. The	Juan A. Sobrino, Sta	te of Florida P			
Floor Beam Present?	No		73121.		-		
Segmental Bridge?	No		This document has been electronically signed and sealed by Juan A Sobrino on January 13th, 2020 using a SHA authentication code.				
Project No. & Reason	432907-1-72-02	Deterioration	Printed copies of this document are not considered signed and and the SHA authentication code must be verified on any elect				
Plans Status	Built		copies.			,	

This 10-11-2019 summary follows the FDOT Bridge Load Rating Manual (BLRM), and the FDOT BMS Coding Guide. *Recommended SU Posting levels for Florida SU trucks adequately restricts AASHTO SU trucks; see BLRM Chapter 7.

FLORIDA DEPARTMENT OF TRANSPORTATION **BRIDGE MANAGEMENT SYSTEM** Inspection/CIDR Report with PDF attachment(s)

CIDR

DATE PRINTED: 11/24/2020

Description

Structure Unit Identification

Bridge/Unit Key: 874294 0 Structure Name: Description: SPANS 1 THRU 3 Type: M - Main

Roadway Identification

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS

Functional Class (26): 09 Rural Local

Direction of Traffic (102): 2 2-way traffic

LRS Inventory Rte (13a): 87 000 757

Federal Aid System: OFF

Improvement Length (076): 0 ft

National base Net (12): 0 - Not on Base Network

Defense Hwy (100): 0 Not a STRAHNET hwy

NBI Structure No (8):	874294	
Position/Prefix (5):	1 - Route On Structu	re
Kind Hwy (Rte Prefix):	4 County Hwy	
Design Level of Service:	8 Service Road	
Route Number/Suffix:	00000 / 0 N/A (NBI)	
Feature Intersect (6):	Matheson Hammock	Canal
Critical Facility:	Not Defense-crit	
Facility Carried (7):	Matheson Hmk Road	1
Mile Point (11):	0.08	
Latitude (16):	025d40'44.2"	Long (17): 080d15'43.8"

Sub Rte (13b): 00

Roadway Traffic and Accidents Lanes (28): 2 Medians: 0

Lanes (28): 2	Medians: 0	Speed: 15 mph
ADT Class	2 ADT Class 2	
Recent ADT (29)	736	Year (30): 2014
Future ADT (114)	1168	Year (115): 2041
Truck % ADT (109)	: 1	
Detour Length (19)	99 mi	
Detour Speed:		
Accident Count	: -1	Rate:

Roadway Clearances

- Vertical (10): 99.99 ft
 - Horiz. (47): 26.25 ft
- Appr. Road (32): 26.25 ft Roadway (51): 26.25 ft
- Truck Network (110): 0 Not part of natl netwo
- Toll Facility (20): 3 On free road Fed. Lands Hwy (105): 0 N/A (NBI)

School Bus Route: Transit Route:

Improvement Cost (094): \$ 0.00 Roadway Improvement Cost (095): \$ 0.00 Total Cost (096): \$ 0.00 Year of Estimate (097):

> Culvert (62): N N/A (NBI) Waterway (71): 8 Equal Desirable Unrepaired Spalls: -1 sq.ft. Review Required: X

Emergency: X **NBI Project Data** Proposed Work (075A): Not Applicable (P) Work To Be Done By (075B): Not Applicable (P)

NBI Rating

Channel (61): 6 Bank Slumping Deck (58): 3 Serious Superstructure (59): 3 Serious Substructure (60): 4 Poor

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

REPORT ID: INSP005

Structure ID: 874294

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)

CIDR

DATE PRINTED: 11/24/2020

Structure ID: 874294

REPORT ID: INSP005

Structure Identification

Admin Area: Miami-Dade District (2): D6 - Miami County (3): (87)Miami-Dade Place Code (4): South Miami Heights Location (9): Matheson Hammock Park Border Br St/Reg (98): Not Applicable (P) Share: 0 % Border Struct No (99): FIPS State/Region (1): 12 Florida Region 4-Atlanta NBIS Bridge Len (112): Y - Meets NBI Length Parallel Structure (101): No || bridge exists Temp. Structure (103): Not Applicable (P)

Maint. Resp. (21): 2 County Hwy Agency Owner (22): 2 County Hwy Agency Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft Bridge Median (33): 0 No median Main Span Material (43A): 5 Prestressed Concrete Appr Span Material (44A): Not Applicable (P) Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load Deck Geometry (68): 5 Above Tolerable Underclearances (69): N Not applicable (NBI) Approach Alignment (72): 8-No Speed Red thru Curv Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft Under (reference) (54a): N Feature not hwy or RR Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 10/22/2020 Inspector: KNLRELM - Loren Marquez Bridge Group: CA611 Alt. Bridge Group: Primary Type: Interim Review Required: X

<u>Geometrics</u>

Spans in Main Unit (45): 3 Approach Spans (46): 0 Length of Max Span (48): 38.3 ft Structure Length (49): 100.33 ft Total Length: 140.33 ft Deck Area: 3536 sqft Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0 Type of Service On (42a): 5 Highway-pedestrian Under (42b): 5 Waterway Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft Skew (34): 0 deg Deck Type (107): 2 Concrete Precast Panel Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 85.67 Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

 NBI:
 04/06/2022

 Element:
 04/06/2021

 Fracture Critical:
 Underwater:
 04/06/2022

 Other/Special:
 04/06/2021

 Inventory Photo Update Due:
 04/06/2024

Page 42 of 45

FLORIDA DEPARTMENT OF TRANSPORTATION **BRIDGE MANAGEMENT SYSTEM**

REPORT ID: INSP005	Inspec	tion/	CIDR	Repo	ort with PD	F attac	hment(s)			
Structure ID: 874294				0	CIDR			DATE	PRINTED): 11/24/2020
Schedule Cont.										
<u>Inspection Types</u> <u>Performed</u>	NBI 🗌 Ele	ement	X	Fra	cture Critical		Underwater 🗌	Other \$	Special	X
Inspection Intervals	<u>Required (92)</u>	Freq	uency	<u>' (92)</u>	Last Date	<u>(93)</u>	Inspection Resou	rces		
Fracture Critical			mos				Crew Hour	s: 4		
Underwater	$\overline{\mathbf{X}}$	24	mos		04/06/2020		Flagger Hour	s: 0		
Other Special	\square	6	mos		10/22/2020		Helper Hour	s: 0		
NBI		24	mos	(91)	04/06/2020	(90)	Snooper Hour	s: 0		
							Special Crew Hour	s: 3		
Bridge Related	_						Special Equip Hour	s: 0		
General Bridge Informa										
Parallel Bridge Seq:						-	Rail 1: Conc parapet-alu			
Channel Depth:						-	Rail 2: Not applicable-No			
Radio Frequency: Phone Number:	-1				Ele		vices: No electric servic Type: Not applicable	е		
Exception Date:					Mai		Yard: Not FDOT Mainta	ined		
Exception Type:	Unknown						OFF: No Routes on FIH			
Accepted By Maint:	01/01/1967				Pre	vious Strue	cture:			
Warranty Expiration:	00/00/0000				2nd Pre	vious Strue	cture:			
Performance Rating:	Poor				Replace	ment Strue	cture:			
Permitted Utilities: Power	Water X	Gas		Fiber	Optic	Sewage	X Other			
Bridge Load Rating Inf										
	3 LRFR Load & Res						(066): 7.6 tons			
Operating Type (063):		Fact					(064): 11.9 tons			
Original Design Load (031):	01/13/2020						ating: 16.2 tons ating: 16.2 tons			
Initials:				I	Dynamic Im		-			
Load Rating Rev. Recom.:					-		ength: 38.3 ft			
Load Rating Plans Status:							ength: 28.3 ft			
					Distr	ibution Me	ethod: Others			
Load Rating Notes:										
LEGAL LOADS				<u>P0</u>	STING					
	11.7 tons						sting: 11 tons			
	12.2 tons						sting: 16 tons			
	11.9 tons 18.2 tons						sting: 18 tons sting: 11 tons			
	16.9 tons						sting: 16 tons			
	17.6 tons						sting: 18 tons			
ST5:	18.4 tons				Actual E	Blanket Po	sting: 99 tons			
Posting (070):	2 20.0-29.9%below				Eme	ergency Ve	hicle: 1 EV inapplicable			
Open/Posted/Closed (041):	P Posted for load									
FLOOR BEAM (FB)	FB Present: No			<u>SE</u>	GMENTAL (SE					
FB Span Length, Gov:						-	Span: -1.0 ft			
FB Spacing, Gov:				0			Span: -1.0 ft			
FB OPR Rating: FB SU4 OPR Rating:				9E	G mansverse r	Las Ober	ating: -1.00 RF			
FB FL120 Rating:										
Bridge Scour and Stor	m Information									
0	No pile driving record	S					ded I: Unknown			
Foundation Type:							led II: Unknown			
Mode of Flow:							ed III: Unknown			
Rating Scour Eval: Highest Scour Eval:							ation: -1 ft ation: -1 ft			
Scour Evaluation Method:						orm Frequ				
					00	onn roqu	oney. I			

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR Report with PDF attachment(s)

REPORT ID: INSP005 Structure ID: 874294

CIDR

DATE PRINTED: 11/24/2020

Elements

Inspection Date: 10/22/2020 MIGV

DECKS : Decks/Slabs

tr Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
	8099 / 3	PS Conc Slab (Sonovoid)	3122	88.29	5	0.14	409	11.57	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		5	45.45	6	54.55	0		11 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0	·	1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0	· ·	90	100	0	· ·	90 (SF)
0	510/3	Wearing Surfaces	1629	61.85	0	· ·	1005	38.15	0	· ·	2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0	· ·	0	· ·	1005	100	0	· ·	1005 sq.ft

DECKS : Joints

Str Uni	t Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0	· ·	0	· ·	104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

MISCELLANEOUS : Channel

Str	Unit E	lem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	82	290 / 3	Channel	0		0		1	100	0		1 (EA)
0		9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS : Other Elements

St	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		321/3	Re Conc Approach Slab	1410	100	0		0		0	· ·	1410 sq.ft
Γ	0	510/3	Wearing Surfaces	957	91.14	0		93	8.86	0	·	1050 sq.ft
	0	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0	· ·	93 sq.ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0	•	4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0	·	3 each

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Structure ID: 874294

Inspection/CIDR Report with PDF attachment(s)

CIDR

DATE PRINTED: 11/24/2020

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft
0	6000 / 3	Scour	0		0		40	100	0	·	40 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
0	1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

SUPERSTRUCTURE : Superstructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0		0		3 ft

Total Number of Elements*: 10

*excluding defects/protective systems

Inspection Information

Inspection Date: 10/22/2020 Type: Interim Inspector: KNLRELM - Loren Marquez **Inspection Notes:** Sufficiency Rating Calculation Accepted by KNLREJP at 11/18/2020 2:56:35 PM This Interim inspection (10/22/2020) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020). LOAD CAPACITY EVALUATION: Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 10/22/2020 per Loren Marquez, P.E. The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure. The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (10/22/2020). I EGEND. NCAR: NO CORRECTIVE ACTION RECOMMENDED RT: Right LT: Left L: Long W: Wide H: High D: Deep in.: Inches

ft.: Feet LF: Linear Feet SF: Square Feet NE: Northeast NW: Northwest

SE: Southeast

SW: Southwest

DATE PRINTED: 11/24/2020

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Structure ID: 874294

Inspection/CIDR Report with PDF attachment(s) CIDR

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

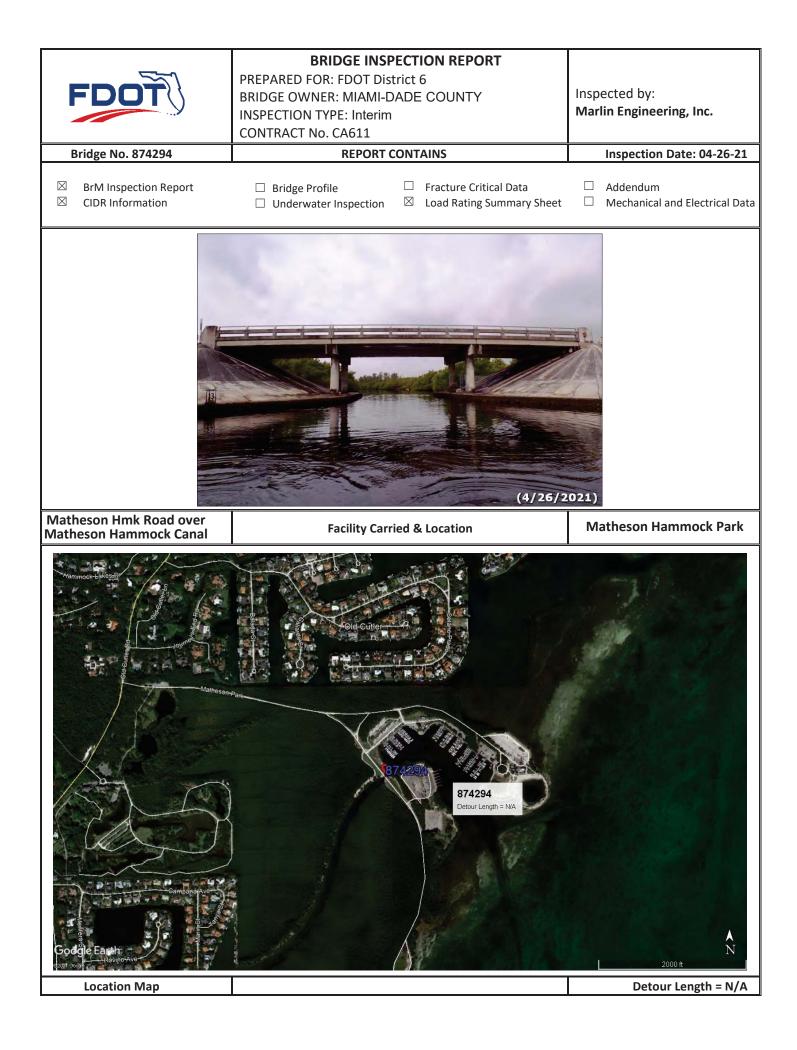
P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

Element 8475/3 R/Conc Walls notes have been replaced by Element 8393/3 Bulkhead Seawall Any Material on 04/06/2020.

