APPENDIX "F" TO SPECIAL PROVISIONS STRUCTURES LOAD RATING CALCULATIONS

LOAD RATING CALCULATIONS

FOR

Project Number:

PW Project No. 20200315, EDP-MT-20200315

Rehabilitation Design

For

Matheson Hammock Park Road (Bridge No.874294) over Matheson Hammock Canal

MIAMI-DADE

DEPARTMENT OF TRANSPORTATION AND PUBLIC WORKS

1/18/2022

THIS LOAD RATING IS PROVIDED AT THIS TIME FOR INFORMATION ONLY. A FORMAL COMPLETE LOAD RATING OF THE EXISTING "AS-BUILT" REHABILITATED BRIDGE WILL BE PROVIDED AFTER CONSTRUCTION TO CONFIRM THAT THE CURRENT BRIDGE POSTING CAN BE REMOVED.

Table of Contents

1.0	LOAD RATING SUMMARY	3
2.0	EXISTING BRIDGE	
3.0	BRIDGE CONFIGURATION	
4.0	ANALYSIS APPROACH	
	ALUATION OF REHABILITATED BRIDGE (REPAIRED CONDITION)	
5.0	REFERENCES	
6.0	CONCLUSIONS	5
APPE	NDICES	8
AP	PENDIX A – AASHTOWARE BRR BRIDGE RATING INPUT	8
AP	PENDIX B – AASHTOWARE BRR BRIDGE RATING OUTPUT	166
AP	PENDIX C – SONOVOID SLAB UNIT STRENGTHENING – CFRP EVALUATION	224
AP	PENDIX D – LRFR BRIDGE RATING MATHCAD QUCIK CHECK	246
AP	PENDIX E – AS-BUILT BRIDGE PLANS	249
AP	PENDIX F – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS	263
AP	PENDIX G – STRUCTURAL TECHNOLOGIES, LLC., PRELIMINARY BRIDGE REPAIR RECOMMENDATIONS	427

Bridge No. 874294 Analysis Method: LRFR-LRFD

Location Matheson Hammock Road over Matheson Hammock Canal

Description Simply-supported 30'-40'-30', Prestressed voided slab beams 36"x17"

FDOT Bridge Load Rating Summary Form (Page 1 of 1)

Rating Type	Rating Type	Gross Ax le Weight (tons)	Moment/Shear/	'Service	Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF·Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	ш	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.75	0.256	0.700	Span 2 - Slab Unit 2-8, 0.5L	25.2
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	0.908	Span 2 - Slab Unit 2-8, 0.5L	32.7
Permit	FL120	60	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	0.833	Span 2 - Slab Unit 2-8, 0.5L	50.0
Permit Max Span	FL120	60	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	0.833	Span 2 - Slab Unit 2-8, 0.5L	50.0
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.896	Span 2 - Slab Unit 2-8, 0.5L	32.2
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.009	Span 2 - Slab Unit 2-8, 0.5L	33.3
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.000	Span 2 - Slab Unit 2-8, 0.5L	35.0
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.768	Span 2 - Slab Unit 2-8, 0.5L	49.5
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.251	Span 2 - Slab Unit 2-8, 0.5L	45.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.213	Span 2 - Slab Unit 2-8, 0.5L	48.5
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.256	1.258	Span 2 - Slab Unit 2-8, 0.5L	50.3
Emergency Vehicle	EV2	28.75	Member Type	Limit Test	NA	NA				-1
(EV)	EV3	43	Member Type	Limit Test	NA	NA				-1

Original Design Load	HS20 or HS20-S16-4	4	Performed by:	Yves R. Amisial, E	.l. Date	: 01/04/22
Rating Type, Analysis	LRFR-LRFD		Checked by:	Maria A. Pena, Pl	Date	: 01/07/22
Distribution Method	AASHTO Formula				This item has been digitall signed and sealed by	,
Impact Factor	33.0% (axle loading)			Sybille Bayar	d, PE
FL120 Gov. Span Length	40.0	(feet)			2021.09.13 11:30:	02 - 4'00'
Minimum Span Length	30.0	(feet)			on the date adjacent to the copies of this document of	
Recommended Posting	At/Above legal loads. Post	ting Not Required.	P.,	E. Seal	signed and sealed and the verified on any electronic	2
Recommended SU Posting	99	(tons)			CONSOR Engineers, 10651 N Kendall Di	
Recommended C Posting	99	(tons)			Miami, FL 33176	,
Recommended ST5 Posting	99	(tons)			Certificate of Author Sybille Bayard, PE N	
Owner	02 County Highway Agency	1			sbayard@cons	oreng.com
Location	Neither interstate traffic nor reasonable access to an int		Comments:			
EV Posting	No. EV posting is not reco FAST Act does not apply	mmended. The				
Floor Beam Present?	No					
Segmental Bridge?	No					
Project No. & Reason	432907-1-72-02 D	eterioration				
Plans Status	Built					

This 04-13-2021 summary follows the FDOT Bridge Load Rating Manual (BLRM), and the FDOT BMS Coding Guide.

Introduction

Bridge 874294, constructed in 1967, carries Matheson Hammock Road over Matheson Hammock Canal in Miami-Dade County. According to the the latest NBIS inspection report dated 04/06/2020 and subsequent interim reports, the ADT for this section of roadway is around 736 vehicles per day with a truck percentage of 1%.

Bridge Configuration

The bridge superstructure consists of three simply-supported prestressed concrete 17"x36" sonovoid slab units. There is evidence at the bridge site of reflective longitudinal cracks in the asphalt wearing surface across the bridge indicating that the slab units are acting independently due to possible deterioration or broken transverse post-tensioned cables. The span configuration is 30.0 feet – 40.0 feet – 30.0 feet, with 11 prestressed slab units in each span. A variable asphalt wearing surface is present along the bridge spans.

Analysis Approach

This current load rating was performed using Load and Resistance Factor Rating (LRFR) methodology from the AASHTOWare Bridge Rating (Version 6.8.4) software. The previous load rating was performed on January 13, 2020 using LRFR methodology and Smart Bridge Suite Version 3.1 software. Since the most recent inspection (performed on 4/26/2021 by Marlin Engineering, Inc.) rated the deck and superstructure as "3 Serious", and the substructure as "4 Poor", this current load rating was performed using a Condition Factor of 0.85 for signification deteriorated prestressed slab units, and a Condition Factor of 0.90 for non-deteriorated prestressed slab units per AASHTO MBE Table 6A.4.2.3-1.

Moreover, given the damage sustained by the controlling interior slab units 2-8 and 2-9 in span no. 2 (severed strand), and as per the 2007 Revision to Publication 238 Bridge Safety Inspection Manual from the Pennsylvania Department of Transportation, under section 6.6.3.3.11, the following conservative assumptions were considered in the analysis:

"Load ratings of beams with deteriorated and/or damaged prestressing strands are to be based on the following procedures:

- Visually observed strands + 25% Deduct 100% of all exposed strands plus an additional 25% (125% of the total area of the exposed strands) from capacity calculations.
- Strands adjacent to or intersecting a crack shall be considered ineffective in the region immediately adjacent to the crack.
- If significant strand loss is noted (>20%), especially for fascia beams, contact BQAD for further instructions.
- For beams with no exposed strands but which appear to have internal damage (as
 evidenced by bottom flange cracking with rust and/or delamination), contact BQAD for
 further instructions.
- For fascia beams with Capacity/Dead Load < 1.5 or an Operating Rating < 1.5 based on a conventional analysis, an analysis that considers biaxial stresses will be performed by BQAD.
- These analysis methods may also be applicable to other pre-stressed box beam bridges"

Therefore, a load rating analysis was performed to evaluate the existing capacity of the slab units within all three spans and provide recommendations for repair and strengthening as needed.

Evaluation of Rehabilitated Bridge (Repaired Condition)

Additional analysis was conducted to evaluate the existing slab units assuming the replacement of the transverse post-tensioning system and the repair of cracks, delamination and spalls noted in the inspection report. The slab units were analyzed as integral, assuming a live load distribution factor in accordance with the AASHTO LRFD, Section 4.6.2.2.

The following assumptions were made:

1. Assume a condition factor of 0.9 for all slab units.

For Slab Units 2-8 and 2-9 assume 100% section loss of a total of 7 strands in addition to the condition factor of 0.9.

References

This current load rating was performed in accordance with the following manuals, specifications, and software:

- FDOT Structures Manual, January 2021 (SM) (Volume 1 Structures Design Guidelines (SDG))
- AASHTO LRFD Bridge Design Specifications, 9th Edition (AASHTO)
- FDOT Bridge Load Rating Manual, January 2021 (BLRM)
- The Manual for Bridge Evaluation, 3rd Edition 2018 (MBE) with 2019 Interims
- PCI Design Handbook, 8th Edition (PCI)
- AASHTOWare Bridge Rating, Version 6.8.4.
- Commonwealth of Pennsylvania Department of Transportation, Revision to Publication 238 Bridge Safety Inspection Manual, 2007.

It should be noted that the 2021 BLRM uses the 9th Edition of the AASHTO LRFD design specifications, and that AASHTOWare Bridge Rating Version 6.8.4 uses the 8th Edition of the AASHTO LRFD design specifications. However, since this bridge uses normal weight concrete and does not have prestressed slab units subjected to significant torsion, the applicable portions of the design codes have not changed between the two editions. Therefore, the software still meets the BLRM requirements for evaluating flexure and shear.

Conclusions

Rehabilitated Bridge (Repaired Condition)

The complete evaluation of all non-deteriorated slab units and repaired deteriorated slab units is shown in Appendix B. The interior and exterior slab units were both evaluated for vehicular live loads. By observations, the SU4 legal truck is the controlling live load; the resulting LRFR rating factors are summarized in the table below.

	SON				R LOAD RATING RI		Restored)	
Vehicle	Condition Factor	Member Condition	Live Load Type	Limit State	Controlling Member	Controlling Location (% Span)	Controlling Limit State	Rating Factor
		Non- Deteriorated			Interior Unit (Span 1)	50.0	STRENGTH-I Concrete Flexure	1.387
OLL 4	0.00	Non- Deteriorated	Axle	امسا	Interior Unit (Span 2)	50.0	STRENGTH-I Concrete Flexure	1.461
SU 4	0.90	Deteriorated (repaired)	Load	Legal	Interior Unit (Unit 1-6 or 1-8)	50.0	STRENGTH-I Concrete Flexure	1.387
		Deteriorated (repaired)			Interior Unit (Unit 2-8 or 2-9)	50.0	STRENGTH-I Concrete Flexure	0.931

Figure 1-4.2 Summary of LRFR Load Rating Results for Rehabilitated Sonovoid Slab Units with Concrete Repairs completed, and Post Tensioning restored.

As indicated above, the deteriorated slab units in Span 2 (2-8 & 2-9) did not achieve a minimum rating factor of 1.0 even when analyzed as integral. Consequently, the remaining capacity that is required to satisfy a minimum LRFR legal rating of 1.0 was computed as a final step in the evaluation process to determine the level of strengthening required to restore the bridge to a non-posted stated, as shown in the table below.

		LOAD RATING SUM	MARY - (Assuming	Post Tensioning)	
		Span 2 - INT	ERIOR Unit 2-8 (LRI	FR) - SU4	
Location	Condition Factor	Existing Flexural Capacity (kip-ft) **	Existing Shear Capacity (kip) **	Required Flexural Capacity (kip-ft) *	Required Shear Capacity (kip) *
0.00		135.08	-	-	-
1.12		-	94.16	-	-
1.48		293.46	89.01	-	-
3.85		344.64	70.05	-	-
7.7		344.64	70.05	-	-
11.55		344.64	49.78	-	-
15.4		344.64	38.99	359.34	-
19.25	0.90	344.64	-38.35	368.62	-
23.1		344.64	-38.99	359.34	-
26.95		344.64	-53.70	-	-
30.8		344.64	-70.05	-	-
34.65		344.64	-70.05	-	-
37.02		293.46	-89.01	-	-
37.39		-	-94.28	-	-
38.5		108.44	-	-	-

^{*} Minimum Required capacity to meet a minimum Inventory Rating Factor of 1.1, conservatively.

Figure 1-4.3 Required Capacity of Rehabilitated Slab Units to satisfy LRFR Legal Rating.

^{**} Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

Matheson Hammock Park Bridge No.874294 over Matheson Hammock Canal

APPENDIX A – AASHTOWARE BrR BRIDGE RATING INPUT

	Matheson Hamn	nock Park Bridge	No.874294 over	Matheson Hamn	nock Cana
4 CUMMADY OF	LOAD DATING DADAL	METERS			
1 – SUMMARY OF	LOAD RATING PARA	WEIERS			

1 of 1	Page:		Matheson Hammock Park	Matheso	Feature Carried:
9/24/2021	Date:	HGD	Checked by:	874294	Bridge No.:
9/21/2021	Date:	YRA	Calculated by:	D210107FL.00	Project No:

SUMMARY OF DEFICIENCIES

SONOVOID SLABS (UNDERSIDE) - SPAN 1

BEAM NO.	LOCATION	DEFICIENCY
1-1	EB1	Outward location with 1/4" height difference to top of cap
	9-ft from EB1	15" x 6" x 1/2" - spall w/ exposed rebar / minor section loss
1-6	EB1 / East	5'L x 6"W delamination with associated 1/16" cracks
	Pier 2 / East	9'L x 12"W delamination with associated 1/16" cracks
,	EB1 / East	24"L x 12"W spall/delamination with associated 1/32" cracks
7-1	Pier 2 / East	7'L x 4"W delamination with associated 1/16" cracks
	EB1 / West	15'L x 15"W delamination with associated 1/4" cracks
0	9" from EB1 / West	4' x 6" x 2" - spall
O-T	Pier 2 / East	4'L x 15"W delamination with associated 1/32" cracks
	Pier 2	8'L x 3'W delamination with associated 1/16" cracks
1-9	EB1	36"L x 24"W x 2.5" spall/delamination with exposed stirrup (no loss)
1	Pier 2 / West	9'L x 10"W delamination with associated 1/16" cracks

SONOVOID SLABS (UNDERSIDE) - SPAN 2

BEAM NO.	LOCATION	DEFICIENCY
2-6	Pier 2 / East	30"L x 4"W delamination
7 0	Pier 2 / West	24"L x 4"W delamination
	full length	16"W delamination with associated 1/4" cracks
	Pier 2	36"L x full width with associated cracks
	Pier 2 / West	15' x 18"W (average) delamination with associated 1/4" cracks
2-8		15'x34"x4" with 7 exposed and corroded transverse rebars w/ 60%
0	Midspan	section remaining and 5 exposed and corroded strands (3 broken
		strands) - 0% section remaining
	Pier 3 / West	15' x 18"W (average) delamination with associated 1/4" cracks
	Pier 2 / West	5'L x 5" delamination with associated 1/4" cracks
2-9	2000	15'x12"x2" spall/delamination with 2 strands and 7 transverse rebars
	Midspail	having up to 90% section remaining

SONOVOID SLABS (UNDERSIDE) - SPAN 3

BEAM NO.	LOCATION	DEFICIENCY
9 6	Pier 3 / East	24"L x 6"W delamination with associated 1/16" crack
0-6	~10' from EB 4 / East	42"L x 8" W with associated 1/16" cracks
	Pier 3	8'L x 15"W delamination with associated cracks
3-7	Midspan	3,L x 30" W
	EB 4	12'L x 36"W unsound repair / hollow sounding
	Pier 3	8Lx3Wx1" with associated cracks
3-8	EB4	42"' x 30"W unsound repair/ delamination with associated 1/16" cracks
	5.5' from EB 4	74"' x 36"W unsound repair/ delamination with associated 1/16" cracks

SUBSTRUCTURE

COMPONENT	LOCATION	DEFICIENCY
	PIER 2 / South Face	48"L X 17" H X 3/4" Spall / Delamination over column 2-2
	PIER 2 / North Face	20"L x 12" H delamination over column 2-2
PIER CAPS	d+===	2~ 30"L x 24"W unsound repairs with 1/64" associated cracks between
	PIER 3 / DOLLOITI / NOLLI	columns 3-1 and 3-2.
	PIER 3 / top & Bottom / I	PIER 3 / top & Bottom / 1 <mark> </mark> 3'L x 16" delamination between columns 3-1 and 3-2
		55"H x 32"W x 4"D spall delamination with exposed longitudinal rebars
	COIDIIII 2-2	and 5 stirrups (up to 80% remaining)
COLUMNS		Delamination (entire column height / circumference) with associated
	COIUMIN 2-2	1/4" cracks
	Columns 2-1, 3-1, 3-2	Delamination (entire length) with associated 1/16" cracks (full height)

Wearing Surface:

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	Date:	12/29/2021	
Feature Carried:	Matheson Hammock Road			Page:	1 of 4

SPAN 1 OR 3 - SUPPLEMENTAL CALCULATIONS - LOADING PARAMETERS

Bridge Type: Prestressed Voided Slab Unit - 17"x36" Standard Drawing:

1.396 k/ft **Total Superimposed Dead Load:** Bridge Railing/ Guardrail Dead Load: 0.148 k/ft 1.248 k/ft Curb/Sidewalk Dead Load: Attached Utility Dead Load: 0.000 k/ft Asphalt W.S. Dead Load (DW): 0.379 k/ft

Number of Spans = Structure Length = 100 Brg.-to-Brg. Span Length = 28.2917 ft. (Assumed at Centerline of 1/4"x6" wide asbestos graphite pads) Analyzed Span Length = 30.00 ft. Clear Roadway Width = 26.00

A 1.0-inch wearing surface is present at the supports, and 1.5-in present at midspan.

The wearing surface dead loads are calculated by BrR and included in the analysis.

Location	Thickness	Average Thickness
Begin span	1.00 in	1.167 in
Mid Span	1.50 in	
End Snan	1.00 in	1

0.040833 4.085469

Bridge Railing/Guardrail: Bridge Railing is present.

Per SCDOT Load Rating guidance, guardrail dead loads are applied only to fascia beams.

Curb/Sidewalk: A curbs or sidewalks are present. See below for curb/sidewalk dimensions and dead load calculations. No Parapet: No parapets are present. Attached Utilities: Yes See below for dead load calculations.

Other Metal Posts and Pipes - Assume 10 lb/ft per SDG Table 2.2-1, Bullet Railing 0.010 k/ft Rail 1 Type: 10 lb/ft

Rail 2 Type: Rect. Conc. Beam Rectangular Concrete Beam Guardrail 0.125 k/ft 125 lb/ft

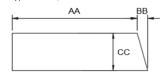
Area (Standard shapes pe Rail Post: Length/Height Concrete Quantity Shape 0.83 ft Rect. 10x10 100.00 in²

150 pcf / span 0.83 ft Rect. 8x10 150 pcf / span 80.00 in²

Rail Blockout: none

Curb/Sidewalk:	AA	29.0 in
(South End)	BB	1.0 in
	CC	10.563 in

0.325 k/ft


0.013 k/ft

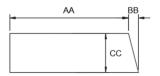
- Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.
- To account for the actual weight of curb/sidewalk, compute an equivalent Thickness of sidewalk corresponding to a rectangulan sidewalk with an equivalent with of:

Equiv. Width of Sidewalk = 24 (Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

> Equiv. CC = **12.9831** in (Equivalent thickness of rectangular sidewalk inputed in AASHTOWare software)

Typical Curb/Sidewalk Section

Curb/Sidewalk:	AA	77.0 in
(North End)	BB	1.0 in
	CC	11.4 in


0.923 k/ft

\neg				MD 4		0/04/0004	
	Feature Carried:	Matheson Hamn	nock Road	Page:	1 of 4		
	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021	
	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021	

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9,	/21/202	21	
Bridge No.:	874294	Date:	12	/29/20	21			
Feature Carried:	Matheson Hammock Road			Page:	2	of	4	

- Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.
- The 1-ft utility opening will be neglected, leaving 1-ft of additional solid sidewalk material assumed to account for the weight of utilities and attachements at the opening. The resulting width of sidewalk to be inputed in the sofware shall be:

Equiv. Width of Sidewalk =

60 in

(Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

- No information is available on the utilities and attachements along the North side of the bridge.
- The Concrete sidewalk will be assumed to be solid at the location of the utility opening to account for the weight of the utilities and attachments, conservatively.
- Assume weight of sidewalk taken by the exterior slab units.

Diaphragm:

Width of Slab Unit = 36 in Depth of Slab Unit = 17 in
No. of Voids = 2.0000 Diameter of Voids = 10.0000 in

	Begin Span								
	Start Dist.								
	From Left	Diaphragm		Width/	Diaphragm				
	End*	Spacing	No. of	Thickness	Weight				
	(FT)	(FT)	Spaces	(IN)	(KIP)				
Span 1, Begin	0.00	1.00	1	24.0	0.3272				
Span 1, 1/4 Point	1.00	6.25	1	12.0	0.1636				
Span 1, 3/4 Point	7.25	15.00	1	12.0	0.1636				
Span 1, End	22.25	6.25	1	24.0	0.3272				
Span 3, Begin	0.00	1.00	1	24.0	0.3272				
Span 3, 1/4 Point	1.00	6.25	1	12.0	0.1636				
Span 3, 3/4 Point	7.25	15.00	1	12.0	0.1636				
Span 3, End	22.25	6.25	1	24.0	0.3272				

LLDF (Post-Tensioned - LFD): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

For Interior/Exterior Slab Units: (Moment & Shear)

[AASHTO LFD 3.23.4.3] (Width of precast member)

S = 3.0 ft. W = 34.0 ft. (Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk) (Brg.-to-Brg. Span Length - Span 2) L = 28.291667 ft.

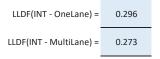
NL = 2.0 Nb = 11.0 (Number of traffic lanes) (Number of concrete slab units)

μ = 0.2 (Assumed Poisson's Ratio for concrete slab units)

I = 13330.10 in⁴ (Moment of Inertia of Slab Unit - from BrM software) $J = 14593.77 \text{ in}^4$ (Saint-Venant Torsion constant - from BrM software)

Bridge No.: 874294 Checked by: MAP Date: 12/29/2021 Feature Carried: Matheson Hammock Road Page: 1 of 4	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Feature Carried: Matheson Hammock Road Page: 1 of 4	Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
	Feature Carried:	Matheson Hammock Road			Page:	1 of 4

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9,	/21/20	21	
Bridge No.:	874294	874294 Checked by: MAP			12	/29/20	21	
Feature Carried:	Matheson Hamn	Matheson Hammock Road			3	of	4	


$$K = [(1 + \mu) \cdot I/J]^{1/2} = 1.04694$$

$$C = if \left[\frac{W}{L} < 1, K\left(\frac{W}{L}\right), K \right] = 1.04694$$

$$D = (5.75 - 0.5N_L) + 0.7N_L(1 - 0.2C)^2 = 5.6251$$

LLDF (INT-M) = S/D = 0.5333 (Live Load Distribution Fraction for Moment)

LLDF (Post-Tensioned - LRFR): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

(LLDF for One lane loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in accordance with AASHTO LRFD Tables 4.6.2.2.2b-1 and 4.6.2.2.2d-1)

(LLDF for Multi lanes loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in accordance with AASHTO LRFD Tables 4.6.2.2.2b-1 and 4.6.2.2.2d-1)

For Exterior Slab Units: (Moment)

[AASHTO LRFD Table 4.6.2.2.2d-1]

(Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext.web = 5"; outboard of curb) - limited to -1.0 since de computed is = 1.8' per AASHTO LRFD 4.6.2.2.2d.

(Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext. web = 5"; outboard of curb) - limited to -1.0 since d_e computed is = 4.8' per AASHTO LRFD 4.6.2.2.2d.

- One Design Lane Loaded:

$$e_{\text{OneLane_G1}} = 1.125 + \frac{d_{e,G1}}{30} \ge 1.0 = 1.000$$
 (Correction factor for LL distribution on exterior slab unit G1)

$$e_{\text{OneLane_G11}} = 1.125 + \frac{d_{e,\text{G11}}}{30} \ge 1.0 = 1.000$$
 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.G1-
$$M_{OneLane}$$
) = $e \cdot LLDF(INT - M)$ = 0.2960 (Live Load Distribution Fraction for Moment for One lane Loaded - Unit G1)

$$\text{LLDF (EXT.G11-M}_{\text{Onelane}}) = e \cdot LLDF(INT-M) = \boxed{\textbf{0.2960}} \\ \text{(Live Load Distribution Fraction for Moment for One lane Loaded - Unit G11)}$$

- Two or More Design Lanes Loaded:

$$e_{\text{OneLane_G1}} = 1.04 + \frac{d_{e,G1}}{25} \geq 1.0 \quad = \quad 1.000 \quad \text{(Correction factor for LL distribution on exterior slab unit G1)}$$

$$e_{OneLane_G11} = 1.04 + \frac{d_{e,G11}}{25} \ge 1.0 = 1.000$$
 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.-
$$M_{\text{MultiLiane}}$$
) = $e \cdot LLDF(INT - M)$ = 0.2730 (Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G1)

$$\text{LLDF (EXT.-M}_{\text{MultiLane}}) = e \cdot LLDF(INT-M) = \boxed{\textbf{0.2730}} \\ \text{(Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G11)}$$

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	Date:	12/29/2021	
Feature Carried:	Matheson Hammock Road			Page:	1 of 4

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294 Checked by: MAP			Date:	12/29/2021
Feature Carried:	Matheson Hammock Road			Page:	4 of 4

For Exterior Slab Units: (Shear)

[AASHTO LRFD Table 4.6.2.2.3b-1]

$$d_{e,G1} = -1.0$$
 ft.

(Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext. web = 5"; outboard of curb) - limited to -1.0 since d_e computed is = 4.8' per AASHTO LRFD 4.6.2.2.2d.

-1.0

(Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck level to interior edge of curb or traffic barrier) - (Ext.web = 5"; outboard of curb)

36.0 in.

(Width of precast member)

- One Design Lane Loaded:

 $e_{OneLane_G1} = 1.25 + \frac{d_{e,G1}}{20} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G1)

 $e_{\text{OneLane_G11}} = 1.25 + \frac{d_{e,G11}}{20} \ge 1.0 = 1.000$ (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.G1-M_{OneLane}) = $e_{OneLane_G1} \cdot LLDF(INT, V)$

0.2960 (Live Load Distribution Fraction for Shear for One lane Loaded - Unit G1)

 $\texttt{LLDF (EXT.G11-M}_{\texttt{OneLane}}) = \quad e_{OneLane_G11} \cdot LLDF(INT, V)$

0.2960 (Live Load Distribution Fraction for Shear for One lane Loaded - Unit G11)

- Two or More Design Lanes Loaded:

 ${\rm e_{MultiLane_G1}} = \\ 1.0 + \left(\frac{d_{e,G1} + \frac{b}{12} - 2.0}{40}\right)^{0.5} \geq 1.0$ 1.000 (Correction factor for LL distribution on exterior slab unit G1)

 ${\rm e_{MultiLane_G11}} = \\ 1.0 + \left(\frac{d_{e,G11} + \frac{b}{12} - 2.0}{40}\right)^{0.5} \geq 1.0$ 1.000 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.- $M_{MultiLane}$) = $e_{MultiLane_G1} \cdot LLDF(INT, V)$

0.2730 (Live Load Distribution Fraction for Shear for Multi-Lanes Loaded - Unit G1)

 $\label{eq:lldf} \text{LLDF (EXT.-M}_{\text{MultiLane}}) = \quad e_{MultiLane_G11} \cdot LLDF(INT,V)$

0.2730 (Live Load Distribution Fraction for Shear for Multi-Lanes Loaded - Unit G11)

<u>LLDF (Exist.Condition - LFD):</u> (Assuming Slab Members acting independently - no effective post tensioning)

S = 3.0 ft.

(Width of precast member)

W = 34.0 ft.

(Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk)

L = 28.291667 ft.

(Brg.-to-Brg. Span Length - Span 2)

NL = 2.0 11.0

(Number of traffic lanes) (Number of concrete slab units)

3.0000

S/D

(Assumed equal to Precast member width since slab unit will behave indepedently. Therefore, individual unit can be assumed to take on the full wheel load)

LLDF (INT - LFD) =

1.0000 (Live Load Distribution Fraction for Moment and Shear)

LLDF (Exist.Condition - LRFR): (Assuming Slab units acting independently - no effective post tensioning)

LLDF (INT - OneLane - LRFR) = 0.5 x Axle = 0.5000 (Live Load Distribution Fraction for Moment and Shear - Half of Axle Load)

LLDF (INT - OneLane - LRFR) =

0.5 x 1.2 x Axle

= **0.6000** (Live Load Distribution Fraction for Moment and Shear - Half of Axle Load)

Analysis Case: A) For the purpose of the Load Rating, the following Cases were assumed for AASHTOWare BrR runs:

- Case 1: Run model to account for the condition where the slab units have been rehabilitated with Post Tensioning.
- Case 2: Run model to account for the existing condition without repairs.

B) Per current inspection report, the following are assumed in the analysis to account for the deterioration of the slab unit 1-8:

- West edge of slab unit intermittently delaminated with efflorescence and corrosion bleed-out and associated spalling.
- Assume a condition factor of 0.85 to account for the analysis of the worst case deteriorated slab unit from spans 1 & 3.

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hamm	Matheson Hammock Road			1 of 4

SPAN 2 - SUPPLEMENTAL CALCULATIONS - LOADING PARAMETERS

Bridge Type: Prestressed Voided Slab Unit - 17"x36"

Standard Drawing:

Total Superimposed Dead Load: 1.395 k/ft Bridge Railing/ Guardrail Dead Load: 0.147 k/ft Curb/Sidewalk Dead Load: 1.248 k/ft Attached Utility Dead Load: 0.000 k/ft Asphalt W.S. Dead Load (DW): 0.420 k/ft Asphalt W.S. Dead Load per Slab Unit (DW): 0.038 k/ft

0.010 k/ft

0.125 k/ft

0.012 k/ft

0.325 k/ft

Number of Spans: Number of Sonovoids: 11 Structure Length: 100 ft.

Brg.-to-Brg. Span Length: 38.5 ft. (Assumed at Centerline of 1/4"x6" wide asbestos graphite pads)

Analyzed Span Length: 40.00 ft. ft. Clear Roadway Width: 26.00 Slab Unit Width: 36.00 in.

A 1.0-inch wearing surface is present at the supports, and 1.875-in present at midspan. Wearing Surface: Yes

The wearing surface dead loads are calculated by BrR and included in the analysis.

Location	Thickness	Average Thickness
Begin span	1.00 in	1.292 in
Mid Span	1.88 in	
End Span	1.00 in	1

Bridge Railing/Guardrail: Yes Bridge Railing is present.

Per SCDOT Load Rating guidance, guardrail dead loads are applied only to fascia beams.

Curb/Sidewalk: Yes A curbs or sidewalks are present. See below for curb/sidewalk dimensions and dead load calculations.

Parapet: No No parapets are present. Attached Utilities: See below for dead load calculations. Yes

Rail 1 Type: Other Metal Posts and Pipes - Assume 10 lb/ft per SDG Table 2.2-1, Bullet Railing 10 lb/ft

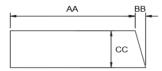
Rectangular Concrete Beam Guardrail Rail 2 Type: Rect. Conc. Beam

125 lb/ft

					Area (Standard shapes per	ĺ
Rail Post:	Concrete	Quantity	Length/Height	Shape	AISC 7-14)	ĺ
	150 pcf	4 / span	0.83 ft	Rect. 10x10	100.00 in ²	ĺ
	150 pcf	2 / span	0.83 ft	Rect. 8x10	80.00 in ²	ĺ

Rail Blockout: none

Curb/Sidewalk:	AA	29.0 in
(South End)	BB	1.0 in
	CC	10.6 in


- Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.

- To account for the actual weight of curb/sidewalk, compute an equivalent Thickness of sidewalk corresponding to a rectangulan Equiv. Width of Sidewalk = 24 in (Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

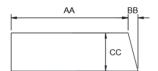
Equiv. CC = **12.9831** in

(Equivalent thickness of rectangular sidewalk inputed in AASHTOWare software)

Typical Curb/Sidewalk Section

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9	/21/202	21	
Bridge No.:	874294	Checked by:	MAP	Date:	12	2/29/20	21	
Feature Carried:	Matheson Hamm	ock Road		Page:	1	of	4	

Project No:	D210107FL.00	Calculated by:	YRA	Date:		9/21/20	21	
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021			
Feature Carried:	Matheson Hammock Road			Page:	2	of	4	


Curb/Sidewalk:	AA	77.0 in
(North End)	BB	1.0 in
	CC	11.4 in

0.923 k/ft

- Superstructure is modeled withouth the sidewalk overhang, that is removing the additional 6" of overhang.

- The 1-ft utility opening will be neglected, leaving 1-ft of additional solid sidewalk material assumed to account for the weight of utilities and (Equivalent width of rectangular sidewalk inputed in AASHTOWare software)

Equiv. Width of Sidewalk = 60 in

 $\hbox{- No information is available on the utilities and attachements along the North side of the bridge.}\\$

- The Concrete sidewalk will be assumed to be solid at the location of the utility opening to account for the weight of the utilities and attachments, conservatively.

- Assume weight of sidewalk taken by the exterior slab units.

Diaphragm:

Width of Slab Unit =	36	in
Depth of Slab Unit =	17	in
No. of Voids =	2.0000	
Diameter of Voids =	10.0000	in

			Begin Span		
	Start Dist.				
	From Left	Diaphragm		Width/	Diaphragm
	End*	Spacing	No. of	Thickness	Weight
	(FT)	(FT)	Spaces	(FT)	(KIP)
Span 2, Begin	0.00	1.00	1	2.0	0.3272
Span 2, 1/4 Point	1.00	8.96	1	1.0	0.1636
Span 2, 3/4 Point	9.96	20.00	1	1.0	0.1636
Span 2, End	29.9583	8.96	1	2.0	0.3272

LLDF (Post-Tensioned - LFD): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

For Interior Slab Units:

[AASHTO LRFD Table 4.6.2.2.2b-1] (Width of precast member)

S = 3.0 ft. 34.0 ft. W = (Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk) L= 38.5 ft. (Brg.-to-Brg. Span Length - Span 2) 2.0 (Number of traffic lanes) NL = Nb= 11.0 (Number of concrete slab units) 0.2 μ=

(Assumed Poisson's Ratio for concrete slab units)

I = 13330.10 in⁴ (Moment of Inertia of Slab Unit - from BrM software) $J = 14593.77 \text{ in}^4$ (Saint-Venant Torsion constant - from BrM software)

 $K = [(1 + \mu) \cdot I/J]^{1/2}$ = 1.04694

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hamm	ock Road		Page:	1 of 4

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hammock Road			Page:	3 of 4

$$C = if \left[\frac{W}{L} < 1, K\left(\frac{W}{L}\right), K \right] = 0.92457$$

$$D = (5.75 - 0.5N_L) + 0.7N_L(1 - 0.2C)^2 = 5.6801$$

For Exterior Slab Units:

[AASHTO LRFD Table 4.6.2.2.2d-1]

$$d_e = 3.0$$
 ft.

(Width of precast member)

LLDF (Post-Tensioned - LRFR): (Assuming Members are sufficiently connected to act as a unit, meaning accounting for effective post tensioning)

LLDF(INT - OneLane) = 0.254 LLDF(INT - MultiLane) = 0.256 (LLDF for One lane loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in (LLDF for Multi lanes loaded for Moment and Shear computed for Interior Slab unit in AASHTOWare BrR in

For Exterior Slab Units: (Moment)

[AASHTO LRFD Table 4.6.2.2.2d-1]

 $d_{e,G11} = -1.0$ ft.

(Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck

 $d_{e,G1} = \qquad \text{-1.0} \qquad \text{ ft.}$

(Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to

- One Design Lane Loaded:

$$e_{\text{OneLane_G1}} = 1.125 + \frac{d_{e,G1}}{30} \ge 1.0$$
 = 1.000 (Correction factor for LL distribution on exterior slab unit G1)

$$e_{\text{OneLane_G11}} = 1.125 + \frac{d_{e,G11}}{30} \ge 1.0$$
 = 1.000 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.G1-M_{OneLane}) =
$$e_{OneLane_G1} \cdot LLDF(INT, M)$$

LLDF (EXT.G11-M_{OneLane}) =
$$e_{OneLane_G11} \cdot LLDF(INT, M)$$

- Two or More Design Lanes Loaded:

$$e_{\text{MultiLane_G1}} = 1.04 + \frac{d_{e,G1}}{25} \ge 1.0$$
 = 1.000 (Correction factor for LL distribution on exterior slab unit G1)

$$e_{\text{MultiLane_G11}} = 1.04 + \frac{d_{e,G11}}{25} \ge 1.0$$
 = 1.000 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.-
$$M_{MultiLane_G1} \cdot LLDF(INT, M)$$
 = 0.2560 (Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G1)

LLDF (EXT.-
$$M_{MultiLane}$$
) = $e_{MultiLane_G11} \cdot LLDF(INT, M)$ = 0.2560 (Live Load Distribution Fraction for Moment for Multi-Lanes Loaded - Unit G11)

	Project No:	D210107FL.00	Calculated by:	YRA	Date:	9,	/21/202	21	
ı	Bridge No.:	874294	Checked by:	MAP	Date:	12	/29/20	21	
	Feature Carried:	Matheson Hamm	ock Road		Page:	1	of	4	

Project No:	D210107FL.00	Calculated by:	YRA	Date:	9/21/2021
Bridge No.:	874294	Checked by:	MAP	Date:	12/29/2021
Feature Carried:	Matheson Hamm	ock Road		Page:	4 of 4

For Exterior Slab Units: (Shear)

$d_{e,G1} = -1.0$ ft. $d_{e,G11} = -1.0$ ft. b = 36.0 in.

[AASHTO LRFD Table 4.6.2.2.3b-1]

(Horizontal distance from centerline of exterior web of exterior slab unit along the south end at deck level to (Horizontal distance from centerline of exterior web of exterior beam/slab unit along the south end at deck (Width of precast member)

- One Design Lane Loaded:

$$e_{OneLane_G1} = 1.25 + \frac{d_{e,G1}}{20} \ge 1.0$$

= 1.000 (Correction factor for LL distribution on exterior slab unit G1)

$$e_{\text{OneLane_G11}} = 1.25 + \frac{d_{e,G11}}{20} \ge 1.0$$
 = 1.000 (Correction factor for LL distribution on exterior slab unit G11)

LLDF (EXT.G1-M_{OneLane}) =
$$e_{OneLane_G1} \cdot LLDF(INT, V)$$

LLDF (EXT.G11-M_{OneLane}) =
$$e_{OneLane_G11} \cdot LLDF(INT, V)$$

- Two or More Design Lanes Loaded:

$$\mathbf{e}_{\mathsf{MultiLane_G1}} = 1.0 + \left(\frac{d_{e,G1} + \frac{b}{12} - 2.0}{40}\right)^{0.5} \geq 1.0 \qquad \qquad = 1.000 \qquad \text{(Correction factor for LL distribution on exterior slab unit G1)}$$

$$e_{\text{MultiLane_G11}} = 1.0 + \left(\frac{d_{e,G11} + \frac{b}{12} - 2.0}{40}\right)^{0.5} \geq 1.0 \qquad = 1.000 \qquad \text{(Correction factor for LL distribution on exterior slab unit G11)}$$

$$\texttt{LLDF} \ (\texttt{EXT.-M}_{\texttt{MultiLane}}) = \quad e_{MultiLane_G1} \cdot LLDF (INT, V)$$

$$\texttt{LLDF} \, (\texttt{EXT.-M}_{\texttt{MultiLane}}) = \ \ e_{MultiLane_G11} \cdot LLDF \, (INT, V)$$

LLDF (Exist.Condition - LFD): (Assuming Members acting independently - no effective post tensioning)

S =	3.0	ft.
W =	34.0	ft.
L =	38.5	ft
NL =	2.0	
Nb =	11.0	

(Width of precast member)

(Assumed total width of Bridge Superstructure - ignore opening at the N end sidewalk)

(Brg.-to-Brg. Span Length - Span 2)

0.2560

(Number of traffic lanes)

(Number of concrete slab units)

D = 3.0000

(Assumed equal to Precast member width since slab unit will behave indepedently. Therefore, individual unit can be assumed to take on the full wheel load)

LLDF (LFD) = S/D = 1.0000 (Live Load Distribution Fraction for Moment and Shear)

<u>LLDF (Exist.Condition - LRFR):</u> (Assuming Slab units acting independently - no effective post tensioning)

Analysis Case: A) For the purpose of the Load Rating, the following Cases were assumed for AASHTOWare BrR runs:

- Case 1: Run model for non deteriorated units to account for the condition where the slab units have been rehabilitated.
- Case 2: Run model for non-deteriorated and deteriorated units to account for the existing condition without repairs.
- Case 3: Run model for deteriorated units to account for the condition where the slab units have been rehabilitated, but no strands have been replaced.

B) Per current inspection report, the following are assumed in the analysis to account for the deterioration of the slab unit 2-8:

- 5 exposed strands, with 3 broken: Remove a total of 5 strands from the bottom layer of strands.
- Assume 50% of the adjacent strands along the same layer have been affected to account for the potential of damage in the adjacent strands. That is: Remove 1 additional strand from the bottom layer of strands.
- Assume 50% of the adjacent strands at the next layer have been affected to account for the potential of damage in the adjacent strands. That is: Remove 1 additional strand from the next layer of strands.
- Per recommendation from "Structural Technologies" on 10/01/2021, assume exterior stirrup leg to be deteriorated. In BrR, use 2 legs of shear reinforcement, conservatively for the critical case.

Username: BrR

Date: Wednesday, September 22, 2021 11:21:02

Bridge ID 874294D Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID (8): 874294D

Description: Rating by YRA, from As-built plans [LAST UPDATED: 9/22/2021]

DETERIORATED MODEL:

Three spans (30'-40'-30') non-composite PS Concrete voided slab unit superstructure comprised of eleven (11) 17"x36" units. Deck width is 35'-0" out-to-out with a 26'-0" clear roadway width. Wearing surface is present along the bridge with an average thickness of 1.167" along end spans 1 and 3, and 1.292" for interior span 2.

Per current inspection report, the following controlling cases apply:

- Prestressed slab unit 1-8 displaying severe cracking with corrosion stain along the bottom face of the slab unit.
- Prestressed slab unit 2-8 displaying the worst deterioration: Five (5) exposed strands with three (3) broken.

The load rating analysis for the prestressed voided slab units was initially performed using the Load and Resistance factor Rating methodology in accordance with the AASHTO LRFD Bridge Design Specifications (9th edition, 2020), the Manual for Bridge Evaluation (3rd edition with interims through 2019), and the FDOT Bridge Load Rating Manual (January 2021). However, the resulting design and legal rating factors were less than 1, which granted the need to evaluate the structure using the Load Factor Rating methodology.

Description

Location: Matheson Hammock Park

Total Length: 100.33 (ft)

Facility Carried: Matheson Hmk Road

Route Number: 00000

Feature Intersected: Matheson Hammock Canal

Mi Post: 0.08 (mi)

Units: US Customary

Year Built: 1967 Recent ADTT: 11

District: District 6

County:

Owner: County Hwy Agency

National Highway System: 0 Not on NHS Functional Class: 09 Rural Local

Global Reference Point

X Coordinate: 0.000 (ft)
Y Coordinate: 0.000 (ft)

Elevation: (ft)

Latitude: 80.26 (Degrees)
Latitude: 25.68 (Degrees)

Materials

Concrete

Name: Class P (5000)

Description: Class 5000 cement concrete

Specified compressive strength at 28 days (fc): 5.000 (ksi)
Initial specified compressive strength (fci): 4.000 (ksi)

Coefficient of thermal expansion: 0.0000060000 (1/F)

Density (for dead loads):

Density (for modulus of elasticity):

Std Modulus of elasticity (Ec):

LRFD Modulus of elasticity (Ec):

0.150 (kcf)

0.145 (kcf)

4074.28 (ksi)

4291.19 (ksi)

Poisson's ratio:

Modulus of rupture:

Shear factor:

Composition of concrete:

Std Initial modulus of elasticity (Eci):

LRFD Initial modulus of elasticity (Eci):

3020

0.537 (ksi)

1.000

Normal

3644.15 (ksi)

2886.55 (ksi)

Splitting tensile strength (fct): (ksi)

Name: Class A (3000)

Description: Class A cement concrete (3000 psi)
Specified compressive strength at 28 days (fc): 3.000 (ksi)

Initial specified compressive strength (fci): (ksi)

Coefficient of thermal expansion: 0.0000060000 (1/F)

Density (for dead loads):

Density (for modulus of elasticity):

Std Modulus of elasticity (Ec):

LRFD Modulus of elasticity (Ec):

30.150 (kcf)

0.145 (kcf)

3150.39 (ksi)

3617.02 (ksi)

Poisson's ratio:

Modulus of rupture:

Shear factor:

Composition of concrete:

Std Initial modulus of elasticity (Eci):

LRFD Initial modulus of elasticity (Eci):

Splitting tensile strength (fct):

(ksi)

(ksi)

Reinforcing Steel

Name: Grade 40

Description: 40 ksi reinforcing steel

Specified yield strength (Fy):

Modulus of elasticity (Es):

Ultimate strength (Fu):

70.000 (ksi)

Type of the property of th

Type: Plain

Prestressing Strand

Name: 7/16" (7W-250) SR

Description: Stress relieved 7/16"/Seven Wire/fpu = 250

Specified yield strength (Fy): 212.500 (ksi) Ultimate Tensile strength (Fu): 250.000 (ksi) Modulus of elasticity (Es): 28500.00 (ksi) Load per unit length: 0.367 *(lb/ft)* Cross sectional area (A): 0.108 (in^2) Nominal diameter (d): 0.4375 (in) Transfer length (Std): 21.8750 (in) Transfer length (LRFD): 26.2500 (in) Type: Stress Relieved Epoxy coated: **FALSE**

No timber materials.

Beam Shapes

Steel Shapes

No steel shapes.

Prestressed Shapes

Top Sxx:

No prestressed I shapes.

Prestressed Box Shapes

Prestressed Box Snapes				
Name:	17"x36" PSU			
Description:	17"x36" Prestressed Slab Un	it for units E thru G		
Type:		Circular Void		
Nominal Depth:		17.0000 (in)		
Depth (d):		17.0000 (in)		
Top flange width:		35.0000 (in)		
Bottom flange width:		36.0000 (in)		
Three-void (D1, D2,	D1) shape:	FALSE		
Circular void diamate	er:	10.0000 (in)		
Distance to CG of vo	id(s) from bottom:	9.0000 (in)		
Number of circular ve	oids:	2		
Center to center dista	nce of voids:	16.0000 (in)		
Vertical location of sl	hear key:	2.0000 (in)		
Shear key height:		6.0000 (in)		
Shear key depth:		1.5000 <i>(in)</i>		
Nominal load:		457.107 (1b/ft)		
Cross sectional area:		438.822 (in^2)		
Ixx:		13330.101 (in^4)		
CG from bottom:		8.1667 <i>(in)</i>		
Bottom Sxx:		1632.246 (in^3)		

1509.078 (in^3)

Volume/Surface Ratio: 3.175 (in)
Half Depth Area for Positive Flexure: (in^2)
Half Depth Area for Negative Flexure: (in^2)

St. Venant's Torsional Constant: 14593.772 (in^4)

Strand Grid

Row Number	Number of Strands	Vertical Location	Horizontal Spacing
		(in)	(in)
1	16	2.5000	2.0000
2	6	4.5000	2.0000
3	16	14.5000	2.0000

No prestressed U shapes.

No prestressed tee shapes.

Timber Shapes

No timber shapes.

Appurtenances

No concrete railings.

Railings

Name: Conc Guardrail w/ metal Post and Rail

Description: Conc. Post and beam guardrail with post and tube rail mounted

Effective Wind Height: 36.0000 (in)
Railing Load: 0.166 (kip/ft)
Distance From Edge to Centroid: 5.0000 (in)
Width: 10.0000 (in)

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Factors

Factors - LFD

Name: 2002 AASHTO Std. Specifications

Description: AASHTO Standard Specifications for Highway Bridges, 17th

Edition, 2002

Load Factors

Load Group Inventory Operating	Gamm 1.300 1.300	a D 1.000 1.000	(L+I)n 1.670 1.000	(L+I)p 0.000 0.000	CF 1.000 1.000	E 1.000 1.000	B 1.000 1.000
Load Group Inventory Operating	SF 1.000 1.000	W 0.000 0.000	WL 0.000 0.000	LF 0.000 0.000	R+S+T 0.000 0.000	EQ 0.000 0.000	ICE 0.000 0.000
Resistance Fa	Resistance Factors						
Flexure:	oncrete:			0.900			
Reinforced co	oncrete:			0.850			
Prestressed co	oncrete:			0.050			
Flexure:				1.000			
Prestressed co	oncrete:			0.900			
Prestressed co	oncrete:			0.700			
Flexure in N	Ion-P/S	Compone	ents:	0.900			
Steel: Flexure:				1.000			
Steel:				1.000			
Shear:				1.000			
Steel: Bearing Stif	feners:			1.000			
Name:	ichers.				ΔΔΩΗΤΟ	O Std St	pecifications(CD=0.90)
Description:						-	pecifications for Highway Bridges,
17th Edition,	2002						
Load Factors							
Load Group	Gamm	a D	(L+I)n	(L+I)p	CF	E	В
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
Operating	1.300	1.000	1.000	0.000	1.000	1.000	1.000
Load Group	SF	W	WL	LF	R+S+T	EQ	ICE
Inventory	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Operating	1.000	0.000	0.000	0.000	0.000	0.000	0.000
Resistance Fa	ctors						
Reinforced co	oncrete:			0.010			
Flexure: Reinforced co	oncrete:			0.810			
Shear:	merete.			0.765			
Prestressed co	oncrete:			0.000			
Flexure: Prestressed co	nncrete			0.900			
Shear:	morett.			0.810			
Prestressed co	oncrete:	~		0.010			

0.810

Flexure in Non-P/S Components:

Steel:

Flexure: 0.900

Steel:

Shear: 0.900

Steel:

Bearing Stiffeners: 0.900

Name: 2002 AASHTO Std. Specifications(CD=0.85)

Description: AASHTO Standard Specifications for Highway Bridges,

17th Edition, 2002

Load Factors

Load Group Gamma D (L+I)n (L+I)p CF E В 0.000 1.000 1.000 Inventory 1.300 1.000 1.670 1.000 Operating 1.300 1.000 1.000 0.000 1.000 1.000 1.000

Load Group SF W WL LF **ICE** R+S+T EQ Inventory 1.000 0.0000.0000.000 0.0000.0000.000Operating 1.000 0.000 0.0000.000 0.000 0.000 0.000

Resistance Factors

Reinforced concrete:

Flexure: 0.765

Reinforced concrete:

Shear: 0.723

Prestressed concrete:

Flexure: 0.850

Prestressed concrete:

Shear: 0.765

Prestressed concrete:

Flexure in Non-P/S Components: 0.765

Steel:

Flexure: 0.850

Steel:

Shear: 0.850

Steel:

Bearing Stiffeners: 0.850

No LRFD Factors specified.

Bridge Alternatives End Span 1 (or 3) - Bridge Alt.

Reference Line

Reference Line Length: (ft) Starting Station: (ft)

Bearing: N 90^ 0' 0.00" E

Global Positioning

Distance: 0.000 (ft)

Offset: 0.000 (ft) Elevation: (ft)

Structures

Name: Exist. EXT Span 1(or 3) SuperStr

Description:

Structure Alternatives

Name: Exist. END Span 1(or 3) Alt.

Description:

Superstructure Definition: End Span 1 (or 3) - PS Conc PSU

Bridge Alternatives INT Span 2 - Bridge Alt.

Reference Line

Reference Line Length: (ft)
Starting Station: (ft)

Bearing: N 90^{\(\circ\)} 0' 0.00" E

Global Positioning

 Distance:
 0.000 (ft)

 Offset:
 0.000 (ft)

 Elevation:
 (ft)

Structures

Name: Exist. INT Span 2 Superstruct.

Description:

Structure Alternatives

Name: Exist. INT Span 2 Alt.

Description:

Superstructure Definition: INT Span 2 - PS Conc PSU

Superstructure Definition End Span 1 (or 3) - PS Conc PSU

Definition

Units: US Customary

Number of spans: 1 Number of girders: 11

Length
Span (ft)
1 28.2917

Frame Structure Simplified Definition:

Support Frame Connection

1 2

Girder Spacing Display Type: Perpendicular

Average Humidity: 70.000 (%)

Analysis

Default Library Factors

Factor Override Analysis Module

Analysis Method: ASD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors

Analysis Module:

Analysis Module Component:

Properties:

Default rating method: LFD

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Structure Framing Plan Details

Layout

Skew

Support (Degrees)
1 0.0000
2 0.0000

Girder Spacing Orientation: Perpendicular

Girder Spacing

Bay Start End

(ft)

1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

Diaphragms

Girder Bay 1

Girder Bay 2

Girder Bay 3

Girder Bay 4

Girder Bay 5

Girder Bay 6

Girder Bay 7

Girder Bay 8

Girder Bay 9

Girder Bay 10

Structure Typical Section

Deck

Left start width:

Left end width:

Right start width:

Right end width:

15.00 (ft)

Right end width:

Left start overhang:

Left end overhang:

1.50 (ft)

1.50 (ft)

Deck (Cont'd)

Deck concrete:

Total deck thickness: (in)

Deck crack control parameter: (kip/in)
Sustained modular ratio factor: 3.000

Railing

		Measure	Measured	Distance	Distance	Front Face	
Name	Load Case	To	From	At Start	At End	Orientation	
Conc Guar	DC1 - R		Left Ed	0.00	0.00	Right	
Conc Guar	DC1 - R		Right E	0.00	0.00	Left	
<u>Sidewalk</u>							
Width	Thickness	Material	Load Case	Measure to	Measured F	rom	At Start
	At End						
60.0000	11.4375	Class A	DC1 - C		Left Ed	0.00	
24.0000	10.5630	Class A	DC1 - C		Right E	0.00	•••
Lane Position					_		

Lane Position

Offset Left Start: -13.00 (ft)
Offset Left End: -13.00 (ft)

Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)Offset Left Start: 13.00 *(ft)* Offset Left End: 13.00 (ft) Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)

Wearing Surface

Wearing surface material: Asphalt

Description: Asphalt Wearing Surface

Wearing surface thickness: 1.1670 (in) Wearing surface density: 145.000 (pcf) DW - A.W.S. Load case:

Load Case Description

Load Case Name	Description	Stage Typ	e Time	
		(Day	vs)	
DC1 - Railing	DC acting on non-comp	Non-composite	e (Sta	D,DC
D C 1	D.C.	3.7	(0)	DDC

DC acting on non-comp... DC1 - Curb Non-composite (Sta... D,DC DW - A.W.S. DW acting on long-ter... Composite (long te... D,DW

2.250 (ksi)

Superstructure Loads

DL Distribution

Stage 1 Dead Load Distribution: Tributary Area

Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

PS Conc Stress Limits Name:

Description:

Concrete material: Class P (5000)

Initial allowable tension (LFD): 0.190 (ksi)Initial allowable compression (LFD): 2.400 (ksi) Final allowable slab compression (LFD): (ksi) Final allowable tension (LFD): 0.425 (ksi) Final allowable DL compression (LFD): 2.000 (ksi)Final allowable compression (LFD): 3.000 (ksi)Final allowable compression (LL + 1/2(Pe+DL)) (LFD): 2.000 (ksi) Initial allowable tension (LRFD): 0.190 (ksi)Initial allowable compression (LRFD): 2.600 (ksi) Final allowable slab compression (LRFD): (ksi) Final allowable tension (LRFD): 0.425 (ksi)

Final allowable compression (LRFD): 3.000 (ksi)Final allowable compression (LL + 1/2(Pe+DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name: **PS Strands Properties**

Final allowable DL compression (LRFD):

General Pretress Data

Prestressing Strand: 7/16" (7W-250) SR Loss Method: **AASHTO** Approximate Jacking stress ratio: 0.700 Transfer stress ratio: Transfer time: 24.0 (Hours) AASHTO - Dead load percent: 0.0 (%) Loss Data - PCI PCI - Maturity coefficient: PCI - Ultimate creep loss: (ksi) PCI - Ultimate shrinkage loss: (ksi) PCI - Additional time 1: (Days) PCI - Additional time 2: (Days) PCI - Additional time 3: (Days) PCI - Additional time 4: (Days) PCI - Additional time 5: (Days) PCI - Additional time 6: (Days) PCI - Additional time 7: (Days) PCI - Additional time 8: (Days)

(Days)

(Days)

Loss Data - Lump-sum

PCI - Additional time 9:

PCI - Additional time 10:

Lump-sum - Composite loss: (ksi)
Lump-sum - Continuous loss: (ksi)
Lump-sum - Final loss: (ksi)

Shear Reinforcement Definitions - Vertical

Name: #4 Bent Shear Reinf.

Vertical Reinforcement: Grade 40
Vertical Rebar: 4
Number of legs (Vertical): 3.00

Inclination angle alpha (Vertical): 90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name: #3 - 2'-7" long

Reinforcement (Horz. 1): Grade 40

Rebar (Horz. 1): 3
Number of legs (Horz. 1): 1.00

Inclination angle alpha (Horz. 1): 90.0 (Degrees)

Reinforcement (Horz. 2):

Rebar (Horz. 2):

Number of legs (Horz. 2):

Inclination angle alpha (Horz. 2): 90.0 (Degrees)

Member G1

Link with: None Description:

Existing: 17"x36" EXT PSU - 17"x36" EXT PSU - 17"x36" EXT PSU -

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation

1 Pinned Fixed Fixed Free 2 Roller Free Fixed Free

<u>Elastic</u>

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" EXT PSU

Description: Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary

Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.85)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.100	0.100
0.00	28.292	Moment	0.100	0.100
0.00	28.292	Shear	0.100	0.100

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n		Projection	1
	Projection	Creep		Trojection	
1	17"x36" PSU TRUE	Class P (5000 6.64	PS Strands Pr	(in) (in) 6.0000	8.5000

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	(in)

2

1

Stress Limit Ranges

Stress Limit	Span	Start Distance	Length
		(ft)	(ft)
PS Conc Stress Lim	1	0.000	29.50

Slab Interface

Monolithic

Deck interface type: Interface width: (in)

Deck cohesion factor: 0.400 (ksi) Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Material Span Material Distance Distance Bar Bar

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature	
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)	
1	Right Left	1	2	Straight/Debo				
1	Right 1 3 Left			Straight/Debonded				
1	Right Left	1	6	Straight/Debo	onded			
1	Right Left	1	7	Straight/Debo	onded			
1	Right Left	1	8	Straight/Debo	onded			
1	Right Left	1	9	Straight/Debo	onded			
1	Right Left	1	10	Straight/Debo	onded			
1	Right	1	11	Straight/Debo	onded			

	Left Right			
1	Left	1	14	Straight/Debonded
	Right			
1	Left	1	15	Straight/Debonded
	Right			
1	Left	1	16	Straight/Debonded
	Right			
1	T - 6	3	1	Straight/Debonded
	Left Right			
1		3	16	Straight/Debonded
	Left Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	Start Distance Spacing		Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
Remotechient	110	(ft)	Spaces	(in)	Deck
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
G					

#3 - 2'-7" long 1 27.29 4 6.0000

Member G2

Link with: None Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free

2 Roller Free Fixed

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Schedule based

Free

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description: Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Girder property input method:

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.85)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)

Deck reinforcement: Grade 40

Beam concrete: Class P (5000)

Beam reinforcement: Grade 40 Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.167	0.167	0.167	0.167
Multi-Lane	0.167	0.167	0.167	0.167

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.167	0.200
0.00	28.292	Moment	0.167	0.200
0.00	28.292	Shear	0.167	0.200

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n		5 0 1 11	
				Projection	1
	Projection	Creep			
				(in) (in)	
1	17"x36" PSU	Class P (5000	PS Strands Pr	6.0000	8.5000
	TRUE	6.64			

Continuous Support Details

Support Number	Support Distance on Left, SL	Support Distance on Right, SR
1	(in)	(in)

Stress Limit Ranges Stress Limit Span Length Start Distance 0.000 29.50 PS Conc Stress Lim... 1

Slab Interface

2

Deck interface type: Monolithic

Interface width: (in)

0.400 (ksi) Deck cohesion factor: Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

Size Count Size No. Count

Prestressing Force Information

Strand Layout

Span	Pos.	Row	Col.	Config.	Harp	Debond	Harp
		No.	No.	Type	Distance	Distance	Curvature
			_		(ft)	(in)	(in)
1	T 0	1	1	Straight/Debo	onded		
	Left						
	Right						
1		1	2	Straight/Debo	onded		
	Left						
	Right						
1		1	3	Straight/Debo	onded		
	Left						
	Right						
1		1	6	Straight/Debo	onded		
	Left						
	Right						
1		1	7	Straight/Debo	onded		
	Left						
	Right						
1	_	1	8	Straight/Debo	onded		
	Left			_			

1	Right	1	9	Straight/Debonded
1	Left Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G3

Link with: None Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support
Number Type X Translation Y Translation Z Rotation

1 Pinned Fixed Fixed Free 2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.85)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap.

Reinforcement

Bearing Stiffener

Stirrup Timber

NA

Default Materials

Deck concrete:

Deck reinforcement:

Beam concrete:

Class A (3000)

Grade 40

Class P (5000)

Beam reinforcement:

Grade 40

Stirrup reinforcemt:

Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes Shear at Loaded Shear **Supports** Moment Deflection 1.000 1.000 1.000 1.000 1 Lane Multi-Lane 1.000 1.000 1.000 1.000

LRFD

Multi-Lane Distance Length Type 1 Lane (ft) (ft) 0.00 28.292 Deflectio... 0.500 0.600 0.00 28.292 Moment 0.500 0.600 0.00 28.292 Shear 0.500 0.600

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

	Use	n		Projection	n
	Projection	Creep		Trojectio)II
1	17"x36" PSU	Class P (5000	PS Strands Pr	(in) (in) 6.0000	8.5000
	TRUE	6.64			

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	(in)
1		

2

Stress Limit Ranges

Stress Limit	Span	Start Distance	Length
		(ft)	(ft)
PS Conc Stress Lim	0	-0.750	29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
					(ft)	(in)	(in)
1	т. С	1	1	Straight/Debo	nded		
	Left						
1	Right	1	2	Straight/Debo	nded		
1	Left	1	2	Strangin Deoc	inaca		
	Right						
1		1	3	Straight/Debo	nded		
	Left						
	Right						

1		1	6	Straight/Debonded
	Left Right			
1	C	1	7	Straight/Debonded
	Left Right			
1	Kigiii	1	8	Straight/Debonded
	Left			C
1	Right	1	9	Straight/Debonded
1	Left	1		Straight Deconded
1	Right	1	10	Straight/Dahandad
1	Left	1	10	Straight/Debonded
	Right			a 11/51 11
1	Left	1	11	Straight/Debonded
	Right			
1	Ι.Ω	1	14	Straight/Debonded
	Left Right			
1		1	15	Straight/Debonded
	Left Right			
1	Kigiit	1	16	Straight/Debonded
	Left			
1	Right	3	1	Straight/Debonded
-	Left		-	
1	Right	3	16	Straight/Dahandad
1	Left	3	10	Straight/Debonded
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	ee Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck

		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G4

Link with: G3
Description:

Existing: Current:

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member G5

Link with: G3 Description:

Existing: Current:

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

```
2
   Pedestrian load:
                          (lb/ft)
Member G6
Link with: G3
   Description:
   Existing:
                  17"x36" INT PSU -
   Current:
                 17"x36" INT PSU -
   Number of Spans:
                 Span Length
   Span
   Number
                 28.291666
   1
                 Frame Connection
   Support
   2
   Pedestrian load:
                          (lb/ft)
Member G7
Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                 Span Length
   Span
   Number
                 28.291666
   1
   Support
                 Frame Connection
   1
   2
   Pedestrian load:
                          (lb/ft)
Member G8
   Link with: G9
   Description:
   Existing:
   Current:
   Number of Spans:
```

1

1

1

1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member G9

Link with: None Description:

Existing: 17"x36" INT PSU - w/ Post Tensioning - Current: 17"x36" INT PSU - w/ Post Tensioning -

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU - w/ Post Tensioning

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.90)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap.

Reinforcement

Bearing Stiffener

Stirrup Timber

NA

Default Materials

Deck concrete:

Deck reinforcement:

Beam concrete:

Beam reinforcement:

Class A (3000)

Grade 40

Class P (5000)

Grade 40

Stirrup reinforcemt:

Grade 40

Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes Shear at Loaded Shear **Supports** Moment Deflection 0.533 0.000 0.533 0.182 1 Lane Multi-Lane 0.533 0.000 0.533 0.364

LRFD

Multi-Lane Distance Length Type 1 Lane (ft) (ft) 0.00 28.292 Moment 0.296 0.273 0.00 28.292 Shear 0.296 0.273 Deflectio... 0.182 0.00 28.292 0.109

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

	Use	n		Projection	n
	Projection	Creep		Trojectio)II
1	17"x36" PSU	Class P (5000	PS Strands Pr	(in) (in) 6.0000	8.5000
	TRUE	6.64			

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	(in)
1		

2

Stress Limit Ranges

Stress Limit	Span	Start Distance	Length
		(ft)	(ft)
PS Conc Stress Lim	0	-0.750	29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
					(ft)	(in)	(in)
1	т. С	1	1	Straight/Debo	nded		
	Left						
1	Right	1	2	Straight/Debo	nded		
1	Left	1	2	Strangin Deoc	inaca		
	Right						
1		1	3	Straight/Debo	nded		
	Left						
	Right						

1		1	6	Straight/Debonded
	Left Right			
1	Kigiit	1	7	Straight/Debonded
	Left			
1	Right	1	8	Straight/Debonded
	Left			C
1	Right	1	9	Straight/Debonded
1	Left	•		
1	Right	1	10	Straight/Debonded
1	Left	1	10	Straight Debonded
1	Right	1	11	Ctusi alat/Dala and ad
1	Left	1	11	Straight/Debonded
	Right		1.4	G. 11/D 1 1 1
1	Left	1	14	Straight/Debonded
	Right			
1	Left	1	15	Straight/Debonded
	Right			
1		1	16	Straight/Debonded
	Left Right			
1		3	1	Straight/Debonded
	Left Right			
1	Kigiit	3	16	Straight/Debonded
	Left Right			
	MgIII			

Deck Profile

Interior Diaphragms

Span	Start Distance	ee Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck

		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G10

Link with: G9
Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member G11

Link with: G1 Description:

Existing: Current:

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

Pedestrian load: (lb/ft)

Superstructure Definition INT Span 2 - PS Conc PSU

Definition

Units: US Customary

Number of spans: 1 Number of girders: 11

Length

Span (ft)

1 38.5000

Frame Structure Simplified Definition:

Support Frame Connection

1 2

Girder Spacing Display Type: Perpendicular

Average Humidity: 70.000 (%)

Analysis

Default Library Factors

Factor Override Analysis Module

Analysis Method: ASD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors

Analysis Module:

Analysis Module Component:

Properties:

Default rating method: LFD

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Structure Framing Plan Details

Layout

Skew
Support (Degrees)
1 0.0000
2 0.0000

Girder Spacing Orientation: Perpendicular

Girder	Girder Spacing	
Bay	Start	End
	(ft)	(ft)
1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

Diaphragms

Girder Bay 1

Girder Bay 2

Girder Bay 3

Girder Bay 4

Girder Bay 5

Girder Bay 6

Girder Bay 7

Girder Bay 8

Girder Bay 9

Girder Bay 10

Structure Typical Section

Deck

Left start width:	18.00 <i>(ft)</i>
Left end width:	18.00 <i>(ft)</i>
Right start width:	15.00 <i>(ft)</i>
Right end width:	15.00 <i>(ft)</i>
Left start overhang:	1.50 <i>(ft)</i>
Left end overhang:	1.50 <i>(ft)</i>

Deck (Cont'd)

Deck concrete:

Total deck thickness: (in)

Deck crack control parameter: (kip/in)
Sustained modular ratio factor: 3.000

Railing

		Measure	Measured	Distance	Distance	Front Face
Name	Load Case	To	From	At Start	At End	Orientation
Conc Guar	DC1 - R		Left Ed	0.00	0.00	Right
Conc Guar	DC1 - R		Right E	0.00	0.00	Left

Sidewalk

Width Thickness Material Load Case Measure to Measured From At Start

At End

60.0000 11.4375 Class A... DC1 - C... Left Ed... 0.00 ... 24.0000 10.5630 Class A... DC1 - C... Right E... 0.00 ...

Lane Position

Offset Left Start: -13.00 (ft) Offset Left End: -13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)Offset Left Start: 13.00 *(ft)* Offset Left End: 13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)

Wearing Surface

Wearing surface material: Asphalt

Description: Asphalt Wearing Surface

Wearing surface thickness: 1.1670 (in)
Wearing surface density: 145.000 (pcf)
Load case: DW - A.W.S.

Load Case Description

Load Case Name Description Stage Type Time (Days) Non-composite (Sta... DC1 - Railing DC acting on non-comp... D,DC DC acting on non-comp... DC1 - Curb Non-composite (Sta... D,DC DW - A.W.S. DW acting on long-ter... Composite (long te... D,DW

Superstructure Loads

DL Distribution

Stage 1 Dead Load Distribution: Tributary Area

Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name: PS Conc Stress Limits

Description:

Concrete material: Class P (5000) Initial allowable tension (LFD): 0.190 (ksi)Initial allowable compression (LFD): 2.400 (ksi) Final allowable slab compression (LFD): (ksi) Final allowable tension (LFD): 0.425 (ksi) Final allowable DL compression (LFD): 2.000 (ksi) Final allowable compression (LFD): 3.000 (ksi) Final allowable compression (LL + 1/2(Pe+DL)) (LFD): 2.000 (ksi) Initial allowable tension (LRFD): 0.190 (ksi)Initial allowable compression (LRFD): 2.600 *(ksi)* Final allowable slab compression (LRFD): (ksi) Final allowable tension (LRFD): 0.425 (ksi) Final allowable DL compression (LRFD): 2.250 *(ksi)* Final allowable compression (LRFD): 3.000 (ksi)Final allowable compression (LL + 1/2(Pe+DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name: PS Strands Properties

General Pretress Data

Prestressing Strand: 7/16" (7W-250) SR
Loss Method: AASHTO Approximate

Jacking stress ratio: 0.700

Transfer stress ratio:

Transfer time: 24.0 (Hours)
AASHTO - Dead load percent: 0.0 (%)

Loss Data - PCI

PCI - Maturity coefficient:

PCI - Ultimate creep loss:

PCI - Ultimate shrinkage loss:

(ksi)

PCI - Additional time 1:

(Days)

PCI - Additional time 2:

PCI - Additional time 3:

(Days)

PCI - Additional time 4: (Days)
PCI - Additional time 5: (Days)
PCI - Additional time 6: (Days)
PCI - Additional time 7: (Days)
PCI - Additional time 8: (Days)
PCI - Additional time 8: (Days)
PCI - Additional time 9: (Days)

PCI - Additional time 10: (Days)

Loss Data - Lump-sum

Lump-sum - Composite loss: (ksi)
Lump-sum - Continuous loss: (ksi)
Lump-sum - Final loss: (ksi)

Shear Reinforcement Definitions - Vertical

Name: #4 Bent Shear Reinf.

Vertical Reinforcement: Grade 40

Vertical Rebar: 4
Number of legs (Vertical): 3.00

Inclination angle alpha (Vertical): 90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name: #3 - 2'-7" long

Reinforcement (Horz. 1): Grade 40

Rebar (Horz. 1): 3
Number of legs (Horz. 1): 1.00

Inclination angle alpha (Horz. 1): 90.0 (Degrees)

Reinforcement (Horz. 2):

Rebar (Horz. 2):

Number of legs (Horz. 2):

Inclination angle alpha (Horz. 2): 90.0 (Degrees)

Member G1

Link with: None Description:

Existing: 17"x36" EXT PSU - Current: 17"x36" EXT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1

Member Alternative 17"x36" EXT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.90)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap. Reinforcement Bearing Stiffener Stirrup

Timber

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

NA

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.100	0.100
0.00	38.500	Moment	0.100	0.100
0.00	38.500	Shear	0.100	0.100

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000

TRUE 6.64...