The NBI Rating for Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020).

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020).


The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020).

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 29 and 30.

REVIEWED BY:

Schedule Notes

Inspection

DISTRICT: D6 - Miami		INSPECTION DATE: 4/26/2021 HIXS						
BY:	Marlin Engineering, Inc.	STRUCTURE NAME:	Not recorded					
OWNER:	2 County Hwy Agency	YEAR BUILT:	1967					
MAINTAINED BY:	2 County Hwy Agency	SECTION NO .:	87 000 757					
STRUCTURE TYPE:	5 Prestressed Concrete - 01 Slab	MP:	0.080					
LOCATION:	Matheson Hammock Park	ROUTE:	00000					
SERV. TYPE ON:	5 Highway-pedestrian	FACILITY CARRIED:	Matheson Hmk Road					
SERV. TYPE UNDER:	5 Waterway	FEATURE INTERSECTED:	Matheson Hammock Canal					

FUNCTIONALLY OBSOLETE

Structure ID: 874294

X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Interim

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 4/26/2021 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5 HEALTH INDEX: 85.48

Page 2 of 37

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294	, ,	Inspection	
DISTRICT: D6 - Miami		INS	PECTION DATE: 4/26/2021 HIXS
OWNER: MAINTAINED BY: STRUCTURE TYPE:	Marlin Engineering, Inc. 2 County Hwy Agency 2 County Hwy Agency 5 Prestressed Concrete - 01 Slat Matheson Hammock Park	STRUCTURE NAME: YEAR BUILT: SECTION NO.: b MP: ROUTE:	87 000 757 0.080
SERV. TYPE UNDER:	INS FRACTURE CRITICAL COM	FEATURE INTERSECTED:	Matheson Hmk Road Matheson Hammock Canal
THIS REPORT IDENT	IFIES DEFICIENCIES WHICH RE	QUIRE PROMPT CORRECTIVE ACTIO	N
FUNCTIONALLY OBS	OLETE	X STRUCTURALLY DEFICIENT	
TYPE OF INSPECTION: DATE FIELD INSPECTION OVERALL NBI RATINGS :	Interim WAS PERFORMED: ABOVE V	MATER: 4/26/2021 UNDERWATER:	4/6/2020
DECK: 3 SUPERSTRUCTURE: 3 SUBSTRUCTURE: 4 PERF. RATING: F	Serious Poor SU	CHANNEL: 6 Bank Slumping CULVERT: N N/A (NBI) JFF. RATING: 15.5 ALTH INDEX: 85.48	
FIELD PERSONNEL / TITL	E / NUMBER:		INITIALS
Guzman, Armando - Bridge Montersil, Jonathan - Assist Rego, Alexis - Bridge Inspec Campo, Luis - Bridge Inspec Alfonso, Rene - Bridge Insp	ctor (CBI#00409) ctor (CBI #00619)		
REVIEWING BRIDGE INSP Rego, Alexis - Bridge Inspe			
	ED PROFESSIONAL ENGINEER:		
Vers, Julie - Structural Desi 1700 NW 66 Avenue Suite 106 Plantation Florida 33313	gn Manager (P.E. # 77896) Marlin	Engineering	NIE ANN VAN
SIGNATURE:		= *	No 77896

DATE:

The official record of this package has been electronically signed and sealed by Julie A. Vers, P.E. on the date adjacent to the seal as required by Rule 61G15-23.004, F.A.C. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

D

Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/26/2021 HIXS

All Elements

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3099	87.64	14	0.4	423	11.96	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		14	70	6	30	0		20 (SF)
0	1100 / 3	Exposed Prestressing	0		0		35	100	0		35 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510/3	Wearing Surfaces	1734	65.83	0	· ·	900	34.17	0		2634 sq.ft
0	3220 / 3	3 Crack (Wearing Surface)	0		0	· ·	900	100	0		900 sq.ft

Element Inspection Notes:

8099/3 Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

_Centerline raised pavement markers are missing along the structure. Previously missing object markers were installed. Refer to Photo 01. NO CHANGE.

_Sidewalk concrete panels are loose and move under pedestrian load. (Total 300 SF). Refer to Photo 02. NO CHANGE.

_The underside of the slab unit joints and bent caps show evidence of water seepage. NO CHANGE. NCAR.

_There is one exposed piece of corroded scrap metal on Slab Unit 1-6 underside at 9ft. from Abutment 1. Previously documented under Defect 1090 as a spall with exposed rebar having minor section loss. Refer to Photo 03. NO CHANGE.

Refer to Defects 1080, 1100, 1110, and 1900 for additional deficiencies

PREVIOUS RECOMMENED CORRECTIVE ACTION:

_Replace missing object markers at the four corners of the bridge and provide missing RPMs throughout the bridge.

_Properly secure the sidewalk panels.

_Monitor slab unit 1-1 for possible independent movement on the slab unit.

_Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

_Repair spalls, delaminations, and cracks along the underside of the slab units _Clean and coat exposed rebar and repair spall along the underside of slab unit 1-6, 9ft. from Abutment 1.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was partially completed. Recommendation will be issued to provide missing RPMs. _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated.

_The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated.

1080/3 CS-3:

_Slab Unit 1-9 exhibits a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup, no measurable section loss. (Total 6 SF). Refer to Photo 04. NO CHANGE.

Inspection

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/26/2021 HIXS

(5-2)

_Slab Unit 2-6, east edge exhibits a delamination 30in. L x 4in. W starting at Pier 2 cap. (Total 3 SF). NO CHANGE.

_Slab Unit 2-7, west edge exhibits a delamination up to 24in. L x 4in. W starting at Pier 2 cap. (Total 2 SF). NO CHANGE.

_Slab Unit 2-8 underside exhibits a delamination up to full width x 36in. L with associated cracks and rust staining, starting at Bent 2 cap. (Total 9 SF). Refer to Photo 05. NEW.

1100/3 CS-3:

_Slab Unit 2-8, midspan has a spall 15ft. L x 24in. W x up to 4in. D with 7 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (3 broken strands). Previously noted a spall 10ft. L x 24in. W x up to 4in. D with 5 exposed strands, 2 broken threads, and 6 exposed transverse rebars. (Total 20 SF). Refer to Photo 06. INCREASE.

_Slab Unit 2-9, midspan has a spall/delamination up to 15ft. L x 12in. W x 2in. D with 2 prestressing strands and 7 transverse rebars having up to 90% section remaining. (Total 15 SF). Refer to Photo 06. NEW.

1110/3 CS-3:

_Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Total 14 SF). NO CHANGE.

_Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. (Total 2 SF). NO CHANGE.

_Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap. (Total 7 SF). NO CHANGE.

_Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1. (Total 19 SF). Refer to Photo 07. NO CHANGE.

_Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2. (Total 5 SF). NO CHANGE.

_Slab Unit 1-8 has a delaminated area up to 8ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2. (Total 24 SF). NO CHANGE.

_Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (Total 9 SF). NO CHANGE.

_Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks. (Total 38 SF). NO CHANGE.

_Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W. (Total 60 SF). NO CHANGE.

(INTERIM INSPECTION REPORT) Structure ID: 874294 Inspection **DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS** _Slab Unit 2-9 west edge has a delaminated area up to 5ft. L x 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (Total 5 SF). NO CHANGE. _Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W. (Total 2 SF). NO CHANGE. Slab Unit 3-6 east edge has a delaminated area up to 42in. L x 8in. W with associated cracks up to 1/16in. W. (Total 4 SF). NO CHANGE. _Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Total 25 SF). NO CHANGE. _Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (Total 30 SF). Refer to Photo 08. NO CHANGE. _Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (Total 24 SF). Refer to Photo 09. NO CHANGE. _Slab Unit 3-8 has an unsound repair/delamination up to 42in. L x 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4. (Total 9 SF). NO CHANGE. _Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4. (Total 15 SF). NO CHANGE. 1900/3 CS-3: Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. (Total 90 SF). Refer to Photo 10. NO CHANGE. NCAR. For deficiencies refer to Defect 3220. 510/3 PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Clean and seal cracks and rutting along the expansion joints. Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2. Monitor cracks along slab unit joints for independent movement of the slab units. CORRECTIVE ACTION EVALUATION: The corrective action noted above was completed. The corrective action noted above was not completed. Recommendation will be repeated. The corrective action noted above was not completed. Recommendation will be repeated. 3220/3 CS-3: The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated lin. W rutting over the slab unit joints and upheaving up to lin. H at the shoulders, possibly indicating independent slab unit movement. (Total 600 SF). Refer to Photo 11. NO CHANGE. The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a hollow-sounding area 19.5ft L x

Lane 2 (NB), worse condition is on Span 1 which has a hollow-sounding area 19.5ft L x 11ft. W, starting 1 ft. from the right sidewalk. (Total 300 SF). Refer to Photo 12. NO CHANGE.

Inspection

Structure ID: 874294

DISTRICT: D6 - Miami

INSPECTION DATE: 4/26/2021 HIXS

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

Element Inspection Notes:

205/3 Note: At high tide, the seawater reaches the lower section of the columns.

Refer to Defects 1090 and 1130 for deficiencies.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Remove any loose concrete and repair delaminations and spalls along the Column 2-2. _Repair delaminations and seal cracks along Bents 2 and 3 columns. _Install cathodic protection to Bents 2 and 3 columns.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated.

1090/3 CS-3:

_Column 2-2, south face has a spall/delamination up to 55in. H x 32in. W x 4in. D with two exposed longitudinal rebars and five stirrups, having areas of up to 80% section remaining. Additionally, there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W as a consequence of corrosion of the steel reinforcement. Previously noted as a spall/delamination 7ft. H x 3ft. W x 3in. D with one exposed rebar and one stirrup. (Total 1 ea.) Refer to Photos 13, 14, and 15. INCREASE.

1130/3 CS-3:

_Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height x 1/16in. W, as a result of corrosion of the steel reinforcement. (Total 3 ea.) NO CHANGE.

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	48	70.59	12	17.65	8	11.76	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	60	8	40	0		20 ft

Element Inspection Notes:

234/3 Refer to Defect 1080 for additional deficiencies.

PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Remove vegetation growing on west end of Bents 2 and 3 caps. _Repair spalls and delaminations along Bents 2 and 3 caps.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was completed. _The corrective action noted above was not completed. Recommendation will be repeated.

1080/3 CS-3:

_Bent 2 cap, south face has a spall/delamination up to 48in. L x 17in. H x 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. Previously noted in the south face as a spall/delamination up to 3ft. L x 16in. H x 1 in.

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami

INSPECTION DATE: 4/26/2021 HIXS

D. (Total 4 LF) Refer to Photos 16 and 17. INCREASE.

_Bent 3 cap, bottom and north faces has two unsound repaired areas up to 30in. L x 24in. W with multidirectional cracks up to 1/64in. W between Columns 3-1 and 3-2. (Total 4 LF) Refer to Photo 18. NO CHANGE.

CS-2:

_Pier 3 cap has intermittent delaminated areas up to 3ft. L x 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges. (Total 12 LF) Refer to Photo 18. NO CHANGE.

Total Number of Elements*: 3 *excluding defects/protective systems

Structure ID: 874	294 Inspection		
DISTRICT: D6 - N	liami	INSPECTION D	ATE: 4/26/2021 H
	Inspector Recommenda	tions	
<u>UNIT: 0</u>	DECKS		
ELEMENT/ENV:	8099 / 3 PS Conc Slab (Sonovoid)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
1,2,3	MMS Quantity: 300 sf Element Estimated Quantity: 300	(SF)	3
WORK OF	DER RECOMMENDATION:		
Prop	erly secure the sidewalk concrete panels. Photo 02		
1,2,3	MMS Quantity: 10 sf Element Estimated Quantity: 10 (S	F)	3
WORK OF	DER RECOMMENDATION:		
Repl	ace missing raised pavement markers along the centerline of th	ne structure. Photo 01	
ELEMENT/ENV:	8099:510:3220 / 3 Crack (Wearing Surface)	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
3	MMS Quantity: 600 sf Element Estimated Quantity: 600	sq.ft	3
WORK OF	DER RECOMMENDATION:		
Moni	tor the slab units for independent movement. Photo 11		
3	MMS Quantity: 900 sf Element Estimated Quantity: 900	sq.ft	3
WORK OF	DER RECOMMENDATION:		
	cracks on the asphalt along the slab unit joints and multi-direct is 1 and 2. Photos 11 and 12	ional cracks on Lane 2 (NB) in	
ELEMENT/ENV:	8099:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
2,3	MMS Quantity: 298 sf Element Estimated Quantity: 298	(SF)	3
WORK OF	DER RECOMMENDATION:		
	n and coat exposed steel and repair spalls and delaminations a 5. Photos 03 to 05 and 07 to 09	long the underside of sonovoid	
ELEMENT/ENV:	8099:1100 / 3 Exposed Prestressing	ELEM CATEGORY:	Decks/Slabs
CONDITION STATE			PRIORITY
3	MMS Quantity: 35 sf Element Estimated Quantity: 35 (S	F)	2
WORK OF	DER RECOMMENDATION:		
	n and coat exposed prestressing strands and rebars, repair spa		

Inspection

Structure ID: 874	294 Inspection		
DISTRICT: D6 - N	<i>l</i> iami	INSPECTION D	ATE: 4/26/2021 HIXS
	Inspector Recommendation	าร	
<u>UNIT: 0</u>	SUBSTRUCTURE		
ELEMENT/ENV:	205:1090 / 3 Exposed Rebar	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 40 mh Element Estimated Quantity: 1 each		2
WORK OF	RDER RECOMMENDATION:		
Clea to 15	n and coat exposed rebars, repair spalls/delaminations and reinforc	e Column 2-2. Photos 13	
ELEMENT/ENV:	205:1130 / 3 Cracking (RC and Other)	ELEM CATEGORY:	Substructure
CONDITION STATE			PRIORITY
3	MMS Quantity: 40 mh Element Estimated Quantity: 4 each		3
WORK OF	RDER RECOMMENDATION:		
Repa	air delaminations and seal cracks along Bents 2 and 3 columns. Pho	otos 13 to 15	
3	MMS Quantity: 80 mh Element Estimated Quantity: 4 each		3
WORK OF	RDER RECOMMENDATION:		
Insta	Il jackets with cathodic protection to Bents 2 and 3 columns. Photos	s 13 to 15	
ELEMENT/ENV:	234:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY:	Substructure
CONDITION			

CONDITION STATE			PRIORITY				
2,3	MMS Quantity: 40 mh	Element Estimated Quantity: 20 ft	2				
WORK O	WORK ORDER RECOMMENDATION:						
Repair spalls and delaminations along Bents 2 and 3 caps. Photos 16 to 18							

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, the bridge is posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 19 and 20.

REVIEWED BY:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami

INSPECTION DATE: 4/26/2021 HIXS

HIXS **INSPECTION NOTES:**

4/26/2021 Sufficiency Rating Calculation Accepted by knmeira at 5/5/2021 3:15 PM.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure. (04/26/2021).

This Interim inspection (04/26/2021) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), Element 234 Re Conc Pier Cap and Element 205 Re Conc Column, for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/26/2021).

The Substructure NBI Rating is coded 4 (Poor) due to extensive spalls with exposed rebars along Column 2-2, and delaminations and cracks along the columns and pier caps throughout the structure. (04/26/2021).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/26/2021 per Julie A. Vers, P.E.

LEGEND: NCAR: NO CORRECTIVE ACTION RECOMMENDED RT: Right LT: Left L: Long W: Wide H: High D: Deep in.: Inches ft.: Feet LF: Linear Feet SF: Square Feet NE: Northeast NW: Northwest SE: Southeast SW: Southwest

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 01 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Centerline raised pavement markers are missing along the structure. Previously missing object markers were installed.

WORK ORDER RECOMMENDATION: Replace missing raised pavement markers along the centerline of the structure.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 02 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Sidewalk concrete panels are loose and move under pedestrian load.

WORK ORDER RECOMMENDATION: Properly secure the sidewalk concrete panels.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 03 Element/Env 8099/3: PS Conc Slab (Sonovoid)

There is one exposed piece of corroded scrap metal on Slab Unit 1-6 underside at 9ft. from Abutment 1.

WORK ORDER RECOMMENDATION: Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 04 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-9 exhibits a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup, no measurable section loss.

WORK ORDER RECOMMENDATION: Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 05 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 underside exhibits a delamination up to full width x 36in. L with associated cracks and rust staining, starting at Bent 2 cap.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 06 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8, midspan has a spall 15ft. L x 24in. W x up to 4in. D with 7 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (3 broken strands). Slab Unit 2-9, midspan has a spall/delamination up to 15ft. L x 12in. W x 2in. D with 2 prestressing strands and 7 transverse rebars having up to 90% section remaining.

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing strands and rebars, repair spalls and reinforce the Slab units 2-8 and 2-9.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 07 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

WORK ORDER RECOMMENDATION: Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 08 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

WORK ORDER RECOMMENDATION: Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 09 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 10 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. No anti-rotation block is in place.

WORK ORDER RECOMMENDATION: None.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 11 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

WORK ORDER RECOMMENDATION:

_Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Monitor the slab units for independent movement.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 12 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a hollow-sounding area 19.5ft L x 11ft. W, starting 1 ft. from the right sidewalk.

WORK ORDER RECOMMENDATION:

Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Structure ID: 874294 **DISTRICT: D6 - Miami**

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 13 Element/Env 205/3: Re Conc Column

Column 2-2, south face has a spall/delamination up to 55in. H x 32in. W x 4-3/4in. D with two exposed longitudinal rebars and five stirrups, having areas of up to 80% section remaining.

WORK ORDER RECOMMENDATION:

Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2. Repair delaminations and seal cracks along Bents 2 and 3 columns.

Install jackets with cathodic protection to Bents 2 and 3 columns.

Structure ID: 874294 DISTRICT: D6 - Miami

Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 14 Element/Env 205/3: Re Conc Column

Spall/delamination with exposed reinforcement having up to 80% remaining in south face of Column 2-2. (close up view)

WORK ORDER RECOMMENDATION:

_Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2.

_Repair delaminations and seal cracks along Bents 2 and 3 columns.

Install jackets with cathodic protection to Bents 2 and 3 columns.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 15 Element/Env 205/3: Re Conc Column

Areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W as a consequence of corrosion of the steel reinforcement.

WORK ORDER RECOMMENDATION:

_Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2.

_Repair delaminations and seal cracks along Bents 2 and 3 columns.

Install jackets with cathodic protection to Bents 2 and 3 columns.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 16 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap, south face has a spall/delamination up to 48in. L x 17in. H x 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. (south view)

WORK ORDER RECOMMENDATION: Repair spalls and delaminations along Bents 2 and 3 caps.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 17 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap, south face has a spall/delamination up to 48in. L x 17in. H x 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. (bottom view)

WORK ORDER RECOMMENDATION: Repair spalls and delaminations along Bents 2 and 3 caps.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 18 Element/Env 234/3: Re. Concrete Pier Cap

Areas of unsound repairs on the bottom face of Pier 3 cap, intermittent delaminated areas up to 3ft. L x 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges.

WORK ORDER RECOMMENDATION: Repair spalls and delaminations along Bents 2 and 3 caps.

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 19: STRUCTURE NOTES

North Approach Posting Sign

Structure ID: 874294 DISTRICT: D6 - Miami Inspection

INSPECTION DATE: 4/26/2021 HIXS

Photo 20: STRUCTURE NOTES

South Approach Posting Sign

Bridge No.	874294	Analysis Method: LRFR-LRFD	
Location	Matheson hamn	nock Road over matheson Hammock Canal	FDOT Bridge Load Rating Summary Form (Page 1 of 1)
Description	3 Spans, 2-30'&1	-40', Prestressed voided slab beams 36"x17"	(, uge 1 (, 1)

Rating Type	Rating Type	Gross Axle Weight (tons)	Moment/Shear	/Service	Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF•Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	ш	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600			-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S16	j-4 4	Performed by:	Mengyuan	Chen	Date:	01/13/20
Rating Type, Analysis	LRFR-LRFD		Checked by:	Juan A. So	brino	Date:	01/13/20
Distribution Method	Others		Sealed By:	Juan A. Sol	brino	Date:	01/13/20
Impact Factor	33.0%	(axle loading)	FL P.E. No.:	73121			
FL120 Gov. Span Length	38.3	(feet)	Cert. Auth. No.:	27244			
Minimum Span Length	28.3	(feet)	Phone & email:	(+1) 305 648	00 10, miami@pedelta	a.om	
Recommended Posting	> 39.9% below (0.000-	0.600) (Required)	Company:	Pedelta Inc.			
Recommended SU Posting*	11	(tons)	Address:	2000 Ponce c 33134, USA	le Leon Blvd., Suite 62	4, Coral Gab	iles. Florida
Recommended C Posting	16	(tons)	$P \not \in S(c), Commute intervention (Singlet)$	Engineer	Digitally	signe	d by
Recommended ST5 Posting	18	(tons)	Juan		Juan Sol	-	.a by
Owner	02 County Highway Ag	gency	Sobrino		Date: 2020.01.13 15:58:25 -05'00'		
Location	Neither interstate traf reasonable access to a						
EV Posting	No. EV posting is not a FAST Act does not app	recommended. The	luan A Sobrino Sta				
Floor Beam Present?	No 432907-1-72-02 Deterioration		Juan A. Sobrino, State of Florida, Professional Engineer, License No 73121. This document has been electronically signed and sealed by Juan A. Sobrino on January 13th, 2020 using a SHA authentication code.				
Segmental Bridge?							
Project No. & Reason			Printed copies of this document are not considered signed				
Plans Status	Built	- 27 2	copies.				

This 10-11-2019 summary follows the FDOT Bridge Load Rating Manual (BLRM), and the FDOT BMS Coding Guide. *Recommended SU Posting levels for Florida SU trucks adequately restricts AASHTO SU trucks; see BLRM Chapter 7.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR Report with PDF attachment(s)

CIDR

DATE PRINTED: 6/25/2021

Description

Structure Unit Identification

Bridge/Unit Key: 874294 0 Structure Name: Description: SPANS 1 THRU 3 Type: M - Main

Roadway Identification

NBI Structure No (8):	874294	
Position/Prefix (5):	1 - Route On Structu	re
Kind Hwy (Rte Prefix):	4 County Hwy	
Design Level of Service:	8 Service Road	
Route Number/Suffix:	00000 / 0 N/A (NBI)	
Feature Intersect (6):	Matheson Hammock	Canal
Critical Facility:	Not Defense-crit	
Facility Carried (7):	Matheson Hmk Road	k
Mile Point (11):	0.08	
Latitude (16):	025d40'44.2"	Long (17): 080d15'43.8'

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS National base Net (12): 0 - Not on Base Network LRS Inventory Rte (13a): 87 000 757 Sub Rte (13b): 00 Functional Class (26): 09 Rural Local Federal Aid System: OFF Defense Hwy (100): 0 Not a STRAHNET hwy Direction of Traffic (102): 2 2-way traffic Emergency: X

NBI Project Data

Proposed Work (075A): Not Applicable (P) Work To Be Done By (075B): Not Applicable (P) Improvement Length (076): 0 ft

NBI Rating

Channel (61): 6 Bank Slumping Deck (58): 3 Serious Superstructure (59): 3 Serious Substructure (60): 4 Poor

Roadway Traffic and Accidents

L	anes (28): 2	Medians: 0	Speed: 15 mph
	ADT Class:	2 ADT Class 2	
	Recent ADT (29):	736	Year (30): 2020
	Future ADT (114):	1168	Year (115): 2042
٦	Fruck % ADT (109):	1	
[Detour Length (19):	99 mi	
	Detour Speed:		
	Accident Count:	-1	Rate:

Roadway Clearances

Vertical (10):	99.99	ft	Appr. F
Horiz. (47):	26.25	ft	Roadw
Truck Network (110):	0 Not	part o	of natl netwo
Toll Facility (20):	3 On f	ree re	bad
Fed. Lands Hwy (105):	0 N/A	(NBI))

School Bus Route: _____ Transit Route: _____ Appr. Road (32): 26.25 ft Roadway (51): 26.25 ft

Improvement Cost (094): \$ 0.00 Roadway Improvement Cost (095): \$ 0.00 Total Cost (096): \$ 0.00 Year of Estimate (097):

Culvert (62):	N N/A (NBI)
Waterway (71):	8 Equal Desirable
Unrepaired Spalls:	-1 sq.ft.
Review Required:	X

REPORT ID: INSP005 Structure ID: 874294

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)

CIDR

DATE PRINTED: 6/25/2021

REPORT ID: INSP005 Structure ID: 874294

Structure Identification

Admin Area: Miami-Dade District (2): D6 - Miami County (3): (87)Miami-Dade Place Code (4): South Miami Heights Location (9): Matheson Hammock Park Border Br St/Reg (98): Not Applicable (P) Share: 0 % Border Struct No (99): FIPS State/Region (1): 12 Florida Region 4-Atlanta NBIS Bridge Len (112): Y - Meets NBI Length Parallel Structure (101): No || bridge exists

Temp. Structure (101): Not Applicable (P) Maint. Resp. (21): 2 County Hwy Agency Owner (22): 2 County Hwy Agency Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft Bridge Median (33): 0 No median Main Span Material (43A): 5 Prestressed Concrete Appr Span Material (44A): Not Applicable (P) Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load Deck Geometry (68): 5 Above Tolerable Underclearances (69): N Not applicable (NBI) Approach Alignment (72): 8-No Speed Red thru Curv Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft Under (reference) (54a): N Feature not hwy or RR Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 04/26/2021 Inspector: KNMEIAG - Armando Guzman Bridge Group: CA611 Alt. Bridge Group: Primary Type: Interim Review Required: X

<u>Geometrics</u>

Spans in Main Unit (45): 3 Approach Spans (46): 0 Length of Max Span (48): 38.3 ft Structure Length (49): 100.33 ft Total Length: 140.33 ft Deck Area: 3536 sqft Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0 Type of Service On (42a): 5 Highway-pedestrian Under (42b): 5 Waterway Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft Skew (34): 0 deg Deck Type (107): 2 Concrete Precast Panel Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 85.48 Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

NBI: 04/26/2022 Element: 10/26/2021 Fracture Critical: Underwater: 04/26/2022 Other/Special: 10/26/2021 Inventory Photo Update Due: 04/26/2024