Continuous Support Details

Support Support Distance Support Distance Number on Left, SL on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (ft)	Debond Distance	Harp Curvature
1	Left Right	1	1	Straight/Debo		(**)	
1	Left Right	1	2	Straight/Debo	onded		

1	Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right Left	1	5	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded

1	Right	2	4	Straight/Debonded
	Left Right	_	•	2.1.1.81.1.2.0001.1.00
1		2	5	Straight/Debonded
	Left Right			
1		2	6	Straight/Debonded
	Left Right			
1	Right	3	1	Straight/Debonded
	Left			
1	Right	3	7	Straight/Debonded
	Left Right			-
1	Right	3	10	Straight/Debonded
	Left			
1	Right	3	16	Straight/Debonded
	Left			8
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number Spacing	Composite
Reinforcement	No	Distance	Spaces	Length

		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G2

Link with: None Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

NumberTypeX TranslationY TranslationZ Rotation1PinnedFixedFixedFree2RollerFreeFixedFree

<u>Elastic</u>

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description:
Description

Material Type: Prestressed Concrete

Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.90)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40

Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Shear at Lanes Loaded Shear Deflection Supports Moment 0.167 1 Lane 0.167 0.167 0.167 Multi-Lane 0.167 0.167 0.167 0.167

<u>LRFD</u>

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.167	0.200
0.00	38.500	Moment	0.167	0.200
0.00	38.500	Shear	0.167	0.200

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000 TRUE 6.64...

Continuous Support Details

Support Support Distance Support Distance
Number on Left, SL on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row	Col.	Config.	Harp	Debond	Harp
		No.	No.	Type	Distance	Distance	Curvature
					(ft)	(in)	(in)
1		1	1	Straight/Debo	nded		
	Left						
	Right						
1		1	2	Straight/Debo	nded		
	Left						
	Right						
1		1	3	Straight/Debo	nded		
	Left						
	Right						
1		1	4	Straight/Debo	nded		
	Left						
	Right						

1	Left	1	5	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded

1	Right	2	6	Straight/Debonded
1	Left Right	2	U	Straight Debonded
1	C	3	1	Straight/Debonded
	Left Right		_	
1	Left	3	7	Straight/Debonded
1	Right	3	10	Straight/Debonded
	Left Right			
1	C	3	16	Straight/Debonded
	Left Right			
	Mgm			

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.95	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
Remioreement	110		Spaces	<i>c</i> . 1	
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

```
Member G3
```

Link with: None Description:

Existing: 17"x36" INT PSU - w/ Conc Repair Only - 17"x36" INT PSU - w/ Conc Repair Only -

Number of Spans:

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU - w/ Conc Repair Only

Description: Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.90)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete:

Deck reinforcement:

Beam concrete:

Beam reinforcement:

Class A (3000)

Grade 40

Class P (5000)

Grade 40

Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes Shear at

 Loaded
 Shear
 Supports
 Moment
 Deflection

 1 Lane
 1.000
 1.000
 1.000
 1.000

 Multi-Lane
 1.000
 1.000
 1.000
 1.000

<u>LRFD</u>

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n			
				Projection	n
	Projection	Creep			
				(in) (in)	
1	17"x36" PSU	Class P (5000	PS Strands Pr	8.5000	8.5000

Continuous Support Details

TRUE

Support Distance Support Distance

6.64...

Number	on Left, SL (in)	on Right, SR
1		
2		

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	4	Straight/Debo	onded		
1	Right Left	1	5	Straight/Debo	onded		
1	Right Left Right	1	12	Straight/Debo	onded		

1	Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left	3	16	Straight/Debonded
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636

1 29.95... 8.96 1 1.0000 0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start		Spacing	Extends into
Reinforcement	No	Distance (ft)	Spaces	(in)	Deck
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G4

Link with: G3
Description:

Existing: Current:

Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member G5

Link with: G3
Description:

Existing: Current:

Number of Spans:

1

```
Span Length
   Span
   Number
                 (ft)
                 38.500000
   1
   Support
                 Frame Connection
   1
   2
   Pedestrian load:
                         (lb/ft)
Member G6
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                                  1
   Span
                 Span Length
   Number
                 (ft)
                 38.500000
   Support
                 Frame Connection
   2
   Pedestrian load:
                         (lb/ft)
Member G7
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                                  1
                 Span Length
   Span
   Number
   1
                 38.500000
   Support
                 Frame Connection
   1
   2
   Pedestrian load:
                         (lb/ft)
```

Member G8

Link with: None

Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description:

<u>Description</u>

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary

Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.85)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Deflection

Lanes Shear at
Loaded Shear Supports Moment

1 Lane 1 000 1 000 1 000

1 Lane 1.000 1.000 1.000 1.000 1.000 Multi-Lane 1.000 1.000 1.000

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

stress Shape	Concrete Material	Prestress Properties	Left	Right
	-		Projection	
x36" PSU	Class P (5000	PS Strands Pr	(in) (in) 8.5000	8.5000
	iection	n Creep x36" PSU Class P (5000	n Creep x36" PSU Class P (5000 PS Strands Pr	n Projection jection Creep (in) (in) (x36" PSU Class P (5000 PS Strands Pr 8.5000

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	(in)

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (ft)	Debond Distance (in)	Harp Curvature (in)
1	Left	1	1	Straight/Debo		(III)	(iii)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	4	Straight/Debo	onded		
1	Right Left	1	5	Straight/Debo	onded		
1	Right Left	1	12	Straight/Debo	onded		
1	Right Left Right	1	13	Straight/Debo	onded		

Le	ft		Straight/Debonded
Rig 1	1	15	Straight/Debonded
Le: Rig 1	ght 1	16	Straight/Debonded
Rig 1	ght 2	1	Straight/Debonded
Rig 1	ght 2	2	Straight/Debonded
Rig 1 Le:	2	4	Straight/Debonded
Rig 1 Le:	2 ft	5	Straight/Debonded
Rig 1 Le:	2 ft	6	Straight/Debonded
Rig 1 Le:	3 ft	1	Straight/Debonded
Rig 1 Le:	3 ft	7	Straight/Debonded
Rig 1	3 ft	10	Straight/Debonded
Rig 1 Le: Rig	3 ft	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G9

Link with: G8 Description:

Existing: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning - Current: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -

Number of Spans:

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member G10

Link with: None Description:

Existing: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning - Current: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning -

Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation

1 Pinned Fixed Fixed Free 2 Roller Free Fixed Free

<u>Elastic</u>

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CD=0.90)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.527	0.000	0.527	0.182
Multi-Lane	0.527	0.000	0.527	0.364

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Moment	0.254	0.256
0.00	38.500	Shear	0.254	0.256
0.00	38.500	Deflectio	0.109	0.182

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span	Prestress Shape	Concrete Material	Prestress Properties	Left	Right
	Use	n			
				Projectio	n
	Projection	Creep			
				(in) (in)	
1	17"x36" PSU	Class P (5000	PS Strands Pr	8.5000	8.5000
	TRUE	6.64			

Continuous Support Details

Support	Support Distance	Support Distance
Number	on Left, SL	on Right, SR
	(in)	(in)

1

2

Stress Limit Ranges

Stress Limit	Span	Start Distance	Length
		(ft)	(ft)
PS Conc Stress Lim	1	0.000	39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (ft)	Debond Distance (in)	Harp Curvature
1	Left	1	1	Straight/Debo		(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	4	Straight/Debo	onded		
1	Right Left	1	5	Straight/Debo	onded		
1	Right Left	1	12	Straight/Debo	onded		
1	Right Left	1	13	Straight/Debo	onded		
1	Right Left	1	14	Straight/Debo	onded		
1	Right Left	1	15	Straight/Debo	onded		
1	Right Left	1	16	Straight/Debo	onded		

1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE

#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G11

Link with: G1 Description:

Existing: Current:

Number of Spans:

1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Username: BrR

Date: Wednesday, September 22, 2021 10:06:29

Bridge ID 874294 Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID (8): 874294

Description: Rating by YRA, from As-built plans, 9/14/2021

Three spans (30'-40'-30') non-composite PS Concrete voided slab unit superstructure comprised of eleven (11) 17"x36" units. Deck width is 35'-0" out-to-out with a 26'-0" clear roadway width. Wearing surface is present along the bridge with an average thickness of 1.167" along end spans 1 and 3, and 1.292" for interior span 2.

The load rating analysis for the prestressed voided slab units was initially performed using the Load and Resistance factor Rating methodology in accordance with the AASHTO LRFD Bridge Design Specifications (9th edition, 2020), the Manual for Bridge Evaluation (3rd edition with interims through 2019), and the FDOT Bridge Load Rating Manual (January 2021). However, the resulting design and legal rating factors were less than 1, which granted the need to evaluate the structure using the Load Factor Rating methodology.

Description

Location: Matheson Hammock Park

Total Length: 100.33 (ft)

Facility Carried: Matheson Hmk Road

Route Number: 00000

Feature Intersected: Matheson Hammock Canal

Mi Post: 0.08 (mi)

Units: US Customary

Year Built: 1967 Recent ADTT: 11

District: District 6

County:

Owner: County Hwy Agency

National Highway System: 0 Not on NHS Functional Class: 09 Rural Local

Global Reference Point

X Coordinate: 0.000 (ft)
Y Coordinate: 0.000 (ft)
Elevation: (6)

Elevation: (ft)

Latitude: 80.26 (Degrees)
Latitude: 25.68 (Degrees)

Materials

No steel materials.

Concrete

Name: Class P (5000)

Description: Class 5000 cement concrete

Specified compressive strength at 28 days (fc): 5.000 (ksi)

Initial specified compressive strength (fci): 4.000 (ksi)

Coefficient of thermal expansion: 0.0000060000 (1/F)

Density (for dead loads):

Density (for modulus of elasticity):

Std Modulus of elasticity (Ec):

LRFD Modulus of elasticity (Ec):

0.150 (kcf)

0.145 (kcf)

4074.28 (ksi)

4291.19 (ksi)

Poisson's ratio:

Modulus of rupture:

Shear factor:

Composition of concrete:

Std Initial modulus of elasticity (Eci):

LRFD Initial modulus of elasticity (Eci):

3020

0.537 (ksi)

1.000

Normal

3644.15 (ksi)

3986.55 (ksi)

Splitting tensile strength (fct): (ksi)

Name: Class A (3000)

Description: Class A cement concrete (3000 psi)
Specified compressive strength at 28 days (f'c): 3.000 (ksi)
Initial specified compressive strength (f'ci): (ksi)

Coefficient of thermal expansion: 0.0000060000 (1/F)

Density (for dead loads):

Density (for modulus of elasticity):

Std Modulus of elasticity (Ec):

LRFD Modulus of elasticity (Ec):

30.150 (kcf)

3150.39 (ksi)

3617.02 (ksi)

Poisson's ratio:

Modulus of rupture:

Shear factor:

Composition of concrete:

Std Initial modulus of elasticity (Eci):

Soffice (ksi)

0.200

0.416 (ksi)

Normal

(ksi)

LRFD Initial modulus of elasticity (Eci): (ksi)
Splitting tensile strength (fct): (ksi)

Reinforcing Steel

Name: Grade 40

Description: 40 ksi reinforcing steel

Specified yield strength (Fy):

Modulus of elasticity (Es):

Ultimate strength (Fu):

Type:

40.000 (ksi)

29000.00 (ksi)

70.000 (ksi)

Plain

Prestressing Strand

Name: 7/16" (7W-250) SR

Description: Stress relieved 7/16"/Seven Wire/fpu = 250 Specified yield strength (Fy): 212.500 (ksi) Ultimate Tensile strength (Fu): 250.000 (ksi) Modulus of elasticity (Es): 28500.00 (ksi) Load per unit length: $0.367 \, (lb/ft)$ Cross sectional area (A): $0.108 (in^2)$ Nominal diameter (d): 0.4375 (in) Transfer length (Std): 21.8750 (in) Transfer length (LRFD): 26.2500 (in)

Type: Stress Relieved Epoxy coated: FALSE

No timber materials.

Beam Shapes

Steel Shapes

No steel shapes.

Prestressed Shapes

No prestressed I shapes.

Prestressed Box Shapes

Name: 17"x36" PSU Description: 17"x36" Prestressed Slab Unit for units E thru G Circular Void Type: Nominal Depth: 17.0000 (in) Depth (d): 17.0000 (in) Top flange width: 35.0000 (in) Bottom flange width: 36.0000 (in) Three-void (D1, D2, D1) shape: **FALSE** Circular void diamater: 10.0000 (in) Distance to CG of void(s) from bottom: 9.0000 (in) Number of circular voids: Center to center distance of voids: 16.0000 (in) Vertical location of shear key: 2.0000 (in) Shear key height: 6.0000 (in) Shear key depth: 1.5000 (in) Nominal load: 457.107 (lb/ft) Cross sectional area: 438.822 (in^2) Ixx: 13330.101 (in^4) CG from bottom: 8.1667 (in) **Bottom Sxx:** 1632.246 (in^3) Top Sxx: 1509.078 (in^3) Volume/Surface Ratio: 3.175 (in) Half Depth Area for Positive Flexure: (in^2) Half Depth Area for Negative Flexure: (in^2) St. Venant's Torsional Constant: 14593.772 (in^4)

Strand Grid

Row Number of Strands Vertical Location Horizontal Spacing
(in) (in)

1 16 2.5000 2.0000

2	6	4.5000	2.0000
3	16	14.5000	2.0000

No prestressed U shapes.

No prestressed tee shapes.

Timber Shapes

No timber shapes.

Appurtenances

No concrete railings.

Railings

Name: Conc Guardrail w/ metal Post and Rail

Description: Conc. Post and beam guardrail with post and tube rail mounted

Effective Wind Height: 36.0000 (in)
Railing Load: 0.166 (kip/ft)
Distance From Edge to Centroid: 5.0000 (in)
Width: 10.0000 (in)

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Factors

Factors - LFD

Name: 2002 AASHTO Std. Specifications

Description: AASHTO Standard Specifications for Highway Bridges, 17th

Edition, 2002

Load Factors

Load Group	Gamm	a D	(L+I)n	(L+I)p	CF	E	В
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
Operating	1.300	1.000	1.000	0.000	1.000	1.000	1.000
1 0							
Load Group	SF	\mathbf{W}	WL	LF	R+S+T	EQ	ICE
Load Group Inventory			WL 0.000			EQ 0.000	ICE 0.000

Resistance Factors

Reinforced concrete:

Flexure: 0.900

Reinforced concrete:

Shear: 0.850

Prestressed concrete:

Flexure: 1.000

Prestressed concrete:

Shear: 0.900

Prestressed concrete:

Flexure in Non-P/S Components: 0.900

Steel:

Flexure: 1.000

Steel:

Shear: 1.000

Steel:

Bearing Stiffeners: 1.000

Name: 2002 AASHTO Std. Specifications(CF=0.9)

Description: AASHTO Standard Specifications for Highway Bridges,

17th Edition, 2002

Load Factors

Load Group Gamma D (L+I)n (L+I)p CF E В Inventory 1.300 1.000 1.670 0.000 1.000 1.000 1.000 Operating 1.300 1.000 1.000 0.000 1.000 1.000 1.000

Load Group SF W WLLF R+S+T EO **ICE** Inventory 1.000 0.000 0.0000.0000.000 0.000 0.000 Operating 0.000 1.000 0.000 0.0000.000 0.000 0.000

Resistance Factors

Reinforced concrete:

Flexure: 0.810

Reinforced concrete:

Shear: 0.765

Prestressed concrete:

Flexure: 0.900

Prestressed concrete:

Shear: 0.810

Prestressed concrete:

Flexure in Non-P/S Components: 0.810

Steel:

Flexure: 0.900

Steel:

Shear: 0.900

Steel:

Bearing Stiffeners: 0.900

Name: 2002 AASHTO Std. Specifications(CF=0.95)

Description: AASHTO Standard Specifications for Highway Bridges,

17th Edition, 2002

Load	<u>Factors</u>

Load Group	Gamm	a D	(L+I)n	(L+I)p	CF	E	В
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
Operating	1.300	1.000	1.000	0.000	1.000	1.000	1.000
Load Group	SF	W	WL	LF	R+S+T	EQ	ICE
Inventory	1.000	0.000	0.000	0.000	0.000	0.000	0.000

1.000 0.000 0.000 0.000 0.000 0.000 0.000

Resistance Factors

Operating

Reinforced concrete:

Flexure: 0.855

Reinforced concrete:

Shear: 0.807

Prestressed concrete:

Flexure: 0.950

Prestressed concrete:

Shear: 0.855

Prestressed concrete:

Flexure in Non-P/S Components: 0.855

Steel:

Flexure: 0.950

Steel:

Shear: 0.950

Steel:

Bearing Stiffeners: 0.950

Name: 2002 AASHTO Std. Specifications(CF=0.85)

 $1.000 \quad 0.000 \quad 0.000 \quad 0.000 \quad 0.000 \quad 0.000$

Description: AASHTO Standard Specifications for Highway Bridges,

17th Edition, 2002

Load Factors

Load Group	Gamm	a D	(L+I)n	(L+I)p	CF	E	В
Inventory	1.300	1.000	1.670	0.000	1.000	1.000	1.000
Operating	1.300	1.000	1.000	0.000	1.000	1.000	1.000
Load Group	SF	W	WL	LF	R+S+T	EQ	ICE
Inventory	1.000	0.000	0.000	0.000	0.000	0.000	0.000

Resistance Factors

Operating

Reinforced concrete:

Flexure: 0.765

Reinforced concrete:

Shear: 0.723

Prestressed concrete:

Flexure: 0.850

Prestressed concrete:

Shear: 0.765

Prestressed concrete:

Flexure in Non-P/S Components: 0.765

Steel:

Flexure: 0.850

Steel:

Shear: 0.850

Steel:

Bearing Stiffeners: 0.850

No LRFD Factors specified.

Bridge Alternatives End Span 1 (or 3) - Bridge Alt.

Reference Line

Reference Line Length: (ft)
Starting Station: (ft)

Bearing: N 90^ 0' 0.00" E

Global Positioning

 Distance:
 0.000 (ft)

 Offset:
 0.000 (ft)

 Elevation:
 (ft)

Structures

Name: Exist. EXT Span 1(or 3) SuperStr

Description:

Structure Alternatives

Name: Exist. END Span 1(or 3) Alt.

Description:

Superstructure Definition: End Span 1 (or 3) - PS Conc PSU

Bridge Alternatives INT Span 2 - Bridge Alt.

Reference Line

Reference Line Length: (ft)
Starting Station: (ft)

Bearing: N 90^ 0' 0.00" E

Global Positioning

 Distance:
 0.000 (ft)

 Offset:
 0.000 (ft)

 Elevation:
 (ft)

Structures

Name: Exist. INT Span 2 Superstruct.

Description:

Structure Alternatives

Name: Exist. INT Span 2 Alt.

Description:

Superstructure Definition: INT Span 2 - PS Conc PSU

Superstructure Definition End Span 1 (or 3) - PS Conc PSU

<u>Definition</u>

Units: US Customary

Number of spans: 1 Number of girders: 11

Length

Span (ft) 1 28.2917

Frame Structure Simplified Definition:

Support Frame Connection

1 2

Girder Spacing Display Type: Perpendicular

Average Humidity: 70.000 (%)

Analysis

Default Library Factors

Factor Override Analysis Module

Analysis Method: ASD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors

Analysis Module:

Analysis Module Component:

Properties:

Default rating method: LFD

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Structure Framing Plan Details

Layout

Skew
Support (Degrees)
1 0.0000
2 0.0000

Girder Spacing Orientation: Perpendicular

Girder	Girder Spacing	
Bay	Start	End
	(ft)	(ft)
1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

Diaphragms

Girder Bay 1

Girder Bay 2

Girder Bay 3

Girder Bay 4

Girder Bay 5

Girder Bay 6

Girder Bay 7

Girder Bay 8

Girder Bay 9

Girder Bay 10

Structure Typical Section

Deck

Left start width: 18.00 (ft)
Left end width: 18.00 (ft)

Right start width: 15.00 (ft)
Right end width: 15.00 (ft)
Left start overhang: 1.50 (ft)
Left end overhang: 1.50 (ft)

Deck (Cont'd)
Deck concrete:

Total deck thickness: (in)

Deck crack control parameter: (kip/in)
Sustained modular ratio factor: 3.000

Railing

		Measure	Measured	Distance	Distance	Front Face
Name	Load Case	To	From	At Start	At End	Orientation
Conc Guar	DC1 - R		Left Ed	0.00	0.00	Right
Conc Guar	DC1 - R		Right E	0.00	0.00	Left

Sidewalk

Width Thickness Material Load Case Measure to Measured From At Start

At End

60.0000 11.4375 Class A... DC1 - C... Left Ed... 0.00 ... 24.0000 10.5630 Class A... DC1 - C... Right E... 0.00 ...

Lane Position

Offset Left Start: -13.00 (ft) Offset Left End: -13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)Offset Left Start: 13.00 *(ft)* Offset Left End: 13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)

Wearing Surface

Wearing surface material: Asphalt

Description: Asphalt Wearing Surface

Wearing surface thickness: 1.1670 (in)
Wearing surface density: 145.000 (pcf)
Load case: DW - A.W.S.

Load Case Description

Load Case Name	Description	Stage Type Time	
		(Days)	
DC1 - Railing	DC acting on non-comp	Non-composite (Sta	D,DC
DC1 - Curb	DC acting on non-comp	Non-composite (Sta	D,DC
DW - A.W.S.	DW acting on long-ter	Composite (long te	D,DW

Superstructure Loads

DL Distribution

Stage 1 Dead Load Distribution: Tributary Area

Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name: PS Conc Stress Limits

Description:

Concrete material: Class P (5000)

Initial allowable tension (LFD):

Initial allowable compression (LFD):

Final allowable slab compression (LFD):

Final allowable tension (LFD):

Final allowable DL compression (LFD):

Final allowable compression (LFD):

Final allowable compression (LFD):

Final allowable compression (LFD):

Jone (ksi)

Final allowable compression (LFD):

Jone (ksi)

Initial allowable tension (LRFD):

O.190 (ksi)

Initial allowable compression (LRFD): 2.600 (ksi) Final allowable slab compression (LRFD): (ksi)

Final allowable tension (LRFD): 0.425 (ksi)
Final allowable DL compression (LRFD): 2.250 (ksi)
Final allowable compression (LRFD): 3.000 (ksi)

Final allowable compression (LL + 1/2(Pe+DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name: PS Strands Properties

General Pretress Data

Prestressing Strand: 7/16" (7W-250) SR
Loss Method: AASHTO Approximate

Jacking stress ratio: 0.700

Transfer stress ratio:

Transfer time: 24.0 (Hours)
AASHTO - Dead load percent: 0.0 (%)

Loss Data - PCI

PCI - Maturity coefficient:

PCI - Ultimate creep loss: (ksi)
PCI - Ultimate shrinkage loss: (ksi)
PCI - Additional time 1: (Days)
PCI - Additional time 2: (Days)
PCI - Additional time 3: (Days)

PCI - Additional time 4: (Days)
PCI - Additional time 5: (Days)
PCI - Additional time 6: (Days)
PCI - Additional time 7: (Days)
PCI - Additional time 8: (Days)
PCI - Additional time 9: (Days)

(Days)

PCI - Additional time 10: Loss Data - Lump-sum

Lump-sum - Composite loss:(ksi)Lump-sum - Continuous loss:(ksi)Lump-sum - Final loss:(ksi)

Shear Reinforcement Definitions - Vertical

Name: #4 Bent Shear Reinf.

Vertical Reinforcement: Grade 40

Vertical Rebar: 4
Number of legs (Vertical): 3.00

Inclination angle alpha (Vertical): 90.0 (Degrees)

Shear Reinforcement Definitions - Horizontal

Name: #3 - 2'-7" long

Reinforcement (Horz. 1): Grade 40

Rebar (Horz. 1): 3
Number of legs (Horz. 1): 1.00

Inclination angle alpha (Horz. 1): 90.0 (Degrees)

Reinforcement (Horz. 2):

Rebar (Horz. 2):

Number of legs (Horz. 2):

Inclination angle alpha (Horz. 2): 90.0 (Degrees)

Member G1

Link with: None Description:

Existing: 17"x36" EXT PSU - Current: 17"x36" EXT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" EXT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement

Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at	Shear at				
Loaded	Shear	Supports	Moment	Deflection			
1 Lane	0.010	0.010	0.010	0.010			
Multi-Lane	0.010	0.010	0.010	0.010			

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.010	0.010
0.00	28.292	Moment	0.010	0.010
0.00	28.292	Shear	0.010	0.010

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material **Prestress Properties** Left Right

Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU

PS Strands Pr...

6.0000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance on Left, SL on Right, SR

Class P (5000...

(in)

(in)

1

Support Number

2

Stress Limit Ranges

Stress Limit Start Distance Span Length

> (ft) (ft)

PS Conc Stress Lim... 1 0.000 29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi) Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Material Distance Material Span Bar Bar Distance

Bar Bar

Count Size No. Count Size

Prestressing Force Information

Strand Layout

Span Pos. Col. Config. Debond Row Harp Harp

Distance No. No. Type Distance Curvature

(in) (in) 1 1 1 Straight/Debonded

Left Right

1	Left	1	2	Straight/Debonded
1	Right Left	1	3	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	16	Straight/Debonded
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance Spacing		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636

1 22.25... 6.25 1 1.0000 0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G2

Link with: None Description:

Existing: 17"x36" INT PSU - Current: 17"x36" INT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name Number (in) (in) (Radians)

1 2

Support Constraints

<u>General</u>

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

<u>Elastic</u>

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.167	0.017	0.017	0.017
Multi-Lane	0.167	0.017	0.017	0.017

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.167	0.200
0.00	28.292	Moment	0.167	0.200
0.00	28.292	Shear	0.167	0.200

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

1 17"x36" PSU Class P (5000... PS Strands Pr... 6.0000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Number on Left, SL Support Distance on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

(in) (in)

PS Conc Stress Lim... 1 0.000 29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debo	onded		
1	Right	1	7	Straight/Debo	onded		
1	Left Right	1	8	Straight/Debo	onded		
	Left Right	1		_			
1	Left Right	1	9	Straight/Debo	onded		
1	Left Right	1	10	Straight/Debo	onded		
1	Left	1	11	Straight/Debo	onded		
1	Right Left	1	14	Straight/Debo	onded		
1	Right Left	1	15	Straight/Debo	onded		
1	Right	1	16	Straight/Debo	onded		
1	Left Right	3	1	Straight/Debo	onded		
	Left Right			-			
1	Left Right	3	16	Straight/Debo	onded		

Deck Profile

Interior Diaphragms

Span	Span Start Distance		Spacing No of Spaces		Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)	-	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	• .
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G3
Link with: None Description:

> Existing: 17"x36" INT PSU -Current: 17"x36" INT PSU -Number of Spans:

Span Span Length

Number

28.291666 1

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation

1 Pinned Fixed Fixed Free 2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU

Description:
Description

Material Type: Prestressed Concrete

Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)

Deck reinforcement: Grade 40

Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes Shear at Loaded Shear Supports

 Loaded
 Shear
 Supports
 Moment
 Deflection

 1 Lane
 1.000
 1.000
 1.000
 1.000

 Multi-Lane
 1.000
 1.000
 1.000
 1.000

<u>LRFD</u>

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Moment	0.500	0.600
0.00	28.292	Shear	0.500	0.600
0.00	28.292	Deflectio	0.500	0.600

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)

(ft)

1 17"x36" PSU Class P (5000... PS Strands Pr... 6.0000 8.5000

TRUE 6.64...

Continuous Support Details

Support Support Distance
Number on Left, SL Support Distance
on Right, SR

(in)

(in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 0 -0.750 29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span	Material	Distance	Bar	Bar	Material	Distance
	Bar	Bar				
No.			Count	Size	Count	Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debo	onded		
1	Right Left	1	7	Straight/Debo	onded		
1	Right Left	1	8	Straight/Debo	onded		
1	Right Left	1	9	Straight/Debo	onded		
1	Right Left	1	10	Straight/Debc	onded		
1	Right Left	1	11	Straight/Debo	onded		
1	Right Left	1	14	Straight/Debc	onded		
1	Right Left	1	15	Straight/Debo	onded		
1	Right	1	16	Straight/Debo	onded		
1	Left Right	3	1	Straight/Debo	onded		

Left Right Straight/Debonded 1 3 16 Left Right

Deck Profile

Interior Diaphragms

Span	pan Start Distance Spacir		No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G4
Link with: G3 Description:

> Existing: Current:

Number of Spans:

1

Span Span Length

```
Number
                 (ft)
                 28.291666
   Support
                 Frame Connection
   2
   Pedestrian load:
                         (lb/ft)
Member G5
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
   Span
                 Span Length
   Number
                 28.291666
   1
                 Frame Connection
   Support
   1
   2
   Pedestrian load:
                         (lb/ft)
Member G6
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                 Span Length
   Span
   Number
                 (ft)
                 28.291666
   1
   Support
                 Frame Connection
   1
   2
   Pedestrian load:
                         (lb/ft)
Member G7
   Link with: G3
   Description:
```

1

1

```
Existing:
   Current:
   Number of Spans:
                                  1
                 Span Length
   Span
   Number
                 (ft)
   1
                 28.291666
   Support
                 Frame Connection
   2
   Pedestrian load:
                         (lb/ft)
Member G8
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                                  1
   Span
                 Span Length
   Number
                 (ft)
                 28.291666
                 Frame Connection
   Support
   1
   2
   Pedestrian load:
                         (lb/ft)
Member G9
   Link with: G3
   Description:
   Existing:
   Current:
   Number of Spans:
                                  1
                 Span Length
   Span
   Number
   1
                 28.291666
   Support
                 Frame Connection
   1
   2
   Pedestrian load:
                         (lb/ft)
```

```
Member G10
```

Link with: None Description:

Existing: 17"x36" INT PSU - (w/ Post Tensioning) - Current: 17"x36" INT PSU - (w/ Post Tensioning) -

Number of Spans:

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU - (w/ Post Tensioning)

Description: Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary

Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

<u>Factors</u>

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40

Stirrup reinforcemt: Grade 40

7/16" (7W-250) SR Prestressing strand:

Impact

Standard Impact Factor

Standard - AASHTO Type:

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%) All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes Shear at

Loaded Shear **Supports** Moment Deflection 0.533 0.000 0.533 0.182 1 Lane Multi-Lane 0.533 0.000 0.533 0.364

<u>LRFD</u>

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Moment	0.296	0.273
0.00	28.292	Shear	0.296	0.273
0.00	28.292	Deflectio	0.109	0.182

Shrinkage/Time

Moist-cured Deck curing method:

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: **FALSE**

Beam Curing method: Steam-cured

Curing time: 20.00 (Days) Service life: 75.00 (*Years*) Analysis time: 54.00 (Years) Composite time: 60.00 (Days) Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU Class P (5000... PS Strands Pr... 6.0000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Support

Number	on Left, SL (in)	on Right, SR (in)
1		
2		

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)
(ft)
(ft)
(ft)
PS Conc Stress Lim...
0 -0.750 29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left	1	6	Straight/Debo	onded		
1	Right Left	1	7	Straight/Debo	onded		
1	Right Left Right	1	8	Straight/Debo	onded		

1		1	9	Straight/Debonded
	Left			
	Right			
1		1	10	Straight/Debonded
	Left			
	Right			
1		1	11	Straight/Debonded
	Left			
	Right			
1		1	14	Straight/Debonded
	Left			
	Right			
1		1	15	Straight/Debonded
	Left			
	Right			
1		1	16	Straight/Debonded
	Left			
	Right			
1		3	1	Straight/Debonded
	Left			
	Right			
1		3	16	Straight/Debonded
	Left			
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.63	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)	1	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.63	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Member G11

Link with: None Description:

Existing: 17"x36" EXT PSU (w/ Post Tensioning) - Current: 17"x36" EXT PSU (w/ Post Tensioning) -

Number of Spans: 1

Span Span Length

Number (ft)

1 28.291666

Support Frame Connection

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name

Number (in) (in) (Radians)

1 2

Support Constraints

<u>General</u>

Support Support

Number Type X Translation Y Translation Z Rotation
1 Pinned Fixed Fixed Free
2 Roller Free Fixed Free

<u>Elastic</u>

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" EXT PSU (w/ Post Tensioning)
Description:

Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap.

Reinforcement

Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete:

Deck reinforcement:

Beam concrete:

Beam reinforcement:

Class A (3000)

Grade 40

Class P (5000)

Grade 40

Stirrup reinforcemt:

Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at	Shear at			
Loaded	Shear	Supports	Moment	Deflection		
1 Lane	0.100	0.100	0.100	0.100		
Multi-Lane	0.100	0.100	0.100	0.100		

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	28.292	Deflectio	0.100	0.100
0.00	28.292	Moment	0.100	0.100
0.00	28.292	Shear	0.100	0.100

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right use

-	
Uro	ection
FIU	i c ciion

Projection	Creep
110,0001011	Creep

(in) (in) 1 17"x36" PSU Class P (5000... PS Strands Pr... 6.0000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Support Number on Left, SL on Right, SR (in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length (ft) (ft)

0.000 PS Conc Stress Lim... 1 29.50

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi) Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Material Distance Bar Bar

Bar Bar

Size Count Size No. Count

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right	1	6	Straight/Debo	onded		

	Left Right			
1	C	1	7	Straight/Debonded
	Left			_
	Right			
1		1	8	Straight/Debonded
	Left			
	Right			
1		1	9	Straight/Debonded
	Left			
	Right			
1		1	10	Straight/Debonded
	Left			
	Right			
1		1	11	Straight/Debonded
	Left			
	Right			
1	T 0	1	14	Straight/Debonded
	Left			
	Right			a . 1 /p 1 . 1 1
1	- 0	1	15	Straight/Debonded
	Left			
	Right		1.6	G. 11./D.1 1.1
1	T 0	1	16	Straight/Debonded
	Left			
	Right	2		G. 11/D.1 1.1
1	T 0	3	1	Straight/Debonded
	Left			
	Right	2	1.6	G. 11./D.1 1.1
1	т.с.	3	16	Straight/Debonded
	Left			
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	6.25	1	1.0000	0.1636
1	7.25	15.00	1	1.0000	0.1636
1	22.25	6.25	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	

#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	8.0000	FALSE
	1		1		
#4 Bent Shear R	1	2.88	19	15.0000	FALSE
#4 Bent Shear R	1	26.62	1	8.0000	FALSE
#4 Bent Shear R	1	27.29	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	8.0000	
#3 - 2'-7" long	1	2.88	19	15.0000	
#3 - 2'-7" long	1	26.62	1	8.0000	
#3 - 2'-7" long	1	27.29	4	6.0000	

Superstructure Definition INT Span 2 - PS Conc PSU

Definition

Units: US Customary

Number of spans: 1 Number of girders: 11

Length (ft)

1 38.5000

Frame Structure Simplified Definition:

Support Frame Connection

1 2

Span

Girder Spacing Display Type: Perpendicular

Average Humidity: 70.000 (%)

Analysis

Default Library Factors

Factor Override Analysis Module

Analysis Method: ASD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module:

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors

Analysis Module:

Analysis Module Component:

Properties:

Default rating method: LFD

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Structure Framing Plan Details

Layout

Skew
Support (Degrees)
1 0.0000
2 0.0000

Girder Spacing Orientation: Perpendicular

Girder	Girder Spacia	ng
Bay	Start	End
	(ft)	(ft)
1	3.0000	3.0000
2	3.0000	3.0000
3	3.0000	3.0000
4	3.0000	3.0000
5	3.0000	3.0000
6	3.0000	3.0000
7	3.0000	3.0000
8	3.0000	3.0000
9	3.0000	3.0000
10	3.0000	3.0000

<u>Diaphragms</u>

Girder Bay 1

Girder Bay 2

Girder Bay 3

Girder Bay 4

Girder Bay 5

Girder Bay 6

Girder Bay 7

Girder Bay 8 Girder Bay 9 Girder Bay 10

Structure Typical Section

Deck

Left start width:

Left end width:

Right start width:

Right end width:

Left start overhang:

Left end overhang:

18.00 (ft)

15.00 (ft)

15.00 (ft)

1.50 (ft)

1.50 (ft)

Deck (Cont'd)

Deck concrete:

Total deck thickness: (in)

Deck crack control parameter: (kip/in)
Sustained modular ratio factor: 3.000

Railing

		Measure	Measured	Distance	Distance	Front Face
Name	Load Case	To	From	At Start	At End	Orientation
Conc Guar	DC1 - R		Left Ed	0.00	0.00	Right
Conc Guar	DC1 - R		Right E	0.00	0.00	Left

Sidewalk

Width Thickness Material Load Case Measure to Measured From At Start

At End

60.0000 11.4375 Class A... DC1 - C... Left Ed... 0.00 ... 24.0000 10.5630 Class A... DC1 - C... Right E... 0.00 ...