Page 34 of 37

FLORIDA DEPARTMENT OF TRANSPORTATION **BRIDGE MANAGEMENT SYSTEM**

REPORT ID: INSP005	Inspec	tion/	CIDR	Repo	ort with PD	F attac	hment(s)		
Structure ID: 874294				C	CIDR			DATE PRINTED:	6/25/2021
Schedule Cont.									
Inspection Types Performed	NBI 📃 Ele	ement	X	Fra	cture Critical		Underwater	Other Special X	
Inspection Intervals	Required (92)	Freq	uency	(92)	Last Date	(93)	Inspection Resou	rces	
Fracture Critical			mos	<u>, </u>		·	Crew Hour		
Underwater		24	mos		04/06/2020		Flagger Hour	rs: 0	
Other Special		6	mos		04/26/2021		Helper Hour		
NBI		24	mos	(91)	04/06/2020	(90)	Snooper Hour		
Bridge Related				(0.)		()	Special Crew Hour	s: 3	
-	41						Special Equip Hour	s: 0	
General Bridge Informa						Duiduud			
Parallel Bridge Seq: Channel Depth:						-	Rail 1: Conc parapet-alu Rail 2: Not applicable-No		
Radio Frequency:					Fle	-	vices: No electric service		
Phone Number:					Elo		Type: Not applicable	0	
Exception Date:					Mai		Yard: Not FDOT Mainta	ained	
Exception Type:	Unknown				F	HS ON	OFF: No Routes on FIH	IS	
Accepted By Maint:	01/01/1967				Pre	vious Stru	icture:		
Warranty Expiration:						vious Stru			
Performance Rating:	Poor				Replace	ment Stru	icture:		
Permitted Utilities: Power	Water X	Gas	\Box	Fiber	Optic	Sewage	e X Other		
Bridge Load Rating Inf									
Inventory Type (065):							(066): 7.6 tons		
Operating Type (063):		. Fact					(064): 11.9 tons		
Original Design Load (031):	01/13/2020						Rating: 16.2 tons Rating: 16.2 tons		
Initials:							ercent: 33 %		
Load Rating Rev. Recom.:							ength: 38.3 ft		
Load Rating Plans Status:							ength: 28.3 ft		
					Distr	ibution M	ethod: Others		
Load Rating Notes:									
LEGAL LOADS				PC	<u>STING</u>				
	11.7 tons						osting: 11 tons		
	12.2 tons						osting: 16 tons		
	11.9 tons 18.2 tons						osting: 18 tons osting: 11 tons		
	16.9 tons						osting: 16 tons		
	17.6 tons						osting: 18 tons		
ST5:	18.4 tons				Actual E	Blanket Po	osting: 99 tons		
Posting (070):	2 20.0-29.9%below				Eme	rgency V	ehicle: 1 EV inapplicable	1	
Open/Posted/Closed (041):	P Posted for load								
FLOOR BEAM (FB)	FB Present: No			SE	GMENTAL (SE	<u>G)</u>			
FB Span Length, Gov:						-	Span: -1.0 ft		
FB Spacing, Gov:				0.5			Span: -1.0 ft		
FB OPR Rating: FB SU4 OPR Rating:				SE	G Transverse F	IL93 Ope	rating: -1.00 RF		
FB 504 OFR Rating: FB FL120 Rating:									
Bridge Scour and Stor									
•	No pile driving record	s			Scour R	ecommer	nded I: Unknown		
Foundation Type:							ded II: Unknown		
Mode of Flow:					Scour Re	commend	led III: Unknown		
Rating Scour Eval:	Minimal Risk				S	Scour Elev	vation: -1 ft		
Highest Scour Eval:							vation: -1 ft		
Scour Evaluation Method:					Sto	orm Frequ	uency: -1		

DATE PRINTED: 6/25/2021

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM Inspection/CIDR Report with PDF attachment(s)

CIDR

REPORT ID: INSP005 Structure ID: 874294

Elements

Inspection Date: 04/26/2021 HIXS

DECKS : Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
)	8099 / 3	PS Conc Slab (Sonovoid)	3099	87.64	14	0.4	423	11.96	0	· ·	3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		14	70	6	30	0		20 (SF)
0	1100 / 3	Exposed Prestressing	0		0		35	100	0	· ·	35 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0	· ·	292 (SF)
0	1900 / 3	Distortion	0	·	0		90	100	0	· ·	90 (SF)
0	510 / 3	Wearing Surfaces	1734	65.83	0		900	34.17	0	· ·	2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		900	100	0	·	900 sq.ft

DECKS : Joints

Str Un	it Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0		104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0	•	0		36	100	36 ft

MISCELLANEOUS : Channel

St	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		8290 / 3	Channel	0		0		1	100	0		1 (EA)
Τ	0	9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS : Other Elements

St	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
Τ	0	510/3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
	0	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0	•	1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0	•	3	100	0		3 each

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215/3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	48	70.59	12	17.65	8	11.76	0	· ·	68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	60	8	40	0		20 ft

SUBSTRUCTURE : Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)

Structure	ID: 874294			U U	IDR			DA	ED: 6/25/2021
0	6000 / 3	Scour	0		0	40	100	0	40 ft

SUBSTRUCTURE : Substructure

REPORT ID: INSP005

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
0	1130 / 3	Cracking (RC and Other)	0		0	•	320	100	0		320 (SF)
0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

SUPERSTRUCTURE : Superstructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0	·	0		3 ft

Total Number of Elements*: 10

*excluding defects/protective systems

Inspection Information

Inspection Date: 04/26/2021

Type: Interim

Sufficiency Rating Calculation Accepted by knmeira at 5/5/2021 3:15 PM.

Inspector: KNMEIAG - Armando Guzman

Inspection Notes:

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure. (04/26/2021).

This Interim inspection (04/26/2021) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), Element 234 Re Conc Pier Cap and Element 205 Re Conc Column, for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/26/2021).

The Substructure NBI Rating is coded 4 (Poor) due to extensive spalls with exposed rebars along Column 2-2, and delaminations and cracks along the columns and pier caps throughout the structure. (04/26/2021).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/26/2021 per Julie A. Vers, P.E.

LEGEND: NCAR: NO CORRECTIVE ACTION RECOMMENDED RT: Right LT: Left L: Long W: Wide H: High D: Deep in.: Inches ft.: Feet LF: Linear Feet SF: Square Feet **NE: Northeast** NW: Northwest SE: Southeast SW: Southwest

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Structure ID: 874294

Inspection/CIDR Report with PDF attachment(s) CIDR

DATE PRINTED: 6/25/2021

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, the bridge is posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 19 and 20.

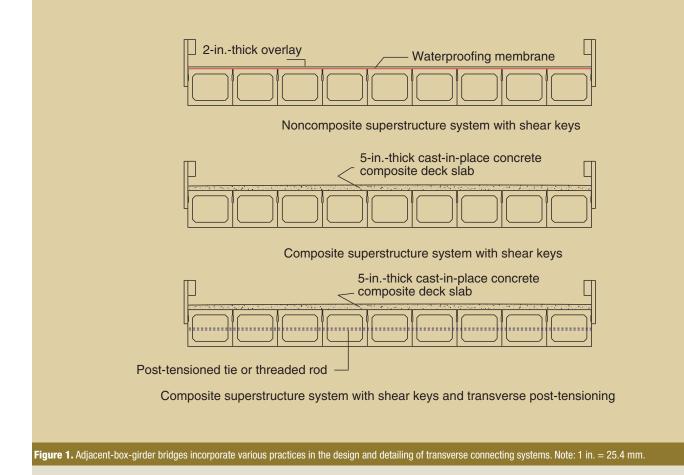
REVIEWED BY:

Schedule Notes

APPENDIX C – HANNA et. al, "TRANSVERSE POST-TENSIONING DESIGN AND DETAILING OF PRECAST, PRESTRESSED CONCRETE ADJACENT-BOX-GIRDER BRIDGES"

Editor's quick points

- This paper presents a review of various transverse design and detailing practices for adjacent-box-girder bridges.
- Design charts were developed for various combinations of span length, bridge width, skew angle, and girder depth using the latest loading from AASHTO LRFD Bridge Design Specifications to update the information in section 8.9 of the PCI Precast Prestressed Concrete Bridge Design Manual, which was based on an earlier version of the AASHTO standard specifications.
- This research was funded by PCI through the Daniel P. Jenny Fellowship.


Transverse post-tensioning design and detailing of precast, prestressed concrete adjacentbox-girder bridges

Kromel E. Hanna, George Morcous, and Maher K. Tadros

Precast concrete adjacent-box-girder bridges are the most prevalent box-girder system for short- and medium-span bridges (which typically span from 20 ft to 127 ft [6.1 m to 38.7 m]), especially on secondary roadways. These bridges consist of multiple precast concrete box girders that are butted against each other to form the bridge deck and superstructure.

There is new interest in using these bridges for rapid construction under the Federal Highway Administration (FHWA) Highways for Life program. Adjacent box girders are generally connected using partial- or full-depth grouted shear keys along the sides of each box. Transverse ties are usually used in addition to the grouted shear keys, and they may vary from a limited number of threaded rods to several post-tensioned tendons. In some cases, no topping is applied to the structure, while in other cases a noncomposite topping or a composite structural slab is added.

Bridges built with adjacent precast, prestressed concrete box girders have several advantages:

- ease and speed of construction because of eliminating concrete forming and placing operations (for example, the Arbor Rail Line Bridge in Nebraska City, Neb., was erected and opened to traffic within 72 hr)¹
- a shallow superstructure depth, which is often necessary to maintain the required vertical clearance (for example, an interstate bridge in Colorado has a spanto-depth ratio of 39)
- low construction cost compared with I-girder bridges and other competing systems
- hollow portions inside the box girders that reduce the self-weight of the girders and provide space for gas lines, water pipes, telephone ducts, storm drains, and other utilities
- improved bridge aesthetics because of the flat soffit and slender superstructure
- high torsional stiffness, which is ideal for curvedbridge construction

Bridges constructed using box girders have been in service for many years and have generally performed well. However, a recurring problem is cracking in the grouted joints between adjacent units, resulting in reflective cracks in the wearing surface.

The development of these longitudinal cracks over the shear keys jeopardizes the durability and structural behavior of adjacent-box-girder bridges.^{2,3} In most cases, the cracking leads to leakage, which allows chloride-laden water to penetrate the sides and bottoms of the girders, causing corrosion of the steel reinforcement. In addition, the load distribution among the girders is adversely affected because the loaded girders are required to carry more load than the design load.³

These deficiencies have led to severe deterioration and premature replacement of several bridges. On December 27, 2005, the east-side fascia girder of the Lakeview Drive Bridge over Interstate 70 in Washington, Pa., failed near midspan and fell to the highway below. Inspection of the bridge revealed heavy spalling and corrosion of the strands on the bottom flange of the failed noncomposite prestressed concrete box girder. Additional corrosion was revealed on other box girders, and the bridge was subsequently removed from service.⁴

A similar failure occurred in a railroad bridge in Nebraska in 2007. Unfortunately, public attention focuses on the few failed cases and not on the many successful examples.

Current practice

Adjacent-box-girder bridges incorporate various practices in the design and detailing of transverse connecting systems. **Figure 1** shows three configurations. The first is a noncomposite system with a nonstructural overlay as the riding surface applied directly to the top flange of the adjacent box girders. This system depends only on the grouted shear key to provide the shear-transfer mechanism between adjacent box girders.

The second is a thick, reinforced cast-in-place concrete slab anchored to the supporting box girders using shear connectors to act as a composite superstructure system.

The third system is a typical transverse connection made between the adjacent box girders using a post-tensioning tie or a threaded rod. This transverse connection system can be used in conjunction with the composite or noncomposite systems to prevent differential deflection.

According to the Ministry of Transportation of Ontario's (MTO's) *Ontario Highway Bridge Design Code*,⁵ the general design philosophy of adjacent-member systems assumes that the entire load between adjacent members is transferred by transverse shear, and the transverse flexural rigidity is completely ignored.

Also, grouted shear keys are considered inadequate to transfer the shear force, and therefore a structural concrete slab of a minimum thickness of 5.9 in. (150 mm) is required. The transverse shear force is determined as a function of the bridge width-to-span ratio, longitudinal flexural rigidity, and longitudinal torsional rigidity.

Some states' departments of transportation (DOTs) combine the use of a structural concrete slab and transverse post-tensioning. This is based on the assumption that both shear and flexure forces must be transversely transferred at the joints between adjacent members to control both translational and rotational deformations.⁶

In Japan, adjacent box girders are designed using sections and design criteria similar to those used in the United States. However, longitudinal joints are detailed differently and transverse post-tensioning is significantly higher. Cast-in-place concrete is placed in full-depth joints that are 6.7 in. (170 mm) wide and 22 in. (560 mm) deep. After grouting, post-tensioning is applied through several ducts located at different elevations. All box girders are covered with a 2-in.-thick to 3-in.-thick (50 mm to 75 mm) asphaltconcrete wearing surface. Using the Japanese practice, longitudinal cracking and concrete deterioration has rarely been reported. El-Remaily et al.⁶ give details of the posttensioning arrangement and joint dimensions used. In Korea, transverse connection is achieved by using middepth shear keys fully filled with cast-in-place concrete in addition to heavy transverse post-tensioning similar to the Japanese practice. The choice of a mid-depth shear key is based on a detailed analysis and full-scale testing.⁷

The state of Oregon has developed empirical transverse design and detailing procedures for adjacent box girders that have demonstrated satisfactory performance over several years. The developed system is based on using transverse threaded ties at several locations according to the span length; grouted, partial-depth shear keys; and recesses as $^{1}/_{4}$ in. (6 mm) chamfer at the bottom edges of the girder to prevent spalling due to stress concentration.

The results of research conducted by the West Virginia DOT on several bridges that had joint fracture and topping cracks revealed that vertical shear failure in the key was due to poor grouting and inadequate transverse tie force.⁸ As a result of this study, the West Virginia DOT follows certain guidelines:

- Post-tensioned high-strength ties are used.
- A pourable epoxy is used instead of a nonshrink grout in the shear key.
- The surfaces to be grouted are sandblasted.

Before 1992 in New York state, depths of shear keys were about 12 in. (300 mm) from the tops of the precast concrete girders.⁹ Transverse tendons applying a compressive force of 30 kip (133 kN) were used across the width of a bridge. Spans up to 50 ft (15 m) long had no transverse tendons, but those from 50 ft to 75 ft (23 m) long had one transverse tendon at the center. For those longer than 75 ft, tendons were used only at the outer quarter points.

The bridge continuity in transverse direction was ensured by using a 6-in.-thick (150 mm), cast-in-place concrete deck slab reinforced with welded-wire reinforcement. A survey in 1990⁸ indicated that 54% of such bridges built from 1985 to 1990 had developed longitudinal cracks over the shear keys. In 1992, two major changes were adopted in New York state's design standards:

- Shear keys were placed at almost the full depth of the precast concrete box girders.
- The number of transverse tendons was increased to three for spans less than 50 ft (15 m) and five for longer spans.

Since the changes were adopted, more than 100 bridges have been built statewide. In 1996, a survey was conducted to evaluate the effectiveness of implemented design changes. The survey indicated that only 23% of the bridges built from 1993 to 1996 experienced longitudinal cracks. This indicated the effectiveness of applying transverse post-tensioning to reduce cracking of the deck slab.⁹

The Ohio DOT constructed a high-performance concrete (HPC) adjacent-box-girder bridge.¹⁰ This bridge was constructed as a replacement for a three-span bridge. The bridge used an experimental shear key at mid-depth of the cross section. The girders were tightened together using nonprestressed threaded rods located transversely through diaphragms at the ends and quarter points of the bridge.

The shear keys were grouted after tightening the transverse bars. The area above the shear key was filled with sand and a sealant to further guard against leakage. After constructing the entire bridge width, the bridge was subjected to an eccentric load of 120 kip (534 kN) using four Ohio DOT trucks filled with gravel. The researchers reported that the deflection profiles in the transverse direction showed that all of the girders were working together. In addition, while subjecting the bridge to eccentric load, the deflection on the loaded side was greater than that on the opposite side of the bridge width.

Miller et al.¹¹ and Hlavacs et al.¹² studied the performance of nonshrink grout and epoxy in shear keys. Nonshrink grout in shear keys close to the top edge of the girder experienced cracks before any load was applied. The researchers reported that these cracks developed because of temperature stresses. The use of epoxy grout made it possible to prevent cracking under either temperature or load effects, but the coefficient of its thermal expansion was two to three times greater than that of concrete.

Gulyas et al.¹³ compared the behavior of nonshrink grout with the behavior of magnesium ammonium phosphate mortars in the shear keys. The researchers tested the component material in assemblies using different types of tests, such as vertical shear, direct tension, and longitudinal shear tests. The vertical shear test was intended to simulate the action of a vehicle wheel load on one member and no wheel load on the adjacent member. The direct tension test attempted to simulate the transverse shortening of the precast concrete member due to shrinkage and also to simulate the drying shrinkage that can occur in the keyway grout.

The longitudinal shear tests were performed in the direction parallel to the keyway to simulate the action of the prestressed concrete member shortening because of creep and shrinkage while the grout would not shorten to the same degree. In all tests, the magnesium ammonium phosphate–grouted assembles displayed an exceptionally higher failure load than the nonshrink grout composite assemblies.

In an attempt to overcome the problems associated with the failure of the shear keys, El-Esnawi¹⁴ suggested a new shear-key design. The new design proposed moving the

shear key from its position in the upper third of the gap closer to the midheight of the box-girder section. His experimental program included testing the current shear-key design against the proposed one while incorporating different grout materials such as nonshrink grout, magnesium ammonium phosphate mortar, and epoxy resin mortar in both of the designs. The test specimens were loaded gradually until failure.

El-Esnawi observed that the static-load capacity was almost tripled from the current shear-key design with the same grouting material. He reported that magnesium ammonium phosphate was sensitive to carbonated concrete surfaces, and it was difficult to provide a carbonate-free contact surface to prevent the chemical reaction with magnesium ammonium phosphate. The research also revealed that epoxy grout was a strong grouting material that had excellent adhesion with concrete. However, its preparation had many difficulties and its long-term behavior under different temperature changes was questionable.

Annamalai et al.¹⁵ conducted an experimental program to investigate the effect of transverse post-tensioning on the behavior of small assemblies. The parameters studied were the number and thickness of shear keys and the level and distribution of the prestressing. They concluded that posttensioning significantly improved the shear strength of grouted shear-key connections, and post-tensioned grouted shear-key connections exhibited a high degree of monolithic action.

Assemblies with three keys showed higher rigidity than specimens with two keys. Assemblies with a 1-in.-thick (25 mm) joint were found to have significantly higher shear strengths than specimens with 2-in.-thick (50 mm) joints for the same prestress level. The connections without shear keys and with a prestress of 800 psi (5520 kPa) had nearly the same shear strength as connections with shear keys and no prestress. Prestress in combination with shear keys provided superior performance. The shear strength was not significantly influenced by the distribution of prestress along the height of the specimen.

Stanton and Mattock¹⁶ tested the strength of welded connectors acting alone and with grout keys. The experimental program involved six specimens. Each specimen consisted of two 6-in.-thick (150 mm) reinforced concrete slabs joined together at their edges using a 5-ft-long (1.5 m) shear key.

Stanton and Mattock concluded that the forces from the wheel loads were transferred through the shear key. The steel connectors carried shear forces induced before grouting because of differential camber, and tension forces because of shrinkage. They concluded that the strength of the shear key was affected by inclined cracking in the parts of the member flanges above and below the shear key rather than by failure of the grout itself. They recommended the use of transverse post-tensioning to improve the behavior of transverse connections.

Huckelbridge et al.³ conducted a total of six field tests on three bridges with noncomposite topping and two field tests with composite cast-in-place concrete decks. One of the bridges was tested before and after repairing a severely deteriorated joint.

They reported that a relative displacement between the girders of more than 0.001 in. (0.025 mm) indicated failure in the shear key. The magnitude of relative displacement experienced by each bridge depended on the actual length of the fracture, stiffness of the girders, and magnitude and proximity of the wheel load to the failed joint. Relative displacements between 0.003 in. and 0.02 in. (0.075 mm and 0.50 mm) were observed at joints that indicated at least partially fractured shear keys. The results also revealed that tie bars had little to no impact on shear-key performance.

Issa et al.¹⁷ tested a total of 36 full-scale specimens for vertical shear, direct tension, and flexural capacity. Four different grout materials were used to construct the shear keys in the specimens. The grout materials were set grout, set 45 for normal temperatures, set 45 for hot weather, and polymer concrete.

Polymer concrete was found to be the best material for transverse joints in terms of strength, bond, and mode of failure. However, they recommended the use of set grout in transverse deck joints due to its ease of use and satisfactory performance and polymer concrete in the joints subjected to excessive stresses or when quick repair is required.

Martin and Osburn¹⁸ tested two precast, prestressed concrete–slab bridge models. Each model consisted of three adjacent precast, prestressed concrete slabs that were connected by two different types of transverse connections. The precast, prestressed concrete slabs had a cross section of 8 in. \times 36 in. (200 mm \times 910 mm), a length of 18 ft (5.5 m), and a span of 16 ft (4.9 m).

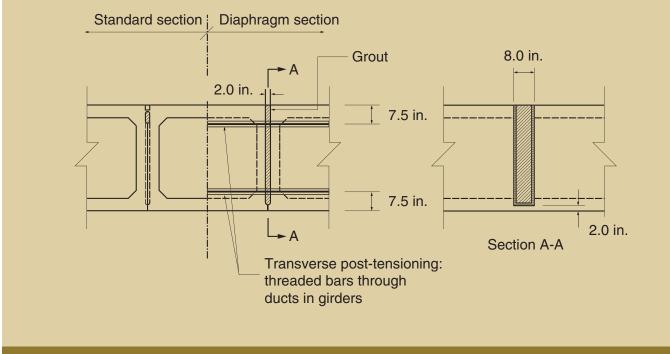
Each bridge model was tested by loading the two outer slabs cyclically at midspan by equal concentrated loads of 16 kip (71 kN), which was intended to simulate American Association of State Highway and Transportation Officials (AASHTO) HS-20 wheel loads.

In the first bridge model, the slabs were joined together by tie rods at the third point of the span, and the tie rods were tensioned to 12 kip (53 kN). The joints were grouted using high-strength, nonshrink grout.

In the second bridge model, the slabs were joined together with three welded connectors located at both supports and midspan. The joints were grouted using relatively lowstrength, high-shrinkage grout.

In both bridge models, it was found that the moment resisted by each outer slab was about 33% greater than the moment resisted by the middle slab. Martin and Osburn concluded that a properly grouted shear key and either transverse tie rods or welded connectors are an effective way to transfer shear between adjacent members.

El-Shahawy¹⁹ investigated the behavior of the transverse connections in the double-tee bridges. He tested a half-scale bridge model consisting of three 30-ft-long (8.2 m) double-tees. The transverse connections consisted of V-shaped joints between the girders filled with nonshrink portland cement grout and transverse post-tensioning strands. The developed stresses due to transverse post-tensioning strands were equal to 150 psi (1030 kPa) at the middle portion and 300 psi (2070 kPa) at the ends.


The behavior of the transverse connection was investigated by conducting several punching-shear tests on the deck slab followed by a load-distribution test across the entire bridge width. The results from all tests indicated that the selected level of transverse prestressing satisfied the design requirements. It was also concluded that transverse posttensioning helped the slab achieve monolithic behavior.

According to the AASHTO LRFD Bridge Design Specifications,²⁰ the use of transverse mild-steel rods secured by nuts is not sufficient to achieve full transverse flexural continuity. Section 5.14.4.3.3d recommends a minimum effective post-tensioning pressure of 250 psi (1720 kPa) through the shear key. There is neither a rational justification for this value nor an adequate explanation regarding the area over which this pressure is applied when different shear keys are used.

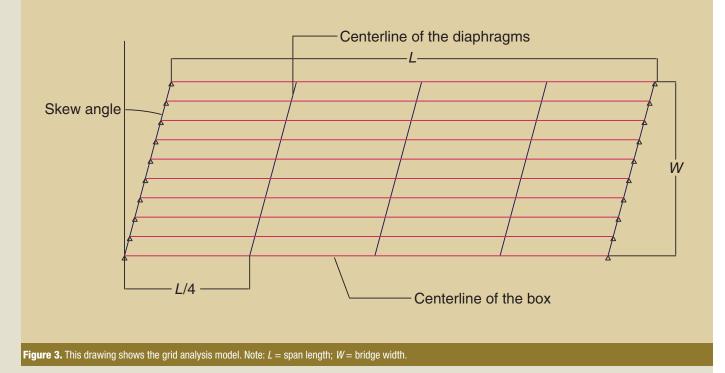
The PCI subcommittee on adjacent-member bridges conducted a survey on the current practices in the design and construction of adjacent-box-girder bridges in United States and Canada.⁹ This survey indicated that 29 states and 3 provinces are currently using adjacent-box-girder bridges.

Most of these transportation agencies have experienced premature reflective cracks in the wearing surface on the bridges built in the late 1980s and early 1990s. These agencies have emphasized the importance of eliminating these cracks that allow the penetration of water and deicing chemicals and lead to the corrosion of reinforcing steel in the sides and bottoms of concrete box girders. The states and provinces have recommended preventive actions based on the lessons learned in the past two decades:

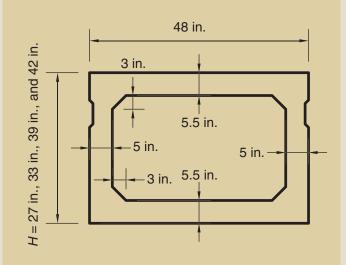
• Cast-in-place concrete deck on top of the adjacent box girders can prevent water leakage and uniformly distribute the loads on adjacent box girders.

Figure 2. The transverse diaphragms are made continuous across the entire width of the bridge using grouted full-depth shear keys and post-tensioning tendons. Source: Figure 8.9.3-1. PCI Bridge Design Manual Steering Committee, *Precast Prestressed Concrete Bridge Design Manual* (Chicago, IL: PCI, 2003). Note: 1 in. = 25.4 mm.

- Nonshrink grout or the appropriate sealant instead of the conventional sand-cement mortar in the shear keys should be used in addition to blast cleaning of key surfaces prior to grouting. Also, a few states have recommended the use of full-depth shear keys due to their superior performance over the traditional topflange keys.
- Transverse post-tensioning is recommended to improve load distribution and minimize differential deflections among adjacent box girders. Adequate post-tensioning should be applied after grouting the shear keys to minimize the tensile stresses that cause longitudinal cracking at these joints.
- End diaphragms should be used to ensure proper seating of adjacent box girders, and intermediate diaphragms should be used to provide the necessary stiffness in the transverse direction.
- Wide bearing pads under the middle of the box and sloped bearing seats that match the surface cross slope are recommended to eliminate the rocking of the box while grouting the shear keys.
- Adequate concrete cover and corrosion-inhibiting admixtures should be used in the concrete to resist the chloride-induced corrosion of reinforcing steel.
- It is recommended to eliminate the use of welded connections between adjacent box girders and to avoid


dimensional tolerances that result in inadequate sealing of the shear keys.