Lane Position

Offset Left Start: -13.00 *(ft)* Offset Left End: -13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)Offset Left Start: 13.00 *(ft)* Offset Left End: 13.00 *(ft)* Offset Right Start: 0.00 (ft)Offset Right End: 0.00 (ft)

Wearing Surface

Wearing surface material: Asphalt

Description: Asphalt Wearing Surface

Wearing surface thickness: 1.1670 (in)
Wearing surface density: 145.000 (pcf)
Load case: DW - A.W.S.

Load Case Description

Load Case Name Description Stage Type Time	
(Days)	
DC1 - Railing DC acting on non-comp Non-composite (Sta	D,DC
DC1 - Curb DC acting on non-comp Non-composite (Sta	D,DC
DW - A.W.S. DW acting on long-ter Composite (long te	D,DW

Superstructure Loads

DL Distribution

Stage 1 Dead Load Distribution: Tributary Area

Stage 2 Dead Load Distribution: Uniformly to All Girders

Stiffener Definitions

Stress Limits

Name: PS Conc Stress Limits

Description:

Concrete material: Class P (5000)

Initial allowable tension (LFD): 0.190 (ksi)Initial allowable compression (LFD): 2.400 (ksi) Final allowable slab compression (LFD): (ksi) Final allowable tension (LFD): 0.425 (ksi) Final allowable DL compression (LFD): 2.000 (ksi) Final allowable compression (LFD): 3.000 (ksi)Final allowable compression (LL + 1/2(Pe+DL)) (LFD): 2.000 (ksi) Initial allowable tension (LRFD): 0.190 (ksi)Initial allowable compression (LRFD): 2.600 (ksi) Final allowable slab compression (LRFD): (ksi) Final allowable tension (LRFD): 0.425 (ksi) Final allowable DL compression (LRFD): 2.250 (ksi)Final allowable compression (LRFD): 3.000 (ksi)

Final allowable compression (LL + 1/2(Pe+DL)) (LRFD): 2.000 (ksi)

Prestress Properties

Name: PS Strands Properties

General Pretress Data

Prestressing Strand: 7/16" (7W-250) SR
Loss Method: AASHTO Approximate

Jacking stress ratio: 0.700

Transfer stress ratio:

Transfer time: 24.0 (Hours)
AASHTO - Dead load percent: 0.0 (%)

Loss Data - PCI

PCI - Maturity coefficient:

PCI - Ultimate creep loss: (ksi) PCI - Ultimate shrinkage loss: (ksi) PCI - Additional time 1: (Days) PCI - Additional time 2: (Days) PCI - Additional time 3: (Days) PCI - Additional time 4: (Days) PCI - Additional time 5: (Days) PCI - Additional time 6: (Days)

PCI - Additional time 7: (Days)
PCI - Additional time 8: (Days)

PCI - Additional time 9: (Days)

```
PCI - Additional time 10:
                                                          (Days)
Loss Data - Lump-sum
Lump-sum - Composite loss:
                                                          (ksi)
Lump-sum - Continuous loss:
                                                          (ksi)
Lump-sum - Final loss:
                                                          (ksi)
Shear Reinforcement Definitions - Vertical
Name:
                     #4 Bent Shear Reinf.
Vertical Reinforcement:
                                           Grade 40
Vertical Rebar:
                                           4
Number of legs (Vertical):
                                           3.00
Inclination angle alpha (Vertical):
                                           90.0 (Degrees)
Shear Reinforcement Definitions - Horizontal
Name:
                     #3 - 2'-7" long
Reinforcement (Horz. 1):
                                           Grade 40
Rebar (Horz. 1):
                                           3
Number of legs (Horz. 1):
                                           1.00
Inclination angle alpha (Horz. 1):
                                           90.0 (Degrees)
Reinforcement (Horz. 2):
Rebar (Horz. 2):
Number of legs (Horz. 2):
Inclination angle alpha (Horz. 2):
                                           90.0 (Degrees)
Member G1
   Link with: None
   Description:
   Existing:
                  17"x36" EXT PSU -
   Current:
                  17"x36" EXT PSU -
   Number of Spans:
                                    1
                  Span Length
   Span
   Number
   1
                  38.500000
                  Frame Connection
   Support
   2
   Pedestrian load:
                          (lb/ft)
   Member Loads
   Member Loads - Settlement
   Support
                 Horizontal
                                Vertical
                                              Rotational
                                                             Load Case Name
   Number
                  (in)
                                (in)
                                               (Radians)
   1
```

2

Support Constraints

<u>General</u>

Support Support

Number Type X Translation Y Translation Z Rotation

1 Pinned Fixed Fixed Free 2 Roller Free Fixed Free

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1

Member Alternative 17"x36" EXT PSU

Description: Description

Material Type: Prestressed Concrete

Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

	Shear at		
Shear	Supports	Moment	Deflection
0.100	0.100	0.100	0.100
0.100	0.100	0.100	0.100
	0.100	0.100 0.100	Shear Supports Moment 0.100 0.100 0.100

<u>LRFD</u>

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.100	0.100
0.00	38.500	Moment	0.100	0.100
0.00	38.500	Shear	0.100	0.100

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)
1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Number on Left, SL Support Distance on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft) (ft)

8.5000

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
1	Left	1	1	Straight/Debo	(ft) onded	(in)	(in)
1	Right Left	1	2	Straight/Debo	onded		
1	Right Left	1	3	Straight/Debo	onded		
1	Right Left Right	1	4	Straight/Debo	onded		
1	Left Right	1	5	Straight/Debo	onded		
1	Left Right	1	6	Straight/Debo	onded		
1	Left Right	1	7	Straight/Debo	onded		
1	Left Right	1	8	Straight/Debo	onded		
1	Left Right	1	9	Straight/Debo	onded		
1	Left Right	1	10	Straight/Debo	onded		
1	Left Right	1	11	Straight/Debo	onded		
1	Left Right	1	12	Straight/Debo	onded		
1	Left Right	1	13	Straight/Debo	onded		
1	Left Right	1	14	Straight/Debo	onded		
1	Left	1	15	Straight/Debo	onded		

1	Right	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span Start Distance Span		e Spacing	Spacing No of Spaces		Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Span Start Number Spacing Extends into

Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G2

Link with: None Description:

Existing: 17"x36" INT PSU -Current: 17"x36" INT PSU -Number of Spans: 1

Span Span Length

Number

1 38.500000

Frame Connection Support

1 2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Load Case Name Horizontal Vertical Rotational

Number (in) (in) (Radians)

1 2

Support Constraints

General

Support Support

Y Translation **Z** Rotation Number Type X Translation Pinned Fixed Fixed Free 1

2 Roller Fixed Free Free Elastic Support X Translation Y Translation **Z** Rotation Override Computed Number **Z** Rotation (kip/ft) (kip/ft) (kip-in/rad)

Member Alternative 17"x36" INT PSU

Description:
Description

1 2

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete:

Deck reinforcement:

Beam concrete:

Class A (3000)

Grade 40

Class P (5000)

Beam reinforcement:

Grade 40

Stirrup reinforcemt:

Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at	Shear at			
Loaded	Shear	Supports	Moment	Deflection		
1 Lane	0.167	0.167	0.167	0.167		
Multi-Lane	0.167	0.167	0.167	0.167		

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.167	0.200
0.00	38.500	Moment	0.167	0.200
0.00	38.500	Shear	0.167	0.200

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days) Service life: 75.00 (Years) Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000

TRUE 6.64...

Continuous Support Details

Support Support Distance
Number on Left, SL Support Distance
on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

(ft)

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span Pos. Row Col. Config. Harp Debond Harp

No. No. Type Distance Distance Curvature

(ft) (in) (in)

1	Left	1	1	Straight/Debonded
1	Right Left	1	2	Straight/Debonded
1	Right Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right Left	1	5	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded

1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded
1	Right Left	2	4	Straight/Debonded
1	Right Left	2	5	Straight/Debonded
1	Right Left	2	6	Straight/Debonded
1	Right Left	3	1	Straight/Debonded
1	Right Left	3	7	Straight/Debonded
1	Right Left	3	10	Straight/Debonded
1	Right Left Right	3	16	Straight/Debonded

Deck Profile

Interior Diaphragms

Span	Start Distance	ee Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.95	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE

#4 Bent Shear R 1 37.71	4 6.0000 FALSE
-------------------------	----------------

Shear Reinforcement Ranges - Horizontal

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Composite Length
		(ft)	-	(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G3

Link with: None Description:

17"x36" INT PSU -Existing: Current: 17"x36" INT PSU -Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

1 2

> Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Horizontal Vertical Load Case Name Support Rotational

Number (in) (Radians) (in)

1 2

Support Constraints

<u> Jenerai</u>	
Support	

Support Number X Translation Y Translation **Z** Rotation Type Pinned Fixed 1 Fixed Free

2 Roller Free Fixed Free

<u>Elastic</u>

X Translation **Z** Rotation Support Y Translation Override Computed

Number **Z** Rotation (kip/ft) (kip/ft) (kip-in/rad)

1

Member Alternative 17"x36" INT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup Timber

NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	1.000	1.000	1.000	1.000
Multi-Lane	1.000	1.000	1.000	1.000

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.500	0.600
0.00	38.500	Moment	0.500	0.600
0.00	38.500	Shear	0.500	0.600

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)

1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000

TRUE 6.64...

Continuous Support Details

Support Support Distance Support Distance Number on Left, SL on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance (ft)	Debond Distance	Harp Curvature
1	Left Right	1	1	Straight/Debo		(**)	
1	Left Right	1	2	Straight/Debo	onded		

1	Left	1	3	Straight/Debonded
1	Right Left	1	4	Straight/Debonded
1	Right Left	1	5	Straight/Debonded
1	Right Left	1	6	Straight/Debonded
1	Right Left	1	7	Straight/Debonded
1	Right Left	1	8	Straight/Debonded
1	Right Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right Left	1	16	Straight/Debonded
1	Right Left	2	1	Straight/Debonded
1	Right Left	2	2	Straight/Debonded
1	Right Left	2	3	Straight/Debonded

1	Right	2	4	Straight/Debonded
	Left Right			
1	Left	2	5	Straight/Debonded
1	Right	2	6	Straight/Debonded
1	Left Right	_	O	Straight Deconaca
1		3	1	Straight/Debonded
	Left Right			
1	Left	3	7	Straight/Debonded
1	Right	3	10	Straight/Debonded
	Left Right			6
1		3	16	Straight/Debonded
	Left Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length

#3 - 2'-7" #3 - 2'-7" #3 - 2'-7" #3 - 2'-7" #3 - 2'-7"	long long long	1 1 1 1	(ft) 0.21 2.21 3.08 36.83 37.71	4 1 27 1 4	(in) 6.0000 10.5000 15.0000 10.5000 6.0000	(ft)
Member G4 Link with: G3 Description:	3					
Existing: Current: Number of Sp	oans:	1				
Span Number 1	Span Length (ft) 38.500000					
Support 1 2	Frame Conne	ection				
Pedestrian loa	ad: (lb/ft)					
Member G5 Link with: G3 Description:	3					
Existing: Current: Number of Sp	pans:	1				
Span Number 1	Span Length (ft) 38.500000					
Support 1 2	Frame Conne	ection				
Pedestrian loa	ad: (lb/ft)					
Member G6 Link with: G3 Description:	3					
Existing: Current:						

	Number of Spa	ans:		1
	Span Number 1	Span Le (ft) 38.5000		
	Support 1 2	Frame C	Connection	
	Pedestrian load	d:	(lb/ft)	
Me	ember G7 Link with: G3 Description:			
	Existing: Current: Number of Spa	ans:		1
	Span Number 1	Span Le (ft) 38.5000		
	Support 1 2	Frame C	Connection	
	Pedestrian load	d:	(lb/ft)	
Me	ember G8 Link with: G3 Description:			
	Existing: Current: Number of Spa	ans:		1
	Span Number 1	Span Le (ft) 38.5000		
	Support 1 2	Frame C	Connection	
	Pedestrian load	d:	(lb/ft)	

Link with: G3 Description: Existing: Current: Number of Spans: 1 Span Length Span Number 38.500000 1 Frame Connection Support 2 Pedestrian load: (lb/ft) Member G10 Link with: None Description: Existing: 17"x36" INT PSU - w/ post Tensioning -Current: 17"x36" INT PSU - w/ post Tensioning -Number of Spans: 1 Span Span Length Number (ft) 38.500000 1 Support Frame Connection 2 Pedestrian load: (lb/ft) **Member Loads** Member Loads - Settlement Load Case Name Support Horizontal Vertical Rotational Number (in) (Radians) (in) 1 2 **Support Constraints** General Support Support Type Number X Translation Y Translation **Z** Rotation Pinned Fixed Fixed Free 1

Free

Fixed

Free

2

Roller

Elastic

Support X Translation Y Translation Z Rotation Override Computed

Number (kip/ft) (kip/ft) (kip-in/rad) Z Rotation

1 2

Member Alternative 17"x36" INT PSU - w/ post Tensioning

Description: Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp.

PS Concrete Tens.

PS Moment Cap.

Reinforcement

Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)
Deck reinforcement: Grade 40
Beam concrete: Class P (5000)
Beam reinforcement: Grade 40
Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Snear at	Snear at				
Loaded	Shear	Supports	Moment	Deflection			
1 Lane	0.527	0.000	0.527	0.182			
Multi-Lane	0.527	0.000	0.527	0.364			

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Moment	0.254	0.256
0.00	38.500	Shear	0.254	0.256
0.00	38.500	Deflectio	0.109	0.182

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)

Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use

Projection

Projection Creep

(in) (in)
1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Number on Left, SL Support Distance on Right, SR

(in) (in)

2

1

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

(in)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row	Col.	Config.	Harp	Debond	Harp
		No.	No.	Type	Distance	Distance	Curvature

(ft) (in)

1 1 Straight/Debonded

Left

1	Right	1	2	Straight/Debonded
1	Left Right	1	3	Straight/Debonded
1	Left Right	1	4	Straight/Debonded
1	Left Right	1	5	Straight/Debonded
1	Left Right	1	6	Straight/Debonded
	Left Right			-
1	Left Right	1	7	Straight/Debonded
1	Left Right	1	8	Straight/Debonded
1	Left	1	9	Straight/Debonded
1	Right Left	1	10	Straight/Debonded
1	Right Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right	1	13	Straight/Debonded
1	Left Right	1	14	Straight/Debonded
1	Left Right	1	15	Straight/Debonded
	Left Right			-
1	Left Right	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	Tugiit	2	2	Straight/Debonded

	Left Right			
1		2	3	Straight/Debonded
	Left			C
	Right			
1	8	2	4	Straight/Debonded
_	Left	_		
	Right			
1	ragin	2	5	Straight/Debonded
1	Left	2	3	Straight Debonded
	Right			
1	Kigiit	2	6	Ctual alet/Dale and ad
1	т с	2	6	Straight/Debonded
	Left			
	Right			~ ! ! / ~ ! ! !
1		3	1	Straight/Debonded
	Left			
	Right			
1		3	7	Straight/Debonded
	Left			
	Right			
1		3	10	Straight/Debonded
	Left			C
	Right			
1	8	3	16	Straight/Debonded
	Left	5	10	Straight Deconded
	Right			
	Kigiit			

Deck Profile

Interior Diaphragms

Span	Start Distanc	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.95	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear	Span	Start	Number	Spacing	Extends into
Reinforcement	No	Distance	Spaces		Deck
		(ft)		(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)
#3 - 2'-7" long	1	0.21	4	6.0000	
#3 - 2'-7" long	1	2.21	1	10.5000	
#3 - 2'-7" long	1	3.08	27	15.0000	
#3 - 2'-7" long	1	36.83	1	10.5000	
#3 - 2'-7" long	1	37.71	4	6.0000	

Member G11

Link with: None Description:

Existing: 17"x36" EXT PSU - Current: 17"x36" EXT PSU - Number of Spans: 1

Span Span Length

Number (ft)

1 38.500000

Support Frame Connection

2

Pedestrian load: (lb/ft)

Member Loads

Member Loads - Settlement

Support Horizontal Vertical Rotational Load Case Name Number (in) (in) (Radians)

1

2

Support Constraints

<u>General</u>				
Support	Support			
Number	Type	X Translation	Y Translation	Z Rotation
1	Pinned	Fixed	Fixed	Free
2	Roller	Free	Fixed	Free
Elastic				
Support	X Translation	Y Translation	Z Rotation	Override Computed
Number	(kip/ft)	(kip/ft)	(kip-in/rad)	Z Rotation

1 2

Member Alternative 17"x36" EXT PSU

Description:
Description

Material Type: Prestressed Concrete
Girder Type: PS Precast Box
Member units: US Customary
Girder property input method: Schedule based

Additional Self Load: (kip/ft)
Additional Self Load %: 1.0 (%)

Analysis Module

Analysis Method: ASD

Analysis Module: AASHTO ASD

Analysis Module Component:

Properties:

Analysis Method: LFD

Analysis Module: AASHTO LFD

Analysis Module Component:

Properties:

Analysis Method: LRFD

Analysis Module: AASHTO LRFD

Analysis Module Component:

Properties:

Analysis Method: LRFR

Analysis Module: AASHTO LRFR

Analysis Module Component:

Properties:

Analysis Method: Distribution Factors
Analysis Module: Legacy BrR Dist Fact

Analysis Module Component:

Properties:

Default rating method: LRFR

LRFD shear computation method: General Procedure

Factors

Factor Override

LRFD:

LFD: 2002 AASHTO Std. Specifications(CF=0.9)

ASD Factors

Inventory Operating

Structural steel

Concrete

PS Concrete Comp. PS Concrete Tens. PS Moment Cap. Reinforcement Bearing Stiffener

Stirrup

Timber NA

Default Materials

Deck concrete: Class A (3000)

Deck reinforcement: Grade 40

Beam concrete: Class P (5000)

Beam reinforcement: Grade 40

Stirrup reinforcemt: Grade 40

Prestressing strand: 7/16" (7W-250) SR

Impact

Standard Impact Factor

Type: Standard - AASHTO

LRFD Dynamic Load Allowance

Fatigue and fracture limit states: 15.0 (%)
All other limit states: 33.0 (%)

Live Load Distribution

Standard

Distribution Factor (Wheels)

Lanes		Shear at		
Loaded	Shear	Supports	Moment	Deflection
1 Lane	0.100	0.100	0.100	0.100
Multi-Lane	0.100	0.100	0.100	0.100

LRFD

Distance	Length	Type	1 Lane	Multi-Lane
(ft)	(ft)			
0.00	38.500	Deflectio	0.100	0.100
0.00	38.500	Moment	0.100	0.100
0.00	38.500	Shear	0.100	0.100

Shrinkage/Time

Deck curing method: Moist-cured

Deck drying time: 3.000 (Days)

Consider deck differential shrinkage loads: FALSE

Beam Curing method: Steam-cured

Curing time: 20.00 (Days)
Service life: 75.00 (Years)
Analysis time: 54.00 (Years)
Composite time: 60.00 (Days)
Continuous time: 45.0 (Days)

Beam Details

Span Details

Span Prestress Shape Concrete Material Prestress Properties Left Right

Use n

Projection

Projection Creep

(in) (in)
1 17"x36" PSU Class P (5000... PS Strands Pr... 8.5000 8.5000

TRUE 6.64...

Continuous Support Details

Support Distance Support Distance Number on Left, SL Support Distance on Right, SR

(in) (in)

1

2

Stress Limit Ranges

Stress Limit Span Start Distance Length

(ft)

PS Conc Stress Lim... 1 0.000 39.92

Slab Interface

Deck interface type: Monolithic

Interface width: (in)

Deck cohesion factor: 0.400 (ksi)
Deck friction factor: 1.400

Continuity Diaphragm

Left Support Right Support

Span Material Distance Bar Material Distance

Bar Bar

No. Count Size Count Size

Prestressing Force Information

Strand Layout

Span	Pos.	Row No.	Col. No.	Config. Type	Harp Distance	Debond Distance	Harp Curvature
					(ft)	(in)	(in)
1		1	1	Straight/Debo	nded		
	Left			C			
	Right						
1	C	1	2	Straight/Debo	onded		
	Left			C			
	Right						
1	υ	1	3	Straight/Debo	onded		

	Left			
1	Right Left	1	4	Straight/Debonded
1	Right	1	5	Straight/Debonded
1	Left Right	1	6	Straight/Debonded
1	Left Right	1	7	Straight/Debonded
1	Left Right	1	8	Straight/Debonded
	Left Right			_
1	Left Right	1	9	Straight/Debonded
1	Left Right	1	10	Straight/Debonded
1	Left	1	11	Straight/Debonded
1	Right Left	1	12	Straight/Debonded
1	Right Left	1	13	Straight/Debonded
1	Right Left	1	14	Straight/Debonded
1	Right Left	1	15	Straight/Debonded
1	Right	1	16	Straight/Debonded
1	Left Right	2	1	Straight/Debonded
1	Left Right	2	2	Straight/Debonded
1	Left Right	2	3	Straight/Debonded
1	Left Right	4	5	Stargile Deconded

1		2	4	Straight/Debonded
	Left			
1	Right	2	5	Straight/Debonded
1	Left	2	3	Stranging Debonded
	Right			
1	τ	2	6	Straight/Debonded
	Left Right			
1	Right	3	1	Straight/Debonded
	Left			C
1	Right	2	7	C4
1	Left	3	7	Straight/Debonded
	Right			
1		3	10	Straight/Debonded
	Left			
1	Right	3	16	Straight/Debonded
1	Left	J	10	Straight Deconded
	Right			

Deck Profile

Interior Diaphragms

Span	Start Distance	e Spacing	No of Spaces	Thickness	Weight
	(ft)	(ft)		(in)	(kip)
1	0.00	1.00	1	2.0000	0.3272
1	1.00	8.96	1	1.0000	0.1636
1	9.96	20.00	1	1.0000	0.1636
1	29.96	8.96	1	1.0000	0.1636

Shear Reinforcement Ranges - Vertical

Shear Reinforcement	Span No	Start Distance	Number Spaces	Spacing	Extends into Deck
		(ft)	1	(in)	
#4 Bent Shear R	1	0.21	4	6.0000	FALSE
#4 Bent Shear R	1	2.21	1	10.5000	FALSE
#4 Bent Shear R	1	3.08	27	15.0000	FALSE
#4 Bent Shear R	1	36.83	1	10.5000	FALSE
#4 Bent Shear R	1	37.71	4	6.0000	FALSE

Shear Reinforcement Ranges - Horizontal

Shear	Span	Start	Number	Spacing	Composite
Reinforcement	No	Distance	Spaces		Length
		(ft)		(in)	(ft)

#3 - 2'-7" long	1	0.21	4	6.0000
#3 - 2'-7" long	1	2.21	1	10.5000
#3 - 2'-7" long	1	3.08	27	15.0000
#3 - 2'-7" long	1	36.83	1	10.5000
#3 - 2'-7" long	1	37.71	4	6.0000

Matheson Hammock Park Bridge No.874294 over Matheson Hammock Canal

APPENDIX B – AASHTOWARE BrR RATING OUTPUT

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID: 874294

Bridge ID: 874294

Analyzed By: BrR

Analyze Date: Wednesday, October 06, 2021 15:45:03

Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002

Analysis Preference Setting: None

Report By: BrR

Report Date: Wednesday, October 06, 2021 15:45:44

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU

Member Name: G10

Member Alternative Name: 17"x36" INT PSU - (w/ Post Tensioning)

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

							Inventory	Inventory	Operating	Operating
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	88.32	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.70	-0.00	0.00	99.000	3564.00		
1.17	4.1	Shear	kip	129.09	7.72	20.37	3.351	120.64	4.344	156.39
1.69	6.0	Flexure	kip-ft	243.32	13.52	33.69	3.841	138.27	4.979	179.24
1.69	6.0	Shear	kip	118.17	7.42	19.81	3.141	113.07	4.072	146.57
1.69	6.0	Concrete Stresses	ksi	1.63	0.10	0.25	7.736	278.50		
2.83	10.0	Flexure	kip-ft	284.36	21.61	53.30	2.759	99.33	3.577	128.76
2.83	10.0	Shear	kip	92.75	6.76	18.60	2.590	93.25	3.358	120.88
2.83	10.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.700	169.19		
5.66	20.0	Flexure	kip- ft	304.65	38.40	90.83	1.615	58.13	2.093	75.35
5.66	20.0	Shear	kip	85.08	5.11	15.62	2.878	103.61	3.731	134.31
5.66	20.0	Concrete Stresses	ksi	1.63	0.28	0.67	2.527	90.96		
8.49	30.0	Flexure	kip- ft	304.65	50.23	112.61	1.227	44.18	1.591	57.27
8.49	30.0	Shear	kip	59.51	3.30	12.71	2.491	89.69	4.720	169.93
8.49	30.0	Concrete Stresses	ksi	1.63	0.37	0.83	1.907	68.64		
11.32	40.0	Flexure	kip- ft	304.65	57.22	118.63	1.123	40.43	1.456	52.41
11.32	40.0	Shear	kip	54.86	1.65	9.84	3.066	110.39	6.250	225.00
11.32	40.0	Concrete Stresses	ksi	1.63	0.42	0.87	1.736	62.51		
14.15	50.0	Flexure		304.65	59.54	109.11	1.206	43.40	1.563	56.26

		kip ft	-					
14.15	50.0	Shear kip	-64.58	-0.00 -7.03	5.251	189.03	8.967	322.81
14.15	50.0	Concrete Stresses ksi	1.63	0.44 0.80	1.861	67.00		
16.98	60.0	Flexure kip	304.65	57.20 118.63	1.123	40.43	1.456	52.41
16.98	60.0	Shear kip	-54.87	-1.65 -9.84	3.066	110.38	6.249	224.98
16.98	60.0	Concrete Stresses ksi	1.63	0.42 0.87	1.737	62.51		
19.80	70.0	Flexure kip	304.65	50.19 112.61	1.228	44.19	1.591	57.29
19.80	70.0	Shear kip	-59.53	-3.30 -12.71	2.492	89.71	4.720	169.91
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.83	1.907	68.66		
22.63	80.0	Flexure kip	304.65	38.37 90.83	1.615	58.13	2.093	75.36
22.63	80.0	Shear kip	-85.08	-5.12 -15.62	2.878	103.60	3.730	134.30
22.63	80.0	Concrete Stresses ksi	1.63	0.28 0.67	2.527	90.97		
25.46	90.0	Flexure kip-	ft 291.74	21.57 53.30	2.839	102.20	3.680	132.49
25.46	90.0	Shear kip	-89.88	-6.76 -18.60	2.502	90.07	3.243	116.75
25.46	90.0	Concrete Stresses ksi	1.63	0.16 0.39	4.701	169.23		
26.81	94.8	Flexure kip-		11.90 29.83	4.626	166.53	5.996	215.87
26.81	94.8	Shear kip	-118.33	-7.55 -20.03	3.106	111.81	4.026	144.94
26.81	94.8	Concrete Stresses ksi	1.63	0.09 0.22	8.804	316.93		
27.11	95.8	Shear kip	-125.83	-7.72 -20.35	3.262	117.43	4.228	152.22
28.29	100.0	Flexure kip ft	86.22	0.00 0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses ksi	0.82	-0.00 0.00	99.000	3564.00		

Detailed Rating Results
17"x36" INT PSU - (w/ Post Tensioning)
HL-93 (US)
Tandem + Lane
Impact: With Impact
Lane: Single Lane

				Inventory	Inventory	Operating	Operating
Location	n			Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Units Capacity	$\mathbf{L}\mathbf{L}$	Factor	(Ton)	Factor	(Ton)

		Limit State		DL + Adj- LL*				
0.00	0.0	Flexure kip- ft	88.32	0.00 0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses ksi	0.70	-0.00 0.00	99.000	3564.00		
1.17	4.1	Shear kip	129.09	7.72 19.93	3.425	123.31	4.440	159.85
1.69	6.0	Flexure kip-fi	243.32	13.52 33.11	3.907	140.67	5.065	182.34
1.69	6.0	Shear kip	118.17	7.42 19.47	3.196	115.05	4.143	149.13
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.24	7.870	283.33		
2.83	10.0	Flexure kip-fi	284.36	21.61 52.96	2.777	99.96	3.599	129.57
2.83	10.0	Shear kip	92.75	6.76 18.48	2.607	93.85	3.379	121.65
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.39	4.729	170.26		
5.66	20.0	Flexure kip- ft	304.65	38.40 93.28	1.572	56.60	2.038	73.37
5.66	20.0	Shear kip	85.08	5.11 16.06	2.801	100.82	3.630	130.69
5.66	20.0	Concrete Stresses ksi	1.63	0.28 0.69	2.460	88.57		
8.49	30.0	Flexure kip- ft	304.65	50.23 120.96	1.143	41.13	1.481	53.32
8.49	30.0	Shear kip	53.03	3.30 13.69	2.042	73.50	4.381	157.72
8.49	30.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.90		
11.32	40.0	Flexure kip- ft	304.65	57.22 135.99	0.980	35.27	1.270	45.71
11.32	40.0	Shear kip	45.04	1.65 11.37	2.159	77.74	4.245	152.83
11.32	40.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
14.15	50.0	Flexure kip- ft	304.65	59.54 138.38	0.951	34.23	1.232	44.37
14.15	50.0	Shear kip	-44.95	-0.00 -9.11	2.818	101.46	5.444	195.99
14.15	50.0	Concrete Stresses ksi	1.63	0.44 1.02	1.467	52.83		
16.98	60.0	Flexure kip- ft	304.65	57.20 135.99	0.980	35.27	1.270	45.72
16.98	60.0	Shear kip	-45.04	-1.65 -11.37	2.159	77.73	4.245	152.83
16.98	60.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
19.80	70.0	Flexure kip-	304.65	50.19 120.96	1.143	41.14	1.481	53.33
19.80	70.0	Shear kip	-53.04	-3.30 -13.69	2.042	73.50	4.381	157.70
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.92		
22.63	80.0	Flexure	304.65	38.37 93.28	1.572	56.61	2.038	73.38

			kip- ft							
22.63	80.0	Shear	kip	-85.08	-5.12	-16.06	2.800	100.81	3.630	130.68
22.63	80.0	Concrete Stresses	ksi	1.63	0.28	0.69	2.461	88.58		
25.46	90.0	Flexure 1	kip-ft	291.74	21.57	52.96	2.857	102.85	3.703	133.32
25.46	90.0	Shear	kip	-89.88	-6.76	-18.48	2.518	90.64	3.264	117.50
25.46	90.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.730	170.30		
26.81	94.8	Flexure 1	kip-ft	256.36	11.90	29.27	4.715	169.73	6.112	220.02
26.81	94.8	Shear	kip	-118.33	-7.55	-19.65	3.166	113.97	4.104	147.74
26.81	94.8	Concrete Stresses	ksi	1.63	0.09	0.22	8.973	323.03		
27.11	95.8	Shear	kip	-125.83	-7.72	-19.91	3.334	120.01	4.321	155.57
28.29	100.0	Flexure	kip- ft	86.22	0.00	0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses	ksi	0.82	-0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	129.09	7.72	11.15	8.238	230.67
1.69	6.0	Flexure	kip-ft	243.32	13.52	18.41	9.462	264.94
1.69	6.0	Shear	kip	118.17	7.42	10.91	7.679	215.03
2.83	10.0	Flexure	kip-ft	284.36	21.61	29.33	6.749	188.96
2.83	10.0	Shear	kip	92.75	6.76	10.37	6.254	175.13
5.66	20.0	Flexure	kip-ft	304.65	38.40	51.10	3.864	108.18
5.66	20.0	Shear	kip	85.08	5.11	9.03	6.703	187.69
8.49	30.0	Flexure	kip-ft	304.65	50.23	65.30	2.849	79.78
8.49	30.0	Shear	kip	85.08	3.30	7.69	8.095	226.66
11.32	40.0	Flexure	kip-ft	304.65	57.22	71.93	2.493	69.81
11.32	40.0	Shear	kip	85.08	1.65	6.36	10.048	281.34
14.15	50.0	Flexure	kip-ft	304.65	59.54	70.99	2.495	69.85

14.15	50.0	Shear	kip	-85.08	-0.00	-5.02	13.040	365.13
16.98	60.0	Flexure	kip-ft	304.65	57.20	71.93	2.493	69.82
16.98	60.0	Shear	kip	-85.08	-1.65	-6.36	10.047	281.31
19.80	70.0	Flexure	kip-ft	304.65	50.19	65.30	2.850	79.80
19.80	70.0	Shear	kip	-85.08	-3.30	-7.69	8.094	226.64
22.63	80.0	Flexure	kip-ft	304.65	38.37	51.10	3.864	108.20
22.63	80.0	Shear	kip	-85.08	-5.12	-9.03	6.702	187.67
25.46	90.0	Flexure	kip-ft	291.74	21.57	29.33	6.944	194.42
25.46	90.0	Shear	kip	-89.88	-6.76	-10.37	6.041	169.14
26.81	94.8	Flexure	kip-ft	256.36	11.90	16.28	11.410	319.48
26.81	94.8	Shear	kip	-118.33	-7.55	-11.01	7.610	213.09
27.11	95.8	Shear	kip	-125.83	-7.72	-11.15	8.018	224.49
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	129.09	7.72	15.66	5.867	215.02
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.63	6.797	249.10
1.69	6.0	Shear	kip	118.17	7.42	15.19	5.516	202.17
2.83	10.0	Flexure	kip-ft	284.36	21.61	40.46	4.892	179.30
2.83	10.0	Shear	kip	92.75	6.76	14.30	4.534	166.17
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.13	2.775	101.72
5.66	20.0	Shear	kip	85.08	5.11	12.57	4.815	176.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	92.01	2.022	74.11
8.49	30.0	Shear	kip	85.08	3.30	10.84	5.745	210.55
11.32	40.0	Flexure	kip-ft	304.65	57.22	103.09	1.739	63.75
11.32	40.0	Shear	kip	85.08	1.65	9.11	7.010	256.93
14.15	50.0	Flexure	kip-ft	304.65	59.54	104.38	1.697	62.18
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	325.04
16.98	60.0	Flexure	kip-ft	304.65	57.20	103.09	1.740	63.76
16.98	60.0	Shear	kip	-85.08	-1.65	-9.11	7.010	256.90
19.80	70.0	Flexure	kip-ft	304.65	50.19	92.01	2.022	74.12

19.80	70.0	Shear	kip	-85.08	-3.30	-10.84	5.744	210.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.13	2.776	101.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.57	4.815	176.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	40.46	5.034	184.49
25.46	90.0	Shear	kip	-89.88	-6.76	-14.30	4.379	160.50
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.74	8.167	299.32
26.81	94.8	Shear	kip	-118.33	-7.55	-15.38	5.447	199.65
27.11	95.8	Shear	kip	-125.83	-7.72	-15.65	5.711	209.30
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3628.35

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.73	5.842	233.70
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.93	6.717	268.67
1.69	6.0	Shear	kip	118.17	7.42	15.37	5.451	218.06
2.83	10.0	Flexure	kip-ft	284.36	21.61	41.23	4.802	192.06
2.83	10.0	Shear	kip	92.75	6.76	14.57	4.450	178.00
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.33	2.768	110.72
5.66	20.0	Shear	kip	85.08	5.11	12.61	4.802	192.09
8.49	30.0	Flexure	kip-ft	304.65	50.23	90.30	2.060	82.42
8.49	30.0	Shear	kip	85.08	3.30	10.64	5.854	234.15
11.32	40.0	Flexure	kip-ft	304.65	57.22	98.14	1.827	73.09
11.32	40.0	Shear	kip	85.08	1.65	8.67	7.364	294.57
14.15	50.0	Flexure	kip-ft	304.65	59.54	103.05	1.719	68.74
14.15	50.0	Shear	kip	-85.08	-0.00	-6.71	9.756	390.22
16.98	60.0	Flexure	kip-ft	304.65	57.20	98.14	1.827	73.10
16.98	60.0	Shear	kip	-85.08	-1.65	-8.67	7.364	294.54
19.80	70.0	Flexure	kip-ft	304.65	50.19	90.30	2.061	82.43
19.80	70.0	Shear	kip	-85.08	-3.30	-10.64	5.853	234.13
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.33	2.768	110.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.61	4.802	192.07
25.46	90.0	Flexure	kip-ft	291.74	21.57	41.23	4.940	197.62