PCI method


PCI's *Precast Prestressed Concrete Bridge Design Manual*²¹ method was developed by El-Remaily et al.⁶ and is reported in section 8.9 of the manual. In this method, the post-tensioning force required to achieve adequate stiffness in the transverse direction to keep differential deflection within the acceptable limit (0.02 in. [0.50 mm]) is calculated.

This method assumes that post-tensioned transverse diaphragms are the primary mechanism for the distribution of wheel loads across the bridge. Five diaphragms are provided in each span: one at each end, one at midspan, and one at each quarter point. Without diaphragms, each box girder must be designed to carry a full set of wheel loads without contribution from adjacent box girders. As a result, a large differential deflection between adjacent girders will take place and reflective cracking is generally expected. However, if the box girders are transversely connected using diaphragms, the loads are distributed over the entire bridge width, and the deflected shape becomes a smooth curve. The transverse diaphragms are made continuous across the entire width of the bridge using grouted, full-depth shear keys and post-tensioning tendons (**Fig. 2**).

To determine the required amount of post-tensioning, the bridge is analyzed using a grid model. A series of longitu-

dinal girder elements located at the centerline of each box girder is used to represent the box girders, and a series of transverse girder elements located at the ends and quarter points is used to represent the diaphragms (**Fig. 3**). The joints between elements allow the transmission of shear, bending, and torsion. The weight of barrier rails and live loads are the main source of transverse bending moments generated in the diaphragms. This is because self-weight, deck weight, and wearing-surface weight are considered uniform on all of the elements and therefore do not generate any differential movements.

Figure 4. This drawing shows the American Association of State Highway and Transportation Officials' standard box girder used for developing the design charts currently available in the PCI *Precast Prestressed Concrete Bridge Design Manual.* Note: H = height of box girder. 1 in. = 25.4 mm.

Transverse post-tensioning force is calculated so that diaphragm concrete stresses due to both loads and post-tensioning are within the allowable limits (compression = $0.6 f_c$ where f_c is specified compressive strength of concrete and tension is 0). Tensile stresses are not permitted in the diaphragm in order to prevent possible cracking at the interface between precast concrete components and the grout at shear-key locations. Also, post-tensioning force is applied concentrically in the transverse direction because diaphragms experience significant alternating positive and negative bending moments under different loading conditions.

The design chart currently available in the PCI bridge design manual was developed for the AASHTO standard box girders in **Fig. 4** and **Table 1**, assuming mild skew angles (that is, less than 15 deg), average span lengths, and AASHTO HS-25 truck loading with impact.⁶ New charts need to be developed to accommodate the cases of highly skewed bridges with different span lengths and using the AASHTO LRFD specifications truck and lane loads in addition to dynamic load allowance.²⁰

Updated design charts and design equation

The updated design charts were developed using the same PCI method for the four standard AASHTO box girders in Fig. 4 and Table 1. For each girder, several combinations of bridge width, span length, and skew angle were considered. The AASHTO LRFD specifications for truck and lane live loads (HL-93) and dynamic load allowance (33% for truck load only) were applied in addition to 0.48 kip/ft (7.0 kN/m) for the self-weight of a solid concrete barrier.²⁰

Table 1. Box beam properties				
Туре	Height <i>H</i> , in.	Area <i>A</i> , in.²	Y _{bottom}	Moment of inertia <i>I</i> , in.⁴
BI-48	27	692.5	13.37	65,941
BII-48	33	752.5	16.33	110,499
BIII-48	39	812.5	19.29	168,367
BIV-48	72	842.5	20.78	203,088
Note: Y_{bottom} = distance from bottom of girder to center of gravity. 1 in. = 25.4 mm.				

Figure 5 shows the effective post-tensioning force versus bridge width for the four standard box girders, assuming a 0 deg skew angle and a span-to-depth ratio of 30. This graph indicates that for any girder depth, the wider the bridge, the higher the required post-tensioning force. It also indicates that the required force is higher in shallower girders than in deeper girders for the same bridge width. This is mainly to compensate for the reduction in the transverse stiffness due to the use of shallower diaphragms. Each line in Fig. 5 has two different curvatures. The first curvature represents the relationship when the negative moment controls the design, which occurs in the relatively narrow bridge widths (up to 52.0 ft [15.9 m]). The second curvature represents the relationship when the positive moment controls the design, which occurs in wider bridges.

Figure 6 shows the PCI bridge design manual design chart superimposed over the updated design chart. This graph indicates a significant increase in the required posttensioning force (up to 40% in some cases) in the updated charts. This is mainly due to the use of the AASHTO LRFD specifications on live-load and dynamic-load allowance. This increase varies depending on the box-girder depth and the bridge width, and it is more noticeable in narrow bridges than in wide bridges. It should be noted that the PCI bridge design manual values correspond to a skew angle of 15 deg and average span length, while the proposed values correspond to a skew angle of 0 deg and a span-to-depth ratio of 30.

Figure 7 shows the required post-tensioning force versus bridge width for a 0 deg skew angle and span-to-depth ratios of 30 and 40. Although the effect of the span-todepth ratio was evaluated for the four standard box girders, only the lines for the 27-in.-deep and 42-in.-deep (690 mm and 1070 mm) box girders were plotted for clarity. This plot indicates that the span-to-depth ratio has an insignificant and variable effect on the required post-tensioning force per unit length. As the span-to-depth ratio increased, the required prestressing force increased when the design

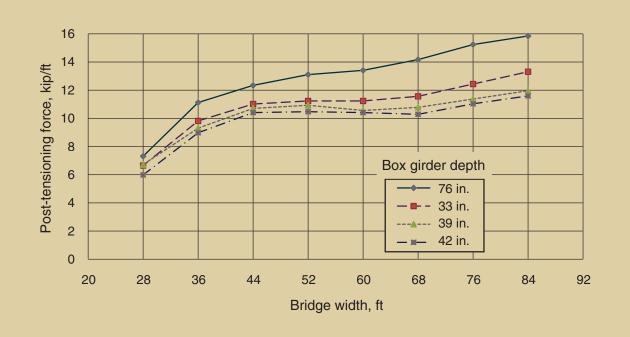


Figure 5. This graph shows the effect of bridge width on post-tensioning force at the midspan diaphragm for the four standard box girders assuming a 0 deg skew angle and a span-to-depth ratio of 30. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 4.448 kN.

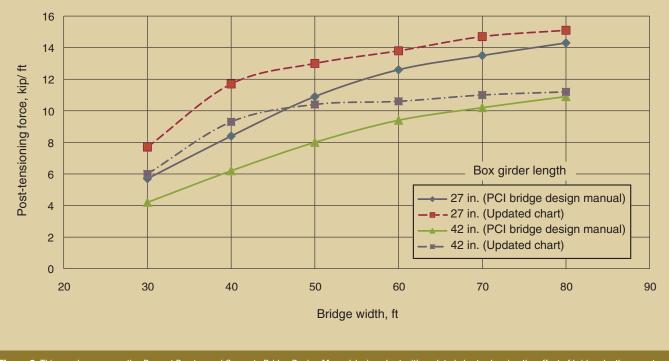


Figure 6. This graph compares the *Precast Prestressed Concrete Bridge Design Manual* design chart with updated charts showing the effect of bridge depth on post-tensioning force. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 4.448 kN.

was positive-moment controlled, and decreased when the design was negative-moment controlled. This effect was more noticeable in the shallow girders.

Figure 8 shows the effect of skew angle on the required post-tensioning force at the midspan diaphragm for a bridge width of 52 ft (16 m) and a span-to-depth ratio of 30. Figure 8 indicates that the impact of the skew angle on

the required post-tensioning force is minimal, especially on deep girders that usually correspond to longer spans. For shallow girders used in short-span bridges, as the skew angle increased the required post-tensioning force also increased.

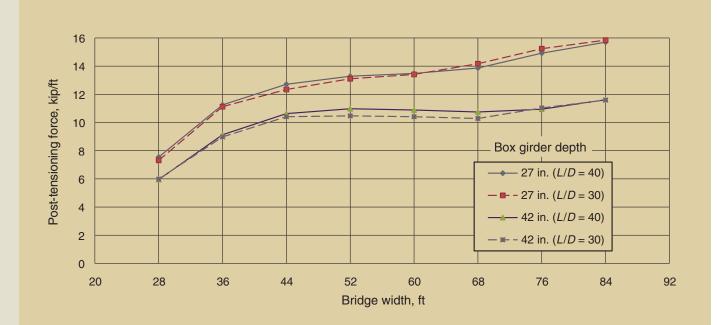
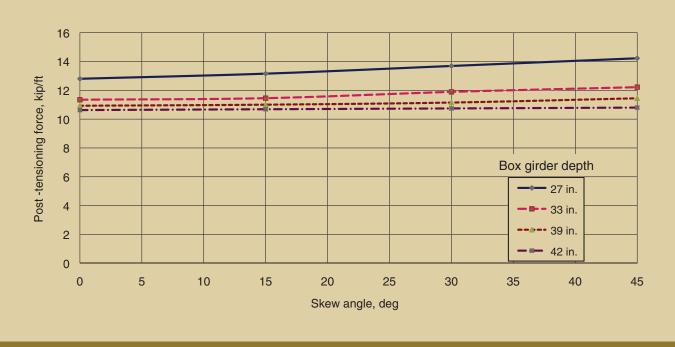
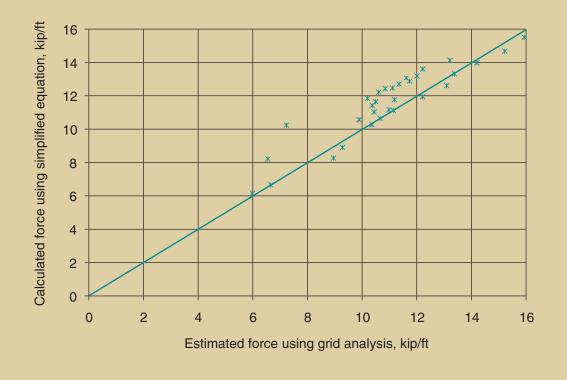
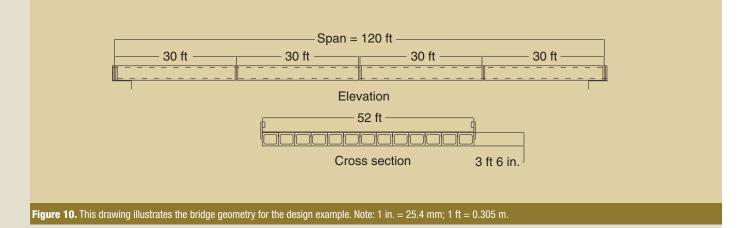


Figure 7. This graph shows the effect of the span-to-depth ratio on post-tensioning force at the midspan diaphragm for a 0 deg skew angle and span-to-depth ratios equal to 30 and 40. Note: *D* = depth; *L* = span. 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 4.448 kN.


Figure 8. This graph shows the effect of the bridge skew angle on post-tensioning force for the midspan diaphragm for a bridge width of 52 ft and a span-to-depth ratio of 30. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 4.448 kN.

Figures 5, 7, and 8 indicate that the bridge width and boxgirder depth are the most important parameters in determining the required post-tensioning force per unit length of the bridge. Therefore, the designer should first estimate the force based on the bridge width and girder depth using the proposed design chart (Fig. 5). These values correspond to a span-to-depth ratio of 30 and a skew angle of 0 deg and should be corrected using Fig. 7 and 8, respectively, when different span-to-depth ratios or skew angles are used.

Data from the grid analysis were used to develop a simplified design equation for calculating the required post-

Figure 9. This graph compares the post-tensioning force estimated using grid analysis with the proposed equation. Note: 1 in. = 25.4 mm; 1 ft = 0.305 m; 1 kip = 4.448 kN.

tensioning force P (kip/ft) for the intermediate diaphragm per unit length of the bridge. The following equation was developed by fitting the data points obtained from the grid analysis of all cases. The first part of the equation represents the relationship when the negative moment controls the design, which occurs in smaller bridge widths (up to 52.0 ft [15.9 m]). The second part of the equation represents the relationship when the positive moment controls the design, which occurs in wider bridges. These relationships were assumed to be linear to eliminate sophisticated formulations.

$$P = \left(\frac{0.9W}{D} - 1.0\right) K_L K_S \le \left(\frac{0.2W}{D} + 8.0\right) K_L K_S$$

where

D = box depth

W = bridge width

 K_L = correction factor for span-to-depth ratio

$$= 1.0 + 0.003 \left(\frac{L}{D} - 30 \right)$$

 K_s = correction factor for skew angle more than 0 deg

 $= 1.0 + 0.002\theta$

L = bridge span

 θ = skew angle

To evaluate the accuracy of the simplified equation in fitting the analysis data, the post-tensioning force values obtained using the equation were compared with those obtained using the grid analysis for several combinations of bridge width and depth. Span-to-depth ratio and skew angle were kept constant to evaluate the accuracy of the basic equation without any correction factors. **Figure 9** shows that the simplified equation provides a conservative

estimate of the required transverse post-tensioning force in most of the cases, with an average deviation of 7.7%.

Design example

The provided design example illustrates the design steps of the single-span bridge (**Fig. 10**).

Bridge data

Figure 10 shows the cross section and the elevation of the bridge.