25.46	90.0	Shear	kip	-89.88	-6.76	-14.57	4.298	171.92
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.94	8.096	323.85
26.81	94.8	Shear	kip	-118.33	-7.55	-15.51	5.400	216.01
27.11	95.8	Shear	kip	-125.83	-7.72	-15.72	5.686	227.44
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results
17"x36" INT PSU - (w/ Post Tensioning)
FL120 Span < 200ft
Axle Load
Impact: With Impact
Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	243.32	13.52	40.86	4.618	277.07
2.83	10.0	Flexure	kip-ft	284.36	21.61	64.51	3.324	199.45
5.66	20.0	Flexure	kip-ft	304.65	38.40	109.25	1.958	117.46
8.49	30.0	Flexure	kip-ft	304.65	50.23	134.22	1.502	90.10
11.32	40.0	Flexure	kip-ft	304.65	57.22	139.42	1.393	83.60
14.15	50.0	Flexure	kip-ft	304.65	59.54	125.17	1.533	91.97
16.98	60.0	Flexure	kip-ft	304.65	57.20	139.42	1.394	83.61
19.80	70.0	Flexure	kip-ft	304.65	50.19	134.22	1.502	90.12
22.63	80.0	Flexure	kip-ft	304.65	38.37	109.25	1.958	117.47
25.46	90.0	Flexure	kip-ft	291.74	21.57	64.51	3.420	205.22
26.81	94.8	Flexure	kip-ft	256.36	11.90	36.20	5.560	333.58
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	5940.00

Detailed Rating Results
17"x36" INT PSU - (w/ Post Tensioning)
ST 5
Axle Load
Impact: With Impact
Lane: Single Lane

	Legal	Legal
Location	Rating	Load Rating

(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.36	5.983	239.30
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.26	6.895	275.80
1.69	6.0	Shear	kip	118.17	7.42	14.97	5.596	223.84
2.83	10.0	Flexure	kip-ft	284.36	21.61	39.92	4.958	198.33
2.83	10.0	Shear	kip	92.75	6.76	14.11	4.595	183.81
5.66	20.0	Flexure	kip-ft	304.65	38.40	67.83	2.911	116.42
5.66	20.0	Shear	kip	85.08	5.11	11.99	5.050	201.99
8.49	30.0	Flexure	kip-ft	304.65	50.23	83.72	2.222	88.89
8.49	30.0	Shear	kip	85.08	3.30	9.86	6.314	252.56
11.32	40.0	Flexure	kip-ft	304.65	57.22	93.25	1.923	76.92
11.32	40.0	Shear	kip	85.08	1.65	7.74	8.252	330.08
14.15	50.0	Flexure	kip-ft	304.65	59.54	93.59	1.892	75.69
14.15	50.0	Shear	kip	-85.08	-0.00	-6.08	10.765	430.60
16.98	60.0	Flexure	kip-ft	304.65	57.20	93.25	1.923	76.93
16.98	60.0	Shear	kip	-85.08	-1.65	-7.74	8.251	330.04
19.80	70.0	Flexure	kip-ft	304.65	50.19	83.72	2.223	88.91
19.80	70.0	Shear	kip	-85.08	-3.30	-9.86	6.313	252.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	67.83	2.911	116.44
22.63	80.0	Shear	kip	-85.08	-5.12	-11.99	5.049	201.97
25.46	90.0	Flexure	kip-ft	291.74	21.57	39.92	5.102	204.07
25.46	90.0	Shear	kip	-89.88	-6.76	-14.11	4.438	177.53
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.37	8.303	332.11
26.81	94.8	Shear	kip	-118.33	-7.55	-15.13	5.538	221.51
27.11	95.8	Shear	kip	-125.83	-7.72	-15.35	5.823	232.91
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	129.09	7.72	10.65	8.625	146.63

28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	1683.00
27.11	95.8	Shear	kip	-125.83	-7.72	-10.65	8.394	142.71
26.81	94.8	Shear	kip	-118.33	-7.55	-10.51	7.973	135.54
26.81	94.8	Flexure	kip-ft	256.36	11.90	15.54	11.954	203.21
25.46	90.0	Shear	kip	-89.88	-6.76	-9.87	6.347	107.90
25.46	90.0	Flexure	kip-ft	291.74	21.57	27.92	7.296	124.03
22.63	80.0	Shear	kip	-85.08	-5.12	-8.53	7.096	120.63
22.63	80.0	Flexure	kip-ft	304.65	38.37	48.27	4.091	69.54
19.80	70.0	Shear	kip	-85.08	-3.30	-7.19	8.657	147.18
19.80	70.0	Flexure	kip-ft	304.65	50.19	61.05	3.048	51.82
16.98	60.0	Shear	kip	-85.08	-1.65	-5.86	10.906	185.40
16.98	60.0	Flexure	kip-ft	304.65	57.20	66.26	2.707	46.01
14.15	50.0	Shear	kip	-85.08	-0.00	-4.52	14.485	246.24
14.15	50.0	Flexure	kip-ft	304.65	59.54	63.91	2.771	47.11
11.32	40.0	Shear	kip	85.08	1.65	5.86	10.907	185.42
11.32	40.0	Flexure	kip-ft	304.65	57.22	66.26	2.706	46.01
8.49	30.0	Shear	kip	85.08	3.30	7.19	8.658	147.19
8.49	30.0	Flexure	kip-ft	304.65	50.23	61.05	3.047	51.81
5.66	20.0	Shear	kip	85.08	5.11	8.53	7.097	120.64
5.66	20.0	Flexure	kip-ft	304.65	38.40	48.27	4.090	69.54
2.83	10.0	Shear	kip	92.75	6.76	9.87	6.572	111.72
2.83	10.0	Flexure	kip-ft	284.36	21.61	27.92	7.091	120.54
1.69	6.0	Shear	kip	118.17	7.42	10.41	8.049	136.83
1.69	6.0	Flexure	kip-ft	243.32	13.52	17.56	9.917	168.59

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	129.09	7.72	18.97	4.842	159.80
1.69	6.0	Flexure	kip-ft	243.32	13.52	31.22	5.579	184.12
1.69	6.0	Shear	kip	118.17	7.42	18.50	4.528	149.43
2.83	10.0	Flexure	kip-ft	284.36	21.61	49.37	4.009	132.31
2.83	10.0	Shear	kip	92.75	6.76	17.45	3.716	122.62

5.66	20.0	Flexure	kip-ft	304.65	38.40	84.06	2.349	77.51
5.66	20.0	Shear	kip	85.08	5.11	14.86	4.075	134.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	104.05	1.788	59.01
8.49	30.0	Shear	kip	85.08	3.30	12.26	5.080	167.65
11.32	40.0	Flexure	kip-ft	304.65	57.22	116.56	1.538	50.77
11.32	40.0	Shear	kip	85.08	1.65	9.66	6.609	218.10
14.15	50.0	Flexure	kip-ft	304.65	59.54	118.00	1.501	49.53
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	292.67
16.98	60.0	Flexure	kip-ft	304.65	57.20	116.56	1.539	50.77
16.98	60.0	Shear	kip	-85.08	-1.65	-9.66	6.609	218.08
19.80	70.0	Flexure	kip-ft	304.65	50.19	104.05	1.788	59.02
19.80	70.0	Shear	kip	-85.08	-3.30	-12.26	5.080	167.63
22.63	80.0	Flexure	kip-ft	304.65	38.37	84.06	2.349	77.52
22.63	80.0	Shear	kip	-85.08	-5.12	-14.86	4.075	134.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	49.37	4.125	136.14
25.46	90.0	Shear	kip	-89.88	-6.76	-17.45	3.589	118.44
26.81	94.8	Flexure	kip-ft	256.36	11.90	27.65	6.719	221.73
26.81	94.8	Shear	kip	-118.33	-7.55	-18.69	4.482	147.89
27.11	95.8	Shear	kip	-125.83	-7.72	-18.96	4.713	155.53
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - (w/ Post Tensioning) SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	129.09	7.72	19.76	4.649	162.71
1.69	6.0	Flexure	kip-ft	243.32	13.52	32.50	5.359	187.56
1.69	6.0	Shear	kip	118.17	7.42	19.26	4.349	152.22
2.83	10.0	Flexure	kip-ft	284.36	21.61	51.35	3.855	134.94
2.83	10.0	Shear	kip	92.75	6.76	18.15	3.573	125.06
5.66	20.0	Flexure	kip-ft	304.65	38.40	87.11	2.266	79.32
5.66	20.0	Shear	kip	85.08	5.11	15.40	3.932	137.62
8.49	30.0	Flexure	kip-ft	304.65	50.23	111.07	1.675	58.63
8.49	30.0	Shear	kip	85.08	3.30	12.64	4.926	172.42

11.32	40.0	Flexure	kip-ft	304.65	57.22	127.15	1.410	49.36
11.32	40.0	Shear	kip	84.27	1.65	9.99	6.330	221.56
14.15	50.0	Flexure	kip-ft	304.65	59.54	127.65	1.387	48.56
14.15	50.0	Shear	kip	-85.08	-0.00	-7.78	8.408	294.29
16.98	60.0	Flexure	kip-ft	304.65	57.20	127.15	1.411	49.37
16.98	60.0	Shear	kip	-84.29	-1.65	-9.99	6.331	221.58
19.80	70.0	Flexure	kip-ft	304.65	50.19	111.07	1.675	58.64
19.80	70.0	Shear	kip	-85.08	-3.30	-12.64	4.926	172.40
22.63	80.0	Flexure	kip-ft	304.65	38.37	87.11	2.267	79.33
22.63	80.0	Shear	kip	-85.08	-5.12	-15.40	3.932	137.61
25.46	90.0	Flexure	kip-ft	291.74	21.57	51.35	3.967	138.84
25.46	90.0	Shear	kip	-89.88	-6.76	-18.15	3.451	120.79
26.81	94.8	Flexure	kip-ft	256.36	11.90	28.79	6.452	225.84
26.81	94.8	Shear	kip	-118.33	-7.55	-19.46	4.304	150.63
27.11	95.8	Shear	kip	-125.83	-7.72	-19.75	4.525	158.36
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3465.00

Note:

^{*}Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID: 874294

Bridge ID: 874294

Analyzed By: BrR

Analyze Date: Wednesday, October 06, 2021 15:34:40

Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002

Analysis Preference Setting: None

Report By: BrR

Report Date: Wednesday, October 06, 2021 15:35:19

Structure Definition Name: INT Span 2 - PS Conc PSU

Member Name: G10

Member Alternative Name: 17"x36" INT PSU - w/ post Tensioning

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

							Inventory	Inventory	Operating	Operating
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	182.46	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	1.08	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	112.73	10.73	20.86	2.720	97.92	3.526	126.94
1.48	3.8	Flexure	kip-ft	408.30	16.29	30.61	7.243	260.75	9.389	338.01
1.48	3.8	Shear	kip	106.69	10.52	20.57	2.598	93.53	3.368	121.24
1.48	3.8	Concrete Stresses	ksi	2.45	0.12	0.23	12.955	466.37		
3.85	10.0	Flexure	kip-ft	462.73	39.60	73.09	3.231	116.30	4.188	150.76
3.85	10.0	Shear	kip	79.93	9.14	18.70	2.093	75.36	2.714	97.69
3.85	10.0	Concrete Stresses	ksi	2.45	0.29	0.54	5.026	180.94		
7.70	20.0	Flexure	kip- ft	462.73	70.46	124.85	1.715	61.73	2.223	80.02
7.70	20.0	Shear	kip	79.93	6.89	15.71	2.594	93.38	3.363	121.05
7.70	20.0	Concrete Stresses	ksi	2.45	0.52	0.92	2.633	94.80		
11.55	30.0	Flexure	kip- ft	462.73	92.31	156.13	1.271	45.76	1.648	59.32
11.55	30.0	Shear	kip	79.93	4.49	12.85	3.304	118.93	4.283	154.17
11.55	30.0	Concrete Stresses	ksi	2.45	0.68	1.15	1.931	69.51		
15.40	40.0	Flexure	kip- ft	462.73	105.27	172.00	1.100	39.61	1.426	51.34
15.40	40.0	Shear	kip	70.23	2.24	10.26	3.754	135.16	5.567	200.41
15.40	40.0	Concrete Stresses	ksi	2.45	0.77	1.26	1.659	59.71		
19.25	50.0	Flexure	kip- ft	462.73	109.59	171.21	1.087	39.14	1.409	50.74

19.25	50.0	Shear	kip	-71.82	0.00	-7.73	5.308	191.08	7.657	275.64
19.25	50.0	Concrete Stresses	ksi	2.45	0.81	1.26	1.635	58.85		
23.10	60.0	Flexure	kip- ft	462.73	105.27	172.00	1.100	39.61	1.426	51.34
23.10	60.0	Shear	kip	-70.23	-2.24	-10.26	3.754	135.16	5.567	200.41
23.10	60.0	Concrete Stresses	ksi	2.45	0.77	1.26	1.659	59.71		
26.95	70.0	Flexure	kip- ft	480.13	92.31	156.13	1.335	48.06	1.730	62.30
26.95	70.0	Shear	kip	-80.21	-4.49	-12.85	3.316	119.38	4.299	154.75
26.95	70.0	Concrete Stresses	ksi	2.45	0.68	1.15	1.931	69.51		
30.80	80.0	Flexure	kip- ft	462.73	70.46	124.85	1.715	61.73	2.223	80.02
30.80	80.0	Shear	kip	-79.93	-6.89	-15.71	2.594	93.38	3.363	121.05
30.80	80.0	Concrete Stresses	ksi	2.45	0.52	0.92	2.633	94.80		
34.65	90.0	Flexure	kip-ft	462.73	39.60	73.09	3.231	116.30	4.188	150.76
34.65	90.0	Shear	kip	-79.93	-9.14	-18.70	2.093	75.36	2.714	97.69
34.65	90.0	Concrete Stresses	ksi	2.45	0.29	0.54	5.026	180.94		
37.02	96.2	Flexure	kip-ft	408.30	16.29		7.243	260.75	9.389	338.01
37.02	96.2	Shear	kip	-106.69	-10.52	-20.57	2.598	93.53	3.368	121.24
37.02	96.2	Concrete Stresses	ksi	2.45	0.12	0.23	12.955	466.37		
37.39	97.1	Shear	kip	-112.75	-10.73	-20.87	2.720	97.93	3.526	126.95
38.50	100.0	Flexure	kip- ft	157.45	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	1.08	0.00	0.00	99.000	3564.00		

Detailed Rating Results
17"x36" INT PSU - w/ post Tensioning
HL-93 (US)
Tandem + Lane
Impact: With Impact
Lane: Single Lane

						Inventory	Inventory	Operating	Operating
Location	1					Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)

0.00	0.0	Flexure	kip- ft	182.46	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	1.08	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	112.73	10.73	18.65	3.044	109.57	3.945	142.04
1.48	3.8	Flexure	•	408.30	16.29	27.43	8.082	290.94	10.476	377.14
1.48	3.8	Shear	kip	106.69	10.52	18.43	2.901	104.43	3.760	135.37
1.48	3.8	Concrete Stresses	ksi	2.45	0.12	0.20	14.455	520.38		
3.85	10.0	Flexure	•	462.73	39.60	66.60	3.545	127.63	4.596	165.45
3.85	10.0	Shear	kip	79.93	9.14	17.02	2.301	82.82	2.982	107.36
3.85	10.0	Concrete Stresses	ksi	2.45	0.29	0.49	5.516	198.56		
7.70	20.0	Flexure	kip- ft	462.73	70.46	117.65	1.820	65.51	2.359	84.92
7.70	20.0	Shear	kip	79.93	6.89	14.77	2.758	99.29	3.575	128.71
7.70	20.0	Concrete Stresses	ksi	2.45	0.52	0.86	2.795	100.61		
11.55	30.0	Flexure	kip- ft	462.73	92.31	153.13	1.296	46.66	1.680	60.48
11.55	30.0	Shear	kip	79.93	4.49	12.60	3.372	121.38	4.371	157.35
11.55	30.0	Concrete Stresses	ksi	2.45	0.68	1.13	1.969	70.87		
15.40	40.0	Flexure	kip- ft	462.73	105.27	173.06	1.093	39.36	1.417	51.02
15.40	40.0	Shear	kip	69.26	2.24	10.48	3.623	130.44	5.451	196.25
15.40	40.0	Concrete Stresses	ksi	2.45	0.77	1.27	1.648	59.34		
19.25	50.0	Flexure	kip- ft	462.73	109.59	177.43	1.049	37.77	1.360	48.96
19.25	50.0	Shear	kip	-66.70	0.00	-8.43	4.523	162.82	7.025	252.91
19.25	50.0	Concrete Stresses	ksi	2.45	0.81	1.30	1.577	56.78		
23.10	60.0	Flexure	kip- ft	462.73	105.27	173.06	1.093	39.36	1.417	51.02
23.10	60.0	Shear	kip	-69.26	-2.24	-10.48	3.623	130.44	5.451	196.25
23.10	60.0	Concrete Stresses	ksi	2.45	0.77	1.27	1.648	59.34		
26.95	70.0	Flexure	kip- ft	480.13	92.31	153.13	1.361	49.00	1.764	63.52
26.95	70.0	Shear	kip	-80.21	-4.49	-12.60	3.384	121.84	4.387	157.94
26.95	70.0	Concrete Stresses	ksi	2.45	0.68	1.13	1.969	70.87		
30.80	80.0	Flexure	kip- ft	462.73	70.46	117.65	1.820	65.51	2.359	84.92
30.80	80.0	Shear	kip	-79.93	-6.89	-14.77	2.758	99.29	3.575	128.71
30.80	80.0		ksi	2.45	0.52	0.86	2.795	100.61		

		Concrete Stresses								
34.65	90.0	Flexure	kip-ft	462.73	39.60	66.60	3.545	127.63	4.596	165.45
34.65	90.0	Shear	kip	-79.93	-9.14	-17.02	2.301	82.82	2.982	107.36
34.65	90.0	Concrete Stresses	ksi	2.45	0.29	0.49	5.516	198.56		
37.02	96.2	Flexure	kip-ft	408.30	16.29	27.43	8.082	290.94	10.476	377.14
37.02	96.2	Shear	kip	-106.69	-10.52	-18.43	2.901	104.43	3.760	135.37
37.02	96.2	Concrete Stresses	ksi	2.45	0.12	0.20	14.455	520.38		
37.39	97.1	Shear	kip	-112.75	-10.73	-18.65	3.044	109.58	3.946	142.05
38.50	100.0	Flexure	kip- ft	157.45	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	1.08	0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	112.73	10.73	11.46	6.669	186.74
1.48	3.8	Flexure	kip-ft	408.30	16.29	16.68	17.893	501.00
1.48	3.8	Shear	kip	106.69	10.52	11.27	6.382	178.70
3.85	10.0	Flexure	kip-ft	462.73	39.60	38.88	8.175	228.91
3.85	10.0	Shear	kip	79.93	9.14	10.10	5.218	146.10
7.70	20.0	Flexure	kip-ft	462.73	70.46	63.23	4.558	127.63
7.70	20.0	Shear	kip	79.93	6.89	8.21	6.680	187.05
11.55	30.0	Flexure	kip-ft	462.73	92.31	81.45	3.280	91.85
11.55	30.0	Shear	kip	79.93	4.49	7.05	8.107	226.99
15.40	40.0	Flexure	kip-ft	462.73	105.27	91.86	2.773	77.64
15.40	40.0	Shear	kip	79.93	2.24	5.89	10.068	281.90
19.25	50.0	Flexure	kip-ft	462.73	109.59	91.12	2.750	77.00
19.25	50.0	Shear	kip	79.93	0.00	4.73	12.989	363.70
23.10	60.0	Flexure	kip-ft	462.73	105.27	91.86	2.773	77.64
23.10	60.0	Shear	kip	-79.93	-2.24	-5.89	10.068	281.90

26.95	70.0	Flexure	kip-ft	480.13	92.31	81.45	3.445	96.45
26.95	70.0	Shear	kip	-80.21	-4.49	-7.05	8.137	227.84
30.80	80.0	Flexure	kip-ft	462.73	70.46	63.23	4.558	127.63
30.80	80.0	Shear	kip	-79.93	-6.89	-8.21	6.680	187.05
34.65	90.0	Flexure	kip-ft	462.73	39.60	38.88	8.175	228.91
34.65	90.0	Shear	kip	-79.93	-9.14	-10.10	5.218	146.10
37.02	96.2	Flexure	kip-ft	408.30	16.29	16.68	17.893	501.00
37.02	96.2	Shear	kip	-106.69	-10.52	-11.27	6.382	178.70
37.39	97.1	Shear	kip	-112.75	-10.73	-11.46	6.670	186.75
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	2772.00

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	112.73	10.73	16.06	4.756	174.32
1.48	3.8	Flexure	kip-ft	408.30	16.29	23.41	12.747	467.17
1.48	3.8	Shear	kip	106.69	10.52	15.83	4.547	166.63
3.85	10.0	Flexure	kip-ft	462.73	39.60	55.34	5.744	210.50
3.85	10.0	Shear	kip	79.93	9.14	14.37	3.666	134.35
7.70	20.0	Flexure	kip-ft	462.73	70.46	93.36	3.087	113.13
7.70	20.0	Shear	kip	79.93	6.89	12.12	4.524	165.81
11.55	30.0	Flexure	kip-ft	462.73	92.31	114.05	2.343	85.86
11.55	30.0	Shear	kip	79.93	4.49	9.87	5.790	212.19
15.40	40.0	Flexure	kip-ft	462.73	105.27	126.11	2.020	74.03
15.40	40.0	Shear	kip	79.93	2.24	8.19	7.244	265.51
19.25	50.0	Flexure	kip-ft	462.73	109.59	128.76	1.946	71.32
19.25	50.0	Shear	kip	79.93	0.00	6.69	9.192	336.87
23.10	60.0	Flexure	kip-ft	462.73	105.27	126.11	2.020	74.03
23.10	60.0	Shear	kip	-79.93	-2.24	-8.19	7.244	265.51
26.95	70.0	Flexure	kip-ft	480.13	92.31	114.05	2.460	90.16
26.95	70.0	Shear	kip	-80.21	-4.49	-9.87	5.811	212.98
30.80	80.0	Flexure	kip-ft	462.73	70.46	93.36	3.087	113.13
30.80	80.0	Shear	kip	-79.93	-6.89	-12.12	4.524	165.81

34.65	90.0	Flexure	kip-ft	462.73	39.60	55.34	5.744	210.50
34.65	90.0	Shear	kip	-79.93	-9.14	-14.37	3.666	134.35
37.02	96.2	Flexure	kip-ft	408.30	16.29	23.41	12.747	467.17
37.02	96.2	Shear	kip	-106.69	-10.52	-15.83	4.547	166.63
37.39	97.1	Shear	kip	-112.75	-10.73	-16.06	4.757	174.33
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	112.73	10.73	16.08	4.750	190.02
1.48	3.8	Flexure	kip-ft	408.30	16.29	23.46	12.722	508.90
1.48	3.8	Shear	kip	106.69	10.52	15.86	4.538	181.51
3.85	10.0	Flexure	kip-ft	462.73	39.60	55.39	5.739	229.54
3.85	10.0	Shear	kip	79.93	9.14	14.39	3.663	146.51
7.70	20.0	Flexure	kip-ft	462.73	70.46	92.41	3.119	124.75
7.70	20.0	Shear	kip	79.93	6.89	12.00	4.571	182.83
11.55	30.0	Flexure	kip-ft	462.73	92.31	114.81	2.327	93.08
11.55	30.0	Shear	kip	79.93	4.49	9.94	5.751	230.04
15.40	40.0	Flexure	kip-ft	462.73	105.27	128.28	1.986	79.42
15.40	40.0	Shear	kip	79.93	2.24	8.24	7.203	288.14
19.25	50.0	Flexure	kip-ft	462.73	109.59	132.83	1.886	75.46
19.25	50.0	Shear	kip	79.93	0.00	6.32	9.727	389.09
23.10	60.0	Flexure	kip-ft	462.73	105.27	128.28	1.986	79.42
23.10	60.0	Shear	kip	-79.93	-2.24	-8.24	7.203	288.14
26.95	70.0	Flexure	kip-ft	480.13	92.31	114.81	2.444	97.75
26.95	70.0	Shear	kip	-80.21	-4.49	-9.94	5.773	230.90
30.80	80.0	Flexure	kip-ft	462.73	70.46	92.41	3.119	124.75
30.80	80.0	Shear	kip	-79.93	-6.89	-12.00	4.571	182.83
34.65	90.0	Flexure	kip-ft	462.73	39.60	55.39	5.739	229.54
34.65	90.0	Shear	kip	-79.93	-9.14	-14.39	3.663	146.51
37.02	96.2	Flexure	kip-ft	408.30	16.29	23.46	12.722	508.90
37.02	96.2	Shear	kip	-106.69	-10.52	-15.86	4.538	181.51

37.39	97.1	Shear	kip	-112.75	-10.73	-16.08	4.751	190.03
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results

17"x36" INT PSU - w/ post Tensioning
FL120 Span < 200ft
Axle Load
Impact: With Impact
Lane: Single Lane

Span 2

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	5940.00
1.48	3.8	Flexure	kip-ft	408.30	16.29	35.85	9.016	540.99
3.85	10.0	Flexure	kip-ft	462.73	39.60	85.33	4.036	242.14
7.70	20.0	Flexure	kip-ft	462.73	70.46	144.69	2.158	129.47
11.55	30.0	Flexure	kip-ft	462.73	92.31	179.27	1.615	96.87
15.40	40.0	Flexure	kip-ft	462.73	105.27	196.07	1.407	84.45
19.25	50.0	Flexure	kip-ft	462.73	109.59	193.35	1.404	84.24
23.10	60.0	Flexure	kip-ft	462.73	105.27	196.07	1.407	84.45
26.95	70.0	Flexure	kip-ft	480.13	92.31	179.27	1.695	101.73
30.80	80.0	Flexure	kip-ft	462.73	70.46	144.69	2.158	129.47
34.65	90.0	Flexure	kip-ft	462.73	39.60	85.33	4.036	242.14
37.02	96.2	Flexure	kip-ft	408.30	16.29	35.85	9.016	540.99
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	5940.00

Detailed Rating Results
17"x36" INT PSU - w/ post Tensioning
ST 5
Axle Load
Impact: With Impact
Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3960.00

1.12	2.9	Shear	kip	112.73	10.73	14.69	5.201	208.03
1.48	3.8	Flexure	kip-ft	408.30	16.29	21.47	13.898	555.92
1.48	3.8	Shear	kip	106.69	10.52	14.52	4.957	198.29
3.85	10.0	Flexure	kip-ft	462.73	39.60	51.52	6.170	246.79
3.85	10.0	Shear	kip	79.93	9.14	13.38	3.938	157.51
7.70	20.0	Flexure	kip-ft	462.73	70.46	88.86	3.243	129.72
7.70	20.0	Shear	kip	79.93	6.89	11.54	4.753	190.12
11.55	30.0	Flexure	kip-ft	462.73	92.31	112.03	2.385	95.39
11.55	30.0	Shear	kip	79.93	4.49	9.70	5.894	235.75
15.40	40.0	Flexure	kip-ft	462.73	105.27	125.93	2.023	80.91
15.40	40.0	Shear	kip	79.93	2.24	7.86	7.549	301.96
19.25	50.0	Flexure	kip-ft	462.73	109.59	128.11	1.956	78.24
19.25	50.0	Shear	kip	79.93	0.00	6.02	10.217	408.69
23.10	60.0	Flexure	kip-ft	462.73	105.27	125.93	2.023	80.91
23.10	60.0	Shear	kip	-79.93	-2.24	-7.86	7.549	301.96
26.95	70.0	Flexure	kip-ft	480.13	92.31	112.03	2.504	100.17
26.95	70.0	Shear	kip	-80.21	-4.49	-9.70	5.916	236.64
30.80	80.0	Flexure	kip-ft	462.73	70.46	88.86	3.243	129.72
30.80	80.0	Shear	kip	-79.93	-6.89	-11.54	4.753	190.12
34.65	90.0	Flexure	kip-ft	462.73	39.60	51.52	6.170	246.79
34.65	90.0	Shear	kip	-79.93	-9.14	-13.38	3.938	157.51
37.02	96.2	Flexure	kip-ft	408.30	16.29	21.47	13.898	555.92
37.02	96.2	Shear	kip	-106.69	-10.52	-14.52	4.957	198.28
37.39	97.1	Shear	kip	-112.75	-10.73	-14.69	5.201	208.05
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	1683.00
1.12	2.9	Shear	kip	112.73	10.73	9.87	7.737	131.52
1.48	3.8	Flexure	kip-ft	408.30	16.29	14.44	20.659	351.20
1.48	3.8	Shear	kip	106.69	10.52	9.77	7.369	125.27
3.85	10.0	Flexure	kip-ft	462.73	39.60	34.85	9.121	155.07

3.85	10.0	Shear	kip	79.93	9.14	9.05	5.822	98.97
7.70	20.0	Flexure	kip-ft	462.73	70.46	60.77	4.742	80.62
7.70	20.0	Shear	kip	79.93	6.89	7.89	6.950	118.15
11.55	30.0	Flexure	kip-ft	462.73	92.31	77.77	3.436	58.41
11.55	30.0	Shear	kip	79.93	4.49	6.73	8.491	144.34
15.40	40.0	Flexure	kip-ft	462.73	105.27	85.84	2.968	50.45
15.40	40.0	Shear	kip	79.93	2.24	5.57	10.644	180.94
19.25	50.0	Flexure	kip-ft	462.73	109.59	84.98	2.949	50.13
19.25	50.0	Shear	kip	79.93	0.00	4.41	13.927	236.76
23.10	60.0	Flexure	kip-ft	462.73	105.27	85.84	2.968	50.45
23.10	60.0	Shear	kip	-79.93	-2.24	-5.57	10.644	180.94
26.95	70.0	Flexure	kip-ft	480.13	92.31	77.77	3.608	61.33
26.95	70.0	Shear	kip	-80.21	-4.49	-6.73	8.523	144.88
30.80	80.0	Flexure	kip-ft	462.73	70.46	60.77	4.742	80.62
30.80	80.0	Shear	kip	-79.93	-6.89	-7.89	6.950	118.15
34.65	90.0	Flexure	kip-ft	462.73	39.60	34.85	9.122	155.07
34.65	90.0	Shear	kip	-79.93	-9.14	-9.05	5.822	98.97
37.02	96.2	Flexure	kip-ft	408.30	16.29	14.44	20.659	351.20
37.02	96.2	Shear	kip	-106.69	-10.52	-9.77	7.369	125.27
37.39	97.1	Shear	kip	-112.75	-10.73	-9.88	7.737	131.54
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	112.73	10.73	18.08	4.225	139.42
1.48	3.8	Flexure	kip-ft	408.30	16.29	26.43	11.289	372.52
1.48	3.8	Shear	kip	106.69	10.52	17.87	4.026	132.87
3.85	10.0	Flexure	kip-ft	462.73	39.60	63.47	5.008	165.27
3.85	10.0	Shear	kip	79.93	9.14	16.49	3.197	105.48
7.70	20.0	Flexure	kip-ft	462.73	70.46	109.61	2.629	86.76
7.70	20.0	Shear	kip	79.93	6.89	14.24	3.853	127.16
11.55	30.0	Flexure	kip-ft	462.73	92.31	138.43	1.930	63.69

11.55	30.0	Shear	kip	79.93	4.49	11.98	4.770	157.41
15.40	40.0	Flexure	kip-ft	462.73	105.27	156.17	1.631	53.83
15.40	40.0	Shear	kip	79.93	2.24	9.73	6.094	201.11
19.25	50.0	Flexure	kip-ft	462.73	109.59	159.70	1.569	51.78
19.25	50.0	Shear	kip	79.93	0.00	7.48	8.215	271.09
23.10	60.0	Flexure	kip-ft	462.73	105.27	156.17	1.631	53.83
23.10	60.0	Shear	kip	-79.93	-2.24	-9.73	6.094	201.11
26.95	70.0	Flexure	kip-ft	480.13	92.31	138.43	2.027	66.89
26.95	70.0	Shear	kip	-80.21	-4.49	-11.98	4.788	158.00
30.80	80.0	Flexure	kip-ft	462.73	70.46	109.61	2.629	86.76
30.80	80.0	Shear	kip	-79.93	-6.89	-14.24	3.853	127.16
34.65	90.0	Flexure	kip-ft	462.73	39.60	63.47	5.008	165.27
34.65	90.0	Shear	kip	-79.93	-9.14	-16.49	3.196	105.48
37.02	96.2	Flexure	kip-ft	408.30	16.29	26.43	11.289	372.52
37.02	96.2	Shear	kip	-106.69	-10.52	-17.87	4.026	132.87
37.39	97.1	Shear	kip	-112.75	-10.73	-18.08	4.225	139.43
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	182.46	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	112.73	10.73	18.95	4.032	141.10
1.48	3.8	Flexure	kip-ft	408.30	16.29	27.70	10.774	377.09
1.48	3.8	Shear	kip	106.69	10.52	18.72	3.843	134.50
3.85	10.0	Flexure	kip-ft	462.73	39.60	66.43	4.785	167.47
3.85	10.0	Shear	kip	79.93	9.14	17.26	3.054	106.89
7.70	20.0	Flexure	kip-ft	462.73	70.46	114.49	2.517	88.10
7.70	20.0	Shear	kip	79.93	6.89	14.87	3.689	129.12
11.55	30.0	Flexure	kip-ft	462.73	92.31	147.43	1.812	63.43
11.55	30.0	Shear	kip	79.93	4.49	12.48	4.580	160.30
15.40	40.0	Flexure	kip-ft	462.73	105.27	168.68	1.510	52.85
15.40	40.0	Shear	kip	79.93	2.24	10.10	5.877	205.68
19.25	50.0	Flexure	kip-ft	462.73	109.59	171.55	1.461	51.12

19.25	50.0	Shear	kip	79.93	0.00	7.71	7.976	279.15
23.10	60.0	Flexure	kip-ft	462.73	105.27	168.68	1.510	52.85
23.10	60.0	Shear	kip	-79.93	-2.24	-10.10	5.877	205.68
26.95	70.0	Flexure	kip-ft	480.13	92.31	147.43	1.903	66.61
26.95	70.0	Shear	kip	-80.21	-4.49	-12.48	4.597	160.90
30.80	80.0	Flexure	kip-ft	462.73	70.46	114.49	2.517	88.10
30.80	80.0	Shear	kip	-79.93	-6.89	-14.87	3.689	129.12
34.65	90.0	Flexure	kip-ft	462.73	39.60	66.43	4.785	167.47
34.65	90.0	Shear	kip	-79.93	-9.14	-17.26	3.054	106.89
37.02	96.2	Flexure	kip-ft	408.30	16.29	27.70	10.774	377.09
37.02	96.2	Shear	kip	-106.69	-10.52	-18.72	3.843	134.50
37.39	97.1	Shear	kip	-112.75	-10.73	-18.95	4.032	141.12
38.50	100.0	Flexure	kip-ft	157.45	0.00	0.00	99.000	3465.00

Note:

^{*}Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID: 874294D

Bridge ID: 874294D

Analyzed By: BrR

Analyze Date: Wednesday, October 06, 2021 11:44:40

Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002

Analysis Preference Setting: None

Report By: BrR

Report Date: Wednesday, October 06, 2021 11:45:40

Structure Definition Name: End Span 1 (or 3) - PS Conc PSU

Member Name: G9

Member Alternative Name: 17"x36" INT PSU - w/ Conc Repair + Post Tensioning

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

							Inventory	Inventory	Operating	Operating
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	88.32	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.70	-0.00	0.00	99.000	3564.00		
1.17	4.1	Shear	kip	129.09	7.72	20.37	3.351	120.64	4.344	156.39
1.69	6.0	Flexure	kip-ft	243.32	13.52	33.69	3.841	138.27	4.979	179.24
1.69	6.0	Shear	kip	118.17	7.42	19.81	3.141	113.07	4.072	146.57
1.69	6.0	Concrete Stresses	ksi	1.63	0.10	0.25	7.736	278.50		
2.83	10.0	Flexure	kip-ft	284.36	21.61	53.30	2.759	99.33	3.577	128.76
2.83	10.0	Shear	kip	92.75	6.76	18.60	2.590	93.25	3.358	120.88
2.83	10.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.700	169.19		
5.66	20.0	Flexure	kip- ft	304.65	38.40	90.83	1.615	58.13	2.093	75.35
5.66	20.0	Shear	kip	85.08	5.11	15.62	2.878	103.61	3.731	134.31
5.66	20.0	Concrete Stresses	ksi	1.63	0.28	0.67	2.527	90.96		
8.49	30.0	Flexure	kip- ft	304.65	50.23	112.61	1.227	44.18	1.591	57.27
8.49	30.0	Shear	kip	59.51	3.30	12.71	2.491	89.69	4.720	169.93
8.49	30.0	Concrete Stresses	ksi	1.63	0.37	0.83	1.907	68.64		
11.32	40.0	Flexure	kip- ft	304.65	57.22	118.63	1.123	40.43	1.456	52.41
11.32	40.0	Shear	kip	54.86	1.65	9.84	3.066	110.39	6.250	225.00
11.32	40.0	Concrete Stresses	ksi	1.63	0.42	0.87	1.736	62.51		
14.15	50.0	Flexure		304.65	59.54	109.11	1.206	43.40	1.563	56.26

			kip- ft							
14.15	50.0	Shear	kip	-64.58	-0.00	-7.03	5.251	189.03	8.967	322.81
14.15	50.0	Concrete Stresses	ksi	1.63	0.44	0.80	1.861	67.00		
16.98	60.0	Flexure	kip- ft	304.65	57.20	118.63	1.123	40.43	1.456	52.41
16.98	60.0	Shear	kip	-54.87	-1.65	-9.84	3.066	110.38	6.249	224.98
16.98	60.0	Concrete Stresses	ksi	1.63	0.42	0.87	1.737	62.51		
19.80	70.0	Flexure	kip- ft	304.65	50.19	112.61	1.228	44.19	1.591	57.29
19.80	70.0	Shear	kip	-59.53	-3.30	-12.71	2.492	89.71	4.720	169.91
19.80	70.0	Concrete Stresses	ksi	1.63	0.37	0.83	1.907	68.66		
22.63	80.0	Flexure	kip- ft	304.65	38.37	90.83	1.615	58.13	2.093	75.36
22.63	80.0	Shear	kip	-85.08	-5.12	-15.62	2.878	103.60	3.730	134.30
22.63	80.0	Concrete Stresses	ksi	1.63	0.28	0.67	2.527	90.97		
25.46	90.0	Flexure		291.74		53.30	2.839	102.20	3.680	132.49
25.46	90.0	Shear	kip	-89.88	-6.76	-18.60	2.502	90.07	3.243	116.75
25.46	90.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.701	169.23		
26.81	94.8	Flexure		256.36		29.83	4.626	166.53	5.996	215.87
26.81	94.8	Shear	kip	-118.33	-7.55	-20.03	3.106	111.81	4.026	144.94
26.81	94.8	Concrete Stresses	ksi	1.63	0.09	0.22	8.804	316.93		
27.11	95.8	Shear	kip	-125.83	-7.72	-20.35	3.262	117.43	4.228	152.22
28.29	100.0	Flexure	kip- ft	86.22	0.00	0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses	ksi	0.82	-0.00	0.00	99.000	3564.00		

				Inventory	Inventory	Operating	Operating
Location	n			Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Units Capacity	LL	Factor	(Ton)	Factor	(Ton)

		Limit State		DL + Adj- LL*				
0.00	0.0	Flexure kip- ft	88.32	0.00 0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses ksi	0.70	-0.00 0.00	99.000	3564.00		
1.17	4.1	Shear kip	129.09	7.72 19.93	3.425	123.31	4.440	159.85
1.69	6.0	Flexure kip-fi	243.32	13.52 33.11	3.907	140.67	5.065	182.34
1.69	6.0	Shear kip	118.17	7.42 19.47	3.196	115.05	4.143	149.13
1.69	6.0	Concrete Stresses ksi	1.63	0.10 0.24	7.870	283.33		
2.83	10.0	Flexure kip-fi	284.36	21.61 52.96	2.777	99.96	3.599	129.57
2.83	10.0	Shear kip	92.75	6.76 18.48	2.607	93.85	3.379	121.65
2.83	10.0	Concrete Stresses ksi	1.63	0.16 0.39	4.729	170.26		
5.66	20.0	Flexure kip- ft	304.65	38.40 93.28	1.572	56.60	2.038	73.37
5.66	20.0	Shear kip	85.08	5.11 16.06	2.801	100.82	3.630	130.69
5.66	20.0	Concrete Stresses ksi	1.63	0.28 0.69	2.460	88.57		
8.49	30.0	Flexure kip- ft	304.65	50.23 120.96	1.143	41.13	1.481	53.32
8.49	30.0	Shear kip	53.03	3.30 13.69	2.042	73.50	4.381	157.72
8.49	30.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.90		
11.32	40.0	Flexure kip- ft	304.65	57.22 135.99	0.980	35.27	1.270	45.71
11.32	40.0	Shear kip	45.04	1.65 11.37	2.159	77.74	4.245	152.83
11.32	40.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
14.15	50.0	Flexure kip- ft	304.65	59.54 138.38	0.951	34.23	1.232	44.37
14.15	50.0	Shear kip	-44.95	-0.00 -9.11	2.818	101.46	5.444	195.99
14.15	50.0	Concrete Stresses ksi	1.63	0.44 1.02	1.467	52.83		
16.98	60.0	Flexure kip- ft	304.65	57.20 135.99	0.980	35.27	1.270	45.72
16.98	60.0	Shear kip	-45.04	-1.65 -11.37	2.159	77.73	4.245	152.83
16.98	60.0	Concrete Stresses ksi	1.63	0.42 1.00	1.515	54.53		
19.80	70.0	Flexure kip-	304.65	50.19 120.96	1.143	41.14	1.481	53.33
19.80	70.0	Shear kip	-53.04	-3.30 -13.69	2.042	73.50	4.381	157.70
19.80	70.0	Concrete Stresses ksi	1.63	0.37 0.89	1.775	63.92		
22.63	80.0	Flexure	304.65	38.37 93.28	1.572	56.61	2.038	73.38

			kip- ft							
22.63	80.0	Shear	kip	-85.08	-5.12	-16.06	2.800	100.81	3.630	130.68
22.63	80.0	Concrete Stresses	ksi	1.63	0.28	0.69	2.461	88.58		
25.46	90.0	Flexure 1	kip-ft	291.74	21.57	52.96	2.857	102.85	3.703	133.32
25.46	90.0	Shear	kip	-89.88	-6.76	-18.48	2.518	90.64	3.264	117.50
25.46	90.0	Concrete Stresses	ksi	1.63	0.16	0.39	4.730	170.30		
26.81	94.8	Flexure 1	kip-ft	256.36	11.90	29.27	4.715	169.73	6.112	220.02
26.81	94.8	Shear	kip	-118.33	-7.55	-19.65	3.166	113.97	4.104	147.74
26.81	94.8	Concrete Stresses	ksi	1.63	0.09	0.22	8.973	323.03		
27.11	95.8	Shear	kip	-125.83	-7.72	-19.91	3.334	120.01	4.321	155.57
28.29	100.0	Flexure	kip- ft	86.22	0.00	0.00	99.000	3564.00	99.000	3564.00
28.29	100.0	Concrete Stresses	ksi	0.82	-0.00	0.00	99.000	3564.00		

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	2772.00
1.17	4.1	Shear	kip	129.09	7.72	11.15	8.238	230.67
1.69	6.0	Flexure	kip-ft	243.32	13.52	18.41	9.462	264.94
1.69	6.0	Shear	kip	118.17	7.42	10.91	7.679	215.03
2.83	10.0	Flexure	kip-ft	284.36	21.61	29.33	6.749	188.96
2.83	10.0	Shear	kip	92.75	6.76	10.37	6.254	175.13
5.66	20.0	Flexure	kip-ft	304.65	38.40	51.10	3.864	108.18
5.66	20.0	Shear	kip	85.08	5.11	9.03	6.703	187.69
8.49	30.0	Flexure	kip-ft	304.65	50.23	65.30	2.849	79.78
8.49	30.0	Shear	kip	85.08	3.30	7.69	8.095	226.66
11.32	40.0	Flexure	kip-ft	304.65	57.22	71.93	2.493	69.81
11.32	40.0	Shear	kip	85.08	1.65	6.36	10.048	281.34
14.15	50.0	Flexure	kip-ft	304.65	59.54	70.99	2.495	69.85

14.15	50.0	Shear	kip	-85.08	-0.00	-5.02	13.040	365.13
16.98	60.0	Flexure	kip-ft	304.65	57.20	71.93	2.493	69.82
16.98	60.0	Shear	kip	-85.08	-1.65	-6.36	10.047	281.31
19.80	70.0	Flexure	kip-ft	304.65	50.19	65.30	2.850	79.80
19.80	70.0	Shear	kip	-85.08	-3.30	-7.69	8.094	226.64
22.63	80.0	Flexure	kip-ft	304.65	38.37	51.10	3.864	108.20
22.63	80.0	Shear	kip	-85.08	-5.12	-9.03	6.702	187.67
25.46	90.0	Flexure	kip-ft	291.74	21.57	29.33	6.944	194.42
25.46	90.0	Shear	kip	-89.88	-6.76	-10.37	6.041	169.14
26.81	94.8	Flexure	kip-ft	256.36	11.90	16.28	11.410	319.48
26.81	94.8	Shear	kip	-118.33	-7.55	-11.01	7.610	213.09
27.11	95.8	Shear	kip	-125.83	-7.72	-11.15	8.018	224.49
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3628.35
1.17	4.1	Shear	kip	129.09	7.72	15.66	5.867	215.02
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.63	6.797	249.10
1.69	6.0	Shear	kip	118.17	7.42	15.19	5.516	202.17
2.83	10.0	Flexure	kip-ft	284.36	21.61	40.46	4.892	179.30
2.83	10.0	Shear	kip	92.75	6.76	14.30	4.534	166.17
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.13	2.775	101.72
5.66	20.0	Shear	kip	85.08	5.11	12.57	4.815	176.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	92.01	2.022	74.11
8.49	30.0	Shear	kip	85.08	3.30	10.84	5.745	210.55
11.32	40.0	Flexure	kip-ft	304.65	57.22	103.09	1.739	63.75
11.32	40.0	Shear	kip	85.08	1.65	9.11	7.010	256.93
14.15	50.0	Flexure	kip-ft	304.65	59.54	104.38	1.697	62.18
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	325.04
16.98	60.0	Flexure	kip-ft	304.65	57.20	103.09	1.740	63.76
16.98	60.0	Shear	kip	-85.08	-1.65	-9.11	7.010	256.90
19.80	70.0	Flexure	kip-ft	304.65	50.19	92.01	2.022	74.12

19.80	70.0	Shear	kip	-85.08	-3.30	-10.84	5.744	210.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.13	2.776	101.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.57	4.815	176.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	40.46	5.034	184.49
25.46	90.0	Shear	kip	-89.88	-6.76	-14.30	4.379	160.50
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.74	8.167	299.32
26.81	94.8	Shear	kip	-118.33	-7.55	-15.38	5.447	199.65
27.11	95.8	Shear	kip	-125.83	-7.72	-15.65	5.711	209.30
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.73	5.842	233.70
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.93	6.717	268.67
1.69	6.0	Shear	kip	118.17	7.42	15.37	5.451	218.06
2.83	10.0	Flexure	kip-ft	284.36	21.61	41.23	4.802	192.06
2.83	10.0	Shear	kip	92.75	6.76	14.57	4.450	178.00
5.66	20.0	Flexure	kip-ft	304.65	38.40	71.33	2.768	110.72
5.66	20.0	Shear	kip	85.08	5.11	12.61	4.802	192.09
8.49	30.0	Flexure	kip-ft	304.65	50.23	90.30	2.060	82.42
8.49	30.0	Shear	kip	85.08	3.30	10.64	5.854	234.15
11.32	40.0	Flexure	kip-ft	304.65	57.22	98.14	1.827	73.09
11.32	40.0	Shear	kip	85.08	1.65	8.67	7.364	294.57
14.15	50.0	Flexure	kip-ft	304.65	59.54	103.05	1.719	68.74
14.15	50.0	Shear	kip	-85.08	-0.00	-6.71	9.756	390.22
16.98	60.0	Flexure	kip-ft	304.65	57.20	98.14	1.827	73.10
16.98	60.0	Shear	kip	-85.08	-1.65	-8.67	7.364	294.54
19.80	70.0	Flexure	kip-ft	304.65	50.19	90.30	2.061	82.43
19.80	70.0	Shear	kip	-85.08	-3.30	-10.64	5.853	234.13
22.63	80.0	Flexure	kip-ft	304.65	38.37	71.33	2.768	110.73
22.63	80.0	Shear	kip	-85.08	-5.12	-12.61	4.802	192.07
25.46	90.0	Flexure	kip-ft	291.74	21.57	41.23	4.940	197.62

25.46	90.0	Shear	kip	-89.88	-6.76	-14.57	4.298	171.92
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.94	8.096	323.85
26.81	94.8	Shear	kip	-118.33	-7.55	-15.51	5.400	216.01
27.11	95.8	Shear	kip	-125.83	-7.72	-15.72	5.686	227.44
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results

17"x36" INT PSU - w/ Conc Repair + Post Tensioning
FL120 Span < 200ft
Axle Load
Impact: With Impact
Lane: Single Lane

Span 1

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	5940.00
1.69	6.0	Flexure	kip-ft	243.32	13.52	40.86	4.618	277.07
2.83	10.0	Flexure	kip-ft	284.36	21.61	64.51	3.324	199.45
5.66	20.0	Flexure	kip-ft	304.65	38.40	109.25	1.958	117.46
8.49	30.0	Flexure	kip-ft	304.65	50.23	134.22	1.502	90.10
11.32	40.0	Flexure	kip-ft	304.65	57.22	139.42	1.393	83.60
14.15	50.0	Flexure	kip-ft	304.65	59.54	125.17	1.533	91.97
16.98	60.0	Flexure	kip-ft	304.65	57.20	139.42	1.394	83.61
19.80	70.0	Flexure	kip-ft	304.65	50.19	134.22	1.502	90.12
22.63	80.0	Flexure	kip-ft	304.65	38.37	109.25	1.958	117.47
25.46	90.0	Flexure	kip-ft	291.74	21.57	64.51	3.420	205.22
26.81	94.8	Flexure	kip-ft	256.36	11.90	36.20	5.560	333.58
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	5940.00

	Legal	Legai
Location	Rating	Load Rating

(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3960.00
1.17	4.1	Shear	kip	129.09	7.72	15.36	5.983	239.30
1.69	6.0	Flexure	kip-ft	243.32	13.52	25.26	6.895	275.80
1.69	6.0	Shear	kip	118.17	7.42	14.97	5.596	223.84
2.83	10.0	Flexure	kip-ft	284.36	21.61	39.92	4.958	198.33
2.83	10.0	Shear	kip	92.75	6.76	14.11	4.595	183.81
5.66	20.0	Flexure	kip-ft	304.65	38.40	67.83	2.911	116.42
5.66	20.0	Shear	kip	85.08	5.11	11.99	5.050	201.99
8.49	30.0	Flexure	kip-ft	304.65	50.23	83.72	2.222	88.89
8.49	30.0	Shear	kip	85.08	3.30	9.86	6.314	252.56
11.32	40.0	Flexure	kip-ft	304.65	57.22	93.25	1.923	76.92
11.32	40.0	Shear	kip	85.08	1.65	7.74	8.252	330.08
14.15	50.0	Flexure	kip-ft	304.65	59.54	93.59	1.892	75.69
14.15	50.0	Shear	kip	-85.08	-0.00	-6.08	10.765	430.60
16.98	60.0	Flexure	kip-ft	304.65	57.20	93.25	1.923	76.93
16.98	60.0	Shear	kip	-85.08	-1.65	-7.74	8.251	330.04
19.80	70.0	Flexure	kip-ft	304.65	50.19	83.72	2.223	88.91
19.80	70.0	Shear	kip	-85.08	-3.30	-9.86	6.313	252.53
22.63	80.0	Flexure	kip-ft	304.65	38.37	67.83	2.911	116.44
22.63	80.0	Shear	kip	-85.08	-5.12	-11.99	5.049	201.97
25.46	90.0	Flexure	kip-ft	291.74	21.57	39.92	5.102	204.07
25.46	90.0	Shear	kip	-89.88	-6.76	-14.11	4.438	177.53
26.81	94.8	Flexure	kip-ft	256.36	11.90	22.37	8.303	332.11
26.81	94.8	Shear	kip	-118.33	-7.55	-15.13	5.538	221.51
27.11	95.8	Shear	kip	-125.83	-7.72	-15.35	5.823	232.91
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	1683.00
1.17	4.1	Shear	kip	129.09	7.72	10.65	8.625	146.63

1.69	6.0	Flexure	kip-ft	243.32	13.52	17.56	9.917	168.59
1.69	6.0	Shear	kip	118.17	7.42	10.41	8.049	136.83
2.83	10.0	Flexure	kip-ft	284.36	21.61	27.92	7.091	120.54
2.83	10.0	Shear	kip	92.75	6.76	9.87	6.572	111.72
5.66	20.0	Flexure	kip-ft	304.65	38.40	48.27	4.090	69.54
5.66	20.0	Shear	kip	85.08	5.11	8.53	7.097	120.64
8.49	30.0	Flexure	kip-ft	304.65	50.23	61.05	3.047	51.81
8.49	30.0	Shear	kip	85.08	3.30	7.19	8.658	147.19
11.32	40.0	Flexure	kip-ft	304.65	57.22	66.26	2.706	46.01
11.32	40.0	Shear	kip	85.08	1.65	5.86	10.907	185.42
14.15	50.0	Flexure	kip-ft	304.65	59.54	63.91	2.771	47.11
14.15	50.0	Shear	kip	-85.08	-0.00	-4.52	14.485	246.24
16.98	60.0	Flexure	kip-ft	304.65	57.20	66.26	2.707	46.01
16.98	60.0	Shear	kip	-85.08	-1.65	-5.86	10.906	185.40
19.80	70.0	Flexure	kip-ft	304.65	50.19	61.05	3.048	51.82
19.80	70.0	Shear	kip	-85.08	-3.30	-7.19	8.657	147.18
22.63	80.0	Flexure	kip-ft	304.65	38.37	48.27	4.091	69.54
22.63	80.0	Shear	kip	-85.08	-5.12	-8.53	7.096	120.63
25.46	90.0	Flexure	kip-ft	291.74	21.57	27.92	7.296	124.03
25.46	90.0	Shear	kip	-89.88	-6.76	-9.87	6.347	107.90
26.81	94.8	Flexure	kip-ft	256.36	11.90	15.54	11.954	203.21
26.81	94.8	Shear	kip	-118.33	-7.55	-10.51	7.973	135.54
27.11	95.8	Shear	kip	-125.83	-7.72	-10.65	8.394	142.71
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	1683.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3267.00
1.17	4.1	Shear	kip	129.09	7.72	18.97	4.842	159.80
1.69	6.0	Flexure	kip-ft	243.32	13.52	31.22	5.579	184.12
1.69	6.0	Shear	kip	118.17	7.42	18.50	4.528	149.43
2.83	10.0	Flexure	kip-ft	284.36	21.61	49.37	4.009	132.31
2.83	10.0	Shear	kip	92.75	6.76	17.45	3.716	122.62

5.66	20.0	Flexure	kip-ft	304.65	38.40	84.06	2.349	77.51
5.66	20.0	Shear	kip	85.08	5.11	14.86	4.075	134.48
8.49	30.0	Flexure	kip-ft	304.65	50.23	104.05	1.788	59.01
8.49	30.0	Shear	kip	85.08	3.30	12.26	5.080	167.65
11.32	40.0	Flexure	kip-ft	304.65	57.22	116.56	1.538	50.77
11.32	40.0	Shear	kip	85.08	1.65	9.66	6.609	218.10
14.15	50.0	Flexure	kip-ft	304.65	59.54	118.00	1.501	49.53
14.15	50.0	Shear	kip	-85.08	-0.00	-7.38	8.869	292.67
16.98	60.0	Flexure	kip-ft	304.65	57.20	116.56	1.539	50.77
16.98	60.0	Shear	kip	-85.08	-1.65	-9.66	6.609	218.08
19.80	70.0	Flexure	kip-ft	304.65	50.19	104.05	1.788	59.02
19.80	70.0	Shear	kip	-85.08	-3.30	-12.26	5.080	167.63
22.63	80.0	Flexure	kip-ft	304.65	38.37	84.06	2.349	77.52
22.63	80.0	Shear	kip	-85.08	-5.12	-14.86	4.075	134.46
25.46	90.0	Flexure	kip-ft	291.74	21.57	49.37	4.125	136.14
25.46	90.0	Shear	kip	-89.88	-6.76	-17.45	3.589	118.44
26.81	94.8	Flexure	kip-ft	256.36	11.90	27.65	6.719	221.73
26.81	94.8	Shear	kip	-118.33	-7.55	-18.69	4.482	147.89
27.11	95.8	Shear	kip	-125.83	-7.72	-18.96	4.713	155.53
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc Repair + Post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj -LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	88.32	0.00	0.00	99.000	3465.00
1.17	4.1	Shear	kip	129.09	7.72	19.76	4.649	162.71
1.69	6.0	Flexure	kip-ft	243.32	13.52	32.50	5.359	187.56
1.69	6.0	Shear	kip	118.17	7.42	19.26	4.349	152.22
2.83	10.0	Flexure	kip-ft	284.36	21.61	51.35	3.855	134.94
2.83	10.0	Shear	kip	92.75	6.76	18.15	3.573	125.06
5.66	20.0	Flexure	kip-ft	304.65	38.40	87.11	2.266	79.32
5.66	20.0	Shear	kip	85.08	5.11	15.40	3.932	137.62
8.49	30.0	Flexure	kip-ft	304.65	50.23	111.07	1.675	58.63
8.49	30.0	Shear	kip	85.08	3.30	12.64	4.926	172.42

11.32	40.0	Flexure	kip-ft	304.65	57.22	127.15	1.410	49.36
11.32	40.0	Shear	kip	84.27	1.65	9.99	6.330	221.56
14.15	50.0	Flexure	kip-ft	304.65	59.54	127.65	1.387	48.56
14.15	50.0	Shear	kip	-85.08	-0.00	-7.78	8.408	294.29
16.98	60.0	Flexure	kip-ft	304.65	57.20	127.15	1.411	49.37
16.98	60.0	Shear	kip	-84.29	-1.65	-9.99	6.331	221.58
19.80	70.0	Flexure	kip-ft	304.65	50.19	111.07	1.675	58.64
19.80	70.0	Shear	kip	-85.08	-3.30	-12.64	4.926	172.40
22.63	80.0	Flexure	kip-ft	304.65	38.37	87.11	2.267	79.33
22.63	80.0	Shear	kip	-85.08	-5.12	-15.40	3.932	137.61
25.46	90.0	Flexure	kip-ft	291.74	21.57	51.35	3.967	138.84
25.46	90.0	Shear	kip	-89.88	-6.76	-18.15	3.451	120.79
26.81	94.8	Flexure	kip-ft	256.36	11.90	28.79	6.452	225.84
26.81	94.8	Shear	kip	-118.33	-7.55	-19.46	4.304	150.63
27.11	95.8	Shear	kip	-125.83	-7.72	-19.75	4.525	158.36
28.29	100.0	Flexure	kip-ft	86.22	0.00	0.00	99.000	3465.00

Note:

^{*}Adj-LL is only applicable for Permit load rating.

Bridge Name: Matheson Hmck Bridge over Matheson Hammock Canal

NBI Structure ID: 874294D

Bridge ID: 874294D

Analyzed By: BrR

Analyze Date: Wednesday, October 06, 2021 10:33:34

Analysis Engine: AASHTO LRFR Engine Version 6.8.4.3002

Analysis Preference Setting: None

Report By: BrR

Report Date: Wednesday, October 06, 2021 10:41:31

Structure Definition Name: INT Span 2 - PS Conc PSU

Member Name: G10

Member Alternative Name: 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

Report by Action: ☑ Flexure ☑ Concrete Stresses ☑ Shear ☑ Critical

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning HL-93 (US) Truck + Lane Impact: With Impact Lane: Single Lane

					Inventory Inventory Operating Operatin					Operating
Location							Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	135.08	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.86	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	94.16	10.73	20.86	2.212	79.64	2.868	103.23
1.12	2.9	Shear	kip	445.93	-5.24	67.36	6.698	241.12	9.343	336.35
1.48	3.8	Flexure	kip-ft	293.46	16.30	30.61	5.099	183.55	6.609	237.94
1.48	3.8	Shear	kip	89.01	10.52	20.57	2.107	75.84	2.731	98.32
1.48	3.8	Shear	kip	436.13	4.78	85.59	5.040	181.43	7.371	265.36
1.48	3.8	Concrete Stresses	ksi	1.77	0.12	0.23	9.193	330.96		
3.85	10.0	Flexure	kip-ft	344.64	39.61	73.09	2.307	83.06	2.991	107.68
3.85	10.0	Shear	kip	70.05	9.14	18.70	1.791	64.49	2.322	83.60
3.85	10.0	Shear	kip	424.83	54.28	180.89	2.049	73.75	2.753	99.11
3.85	10.0	Concrete Stresses	ksi	1.77	0.29	0.54	3.451	124.23		
7.70	20.0	Flexure	kip- ft	344.64	70.48	124.85	1.174	42.27	1.522	54.79
7.70	20.0	Shear	kip	44.94	6.90	15.71	1.321	47.56	2.897	104.28
7.70	20.0	Shear	kip	424.83	93.06	265.36	1.250	45.01	1.664	59.89
7.70	20.0	Concrete Stresses	ksi	1.77	0.52	0.92	1.711	61.60		
11.55	30.0	Flexure	kip- ft	344.64	92.34	156.13	0.839	30.20	1.087	39.15
11.55	30.0	Shear	kip	30.63	4.49	12.85	1.112	40.04	2.168	78.03
11.55	30.0	Shear	kip	424.83	120.65	313.56	0.970	34.92	1.283	46.19
11.55	30.0	Concrete Stresses	ksi	1.77	0.68	1.15	1.193	42.96		
15.40	40.0	Flexure		344.64	105.30	172.00	0.708	25.48	0.917	33.03

			kip- ft							
15.40	40.0	Shear	kip	26.59	2.24	10.26	1.325	47.69	2.415	86.93
15.40	40.0	Shear	kip	424.83	135.52	336.40	0.860	30.96	1.138	40.96
15.40	40.0	Concrete Stresses	ksi	1.77	0.77	1.26	0.989	35.61		
19.25	50.0	Flexure	kip- ft	344.64	109.62	171.21	0.693	24.95	0.898	32.34
19.25	50.0	Shear	kip	-26.93	0.00	-7.73	1.990	71.66	3.511	126.41
19.25	50.0	Shear	kip	424.83	137.84	329.53	0.871	31.35	1.120	40.33
19.25	50.0	Concrete Stresses	ksi	1.77	0.81	1.26	0.962	34.63		
23.10	60.0	Flexure	kip- ft	344.64	105.30	172.00	0.708	25.48	0.917	33.03
23.10	60.0	Shear	kip	-26.59	-2.24	-10.26	1.325	47.69	2.415	86.93
23.10	60.0	Shear	kip	424.83	135.52	336.40	0.860	30.96	1.138	40.96
23.10	60.0	Concrete Stresses	ksi	1.77	0.77	1.26	0.989	35.61		
26.95	70.0	Flexure	kip- ft	362.07	92.34	156.13	0.903	32.50	1.170	42.13
26.95	70.0	Shear	kip	-34.86	-4.49	-12.85	1.300	46.81	2.412	86.83
26.95	70.0	Shear	kip	441.60	118.83	312.68	1.032	37.16	1.367	49.23
26.95	70.0	Concrete Stresses	ksi	1.77	0.68	1.15	1.193	42.96		
30.80	80.0	Flexure	kip- ft	344.64	70.48	124.85	1.174	42.27	1.522	54.79
30.80	80.0	Shear	kip	-44.94	-6.90	-15.71	1.321	47.56	2.897	104.28
30.80	80.0	Shear	kip	424.83	93.06	265.36	1.250	45.01	1.664	59.89
30.80	80.0	Concrete Stresses	ksi	1.77	0.52	0.92	1.711	61.60		
34.65	90.0	Flexure	_	344.64		73.09	2.307	83.06	2.991	107.68
34.65	90.0	Shear	kip	-70.05		-18.70	1.791	64.49	2.322	83.60
34.65	90.0	Shear	kip	424.83	54.28	180.89	2.049	73.75	2.753	99.11
34.65	90.0	Concrete Stresses	ksi	1.77	0.29	0.54	3.451	124.23		
37.02	96.2	Flexure	_	293.46	16.30		5.099	183.56	6.610	237.94
37.02	96.2	Shear	kip	-89.01		-20.57	2.107	75.84	2.731	98.32
37.02	96.2	Shear	kip	436.13	4.78	85.59	5.040	181.43	7.371	265.36
37.02	96.2	Concrete Stresses	ksi	1.77	0.12	0.23	9.193	330.97		
37.38	97.1	Shear	kip	-94.28		-20.86	2.215	79.73	2.871	103.36
37.38	97.1	Shear	kip	446.33	-5.46	66.97	6.747	242.88	9.399	338.38
38.50	100.0	Flexure	kip- ft	108.44	0.00	0.00	99.000	3564.00	99.000	3564.00
38.50	100.0	Concrete Stresses	ksi	0.86	0.00	0.00	99.000	3564.00		

							Inventory	Inventory	Operating	Operating
Location	1						Rating	Load Rating	Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)	Factor	(Ton)
0.00	0.0	Flexure	kip- ft	135.08	0.00	0.00	99.000	3564.00	99.000	3564.00
0.00	0.0	Concrete Stresses	ksi	0.86	-0.00	0.00	99.000	3564.00		
1.12	2.9	Shear	kip	94.16	10.73	18.64	2.475	89.11	3.209	115.51
1.12	2.9	Shear	kip	445.93	-3.06	57.34	7.831	281.92	10.728	386.19
1.48	3.8	Flexure	kip-ft	293.46	16.30	27.43	5.689	204.81	7.375	265.49
1.48	3.8	Shear	kip	89.01	10.52	18.43	2.352	84.68	3.049	109.77
1.48	3.8	Shear	kip	436.13	4.78	72.19	5.975	215.10	8.391	302.09
1.48	3.8	Concrete Stresses	ksi	1.77	0.12	0.20	10.258	369.29		
3.85	10.0	Flexure	kip-ft	344.64	39.61	66.60	2.532	91.16	3.282	118.17
3.85	10.0	Shear	kip	70.05	9.14	17.02	1.969	70.88	2.552	91.88
3.85	10.0	Shear	kip	424.83	54.28	162.82	2.276	81.93	3.071	110.55
3.85	10.0	Concrete Stresses	ksi	1.77	0.29	0.49	3.787	136.33		
7.70	20.0	Flexure	kip- ft	344.64	70.48	117.65	1.246	44.86	1.615	58.15
7.70	20.0	Shear	kip	49.78	6.90	14.77	1.592	57.31	3.080	110.88
7.70	20.0	Shear	kip	424.83	92.32	249.52	1.333	47.98	1.778	64.00
7.70	20.0	Concrete Stresses	ksi	1.77	0.52	0.86	1.816	65.37		
11.55	30.0	Flexure	kip- ft	344.64	92.34	153.13	0.855	30.79	1.109	39.92
11.55	30.0	Shear	kip	31.38	4.49	12.60	1.169	42.09	2.286	82.29
11.55	30.0	Shear	kip	424.83	120.44	307.44	0.990	35.64	1.311	47.21
11.55	30.0	Concrete Stresses	ksi	1.77	0.68	1.13	1.217	43.80		
15.40	40.0	Flexure	kip- ft	344.64	105.30	173.06	0.703	25.32	0.912	32.82
15.40	40.0	Shear	kip	26.38	2.24	10.48	1.285	46.27	2.342	84.31

15.40	40.0	Shear	kip	424.83	135.61	338.85	0.854	30.73	1.130	40.67
15.40	40.0	Concrete Stresses	ksi	1.77	0.77	1.27	0.983	35.39		
19.25	50.0	Flexure	kip- ft	344.64	109.62	177.43	0.669	24.07	0.867	31.20
19.25	50.0	Shear	kip	-25.78	0.00	-8.43	1.748	62.93	3.074	110.67
19.25	50.0	Shear	kip	424.83	138.07	342.40	0.838	30.15	1.082	38.96
19.25	50.0	Concrete Stresses	ksi	1.77	0.81	1.30	0.928	33.42		
23.10	60.0	Flexure	kip- ft	344.64	105.30	173.06	0.703	25.32	0.912	32.82
23.10	60.0	Shear	kip	-26.38	-2.24	-10.48	1.285	46.27	2.342	84.31
23.10	60.0	Shear	kip	424.83	135.61	338.85	0.854	30.73	1.130	40.67
23.10	60.0	Concrete Stresses	ksi	1.77	0.77	1.27	0.983	35.39		
26.95	70.0	Flexure	kip- ft	362.07	92.34	153.13	0.920	33.13	1.193	42.95
26.95	70.0	Shear	kip	-35.63	-4.49	-12.60	1.362	49.04	2.533	91.17
26.95	70.0	Shear	kip	441.60	118.62	306.50	1.054	37.94	1.398	50.31
26.95	70.0	Concrete Stresses	ksi	1.77	0.68	1.13	1.217	43.80		
			1 .							
30.80	80.0	Flexure	kip- ft	344.64	70.48	117.65	1.246	44.86	1.615	58.15
30.80 30.80	80.0 80.0	Flexure Shear		344.64 -49.78		117.65 -14.77	1.246 1.592	44.86 57.31	1.615 3.080	58.15 110.88
			ft		-6.90					
30.80	80.0	Shear	ft kip kip	-49.78	-6.90	-14.77	1.592	57.31	3.080	110.88
30.80 30.80	80.0 80.0	Shear Shear Concrete	ft kip kip ksi	-49.78 424.83	-6.90 92.32	-14.77 249.52	1.592 1.333	57.31 47.98	3.080	110.88
30.80 30.80 30.80	80.0 80.0 80.0	Shear Shear Concrete Stresses	ft kip kip ksi	-49.78 424.83 1.77	-6.90 92.32 0.52 39.61	-14.77 249.52 0.86	1.592 1.333 1.816	57.31 47.98 65.37	3.080 1.778	110.88 64.00
30.80 30.80 30.80 34.65	80.0 80.0 80.0 90.0	Shear Shear Concrete Stresses Flexure	ft kip kip ksi ksi	-49.78 424.83 1.77 344.64	-6.90 92.32 0.52 39.61 - 9.14	-14.77 249.52 0.86 66.60	1.592 1.333 1.816 2.532	57.31 47.98 65.37 91.16	3.080 1.778 3.282	110.88 64.00
30.80 30.80 30.80 34.65 34.65	80.0 80.0 80.0 90.0 90.0	Shear Shear Concrete Stresses Flexure Shear	ft kip kip ksi kip-ft kip	-49.78 424.83 1.77 344.64 - 70.05	-6.90 92.32 0.52 39.61 - 9.14	-14.77 249.52 0.86 66.60 -17.02	1.592 1.333 1.816 2.532 1.969	57.31 47.98 65.37 91.16 70.88	3.080 1.778 3.282 2.552	110.88 64.00 118.17 91.88
30.80 30.80 30.80 34.65 34.65 34.65	80.0 80.0 80.0 90.0 90.0 90.0	Shear Shear Concrete Stresses Flexure Shear Shear Concrete	ft kip kip ksi kip-ft kip kip	-49.78 424.83 1.77 344.64 - 70.05 424.83	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29	-14.77 249.52 0.86 66.60 -17.02 162.82	1.592 1.333 1.816 2.532 1.969 2.276	57.31 47.98 65.37 91.16 70.88 81.93	3.080 1.778 3.282 2.552	110.88 64.00 118.17 91.88
30.80 30.80 30.80 34.65 34.65 34.65	80.0 80.0 80.0 90.0 90.0 90.0	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses	ft kip kip ksi kip-ft kip kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77	-6.90 92.32 0.52 39.61 - 9.14 54.28 0.29 16.30	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49	1.592 1.333 1.816 2.532 1.969 2.276 3.787	57.31 47.98 65.37 91.16 70.88 81.93 136.33	3.080 1.778 3.282 2.552 3.071	110.88 64.00 118.17 91.88 110.55
30.80 30.80 30.80 34.65 34.65 34.65 37.02	80.0 80.0 80.0 90.0 90.0 90.0 96.2	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure	ft kip kip ksi kip-ft kip kip ksi ksi	-49.78 424.83 1.77 344.64 - 70.05 424.83 1.77 293.46	-6.90 92.32 0.52 39.61 - 9.14 54.28 0.29 16.30	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81	3.080 1.778 3.282 2.552 3.071 7.375	110.88 64.00 118.17 91.88 110.55
30.80 30.80 30.80 34.65 34.65 34.65 37.02 37.02	80.0 80.0 80.0 90.0 90.0 90.0 90.0 96.2 96.2	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear	ft kip kip ksi kip-ft kip ksi ksi kip-ft kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68	3.080 1.778 3.282 2.552 3.071 7.375 3.049	110.88 64.00 118.17 91.88 110.55
30.80 30.80 30.80 34.65 34.65 34.65 37.02 37.02 37.02	80.0 80.0 80.0 90.0 90.0 90.0 96.2 96.2 96.2	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Shear Concrete	ft kip kip ksi kip-ft kip ksi kip-ft kip kip	-49.78 424.83 1.77 344.64 - 70.05 424.83 1.77 293.46 - 89.01 436.13	-6.90 92.32 0.52 39.61 - 9.14 54.28 0.29 16.30 - 10.52 4.78 0.12	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10	3.080 1.778 3.282 2.552 3.071 7.375 3.049	110.88 64.00 118.17 91.88 110.55
30.80 30.80 30.80 34.65 34.65 34.65 37.02 37.02 37.02	80.0 80.0 90.0 90.0 90.0 90.0 96.2 96.2 96.2	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Chear Shear Shear Shear Shear Shear Shear	ft kip kip ksi kip-ft kip ksi kip-ft kip ksi	-49.78 424.83 1.77 344.64 - 70.05 424.83 1.77 293.46 - 89.01 436.13 1.77	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52 4.78 0.12 -10.73	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19 0.20	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10 369.29	3.080 1.778 3.282 2.552 3.071 7.375 3.049 8.391	110.88 64.00 118.17 91.88 110.55 265.49 109.77 302.09
30.80 30.80 30.80 34.65 34.65 34.65 37.02 37.02 37.02 37.38	80.0 80.0 80.0 90.0 90.0 90.0 96.2 96.2 96.2 96.2	Shear Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Concrete Stresses Flexure Shear Shear Concrete Stresses Shear	ft kip kip ksi kip-ft kip ksi kip-ft kip kip kip kip	-49.78 424.83 1.77 344.64 -70.05 424.83 1.77 293.46 -89.01 436.13 1.77 -94.28	-6.90 92.32 0.52 39.61 -9.14 54.28 0.29 16.30 -10.52 4.78 0.12 -10.73	-14.77 249.52 0.86 66.60 -17.02 162.82 0.49 27.43 -18.43 72.19 0.20 -18.65	1.592 1.333 1.816 2.532 1.969 2.276 3.787 5.689 2.352 5.975 10.258 2.478	57.31 47.98 65.37 91.16 70.88 81.93 136.33 204.81 84.68 215.10 369.29 89.22	3.080 1.778 3.282 2.552 3.071 7.375 3.049 8.391	110.88 64.00 118.17 91.88 110.55 265.49 109.77 302.09

Detailed Rating Results
17"x36" INT PSU - w/ Conc. Repair + Post Tensioning

C 3 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	2772.00
1.12	2.9	Shear	kip	94.16	10.73	11.45	5.424	151.88
1.12	2.9	Shear	kip	445.93	14.71	18.70	23.057	645.59
1.48	3.8	Flexure	kip-ft	293.46	16.30	16.68	12.596	352.68
1.48	3.8	Shear	kip	89.01	10.52	11.27	5.175	144.91
1.48	3.8	Shear	kip	436.13	19.99	24.38	17.070	477.97
3.85	10.0	Flexure	kip-ft	344.64	39.61	38.88	5.839	163.49
3.85	10.0	Shear	kip	70.05	9.14	10.10	4.465	125.03
3.85	10.0	Shear	kip	424.83	54.28	58.80	6.302	176.46
7.70	20.0	Flexure	kip-ft	344.64	70.48	63.23	3.121	87.39
7.70	20.0	Shear	kip	70.05	6.90	8.21	5.755	161.13
7.70	20.0	Shear	kip	424.83	92.25	90.04	3.694	103.43
11.55	30.0	Flexure	kip-ft	344.64	92.34	81.45	2.165	60.61
11.55	30.0	Shear	kip	70.05	4.49	7.05	7.029	196.82
11.55	30.0	Shear	kip	424.83	119.98	116.90	2.608	73.02
15.40	40.0	Flexure	kip-ft	344.64	105.30	91.86	1.784	49.94
15.40	40.0	Shear	kip	70.05	2.24	5.89	8.778	245.79
15.40	40.0	Shear	kip	424.83	136.02	132.69	2.176	60.94
19.25	50.0	Flexure	kip-ft	344.64	109.62	91.12	1.753	49.08
19.25	50.0	Shear	kip	70.05	0.00	4.73	11.384	318.75
19.25	50.0	Shear	kip	424.83	140.50	132.96	2.139	59.88
23.10	60.0	Flexure	kip-ft	344.64	105.30	91.86	1.784	49.94
23.10	60.0	Shear	kip	-70.05	-2.24	-5.89	8.778	245.79
23.10	60.0	Shear	kip	424.83	136.02	132.69	2.177	60.94
26.95	70.0	Flexure	kip-ft	362.07	92.34	81.45	2.329	65.22
26.95	70.0	Shear	kip	-70.42	-4.49	-7.05	7.069	197.94
26.95	70.0	Shear	kip	441.60	119.34	116.31	2.771	77.58
30.80	80.0	Flexure	kip-ft	344.64	70.48	63.23	3.121	87.39
30.80	80.0	Shear	kip	-70.05	-6.90	-8.21	5.755	161.13
30.80	80.0	Shear	kip	424.83	92.25	90.04	3.694	103.43
34.65	90.0	Flexure	kip-ft	344.64	39.61	38.88	5.839	163.49
34.65	90.0	Shear	kip	-70.05	-9.14	-10.10	4.465	125.03
34.65	90.0	Shear	kip	424.83	54.28	58.80	6.302	176.46

37.02	96.2	Flexure	kip-ft	293.46	16.30	16.68	12.596	352.68
37.02	96.2	Shear	kip	-89.01	-10.52	-11.27	5.175	144.91
37.02	96.2	Shear	kip	436.13	19.99	24.38	17.071	477.98
37.38	97.1	Shear	kip	-94.28	-10.73	-11.45	5.430	152.05
37.38	97.1	Shear	kip	446.33	14.60	18.58	23.237	650.64
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	2772.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning C 4 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3628.35
1.12	2.9	Shear	kip	94.16	10.73	16.06	3.868	141.77
1.12	2.9	Shear	kip	445.93	8.71	31.65	13.814	506.27
1.48	3.8	Flexure	kip-ft	293.46	16.30	23.41	8.973	328.87
1.48	3.8	Shear	kip	89.01	10.52	15.83	3.687	135.12
1.48	3.8	Shear	kip	436.13	14.06	39.54	10.674	391.20
3.85	10.0	Flexure	kip-ft	344.64	39.61	55.34	4.102	150.34
3.85	10.0	Shear	kip	70.05	9.14	14.37	3.137	114.97
3.85	10.0	Shear	kip	424.83	54.28	92.85	3.991	146.27
7.70	20.0	Flexure	kip-ft	344.64	70.48	93.36	2.114	77.47
7.70	20.0	Shear	kip	70.05	6.90	12.12	3.897	142.84
7.70	20.0	Shear	kip	424.83	89.96	139.88	2.394	87.74
11.55	30.0	Flexure	kip-ft	344.64	92.34	114.05	1.546	56.66
11.55	30.0	Shear	kip	70.05	4.49	9.87	5.020	183.98
11.55	30.0	Shear	kip	424.83	116.31	165.94	1.859	68.14
15.40	40.0	Flexure	kip-ft	344.64	105.30	126.11	1.299	47.62
15.40	40.0	Shear	kip	59.28	2.24	8.19	5.304	194.41
15.40	40.0	Shear	kip	424.83	133.38	182.99	1.593	58.37
19.25	50.0	Flexure	kip-ft	344.64	109.62	128.76	1.240	45.46
19.25	50.0	Shear	kip	-57.11	0.00	-6.69	6.568	240.71
19.25	50.0	Shear	kip	424.83	138.44	187.41	1.528	56.01
23.10	60.0	Flexure	kip-ft	344.64	105.30	126.11	1.299	47.62
23.10	60.0	Shear	kip	-59.28	-2.24	-8.19	5.304	194.41
23.10	60.0	Shear	kip	424.83	133.38	182.99	1.593	58.37

26.95	70.0	Flexure	kip-ft	362.07	92.34	114.05	1.664	60.97
26.95	70.0	Shear	kip	-70.42	-4.49	-9.87	5.049	185.03
26.95	70.0	Shear	kip	441.60	115.66	165.11	1.974	72.35
30.80	80.0	Flexure	kip-ft	344.64	70.48	93.36	2.114	77.47
30.80	80.0	Shear	kip	-70.05	-6.90	-12.12	3.897	142.84
30.80	80.0	Shear	kip	424.83	89.96	139.88	2.394	87.74
34.65	90.0	Flexure	kip-ft	344.64	39.61	55.34	4.102	150.34
34.65	90.0	Shear	kip	-70.05	-9.14	-14.37	3.137	114.97
34.65	90.0	Shear	kip	424.83	54.28	92.85	3.991	146.27
37.02	96.2	Flexure	kip-ft	293.46	16.30	23.41	8.973	328.87
37.02	96.2	Shear	kip	-89.01	-10.52	-15.83	3.687	135.12
37.02	96.2	Shear	kip	436.13	14.06	39.54	10.674	391.21
37.38	97.1	Shear	kip	-94.28	-10.73	-16.06	3.873	141.93
37.38	97.1	Shear	kip	446.33	8.60	31.48	13.905	509.61
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3628.35

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning C 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	16.08	3.863	154.53
1.12	2.9	Shear	kip	445.93	8.69	31.72	13.785	551.38
1.48	3.8	Flexure	kip-ft	293.46	16.30	23.46	8.956	358.24
1.48	3.8	Shear	kip	89.01	10.52	15.86	3.680	147.19
1.48	3.8	Shear	kip	436.13	14.02	39.64	10.648	425.91
3.85	10.0	Flexure	kip-ft	344.64	39.61	55.39	4.099	163.94
3.85	10.0	Shear	kip	70.05	9.14	14.39	3.134	125.37
3.85	10.0	Shear	kip	424.83	54.28	92.95	3.987	159.47
7.70	20.0	Flexure	kip-ft	344.64	70.48	92.41	2.136	85.42
7.70	20.0	Shear	kip	70.05	6.90	12.00	3.938	157.50
7.70	20.0	Shear	kip	424.83	89.96	138.23	2.423	96.90
11.55	30.0	Flexure	kip-ft	344.64	92.34	114.81	1.536	61.43
11.55	30.0	Shear	kip	70.05	4.49	9.94	4.987	199.46
11.55	30.0	Shear	kip	424.83	116.22	167.09	1.847	73.88

15.40	40.0	Flexure	kip-ft	344.64	105.30	128.28	1.277	51.09
15.40	40.0	Shear	kip	57.66	2.24	8.24	5.123	204.94
15.40	40.0	Shear	kip	424.83	133.39	186.01	1.567	62.67
19.25	50.0	Flexure	kip-ft	344.64	109.62	132.83	1.202	48.09
19.25	50.0	Shear	kip	-54.70	0.00	-6.32	6.658	266.30
19.25	50.0	Shear	kip	424.83	139.00	192.50	1.485	59.39
23.10	60.0	Flexure	kip-ft	344.64	105.30	128.28	1.277	51.09
23.10	60.0	Shear	kip	-57.66	-2.24	-8.24	5.123	204.94
23.10	60.0	Shear	kip	424.83	133.39	186.01	1.567	62.67
26.95	70.0	Flexure	kip-ft	362.07	92.34	114.81	1.652	66.10
26.95	70.0	Shear	kip	-70.42	-4.49	-9.94	5.015	200.60
26.95	70.0	Shear	kip	441.60	115.57	166.25	1.961	78.44
30.80	80.0	Flexure	kip-ft	344.64	70.48	92.41	2.136	85.42
30.80	80.0	Shear	kip	-70.05	-6.90	-12.00	3.938	157.50
30.80	80.0	Shear	kip	424.83	89.96	138.23	2.423	96.90
34.65	90.0	Flexure	kip-ft	344.64	39.61	55.39	4.099	163.94
34.65	90.0	Shear	kip	-70.05	-9.14	-14.39	3.134	125.37
34.65	90.0	Shear	kip	424.83	54.28	92.95	3.987	159.47
37.02	96.2	Flexure	kip-ft	293.46	16.30	23.46	8.956	358.24
37.02	96.2	Shear	kip	-89.01	-10.52	-15.86	3.680	147.19
37.02	96.2	Shear	kip	436.13	14.02	39.64	10.648	425.91
37.38	97.1	Shear	kip	-94.28	-10.73	-16.08	3.868	154.72
37.38	97.1	Shear	kip	446.33	8.57	31.55	13.876	555.03
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3960.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning FL120 Span < 200ft Axle Load Impact: With Impact Lane: Single Lane

							Permit	Permit
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	5940.00
1.12	2.9	Shear	kip	445.93	0.11	50.24	8.873	532.40
1.48	3.8	Flexure	kip-ft	293.46	16.30	35.85	6.347	380.83
1.48	3.8	Shear	kip	436.13	5.52	61.36	7.018	421.08
3.85	10.0	Flexure	kip-ft	344.64	39.61	85.33	2.882	172.94
3.85	10.0	Shear	kip	424.83	54.28	141.29	2.623	157.36

7.70	20.0	Flexure	kip-ft	344.64	70.48	144.69	1.478	88.65
7.70	20.0	Shear	kip	424.83	89.96	209.42	1.599	95.94
11.55	30.0	Flexure	kip-ft	344.64	92.34	179.27	1.065	63.93
11.55	30.0	Shear	kip	424.83	117.79	246.37	1.246	74.78
15.40	40.0	Flexure	kip-ft	344.64	105.30	196.07	0.905	54.32
15.40	40.0	Shear	kip	424.83	132.33	262.21	1.116	66.93
19.25	50.0	Flexure	kip-ft	344.64	109.62	193.35	0.895	53.69
19.25	50.0	Shear	kip	424.83	137.71	257.32	1.116	66.95
23.10	60.0	Flexure	kip-ft	344.64	105.30	196.07	0.905	54.32
23.10	60.0	Shear	kip	424.83	132.33	262.21	1.116	66.93
26.95	70.0	Flexure	kip-ft	362.07	92.34	179.27	1.146	68.79
26.95	70.0	Shear	kip	441.60	116.18	245.09	1.328	79.67
30.80	80.0	Flexure	kip-ft	344.64	70.48	144.69	1.478	88.65
30.80	80.0	Shear	kip	424.83	89.96	209.42	1.599	95.94
34.65	90.0	Flexure	kip-ft	344.64	39.61	85.33	2.882	172.94
34.65	90.0	Shear	kip	424.83	54.28	141.29	2.623	157.36
37.02	96.2	Flexure	kip-ft	293.46	16.30	35.85	6.347	380.83
37.02	96.2	Shear	kip	436.13	5.52	61.36	7.018	421.09
37.38	97.1	Shear	kip	446.33	-0.01	50.00	8.926	535.58
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	5940.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning ST 5 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3960.00
1.12	2.9	Shear	kip	94.16	10.73	14.69	4.229	169.18
1.12	2.9	Shear	kip	445.93	10.50	27.85	15.637	625.49
1.48	3.8	Flexure	kip-ft	293.46	16.30	21.47	9.784	391.34
1.48	3.8	Shear	kip	89.01	10.52	14.52	4.020	160.79
1.48	3.8	Shear	kip	436.13	15.76	35.17	11.951	478.03
3.85	10.0	Flexure	kip-ft	344.64	39.61	51.52	4.406	176.26
3.85	10.0	Shear	kip	70.05	9.14	13.38	3.370	134.79
3.85	10.0	Shear	kip	424.83	54.28	84.94	4.363	174.50
7.70	20.0	Flexure	kip-ft	344.64	70.48	88.86	2.221	88.83

7.70	20.0	Shear	kip	70.05	6.90	11.54	4.094	163.78
7.70	20.0	Shear	kip	424.83	89.96	132.11	2.535	103.78
	30.0							
11.55		Flexure	kip-ft	344.64	92.34	112.03	1.574	62.95
11.55	30.0	Shear	kip	70.05	4.49	9.70	5.110	204.41
11.55	30.0	Shear	kip	424.83	116.53	162.91	1.893	75.70
15.40	40.0	Flexure	kip-ft	344.64	105.30	125.93	1.301	52.05
15.40	40.0	Shear	kip	59.67	2.24	7.86	5.566	222.66
15.40	40.0	Shear	kip	424.83	133.78	182.35	1.596	63.85
19.25	50.0	Flexure	kip-ft	344.64	109.62	128.11	1.247	49.86
19.25	50.0	Shear	kip	-58.06	0.00	-6.02	7.422	296.87
19.25	50.0	Shear	kip	424.83	139.22	185.71	1.538	61.52
23.10	60.0	Flexure	kip-ft	344.64	105.30	125.93	1.301	52.05
23.10	60.0	Shear	kip	-59.67	-2.24	-7.86	5.566	222.66
23.10	60.0	Shear	kip	424.83	133.78	182.35	1.596	63.85
26.95	70.0	Flexure	kip-ft	362.07	92.34	112.03	1.694	67.74
26.95	70.0	Shear	kip	-70.42	-4.49	-9.70	5.140	205.58
26.95	70.0	Shear	kip	441.60	115.89	162.09	2.009	80.38
30.80	80.0	Flexure	kip-ft	344.64	70.48	88.86	2.221	88.83
30.80	80.0	Shear	kip	-70.05	-6.90	-11.54	4.094	163.78
30.80	80.0	Shear	kip	424.83	89.96	132.11	2.535	101.39
34.65	90.0	Flexure	kip-ft	344.64	39.61	51.52	4.406	176.26
34.65	90.0	Shear	kip	-70.05	-9.14	-13.38	3.370	134.79
34.65	90.0	Shear	kip	424.83	54.28	84.94	4.363	174.50
37.02	96.2	Flexure	kip-ft	293.46	16.30	21.47	9.784	391.35
37.02	96.2	Shear	kip	-89.01	-10.52	-14.52	4.020	160.79
37.02	96.2	Shear	kip	436.13	15.76	35.17	11.951	478.03
37.38	97.1	Shear	kip	-94.28	-10.73	-14.69	4.235	169.38
37.38	97.1	Shear	kip	446.33	10.39	27.69	15.745	629.81
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3960.00
			•					

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning SU 2 Axle Load Impact: With Impact Lane: Single Lane

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	1683.00

1.12	2.9	Shear	kip	94.16	10.73	9.87	6.291	106.96
1.12	2.9	Shear	kip	445.93	16.77	14.32	29.967	509.43
1.48	3.8	Flexure	kip-ft	293.46	16.30	14.44	14.543	247.23
1.48	3.8	Shear	kip	89.01	10.52	9.77	5.975	101.58
1.48	3.8	Shear	kip	436.13	21.95	19.35	21.406	363.90
3.85	10.0	Flexure	kip-ft	344.64	39.61	34.85	6.515	110.75
3.85	10.0	Shear	kip	70.05	9.14	9.05	4.982	84.70
3.85	10.0	Shear	kip	424.83	54.28	50.46	7.344	124.85
7.70	20.0	Flexure	kip-ft	344.64	70.48	60.77	3.247	55.20
7.70	20.0	Shear	kip	70.05	6.90	7.89	5.987	101.78
7.70	20.0	Shear	kip	424.83	92.66	86.20	3.853	65.51
11.55	30.0	Flexure	kip-ft	344.64	92.34	77.77	2.267	38.54
11.55	30.0	Shear	kip	70.05	4.49	6.73	7.362	125.15
11.55	30.0	Shear	kip	424.83	120.40	111.36	2.734	46.47
15.40	40.0	Flexure	kip-ft	344.64	105.30	85.84	1.909	32.45
15.40	40.0	Shear	kip	70.05	2.24	5.57	9.280	157.76
15.40	40.0	Shear	kip	424.83	136.44	123.89	2.328	39.57
19.25	50.0	Flexure	kip-ft	344.64	109.62	84.98	1.879	31.95
19.25	50.0	Shear	kip	70.05	0.00	4.41	12.206	207.50
19.25	50.0	Shear	kip	424.83	140.92	124.00	2.290	38.92
23.10	60.0	Flexure	kip-ft	344.64	105.30	85.84	1.909	32.45
23.10	60.0	Shear	kip	-70.05	-2.24	-5.57	9.280	157.76
23.10	60.0	Shear	kip	424.83	136.44	123.89	2.328	39.57
26.95	70.0	Flexure	kip-ft	362.07	92.34	77.77	2.440	41.47
26.95	70.0	Shear	kip	-70.42	-4.49	-6.73	7.404	125.87
26.95	70.0	Shear	kip	441.60	119.75	110.79	2.905	49.38
30.80	80.0	Flexure	kip-ft	344.64	70.48	60.77	3.247	55.20
30.80	80.0	Shear	kip	-70.05	-6.90	-7.89	5.987	101.78
30.80	80.0	Shear	kip	424.83	92.66	86.20	3.853	65.51
34.65	90.0	Flexure	kip-ft	344.64	39.61	34.85	6.515	110.75
34.65	90.0	Shear	kip	-70.05	-9.14	-9.05	4.982	84.69
34.65	90.0	Shear	kip	424.83	54.28	50.46	7.344	124.85
37.02	96.2	Flexure	kip-ft	293.46	16.30	14.44	14.543	247.23
37.02	96.2	Shear	kip	-89.01	-10.52	-9.77	5.975	101.58
37.02	96.2	Shear	kip	436.13	21.95	19.35	21.406	363.90
37.38	97.1	Shear	kip	-94.28	-10.73	-9.87	6.299	107.09
37.38	97.1	Shear	kip	446.33	16.66	14.21	30.232	513.94
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	1683.00

Detailed Rating Results

17"x36" INT PSU - w/ Conc. Repair + Post Tensioning
SU 3
Axle Load
Impact: With Impact

Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3267.00
1.12	2.9	Shear	kip	94.16	10.73	18.08	3.436	113.37
1.12	2.9	Shear	kip	445.93	6.08	37.39	11.765	388.24
1.48	3.8	Flexure	kip-ft	293.46	16.30	26.43	7.947	262.24
1.48	3.8	Shear	kip	89.01	10.52	17.87	3.265	107.75
1.48	3.8	Shear	kip	436.13	11.39	46.35	9.163	302.38
3.85	10.0	Flexure	kip-ft	344.64	39.61	63.47	3.577	118.04
3.85	10.0	Shear	kip	70.05	9.14	16.49	2.735	90.27
3.85	10.0	Shear	kip	424.83	54.28	109.65	3.379	111.52
7.70	20.0	Flexure	kip-ft	344.64	70.48	109.61	1.800	59.41
7.70	20.0	Shear	kip	70.05	6.90	14.24	3.319	109.54
7.70	20.0	Shear	kip	424.83	89.96	168.00	1.993	65.78
11.55	30.0	Flexure	kip-ft	344.64	92.34	138.43	1.274	42.03
11.55	30.0	Shear	kip	55.12	4.49	11.98	3.177	104.85
11.55	30.0	Shear	kip	424.83	115.19	202.93	1.526	50.35
15.40	40.0	Flexure	kip-ft	344.64	105.30	156.17	1.049	34.63
15.40	40.0	Shear	kip	43.05	2.24	9.73	3.180	104.94
15.40	40.0	Shear	kip	424.83	132.50	225.69	1.295	42.74
19.25	50.0	Flexure	kip-ft	344.64	109.62	159.70	1.000	33.00
19.25	50.0	Shear	kip	-41.98	0.00	-7.48	4.315	142.38
19.25	50.0	Shear	kip	424.83	138.48	230.42	1.243	41.01
23.10	60.0	Flexure	kip-ft	344.64	105.30	156.17	1.049	34.63
23.10	60.0	Shear	kip	-43.05	-2.24	-9.73	3.180	104.94
23.10	60.0	Shear	kip	424.83	132.50	225.69	1.295	42.74
26.95	70.0	Flexure	kip-ft	362.07	92.34	138.43	1.371	45.23
26.95	70.0	Shear	kip	-58.59	-4.49	-11.98	3.401	112.22
26.95	70.0	Shear	kip	441.60	113.94	201.66	1.625	53.62
30.80	80.0	Flexure	kip-ft	344.64	70.48	109.61	1.800	59.41
30.80	80.0	Shear	kip	-70.05	-6.90	-14.24	3.319	109.54
30.80	80.0	Shear	kip	424.83	89.96	168.00	1.993	65.78
34.65	90.0	Flexure	kip-ft	344.64	39.61	63.47	3.577	118.04
34.65	90.0	Shear	kip	-70.05	-9.14	-16.49	2.735	90.27
34.65	90.0	Shear	kip	424.83	54.28	109.65	3.379	111.52
37.02	96.2	Flexure	kip-ft	293.46	16.30	26.43	7.947	262.24
37.02	96.2	Shear	kip	-89.01	-10.52	-17.87	3.265	107.75
37.02	96.2	Shear	kip	436.13	11.39	46.35	9.163	302.38

37.38	97.1	Shear	kip	-94.28	-10.73	-18.08	3.440	113.51
37.38	97.1	Shear	kip	446.33	5.96	37.19	11.840	390.72
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3267.00

Detailed Rating Results 17"x36" INT PSU - w/ Conc. Repair + Post Tensioning SU 4 Axle Load Impact: With Impact Lane: Single Lane

Span 2

							Legal	Legal
Location							Rating	Load Rating
(ft)	Percent	Limit State	Units	Capacity	DL + Adj- LL*	LL	Factor	(Ton)
0.00	0.0	Flexure	kip-ft	135.08	0.00	0.00	99.000	3465.00
1.12	2.9	Shear	kip	94.16	10.73	18.94	3.279	114.75
1.12	2.9	Shear	kip	445.93	4.95	39.82	11.074	387.60
1.48	3.8	Flexure	kip-ft	293.46	16.30	27.70	7.584	265.45
1.48	3.8	Shear	kip	89.01	10.52	18.72	3.116	109.07
1.48	3.8	Shear	kip	436.13	10.28	49.20	8.656	302.96
3.85	10.0	Flexure	kip-ft	344.64	39.61	66.43	3.417	119.61
3.85	10.0	Shear	kip	70.05	9.14	17.26	2.613	91.47
3.85	10.0	Shear	kip	424.83	54.28	115.78	3.200	112.02
7.70	20.0	Flexure	kip-ft	344.64	70.48	114.49	1.724	60.33
7.70	20.0	Shear	kip	70.05	6.90	14.87	3.178	111.23
7.70	20.0	Shear	kip	424.83	89.96	176.43	1.898	66.43
11.55	30.0	Flexure	kip-ft	344.64	92.34	147.43	1.196	41.86
11.55	30.0	Shear	kip	49.78	4.49	12.48	2.722	95.28
11.55	30.0	Shear	kip	424.83	116.12	216.90	1.423	49.81
15.40	40.0	Flexure	kip-ft	344.64	105.30	168.68	0.971	34.00
15.40	40.0	Shear	kip	38.99	2.24	10.10	2.757	96.49
15.40	40.0	Shear	kip	424.83	132.50	243.11	1.202	42.09
19.25	50.0	Flexure	kip-ft	344.64	109.62	171.55	0.931	32.58
19.25	50.0	Shear	kip	-38.35	0.00	-7.71	3.827	133.94
19.25	50.0	Shear	kip	424.83	138.59	246.79	1.160	40.60
23.10	60.0	Flexure	kip-ft	344.64	105.30	168.68	0.971	34.00
23.10	60.0	Shear	kip	-38.99	-2.24	-10.10	2.757	96.49
23.10	60.0	Shear	kip	424.83	132.50	243.11	1.202	42.09
26.95	70.0	Flexure	kip-ft	362.07	92.34	147.43	1.287	45.04
26.95	70.0	Shear	kip	-53.70	-4.49	-12.48	2.964	103.73
26.95	70.0	Shear	kip	441.60	114.73	215.57	1.516	53.07

30.80	80.0	Flexure	kip-ft	344.64	70.48	114.49	1.724	60.33
30.80	80.0	Shear	kip	-70.05	-6.90	-14.87	3.178	111.23
30.80	80.0	Shear	kip	424.83	89.96	176.43	1.898	66.43
34.65	90.0	Flexure	kip-ft	344.64	39.61	66.43	3.417	119.61
34.65	90.0	Shear	kip	-70.05	-9.14	-17.26	2.613	91.47
34.65	90.0	Shear	kip	424.83	54.28	115.78	3.200	112.02
37.02	96.2	Flexure	kip-ft	293.46	16.30	27.70	7.584	265.45
37.02	96.2	Shear	kip	-89.01	-10.52	-18.72	3.116	109.07
37.02	96.2	Shear	kip	436.13	10.28	49.20	8.656	302.96
37.38	97.1	Shear	kip	-94.28	-10.73	-18.95	3.283	114.89
37.38	97.1	Shear	kip	446.33	4.83	39.62	11.144	390.04
38.50	100.0	Flexure	kip-ft	108.44	0.00	0.00	99.000	3465.00

Note:

^{*}Adj-LL is only applicable for Permit load rating.

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DEAD LOAD MOMENT & SHEAR REACTIONS (SPAN 2)

Project #: D210107FL00.00

Nov-21

Designed By: __ Design Date: _ Checked By: __

МР

YRA

Nov-21

Check Date:

		DE	AD LOAD MOME	NT REACTIONS FR	DEAD LOAD MOMENT REACTIONS FROM AASHTOWARE BrR (SPAN 2)	ie Br	R (SPAN 2)		
							Total DC		
			Self Weight			S	Selfweight of Slab	Total DC (Railing	
	Self Weight		(Interior		DC - Curb/		Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unit	diagrams)	DC - Railing	Sidewalk		(per Slab Unit)	Slab Unit	Slab Unit
Location	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)	(KIP-FT)		(KIP-FT)	(KIP-FT)	(KIP-FT)
0	0	0	0	0	0	_	0	0	0.00
1.48	12.5	0.1	0.3	2.0	2.6		12.9	3.3	16.20
3.85	30.5	0.3	0.7	1.8	6.3		31.5	8.1	39.60
2.7	54.2	0.5	1.4	3.2	11.2		56.1	14.4	70.50
11.55	71.1	2.0	1.6	4.2	14.7		73.4	18.9	92.30
15.4	81.3	8.0	1.6	4.8	16.8		83.7	21.6	105.30
19.25	84.7	8.0	1.6	5	17.5		87.1	22.5	109.60
23.1	81.3	8.0	1.6	4.8	16.8		83.7	21.6	105.30
26.92	71.1	2.0	1.6	4.2	14.7		73.4	18.9	92.30
30.8	54.2	0.5	1.4	3.2	11.2		56.1	14.4	70.50
34.65	30.5	0.3	0.7	1.8	6.3		31.5	8.1	39.60
37.02	12.5	0.1	0.3	2.0	2.6		12.9	3.3	16.20
38.5	0	0	0	0	0		0	0	0.00

^{**} Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DEAD LOAD MOMENT & SHEAR REACTIONS (SPAN 2)

Project #: D210107FL00.00

Nov-21

Designed By: __ Design Date: _ Checked By: __

MP

YRA

Nov-21

Check Date:

		٥	EAD LOAD SHEAF	R REACTIONS FRO	DEAD LOAD SHEAR REACTIONS FROM AASHTOWARE BrR (SPAN 2)	: BrR (SPAN 2)		
						Total DC		
			Self Weight			Selfweight of Slab	ab Total DC (Railing	
	Self Weight		(Interior		DC - Curb/	Unit alone	+ Sidewalk) per	Total DC per
	(Slab Unit)	% of DC Slab Unitx	diagrams)	DC - Railing	Sidewalk	(per Slab Unit)	Slab Unit	Slab Unit
Location	(KIP)	(KIP)	(KIP)	(KIP)	(KIP)	(KIP)	(KIP)	(KIP)
0	8.8	60'0	0.49	0.52	1.82	9:38	2.34	11.72
1.48	8.12	0.08	0.16	0.48	1.68	8.36	2.16	10.52
3.85	7.04	0.07	0.16	0.41	1.45	7.27	1.86	9.13
7.7	5.28	0.05	0.16	0.31	1.09	5.49	1.4	68.9
11.55	3.52	0.04	0	0.21	0.73	3.56	0.94	4.50
15.4	1.76	0.02	0	0.1	0.36	1.78	0.46	2.24
19.25	0	0	0	0	0	0	0	0.00
23.1	-1.76	-0.02	0	-0.1	-0.36	-1.78	-0.46	-2.24
26.92	-3.52	-0.04	0	-0.21	-0.73	-3.56	-0.94	-4.50
30.8	-5.28	-0.05	-0.16	-0.31	-1.09	-5.49	-1.4	-6.89
34.65	-7.04	-0.07	-0.16	-0.41	-1.45	-7.27	-1.86	-9.13
37.02	-8.12	-0.08	-0.16	-0.48	-1.68	-8.36	-2.16	-10.52
38.5	-8.8	60:0-	-0.49	-0.52	-1.82	-9.38	-2.34	-11.72

^{**} Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

Project #: D210107FL00.00

Nov-21

MP

YRA

Designed By: Design Date: Nov-21

Checked By: Check Date:

			LOAD RATI	NG SUMMAF	RY - CO	LOAD RATING SUMMARY - CONTROLLING LEGAL LOAD	EGAL LOAD		
				(Assuming	g Post	(Assuming Post Tensioning)			
			Sp	an 2 - INTER	IOR PS	Span 2 - INTERIOR PSU-8 (LRFR) - SU4	J4		
			Unfactored	Operating	Exi	Existing Flexural	Existing Shear	Required Flexural	Required Shear
;;	Condition	Unfactored DL	SU4 Truck LL	Rating		Capacity	Capacity	Capacity	Capacity (kip) *
0.00		0	0	66		135.08	- (div)	(a) divi	- (dw)
1.12		'	-	ı		1	94.16		1
1.48		16.30	27.70	7.58		293.46	89.01		'
3.85		39.61	66.43	3.42		344.64	70.05	-	•
7.7		70.48	114.49	1.72		344.64	70.05	-	-
11.55		92.34	147.43	1.20		344.64	49.78	-	•
15.4		105.30	168.68	0.97		344.64	38.99	359.34	-
19.25	06.0	109.62	171.55	0.93		344.64	-38.35	368.62	-
23.1		105.30	168.68	0.97		344.64	-38.99	359.34	-
26.92		92.34	147.43	1.29		344.64	-53.70	-	1
30.8		70.48	114.49	1.72		344.64	-70.05	-	•
34.65		39.61	66.43	3.42		344.64	-70.05	-	-
37.02		16.30	27.70	7.58		293.46	-89.01	-	1
37.39		-	-	-		-	-94.28	-	-
38.5		0.00	0.00	00.66		108.44	1		1

 $^{^{}st}$ Minimum Required capacity to meet a minimin Inventory Rating Factor of 1.1, conservatively.

^{**} Existing condition assumes the removal of 7 strands, and 1 exterior stirrup leg to account for the controlling deterioration along the bottom face of the slab units.