Span = 120 ft (37 m)

Width = 52 ft (16 m)

Depth = 42 in. (1070 mm) (AASHTO LRFD specifications standard box girder)

Skew $= 15 \deg$

Concrete strength

Precast concrete $f'_{c} = 6000 \text{ psi} (41 \text{ MPa})$

Grout $f'_{c} = 6000 \text{ psi} (41 \text{ MPa})$

Box girder section properties

Area A = 842.5 in.² (543,600 mm²)

Moment of inertia $I = 203,088 \text{ in.}^4 (8.453 \times 10^{10} \text{ mm}^4)$

Diaphragm section properties

The cross section of the diaphragms is rectangular. The depth of the diaphragm is equal to the depth of the box girder (42 in. [1070 mm]), and the width is 8 in. (200 mm)

 $A = 336 \text{ in.}^2 (216,800 \text{ mm}^2)$

 $I = 49,392 \text{ in.}^4 (1.68 \times 10^{10} \text{ mm}^2)$

Loading

Dead load: curb and railing w = 0.48 kip/ft (7.0 kN/m)

Live load: HL-93 truck and lane load

Impact factor for truck load = 33%

Calculation of the required transverse post-tensioning force using working stresses analysis

The grid analysis was used to get the member forces. Moments of the midspan diaphragm were used for design calculations. The live-load positions were chosen to give the maximum positive and maximum negative moments. Allowable compressive strength due to effective prestress plus maximum load was calculated using the following equation.

 $0.6 f_c^{'} = 0.6(6000) = 3600 \text{ psi} (24,800 \text{ kPa})$

Tension is not permitted. These stresses must be checked for both the maximum positive and maximum negative load cases:

• Positive-moment load case: the unfactored maximum positive moment is 147 kip-ft (199 kN-m).

$$f_{bot} = -\left(\frac{147(12)(1000)(21)}{49,392}\right) + \frac{P(1000)}{336} \ge 0$$

where

$$P_{diaphragm} \ge 252 \text{ kip } (1121 \text{ kN})$$

 f_{bot} = stress in bottom of diaphragm

$$f_{top} = -\left(\frac{147(12)(1000)(21)}{49,392}\right) + \frac{P(1000)}{336} \le 3600$$

 $P_{diaphragm} \le 958 \text{ kip} (4381 \text{ kN})$

 f_{top} = stress in top of diaphragm

• Negative-moment load case: the unfactored maximum negative moment is 187 kip-ft (254 kN-m).

$$f_{top} = -\left(\frac{187(12)(1000)(21)}{49,392}\right) + \frac{P(1000)}{336} \ge 0$$

$$P_{diaphragm} \ge 324 \text{ kip} (1441 \text{ kN})$$

$$f_{bot} = -\left(\frac{187(12)(1000)(21)}{49,392}\right) + \frac{P(1000)}{336} \le 3600$$

 $P_{diaphragm} \le 890 \text{ kip} (3959 \text{ kN})$

Based on the previous calculations, the total required transverse post-tensioning force per diaphragm is 324 kip (1440 kN). The total required transverse post-tensioning force per foot of the bridge is 324/30, which equals 10.8 kip/ft (158 kN/m).

According to section 5.14.4.3.3d of the AASHTO LRFD specifications and using the area of the full-depth vertical shear key as the contact area, the minimum required transverse post-tensioning force per diaphragm is equal to 0.25(8)(42 - 2), or 80 kip (360 kN). This is low because it represents only 25% of the force calculated using the updated PCI method. If the entire side of the box is used as the contact area, the minimum required transverse post-tensioning force per diaphragm is 0.25(30)(12)(42), or 3780 kip (16,800 kN). This is extremely high because it is 10 times the force calculated using the updated PCI method.

Calculation of the required transverse post-tensioning force using the developed equation

From the proposed equation, the required transverse posttensioning force is calculated as follows.

$$K_{L} = 1.0 + 0.003 \left(\frac{L}{D} - 30 \right)$$
$$= 1.0 + 0.003 \left(\frac{120(12)}{42} - 30 \right) = 1.013$$

 $K_s = 1.0 + 0.002\theta = 1.0 + 0.002(15) = 1.03$

The required post-tensioning force:

$$P = \left(\frac{0.9W}{D} - 1.0\right) K_L K_S \le \left(\frac{0.2W}{D} + 8.0\right) K_L K_S$$
$$= \left(\frac{0.9(52)(12)}{42} - 1.0\right) (1.013) (1.03)$$
$$\le \left(\frac{0.2(52)(12)}{42} + 8.0\right) (1.013) (1.03)$$

 $= 12.9 \le 11.5 \therefore P = 11.5 \text{ kip/ft} (168 \text{ kN/m})$

 $P_{diaphragm} = 11.5(30) = 345 \text{ kip} (1535 \text{ kN})$

Required prestressing strands

Two tendons will be used in each diaphragm. The required area of post-tensioning force A_{ps} is calculated by dividing the required force $P_{diaphragm}$ by the effective prestress f'_{s} , which is assumed to be 55% of the ultimate strength of the strands f_{pu} .

 $A_{ps} = 345/(0.55 \times 270) = 2.32 \text{ in.}^2(15.0 \text{ mm}^2)$

Try six 0.6-in.-diameter strands at each tendon. The total area is 2.604 in.² (16.80 mm²), which is acceptable.

Conclusion

Based on the results of the parametric study and the comparison of the updated design chart with the existing PCI bridge design manual design chart, several conclusions are made:

- The latest AASHTO LRFD specifications for liveload and dynamic-load allowance cause a significant increase (up to 40% in some cases) in the required transverse post-tensioning force for adjacent-boxgirder bridges.
- The bridge width and girder depth have the most significant effect on the required transverse post-tensioning force. For any girder depth, an increase in the bridge width is accompanied by a higher post-tensioning force. Also, the required force is higher in shallower girders than in deeper girders for the same bridge width.
- Span-to-depth ratio has a variable effect on the required transverse prestressing force per unit length. As the span-to-depth ratio increases, the required prestressing force also increases when positive moment controls the design, and less prestressing force is required when negative moment controls. This effect is more noticeable in the shallow girders.
- Skew angle has a minimal effect on the required transverse post-tensioning force, especially on deep girders that usually correspond to longer spans. For shallow girders used in short-span bridges, greater skew angles require more transverse post-tensioning force.
- The simplified design equation provides the required transverse post-tensioning force per unit length of the bridge as a function of its width and box-girder depth and accounts for the span-to-depth ratio and skew angle using correction factors. The average deviation of the values calculated using the simplified equation and the grid analysis results is 7.7%.

Acknowledgments

The authors acknowledge the invaluable support of the PCI subcommittee on Adjacent Member Bridges led by Kevin Eisenbeis and the financial and technical support of PCI through the Daniel P. Jenny Fellowship.

References

- Hennessey, S. A., and K. A. Bexten. 2002. Value Engineering Results in Successful Precast Railroad Bridge Solution. *PCI Journal*, V. 47, No. 4 (July– August): pp. 72–77.
- Kahl, S. 2005. Box-Beam Concerns Found under the Bridge. C&T Research Record, No. 102 (September): pp. 1–4.
- 3. Huckelbridge, A. A., H. El-Esnawi, and F. Moses. 1995. Shear Key Performance in Multi-Beam Box Girder Bridges. *Journal of Performance of Constructed Facilities*, V. 9, No. 4 (November): pp. 271–285.
- Naito, C., R. Sause, I. Hodgson, S. Pessiki, and C. Desai. 2006. Forensic Evaluation of Prestressed Box Beams from the Lake View Drive Bridge over I-70. Advanced Technology for Large Structural Systems (ATLSS) report no. 06-13.
- 5. Ministry of Transportation of Ontario (MTO). 1995. Ontario Highway Bridge Design Code. 1995. MTO.
- El-Remaily, A., M. K. Tadros, T. Yamane, and G. Krause. 1996. Transverse Design of Adjacent Precast Prestressed Concrete Box Girder Bridges. *PCI Journal*, V. 41, No. 4 (July–August): pp. 96–113.
- Nam, J. W., H. J. Kim, J. H. Kim, S. H. Nam, S. B. Kim, and K. J. Byun. 2008. International Perspective: Overview and Application of Precast Prestressed Box-Beam Bridges in Korea. *PCI Journal*, V. 53, No. 4 (July–August): pp. 83–107.
- 8. PCI Bridges Committee. 2008. Reflective Cracking in Adjacent Box Girder Bridge Superstructures. *Subcommittee on Adjacent Box Beam Bridges*, October.
- Lall, J., S. Alampalli, and E. F. Dicocoo. 1998. Performance of Full-Depth Shear Keys in Adjacent Prestressed Box Beam Bridges. *PCI Journal*, V. 43, No. 2 (March–April): pp. 72–79.
- Greuel, A., T. M. Baseheart, B. T. Rogers, R. A. Miller, and B. M. Shahrooz. 2000. Evaluation of a High Performance Concrete Box Girder Bridge. *PCI Journal*, V. 45, No. 6 (November–December): pp. 60–71.

- Miller, R. A., G. M. Hlavacs, T. Long, and A. Greuel. 1999 Full-Scale Testing of Shear Keys for Adjacent Box Girder Bridges. *PCI Journal*, V. 44, No. 6 (November–December): pp. 80–90.
- Hlavacs, G. M., T. Long, R. A. Miller, and T. M. Baseheart. 1997. Nondestructive Determination of Response of Shear Keys to Environmental and Structural Cyclic Loading. *Transportation Research Record*, No. 1574 (November): pp. 18–24.
- Gulyas, R. J., G. J. Wirthlin, and J. T. Champa. 1995. Evaluation of Keyway Grout Test Methods for Precast Concrete Bridges. *PCI Journal*, V. 40, No. 1 (January–February): pp. 44–57.
- El-Esnawi, H. H. 1996. Evaluation of Improved Shear Key Designs for Multi-Beam Prestressed Concrete Box Girder Bridges. PhD thesis. Case Western Reserve University, Cleveland, Ohio.
- Annamali, G., and R. C. Brown. 1990. Shear Transfer Behavior of Post-tensioned Grouted Shear Key Connections in Precast Concrete-Framed Structures. *ACI Structural Journal*, V. 87, No. 1 (January-February): pp. 53–60
- Stanton, J. F., and A. H. Mattock. 1986. Load Distribution and Connection Design for Precast Stemmed Multi-Beam Bridge Superstructures. TRB report no. 287. Washington, DC: Transportation Research Board.
- Issa, M. A., C. L. R. Valle, S. Islam, and H. A. Abdalla. 2003. Performance of Transverse Joint Grout Materials in Full-Depth Precast Concrete Bridge Deck Systems. *PCI Journal*, V. 48, No. 4 (July–August): pp. 92–103.
- Martin, L. D., and A. E. N. Osborn. 1983. Connections for Modular Concrete Bridge Decks. Federal Highway Administration 82/106, National Technical Information Service document PB84-118058, Consulting Engineering Group Inc., Glenview, IL.
- El-Shahawy, M. 1990. Feasibility Study of Transversely Prestressed Double Tee Bridges. *PCI Journal*, V. 35, No. 5 (September–October): pp. 56–69.
- American Association of State Highway and Transportation Officials (AASHTO). 2004. AASHTO LRFD Bridge Design Specifications. 3rd ed. Washington, DC: AASHTO.
- PCI Bridge Design Manual Steering Committee. 2003. Precast Prestressed Concrete Bridge Design Manual. MNL-133. 2nd ed. Chicago, IL: PCI.

Notation

A = area

- A_{ps} = required area of post-tensioning force
- D = depth
- f_{bot} = stress in bottom of diaphragm
- $f_c^{'}$ = specified compressive strength of concrete
- f_{pu} = ultimate strength of the strand
- $f_{s}' = \text{effective prestress}$

 f_{top} = stress in top of diaphragm

- H = height
- I =moment of inertia

 K_L = correction factor for span-to-depth ratio

 K_s = correction factor for skew angle more than 0 deg

L = bridge span

P = post-tensioning force per unit length of the bridge

 $P_{diaphragm}$ = post-tensioning force on the diaphragm

w = dead load of curb and railing

W = bridge width

 Y_{bottom} = distance from bottom of girder to center of gravity

 θ = skew angle

About the authors

Kromel E. Hanna, PhD, is a Post-Doctoral Fellow for the Civil Engineering Department at the University of Nebraska–Lincoln in Omaha, Neb.

George Morcous, PhD, P.E., is an assistant professor for the Construction Systems Department at the University of Nebraska–Lincoln.

Maher K. Tadros, PhD, P.E., is a Leslie D. Martin Professor of Civil Engineering at the University of Nebraska–Lincoln.

Synopsis

Precast, prestressed concrete adjacent box girders are widely used in short- and medium-span bridges. Rapid construction and low construction cost are the main attractions of this system. Also, the continuous flat soffit and relatively high span-to-depth ratio make this system aesthetically pleasing.

However, reflective cracking and leakage have been reported along the longitudinal joints between adjacent box girders in a number of bridges. The cracking and leakage are mainly due to inadequate design and detailing of the transverse connection between adjacent box girders, which eventually leads to excessive differential displacement and rotation of adjacent box girders. The reflective cracking and leakage allow chloride-induced corrosion of reinforcing steel and prestressing strand and premature deterioration of the bridge superstructure.

This paper presents a review of the various practices in the transverse design and detailing of adjacent-boxgirder bridges. The basis for calculating the transverse post-tensioning force according to PCI's *Precast Prestressed Concrete Bridge Design Manual* is discussed. Design charts and equations were developed for various combinations of span length, bridge width, skew angle, and girder depth using the latest loading from *AASHTO LRFD Bridge Design Specifications*. These aids may be viewed as an update to the information in section 8.9 of the PCI bridge design manual, which was based on an earlier version of the AASHTO standard specifications.

Keywords

Adjacent box girder, bridge deterioration, grid analysis, longitudinal joint, rapid construction, shear key, transverse design.

Review policy

This paper was reviewed in accordance with the Precast/Prestressed Concrete Institute's peer-review process.

Reader comments

Please address any reader comments to *PCI Journal* editor-in-chief Emily Lorenz at elorenz@pci.org or Precast/Prestressed Concrete Institute, c/o *PCI Journal*, 209 W. Jackson Blvd., Suite 500, Chicago, IL 60606.

APPENDIX D – STRUCTURAL TECHNOLOGIES, LLC, "V-WRAP C200HM HIGH MODULUS CARBON FIBER FABRIC"

Strengthening Solutions V-Wrap[™] C200HM

High Modulus Carbon Fiber Fabric

struc'tur'a TECHNOLOGIES structuraltechnologies.com +1-410-859-6539

Typical Data for V-Wrap C200HM

Storage Conditions: Color: Primary Fiber Direction: Weight: Shelf life:

Fiber Properties (Dry)

Tensile Strength: Tensile Modulus: Elongation:

Cured Laminate Properties

Tensile Strength: Modulus of Elasticity: Elongation at Break: Thickness: Strength per Unit Width:

Store dry at 40°F – 90°F (4°C – 32°C) Black 0° (unidirectional) 17.7 oz/yd² (600 g/m²) 10 vears

790,000 psi (5,440 MPa) 42 x 10⁶ psi (289,550 MPa) 1.9 %

Average Values

180,000 psi (1,241 MPa) 14.24 x 106 psi (98,181 MPa) 1.27% 0.04 in. (1.02 mm) 7,200 lbs/in. (1.26 kN/mm)

Design Values*

155,000 psi (1,068 MPa) 14.0 x 10⁶ psi (96,527 MPa) 1.1% 0.04 in. (1.02 mm) 6,200 lbs/in. (1.09 kN/mm)

*Design properties are based on ACI 440.2R using average minus three standard deviations.

Description:

V-Wrap C200HM is a unidirectional carbon fiber fabric with fiber oriented in the 0° direction. V-Wrap C200HM system is field laminated using environmentally friendly, two-part 100% solids and high strength structural adhesives to form a carbon fiber reinforced polymer (CFRP) system used to reinforce structural elements.

Product Uses:

V-Wrap strengthening systems can be used to resolve strength deficiencies and increase the load carrying capacity of building, bridges, silos, chimneys, and other structures.

Loading Increases:

- Increasing the live loads capacity of floor systems
- Increasing shear and flexural strengths of reinforced and prestressed beams
- Increasing the axial capacity of columns
- Increasing the live load capacity of parking garages

Seismic Strengthening:

- Column confinement for ductility improvement
- Masonry and concrete shear walls strengthening

Damage to Structural Parts:

- Correct strength deficiency due to deterioration and corrosion
- Restore strength of structural elements damaged by fire

Change in Structural System:

- Load redistribution due to removal of walls, beams or columns
- Removal of slab sections for new openings

Design or Construction Defects:

- Insufficient amount of shear or flexural reinforcement
- Insufficient size and/or layout of reinforcement
- Insufficient reinforcing bar or lap splice length
- Low compressive strength in beams, slabs, and columns

Advantages:

- ICC-ES ESR-3606 listed product
- 0% VOC
- 100% Solvent free
- Non-corrosive reinforcement system
- Lightweight flexible fabric can be wrapped around complex shapes
- Used for shear, confinement or flexural strengthening
- . High strength and high modulus
- Light weight
- Reduces crack width
- Alkali resistant
- Low aesthetic impact

Packaging:

Fabric: 24 in. width x 150 ft rolls 0.61 m width x 45.7 m rolls

Strengthening Solutions V-Wrap[™] C200HM

High Modulus Carbon Fiber Fabric

structuraltechnologies.com +1-410-859-6539

How To Use:

Design:

Design should comply with ACI 440.2R or recognized design/ specification entity and is typically based on CFRP contribution determined by detailed analysis. Design values will vary based on project requirements and applicable environmental and strength reduction factors. Contact STRUCTURAL TECHNOLOGIES to determine applicable design factors.

Surface Preparation:

Surfaces to receive V-Wrap C200HM must be clean and sound. It must be dry and free of frost. All dust, laitance, grease, curing compounds, waxes, deteriorated materials, and other bond inhibiting materials must be removed from the surface prior to application. Existing uneven surfaces must be filled with appropriate epoxy putty or repair mortar. Use abrasive blasting, pressure wash, shotblast, grind or other approved mechanical means to achieve an open-pore texture with a concrete surface profile of CSP-3 or better (ICRI). In certain applications and at the engineer's discretion, the bond between the substrate and the fabric may be determined to be non-critical (such as in column confinement applications). All corners must be rounded to 1/2" radius minimum. A minimum overlap [or lap splice] of 6" is required to achieve continuity. The adhesive strength of the concrete may be verified after surface preparation by random pull-off testing (ASTM D7522) at the discretion of the engineer. Minimum tensile strength of 200 psi must be achieved.

Cutting V-Wrap C200HM:

Fabric can be cut to appropriate length by using a commercial quality heavy-duty scissors.

Application:

Installation of the V-Wrap C200HM strengthening system should be performed only by a specially trained, approved contractor. The V-Wrap C200HM strengthening system shall consist of V-Wrap C200HM carbon fabric and V-Wrap epoxy resins such as: V-Wrap 600, V-Wrap 700S, and V-Wrap 770.

Note the specified number of plies, ply widths, and fiber orientation. Mix resin components using recommended procedures on product datasheet. Apply one coat of V-Wrap epoxy as a primer to the surface using a nap roller. Fill minor concrete defects such as bug holes and other imperfections using V-Wrap 770 epoxy mixed with fumed silica (thickened epoxy) or V-Wrap PF putty. Apply thickened epoxy or putty using a roller or trowel to prime surface. Adjust the gap between saturator rollers to approximately 42 mils. Using a saturator machine, pre-saturate the appropriate length of V-Wrap C200HM with V-Wrap epoxy adhesive as a saturant. Install the saturated FRP sheet. Use a rib roller to remove all air pockets and ensure intimate contact with the surface. If a splice is needed, a minimum 6" overlap is required. On multiple plies with splices, stagger the splice locations. If required, apply topcoat material.

Limitations:

- Design calculations must be approved by a licensed professional engineer.
- System is a vapor barrier.
- Concrete deterioration and steel corrosion must be resolved prior to application.
- Minimum application temperature is 40°F.

Storage:

Store material in a cool, dark space. Low humidity is recommended.

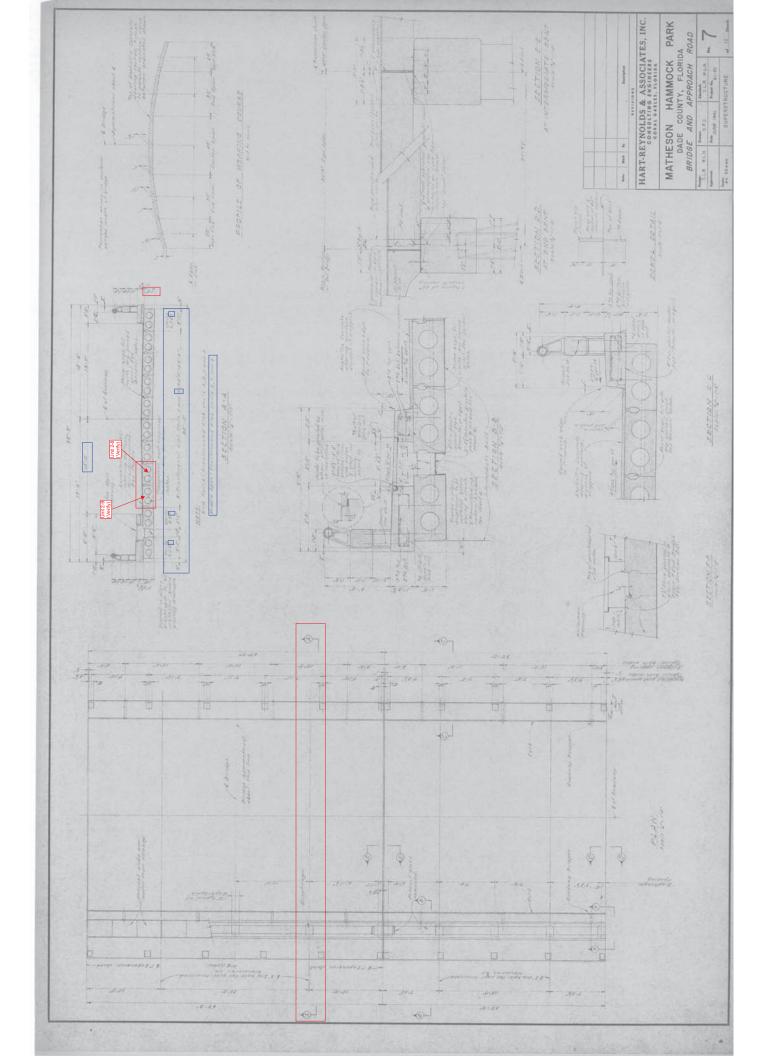
Handling:

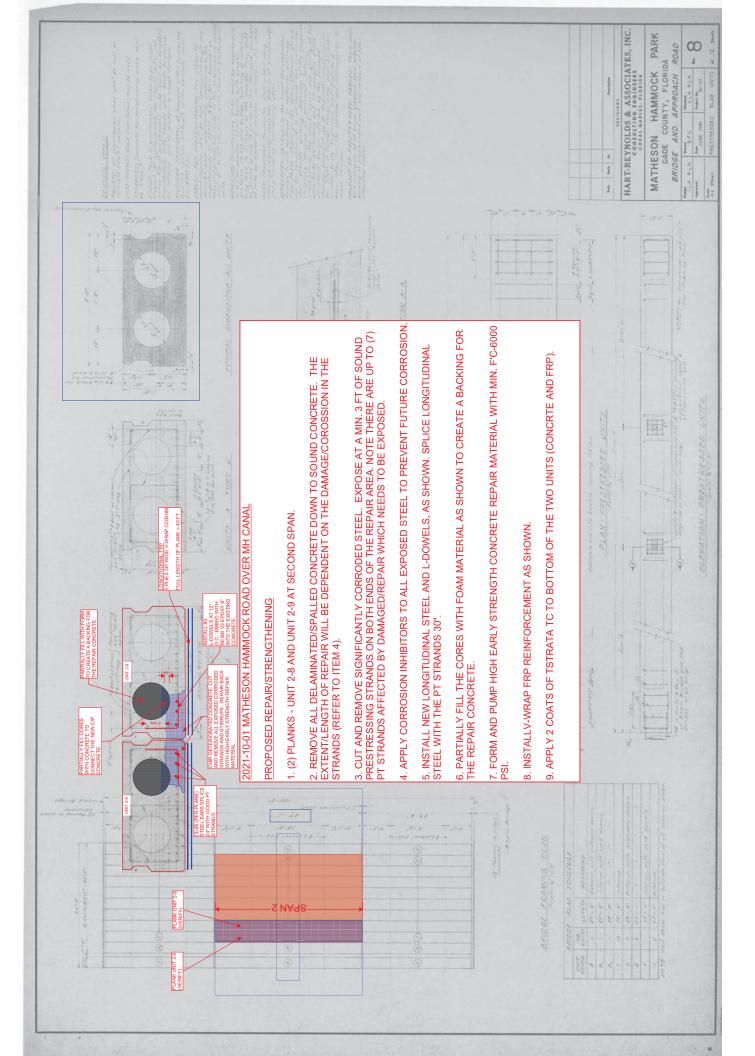
Approved personal protection equipment should be worn at all times. Particle mask is recommended for possible airborne particles. Gloves are recommended when handling fabrics and resins to avoid skin irritation. Safety glasses are recommended to prevent eye irritation. Wear chemical resistant clothing/gloves/goggles. Ventilate area. In absence of adequate ventilation, use properly fitted NIOSH respirator.

Cleanup:

Dispose of material in accordance with local disposal regulations. Uncured material can be removed with approved solvents. Cured materials can only be removed mechanically.

First Aid:


In case of skin contact, wash thoroughly with soap and water. For eye contact, flush immediately with plenty of water; contact physician immediately. For respiratory problems, remove to fresh air. Wash clothing before reuse.


STRUCTURAL TECHNOLOGIES, LLC warrants its products to be free from manufacturing defects and to meet STRUCTURAL TECHNOLOGIES' current published properties when applied in accordance with STRUCTURAL TECHNOLOGIES' directions and tested in accordance with ASTM and STRUCTURAL TECHNOLOGIES Standards. User determines suitability of product for use and assumes all risks. Buyer's sole remedy shall be limited to the purchase price or replacement of product and excludes labor or the cost of labor. Any claim for breach of this warranty must be brought within one year of the date of purchase.

No other warranties expressed or implied including any warranty of merchantability or fitness for a particular purpose shall apply. STRUCTURAL TECHNOLOGIES shall not be liable for any consequential or special damages of any kind, resulting from any claim or breach of warranty, breach of contract, negligence or any legal theory. STRUCTURAL TECHNOLOGIES assumes no liability for use of this product in a manner to infringe on another's patent.

Page 2 of 2 • TD-VWrap-C200HM • Rev04012019

APPENDIX E – STRUCTURAL TECHNOLOGIES, LLC., PRELIMINARY BRIDGE REPAIR RECOMMENDATIONS