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF DESIGN CAPACITY

D210107FL00.00	YRA	Nov-21	MP	Nov-21
Project #:	Designed By:	Design Date:	Checked By:	Check Date:

PS Box Beam - Circular Void

Name: Description: Si Or Us Type:	17"x36" PSU 17"x36" Prestressed Slab Unit (Typ.) US Customary
Box Beam Type:	Circular Void
Top Width:	35.0000 in
Number Circular Voids:	2
Three Void Box Shape Indicator:	FALSE
Ctc Distance Voids:	16.0000 in
Void Diameter:	10.0000 in
Interior Void Diameter:	. III
Exterior Void Diameter:	·III
Depth:	17.0000 in
Distance To Cg Void Bot:	9.0000
Bot Width:	36.0000 in
Shear Key Vertical Loc:	2.0000 in
Shear Key Height:	6.0000 in
Shear Key Depth:	1.5000 in
Area:	438.822 in^2
Nominal Weight Or Mass:	457.107 lb/ft
Ixx:	13330.101 in^4
Distance Y To Cg:	8.1667 in
Sxx Top:	1509.078 in^3
Sxx Bot:	1632.246 in^3
Nominal Depth:	17.0000 in
Volume Surface Ratio:	3.175 in
Half Depth Area Pos Flex:	in^{2}
Half Depth Area Neg Flex:	in^2
St Venant Torsional Constant:	14593.772 in^4

Notes:

1) Gross Section Properties from AASHTOWare Bridge Rating Software:

Matheson Hmk Road over Matheson Hammock Canal

SUMMARY OF DESIGN CAPACITY

Project #: D210107FL00.00

YRA

Nov-21 MP Nov-21

Design Date: Designed By:

Checked By: Check Date:

Concrete Material

Name:	Class P (5000)
Description:	Class 5000 cement concrete
Si Or Us Type:	US Customary
28 Day Compressive Strength:	5.000 ksi
Initial Compressive Strength:	4.000 ksi
Density For DL:	0.150 kef
Density For Modulus Of Elasticity:	0.145 kcf
Std Modulus Of Elasticity:	4074.28 ksi
Std Initial Modulus Of Elasticity:	3644.15 ksi
Coefficient Of Thermal Expansion:	0.0000060000 1/F
Poissons Ratio:	0.200
Composition Type:	Normal
Modulus Of Rupture:	0.537 ksi
Shear Factor:	1.000

Matheson Hmk Road over Matheson Hammock Canal

SUMMARY OF DESIGN CAPACITY

Project #: D210107FL00.00

Nov-21

MP

YRA

Designed By: Design Date: Checked By: Check Date:

Nov-21

Reinforcing Steel Material

ksi ksi ksi 40 ksi reinforcing steel US Customary Grade 40 29000.00 40.000 70.000 Modulus Of Elasticity: Ultimate Strength: Yield Strength: Si Or Us Type: Description: Name:

Prestress Strand Material

Plain

Reinforcing Bar Type:

Name: Description: Si Or Us Type: Strand Diameter: Strand Area: Strand Type: Ultimate Tensile Strength: Yield Strength: Modulus Of Elasticity: Transfer Length Std: Transfer Length Std:	7/16" (7W-250) SR Stress relieved 7/16"/Seven Wire/fpu = 250 US Customary 0.4375 in 0.108 Stress Relieved 250.000 ksi 212.500 28500.00 ksi 21.8750 in
Unit Load Per Length:	
Epoxy Coated Indicator:	FALSE

Matheson Hammock Park Bridge No.874294 over Matheson Hammock Canal
APPENDIX C – SONOVOID SLAB UNIT STRENGTHENING – CFRP EVALUATION

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

OBJECTIVE

Design of externally bonded Carbon FRP reinforcement in order to increase the Flexural Capacity of Sonovoid Slab Units 2-8 and 2-9, Bridge No.874294. Load rate CFRP strengthened slab units using LRFR Strength II for controlling FL-Legal Truck (SU4).

CODES AND SPECIFICATIONS

- "FDOT Bridge Load Rating Manual, "Florida Department of Transportation (FDOT)", January 2021, FDOT BLRM, 2021 edition used for project consistency
- "FDOT Structures Design Guidelines (SDG). Structures Manual Vol.1", January 2021, FDOT
- "AASHTO LRFD Bridge Design Specifications, "American Association of State Highway and Transportation Officials (AASHTO), 9th Edition 2020
- "Fiber Reinforced Polymer Guidelines (FRPG). Structures Design Manual Vol.4", January 2021, FDOT
- "Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures", ACI 440.2R-08, ACI, 2008

Assumptions/Notes:

- 1. Assume all prestressing strands are bonded for flexural analysis
- 2. Calculations are an addendum to the AASHTOWare BrR Analysis
- 3. CFRP Strengthening will use the U-Wrap Method described in (ACI 440.2R-08, Chapter 11) and Flexural Strengthing analysis techniques in (ACI 440.2R-08, Chapter 10)

Procedure:

- 1. Input Original Beam Geometry, Material Properties, Strength and Load Effects
- 2. AASHTOWARE BrR Refined Analysis Results Input
 - a. Moment
- 3. FRP Reinforcement Properties
- 4. Design of Externally Bonded FRP Reinforcement
 - a. Development Length of FRP
 - b. Flexural Capacity
 - c. Service Check
 - d. FRP Fatigue Check
- 5. Calculate HL93 Inventory, HL93 Operating, FL120 Permit, and the 7 Florida Legal Loads Ratings
- 6. Summary

CONSOR ENGINEERS. LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Legend:

INPUT <-----Data Input

----Reference Checks and Design Results Output OUTPUT

INPUT DATA

Resistance factor for FRP (ACI 440.2R-08, Table 11.1)

 $\psi_{f} := 0.85$

System Factor (FDOT BLRM Table 6A.4.2.4-1) $\phi_{S} := 1.0$

Condition Factor (AASHTO MBE 6A.4.2.3) $\phi_C := 0.90$

Load Factors per Table 6A.4.2.2-1 FDOT Load Rating Manual, January 2021

Load factor for Dead Load $\gamma_{DC} := 1.25$

Load factor for Dead Load of Wearing Surface

Load factor for Live Load - Inventory (1.75) and FL-120 (1.35) $\gamma_{\text{INV}} := 1.75$

Load factor for Live Load - Operating $\gamma_{\rm OPT} := 1.35$

 $\gamma_{\mathrm{FL}120} \coloneqq 1.35$ Load factor for Live Load - FL-120

 $\gamma_{\text{FLSU OPT}} := 1.35$ Load factor for Live Load - Legal - Operating

Material Properties

Concrete Information:

Correction factor for source of aggregate. (AASHTO 5.4.2.4-1. &

FDOT SDG. 1.4.1-A)

Nominal compressive strength of concrete Slab Unit (non-composite).

Slab Unit concrete strength at final (FDOT BLRM Table 6A.5.2.1-1)

Deck Slab concrete strength at final (FDOT BLRM Table 6A.5.2.1-1)

Weight of concrete and humidity (AASHTO Table 3.5.1-1 & FDOT SDG 1.4.1-A & 4.6.6)

 $K_1 := 1.0$

 $f_{c bm} := 5.0 \cdot ksi$

fc := 5.0ksi

fcslab := 0ksi

 $w_c := 0.145 \frac{kip}{\epsilon^3}$

Humidity := 75

Modulus of elasticity for normalweight concrete Deck Slab. (AASHTO 5.4.2.4-2).

$$\mathbf{E_c} \coloneqq 120000 \cdot \mathbf{K_1} \cdot \left(\mathbf{w_c} \cdot \frac{\mathbf{ft}^3}{\mathrm{kip}} \right)^{2.0} \cdot \left(\mathrm{fcslab} \cdot \frac{1}{\mathrm{ksi}} \right)^{0.33} \cdot \mathrm{ksi} = 0 \cdot \mathrm{ksi}$$

Modulus of elasticity for normalweight concrete Slab Unit. (AASHTO 5.4.2.4-2).

$$E_{c_bm} := 120000 \cdot K_1 \cdot \left(w_c \cdot \frac{ft^3}{kip} \right)^{2.0} \cdot \left(f_{c_bm} \cdot \frac{1}{ksi} \right)^{0.33} \cdot ksi = 4.291 \times 10^3 \cdot ksi$$

CONSOR ENGINEERS. LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Modular Ratio

$$n_{trans} := \frac{E_c}{E_{c bm}} = 0$$

Concrete cracking stress

(AASHTO 5.4.2.6)

$$f_r := 0.24 \cdot \sqrt{\frac{f_{c_bm}}{ksi}} \cdot ksi = 0.537 \cdot ksi$$

Geometry Information:

Span length (CL bearing to CL bearing, Span 2)

$$L_{Span} := 38.50 \text{ft}$$

(See Asbuilt Plans, PG. 8 of 13 of pdf)

Slab Section Properties - [Not Applicable to this Design]

Deck thickness (Assumed for Asphalt W.S.)

Effective Deck Width

Transformed Width

Height of the section (Slab Unit + Deck Slab)

Tranformed Area

$$t_{slab} := 0in$$

$$b_{s} := 0.0 \text{ft}$$

$$b_{transf} := n_{trans} \cdot b_s = 0 \cdot in$$

$$h_c := 17in + t_{slab} = 17 \cdot in$$

$$A_{ts} := t_{slab} \cdot b_{transf} = 0 \cdot in^2$$

 $b_w := b_{\underline{f}_top} - 2 \cdot 1 \text{in} - 2 \cdot \left(\frac{\pi \cdot d_{void}}{4}\right)$ $b_w = 17.292 \cdot \text{in}$

Slab Unit Properties

Non-composite

 $h_{nc} := 17in$

 $d_{void} := 10in$

 $b_{f,bot} := 36in$

 $b_{f \text{ top}} := 35in$

(Tranformed) Composite

 $h_c = 17 \cdot in$

Slab Unit height

Size of Void

Bottom flange width

Top flange width

Web width (assume effective web width)

Cross sectional area (From AASHTOWARE BrR)

 $A_{nc} := 438.822 \text{ in}^2$

 $A := A_{nc} + b_{transf} \cdot t_{slab}$

 $A = 438.822 \cdot in^2$

Moment of inertia

C.G (from bottom)

 $y_{b, nc} := 8.1667 in$

 $I_{nc} := 13330.101 \, \text{in}^4$

 $y_b := 8.1667in$

 $I := 13330.101 \, \text{in}^4$

Top fiber to C.G.

 $y_{t_nc} := h_{nc} - y_{b_nc} = 8.833 \cdot in$ $y_{t} := h_{c} - y_{b} = 8.833 \cdot in$

 $S_{t_nc} := \frac{I_{nc}}{y_{t_nc}} = 1.509 \times 10^3 \cdot in^3$ $S_t := \frac{I}{y_t} = 1.509 \times 10^3 \cdot in^3$ Section modulus at top fiber

Section modulus at top of slab unit once section becomes composite

 $S_{top_girder_c} := \frac{I}{y_t - t_{clab}} = 1.509 \times 10^3 \cdot in^3$

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN

(INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Section modulus at bottom fiber

$$S_{b_nc} := \frac{I_{nc}}{y_{b_nc}} = 1.632 \times 10^3 \cdot in^3$$
 $S_b := \frac{I}{y_b} = 1.632 \times 10^3 \cdot in^3$

$$S_b := \frac{I}{y_b} = 1.632 \times 10^3 \cdot in^3$$

Radius of gyration

$$r := \sqrt{\frac{I_{nc}}{A_{nc}}} = 5.512 \cdot in$$

▼ Slab Unit/Girder Dimensions (For Nominal Bending Strength)

Slab Unit Dimensions (Used for Flexural Design):

17"x36" Slab Unit:

<u>Base</u>	<u>Height</u>
b ₁ := 35in	$h_1 := 2.0in$
$b_2 := 0.75in$	$h_2 := 0.75in$
b ₃ := 0.75in	$h_3 := 0.75in$
b ₄ := 0.25in	$h_4 := 0.25in$
b ₅ := 0.25in	$h_5 := 0.25in$

▲ Slab Unit/Girder Dimensions (For Nominal Bending Strength)

Steel Information:

Strand Info: (7/16" seven-wire strand, Grade 250)

Strand diameter. (7/16")

Strand area.

Specified tensile strength of prestressing steel (ksi). (MBE Table 6A.5.2.3-1)

Yield strength of prestressing steel (ksi).

Modulus of elasticity for prestressing strands (ksi). (MBE Table 6A.5.2.3-1)

Total number of strands at critical section

Area of existing prestressing steel.

Total Losses to prestresing steel (Assumed).

 $d_s := 0.4375in$

 $A_s := 0.108 in^2$

f_{pu} := 250ksi

 $f_{pv} := 0.9 \cdot f_{pu} = 225 \cdot ksi$

 $E_{p} := 28500 \text{ksi}$

 $N_{Total str} := 15$

 $A_{ps} := N_{Total \ str} \cdot A_s = 1.62 \cdot in^2$

 $\Delta f_{pT} := 0.75 \cdot f_{pu} \cdot 13.43\% = 25.181 \cdot ksi$

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

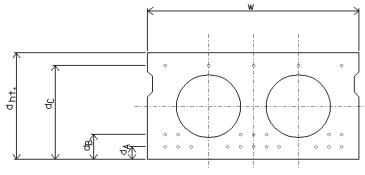
Job No.: D210107FL.00 Designer: YRA Date: 10/2021

Reviewer: MAP Date: 12/2021

Effective stress in prestressing steel after losses.

$$f_{pe} := 0.75 f_{pu} - \Delta f_{pT} = 162.319 \cdot ksi$$

Effective force in prestressing steel after losses.


$$P_{pe} := A_{ps} \cdot f_{pe} = 262.956 \cdot kip$$

Effective prestress strain.

$$\varepsilon_{pe} := \frac{f_{pe}}{E_p} = 0.0057$$

Strand Layout - Interior Units 2-8 & 2-9:

(Note: Assumed strand byout for Design, accounting for removal of severed/deteriorated strands per damages reported in the most current Inspection Reports, plus 50% of the adjacent strands)

Strand Locations (Measured inches From the Bottom)

"Location"	"From Bottom"	"No. Strands""
"Top Row"	14.5	4
"3rd Row"	6.5	0
"2nd Row"	4.5	5
"Bottom Row"	2.5	10

C.G. of PS to bottom fiber of slab unit at mid-span

$$y_{ps} \coloneqq \frac{A_s \cdot \left(d_{strand_{3,2}} \cdot d_{strand_{3,1}} \cdot n + d_{strand_{4,2}} \cdot d_{strand_{4,1}} \cdot n\right)}{\left(d_{strand_{3,2}} + d_{strand_{4,2}}\right) \cdot A_s} = 3.17 \cdot in$$

Prestressing strand eccentricity.

Distance from the extreme compression fiber to the centoid of prestressing tendons.

Area of transverse reinforcement #4 stirrups (Assume 3-legs of Transverse reinforcement)

Yield strength of stirrups (FDOT BLRM Table 6A.5.2.2-1)

$$e_{nc} := y_{b_nc} - y_{ps} = 5.00 \cdot in$$
 $e_{mc} := y_{b} - y_{ps} = 5.00 \cdot in$

$$d_{p_nc} := h_{nc} - y_{ps} = 13.83 \cdot in$$
 $d_p := h_c - y_{ps} = 13.83 \cdot in$

$$A_V := 3(0.2) \text{ in}^2 = 0.6 \cdot \text{in}^2$$

$$f_v := 40 ksi$$

CONSOR ENGINEERS. LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

▼ AASHTOWARE BrR-Inputs (Moment)

B. Moments (AASHTOWARE BrR Analysis Results):

(Note: Final Condition ensures that repaired structure satisfies a minimum Rating Factor of 1.0 for all Legal Loads)

Design Dead Load Moment Reactions:

g = 0

 $M_{\sigma} := (87.1 \text{kip} \cdot \text{ft})$

Moment due to self weight of the slab unit (Midspan). (Total DC Self weight moment from AASHTOWare BrR)

 $M_{pre\ DC} := (0 \text{kip} \cdot \text{ft})$

Moment due to additional precast components

 $M_{pc} := (0 \text{kip} \cdot \text{ft})$

Moment due dead load of deck slab

[Not Applicable]

 $M_c := (22.5 \text{kip} \cdot \text{ft})$

Moment due to additional structural components (Total DC Railing & Sidewalk/Curb moment from

AASHTOWare BrR)

 $M_{DC} := M_g + M_{pre_DC} + M_{pc} + M_c = (109.6) \cdot kip \cdot ft$

Dead load moment from structural components and

non-structural attachments.

 $M_{DW} := (8.68 \text{kip} \cdot \text{ft})$

Moment due to existing wearing surface DL.

Design Live Load Distribution Factors:

 $LLDF_{M HL93} := (0.256)$

Live load distribution factor for HL93 moment from

AASHTOWare BrR Refined Analysis

(Note: Distribution Factor assuming post-tensioning is

repaired/restored)

 $LLDF_{M}$ FL.Permit := (0.256)

Live load distribution factor for Permit moment from

AASHTOWare BrR Refined Analysis

(Note: Distribution Factor assuming post-tensioning is

repaired/restored)

 $LLDF_{M}$ FL.Legal := (0.256)

Live load distribution factor for Legal moment from

AASHTOWare BrR Refined Analysis

(Note: Distribution Factor assuming post-tensioning is

repaired/restored)

Design Live Load Moment Reactions:

 $M_{LL \ HL93} := (177.43 \text{kip} \cdot \text{ft})$

Live load moment from controlling HL-93 truck.

 M_{LL} FL120 := (193.35kip·ft)

Live load moment from FL120 Permit truck.

 $M_{LL} SU2 := (84.98 \text{kip} \cdot \text{ft})$

Live load moment from SU2 FL-Legal truck.

 $M_{LL} SU3 := (159.7 \text{kip} \cdot \text{ft})$

Live load moment from SU3 FL-Legal truck.

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

M_{LL} $SU4 := 1$	(171.55kip·ft)
***LL SU4 *	(1,100 mp 10)

Live load moment from controlling FL-Legal truck: SU4.

$$M_{LL}$$
 $C_3 := (91.12 \text{kip} \cdot \text{ft})$

Live load moment from C3 FL-Legal truck.

$$M_{LL,C4} := (128.76 \text{kip} \cdot \text{ft})$$

Live load moment from C4 FL-Legal truck.

$$M_{LL,C5} := (132.83 \text{kip} \cdot \text{ft})$$

Live load moment from C5 FL-Legal truck.

$$M_{LL ST5} := (128.11 \text{kip} \cdot \text{ft})$$

Live load moment from ST5 FL-Legal truck.

Controlling Live load moment FL-Legal truck: (SU4)

$$M_{LL \ FL.Legal} := \left(\max \left(M_{LL \ SU2}, M_{LL \ SU3}, M_{LL \ SU4}, M_{LL \ C3}, M_{LL \ C4}, M_{LL \ C5}, M_{LL \ ST5} \right) \right) = (171.55) \ \text{kip-ft}$$

Design Load Combinations:

(Note: Final Condition ensures that repaired structure satisfies a minimum Rating Factor of 1.0 for all Legal Loads)

Service:

$$M_{Ser\ HL93} := 1.0 \cdot M_{DC} + 1.0 \cdot M_{DW} + 1.0 \cdot M_{LL\ HL93} = (295.7) \cdot kip \cdot ft$$

Service moment (Service I) - Design. AASHTO LRFD Table 3.4.1-1.

$$M_{Ser\ FL120} := 1.0 \cdot M_{DC} + 1.0 \cdot M_{DW} + 1.0 \cdot M_{LL\ FL120} = (311.6) \cdot kip \cdot ft$$

Service moment (Service I) - Permit. AASHTO LRFD Table 3.4.1-1.

$$M_{Ser\ FL.Legal} := 1.0 \cdot M_{DC} + 1.0 \cdot M_{DW} + 1.0 \cdot M_{LL\ SU4} = (289.8) \cdot kip \cdot ft$$

Service moment (Service I) - Controlling FL-Legal.

AASHTO LRFD Table 3.4.1-1.

Strenath:

$$M_{Str_HL93.op} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + \gamma_{OPT} \cdot M_{LL_HL93} = (389.6) \cdot kip \cdot ft \quad \text{Op. Strength moment (Strength I) - Design.}$$

$$AASHTO LRFD Table 3.4.1-1.$$

$$M_{Str} FL120 := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL} FL120 = (411) \cdot kip \cdot ft$$

Strength moment (Strength II) - Permit. AASHTO LRFD Table 3.4.1-1.

$$M_{\rm Str_SU2} := 1.25 \cdot M_{\rm DC} + 1.5 \cdot M_{\rm DW} + 1.35 \cdot M_{\rm LL_SU2} = (264.7) \cdot {\rm kip \cdot ft}$$

Strength moment (Strength I) - SU2 Legal. AASHTO LRFD Table 3.4.1-1.

$$M_{Str~SU3} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL~SU3} = (365.6) \cdot kip \cdot ft$$

Strength moment (Strength I) - SU3 Legal. AASHTO LRFD Table 3.4.1-1.

$${\rm M_{Str_SU4}} := 1.25 \cdot {\rm M_{DC}} + 1.5 \cdot {\rm M_{DW}} + 1.35 \cdot {\rm M_{LL_SU4}} = (381.6) \cdot {\rm kip \cdot ft}$$

Strength moment (Strength I) - SU4 Legal. AASHTO LRFD Table 3.4.1-1.

$$M_{Str~C3} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL~C3} = (273) \cdot kip \cdot ft$$

Strength moment (Strength I) - C3 Legal. AASHTO LRFD Table 3.4.1-1.

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

$$M_{Str~C4} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL~C4} = (323.8) \cdot kip \cdot ft$$

Strength moment (Strength I) - C4 Legal. AASHTO LRFD Table 3.4.1-1.

$$M_{Str. C5} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL. C5} = (329.3) \cdot kip \cdot ft$$

Strength moment (Strength I) - C5 Legal. AASHTO LRFD Table 3.4.1-1.

$$M_{Str~ST5} := 1.25 \cdot M_{DC} + 1.5 \cdot M_{DW} + 1.35 \cdot M_{LL~ST5} = (323) \cdot kip \cdot ft$$

Strength moment (Strength I) - ST5 Legal. AASHTO LRFD Table 3.4.1-1.

$$M_{Str \ FL.Legal} := \left(\max \left(M_{Str \ SU2}, M_{Str \ SU3}, M_{Str \ SU4}, M_{Str \ C3}, M_{Str \ C4}, M_{Str \ C5}, M_{Str \ ST5} \right) \right) = (381.6) \, \text{kip-ft}$$

Strength moment (Strength I) - Controlling Legal. AASHTO LRFD Table 3.4.1-1.

$$\phi M_{\text{n no wrap}} := (344.64 \text{kip} \cdot \text{ft})$$

Capacity of member before FRP wrap is applied

AASHTOWARE BrR-Inputs (Moment)

3. CFRP Reinforcement Properties

The amount of the CFRP reinforcement and its material properties are given as per net-fiber.

Thickness of the CFRP strip (V-WrapTM - C200HM)

 $t_{f} := 0.04in$

Ultimate tensile strength of the CFRP

 $f_{fu pre} := 155 ksi$

Rupture strain

 $\varepsilon_{\text{fu pre}} := 0.011$

Modulus of elasticity of CFRP

 $E_f := 14 \cdot 10^6 \text{psi} = 14000 \cdot \text{ksi}$

Number of plies of CFRP sheets (Per

n := 2

preliminary recommendations)

 $w_f := 36in$

Width of the CFRP sheet (36" per preliminary recommendation from Structural Technologies)

 $\alpha_f := 90 \deg$

CFRP orientation

 $s_{FRP} := 0$ in

Area of FRP for shear . (ACI 440.2R Eq. 11-4) [Not Applicable]

 $A_{fy} := 0 \text{in}^2$

Area of FRP for flexure (U-wrap)

Spacing of CFRP [Not Applicable]

 $A_{ff} := n \cdot t_f \cdot b_f$ bot = $2.88 \cdot in^2$

Environmental reduction factor for CFRP. (ACI 440.2R Table 9.1)

 $C_E := 0.85$

Design ultimate tensile strength of CFRP. (ACI 440.2R Eq. 9-3)

 $f_{fu} := C_{E} \cdot f_{fu}$ pre = 131.75·ksi

Ultimate rupture strain of CFRP reinforcement. (ACI 440.2R Eq. 9-4)

 $\varepsilon_{\text{fu}} := C_{\text{E}} \cdot \varepsilon_{\text{fu_pre}} = 0.0093 \cdot \frac{\text{in}}{\text{in}}$

ACI 440.2R Eq. 9-4)

4. DESIGN OF EXTERNALLY BONDED FRP REINFORCEMENT

(ACI 440.2R-08, Chapter 11)

The CFRP sheets will be applied along the bottom face of the deteriorated slab units, along the full length and across the entire width of the slab units.

FRP Strength Criteria (Moment)

Check FRP Stength Criteria Moment = ("OK")

FRP Strength Criteria (Moment)

▼ CFRP Development Length

FRP Reinforcement - Development Length

Determine length of CFRP needed to develop full bond capacity. Overlap length of CFRP sheets must be provided by manufactor ACI 440.2R-08 13.2

$$1_{df} := 0.057 \cdot \sqrt{\frac{\frac{n \cdot E_f \cdot t_f}{\int \frac{f_{c_bm}}{psi} \cdot psi \cdot in}}{\cdot in}} \cdot in = 7.174 \cdot in$$

Development length needed to develop full bond strength of CFRP ACI 440.2R-08 (13-2)

▲ CFRP Development Length

▼ Ultimate Flexural Strength Pt.1

FRP Reinforcement - Flexural Capacity

Design material properties: $f_{fil} = 131.75 \cdot ksi$

$$\varepsilon_{\text{fu}} = 9.35 \times 10^{-3}$$

Area of the CFRP reinforcement $A_{fv} = 5.76 \cdot in^2$

Effective depth of CFRP (ACI 440.2R-08 Fig 11.2) $d_{vFRP} := \left(d_p - t_{slab} - 2in\right) = 11.833 \cdot in$

Active bond length (ACI 440.2R-08 11.4.1.2) $L_e := \frac{2500 \mathrm{in}}{\left(n \cdot \frac{t_f}{\mathrm{in}} \cdot \frac{E_f}{\mathrm{psi}}\right)^{0.58}} = 0.775 \cdot \mathrm{in}$

Bond reduction coefficients

(ACI 440.2R-08 11.4.1.2)

$$k_1 := \left(\frac{fc}{psi \cdot 4000}\right)^{\frac{2}{3}} = 1.16$$

$$k_1 := \left(\frac{fc}{psi \cdot 4000}\right)^{\frac{2}{3}} = 1.16$$
 $k_2 := \frac{d_{vFRP} - L_e}{d_{vFRP}} = 0.934$ for U-Wrap

$$\kappa_{\rm V} \coloneqq \frac{k_1 \cdot k_2 \cdot \frac{L_{\rm e}}{\rm in}}{468 \cdot \varepsilon_{\rm fu}} = 0.192$$

$$\kappa_{\text{WW}} := \min(0.75, \kappa_{\text{V}}) = 0.192$$

Effective strain of the CFRP reinforcement

$$\varepsilon_{\text{fe}} := \min(\kappa_{\text{v}} \cdot \varepsilon_{\text{fu}}, 0.004) = 0.0018$$

(ACI 440.2R-08 11.4.1.2)

Effective strength of the CFRP reinforcement

$$f_{fe} := \varepsilon_{fe} \cdot E_f = 25.145 \cdot ksi$$

(ACI 440.2R Eq. 11-5)

Determine the existing state of strain

Determine strain at soffit during installation of CFRP. Tension is positive and compression is negative.

$$\varepsilon_{bi} \coloneqq \frac{-P_{pe}}{E_{c_bm} \cdot A_{nc}} + \frac{-P_{pe} \cdot e_{nc} + M_g + M_{pc}}{E_{c_bm} \cdot S_{b_nc}} + \frac{M_c}{E_{c_bm} \cdot S_b} = \left(-1.396 \times 10^{-4}\right)$$

Determine the design strain of the FRP system

Determine strain at which debonding of CFRP may occur

$$\varepsilon_{fd} := \min \left(0.083 \cdot \sqrt{\frac{f_{c_bm} \cdot psi \cdot in}{n \cdot E_{f} \cdot t_{f} \cdot psi}}, 0.9 \cdot \varepsilon_{fu} \right) = 5.546 \times 10^{-3}$$

$$ACI 440.2R-08 (10-2)$$

Determine flexure capacity of section

The determination of flexural capacity for prestressed slab units repaired with CFRP wraps makes use of strain compatability which is an iterative process. Each iteration involves the assumption of a neutral axis depth. Once an assumption is made, the strains in the compressive concrete face, CFRP wrap, and strands are determined based on a linear strain relationship. The calculated strains are then converted into compressive and tensile forces that are used to check if equilibrium within the cross section is obtained, iterations continue until equilibrium is reached. It is assumed all strands are bonded at the section of interest.

Guess neutral axis depth (reasonable guess is 0.1*depth of section):

$$c := (6.475in)$$

Assumed depth from top of section

to neutral axis

Determine the effective level of strain in the CFRP reinforcement:

$$d_f := h_c = 17 \cdot in$$

Depth from top of section to CFRP reinforcement

$$\begin{split} & \underbrace{\epsilon_{fe}}_{i} \leftarrow \text{ min} \boxed{0.003 \cdot \left(\frac{d_{f} - c_{i}}{c_{i}}\right) - \epsilon_{bi_{i}}, \epsilon_{fd}} \end{split}$$

Strain in CFRP reinforcement ACI 440.2R-08 (10-16)

$$\varepsilon_{\text{fe}} = \left(5.016 \times 10^{-3}\right)$$

Controlling_Failure := for $i \in g$

$$\begin{split} & \text{Controlling_Failure}_i \leftarrow \text{"CFRP debonding/rupture controls"} \quad \text{if} \quad \left| \varepsilon_{\text{fe}_i} \right| = \varepsilon_{\text{fd}} \\ & \text{Controlling_Failure}_i \leftarrow \text{"Concrete crushing controls"} \quad \text{otherwise} \end{split}$$

Controlling Failure = ("Concrete crushing controls")

Determine strain at extreme compression fiber based on controlling failure type:

$$\begin{split} \varepsilon_{c} \coloneqq & \text{ for } i \in g \\ & \varepsilon_{c_{i}} \leftarrow \left(\varepsilon_{fe_{i}} + \varepsilon_{bi_{i}}\right) \cdot \frac{c_{i}}{d_{f} - c_{i}} & \text{ if } \varepsilon_{fe_{i}} = \varepsilon_{fd} \\ & \varepsilon_{c_{i}} \leftarrow 0.003 & \text{ otherwise} \end{split}$$

CFRP debonding/rupture

Concrete crushing

$$\varepsilon_{\rm c} = \left(3 \times 10^{-3}\right)$$

Strain at extreme compression fiber

Job No.: D210107FL.00 signer: YRA Date: 10/2021

Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Calculate the strain in the exisitng prestressing steel:

Net tensile strain in prestressing steel beyond decompression, at nominal strength

$$\begin{split} \varepsilon_{pnet} \coloneqq & \text{ for } i \in g \\ \varepsilon_{pnet_i} \leftarrow \left(\varepsilon_{fe_i} + \varepsilon_{bi_i}\right) \cdot \left(\frac{d_p - c_i}{d_f - c_i}\right) & \text{ if } \varepsilon_{fe_i} = \varepsilon_{fd} \\ \varepsilon_{pnet_i} \leftarrow 0.003 \cdot \frac{d_p - c_g}{c_g} & \text{ otherwise} \end{split}$$

CFRP debonding/rupture ACI 440.2R-08 (10-23b)

Concrete crushing ACI 440.2R-08 (10-23a)

$$\varepsilon_{\text{pnet}} = \left(3.409 \times 10^{-3}\right)$$

$$\begin{split} \varepsilon_{ps} \coloneqq & \text{ for } i \in \mathbf{g} \\ \varepsilon_{ps} \coloneqq & \text{ for } i \in \mathbf{g} \\ \varepsilon_{ps} \longleftarrow & \min \\ \varepsilon_{pe} + \frac{P_{pe}}{A_{nc} \cdot E_{c_bm}} \cdot \left(1 + \frac{e_{nc}^{\ 2}}{r^{2}}\right) + \varepsilon_{pnet} \underbrace{\left(9.359 \times 10^{-3}\right)^{3}}_{\text{train in prestressing steel ACI 440.2R-08 (10-22)}}_{\text{ACI 440.2R-08 (10-22)}} \end{split}$$

Check_steel_rupture
$$_g$$
 := | "Need to consider steel rupture" if $\varepsilon_{ps}_g \ge 0.035$ | "Steel rupture does not control OK" otherwise

Check if steel rupture controls ACI 440.2R-08 (10-22)

Check steel rupture = ("Steel rupture does not control OK")

Calculate the stress level in prestressing steel and CFRP:

$$\begin{aligned} f_{ps}{}_g &\coloneqq \left(\begin{array}{c} 28500 \cdot \varepsilon_{ps} & \text{if } \varepsilon_{ps}{}_g \leq 0.0076 \\ \\ 250 - \frac{0.04}{\varepsilon_{ps}{}_g - 0.0064} & \text{otherwise} \end{array} \right) \cdot \text{ksi} \end{aligned}$$
 Stress in prestressing ste ACI 440.2R-08 (10-24b)

Stress in prestressing steel (applicable for Grade 250 ksi steel) ACI 440.2R-08 (10-24b)

$$f_{ps_g} = 236.483 \cdot ksi$$

$$f_{\text{fe}} := E_{\text{f}} \cdot \varepsilon_{\text{fe}} = (70.224) \cdot \text{ksi}$$

Stress in CFRP Reinforcement ACI 440.2R-08 (10-21)

Calculate the internal force resultants and check equilibrium:

Use Whitney Stress Block to model stress if concrete crushing controls. If CFRP debonding/rupture controls use approximate stress block factors based on parabolic stress-strain relationship for concrete (see ACI 440.2R-08 15.5 Step 9)

$$\beta_{1_g} := \left| \begin{array}{ll} \text{if } \varepsilon_{fe_g} = \varepsilon_{fd} \\ \\ \varepsilon'_c \leftarrow \frac{1.7 \cdot f_{c_bm}}{E_{c_bm}} \\ \\ \beta_1 \leftarrow \frac{4 \cdot \varepsilon'_c - \varepsilon_{c_g}}{6 \cdot \varepsilon'_c - 2 \cdot \varepsilon_{c_g}} \\ \\ \text{if } \varepsilon_{c_g} = 0.003 \\ \\ \\ \beta_1 \leftarrow \max \left(0.85 - \frac{f_{c_bm} - 4000 \mathrm{psi}}{1000 \cdot \mathrm{psi}} \cdot 0.05, 0.65 \right) \text{ if } f'_{c_bm} > 4000 \mathrm{psi} \\ \\ \beta_1 \leftarrow 0.85 \text{ if } f'_{c_bm} \leq 4000 \mathrm{psi} \\ \end{array} \right.$$

Approximate stress block β factor based on parabolic stress-strain relationship ACI 440.2R-08 15.5

Stress block β factor based on

 $\beta_1 = (0.8)$

$$\beta_{1_g} = 0.8$$

$$\alpha_{1g} := \begin{bmatrix} \alpha_{1} \leftarrow 0.85 & \text{if } \varepsilon_{cg} = 0.003 \\ \text{otherwise} \end{bmatrix}$$
otherwise
$$\varepsilon'_{c} \leftarrow \frac{1.7 \cdot f_{c_bm}}{E_{c_bm}}$$

$$\alpha_{1} \leftarrow \frac{3 \cdot \varepsilon'_{c} \cdot \varepsilon_{cg} - \left(\varepsilon_{cg}\right)^{2}}{3 \cdot \beta_{1g} \cdot \varepsilon'_{c}^{2}}$$

Stress block a factor based on Whitney Stress Block

Approximate stress block α factor based on parabolic stress-strain relationship ACI 440.2R-08 15.5 Step 9

$$\alpha_1 = (0.85)$$

$$\alpha_{1_g}=0.85$$

Job No.: D210107FL.00

Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Ultimate Flexural Strength Pt.1

▼ Strain Compatability Calcs

$$fw_{transf} := \frac{b_1 \cdot (h_1 + h_2) - (2 \cdot \frac{1}{2} \cdot b_2 \cdot h_2)}{b_1 \cdot (h_1 + h_2)} \cdot b_1 = 34.795 \cdot in$$

Use transformed girder flange width if stress block lies on or beyond first tapered section of girder flange

Ten Com := $i \in g$

for
$$i \in g$$

$$\text{ if } \beta_{1_{\underline{i}}} \cdot c_{\underline{i}} \leq t_{\underline{slab}}$$
 Stress block in deck

$$\begin{vmatrix} \operatorname{Com}_{i} \leftarrow \alpha_{1} \cdot \operatorname{f}_{c_bm} \cdot \operatorname{b}_{transf} \cdot \beta_{1} \cdot c_{i} \\ \operatorname{Ten}_{i} \leftarrow \operatorname{A}_{ps} \cdot \operatorname{f}_{ps_{i}} + \operatorname{A}_{ff} \cdot \operatorname{f}_{fe_{i}} \\ \text{if } \beta_{1} \cdot c_{i} > \operatorname{t}_{slab} \wedge \beta_{1} \cdot c_{i} \leq \operatorname{h}_{1} + \operatorname{t}_{slab} \end{vmatrix}$$

if
$$\beta_1 \cdot c_i > t_{slab} \wedge \beta_1 \cdot c_i \le h_1 + t_{slab}$$
 Stress block in top of flange

$$\left| \begin{array}{l} \mathsf{Com}_{\dot{i}} \leftarrow \alpha_{1} \cdot \mathbf{f}_{c_bm} \cdot \mathbf{b}_{transf} \cdot \mathbf{t}_{slab} + \alpha_{1} \cdot \mathbf{f}_{c_bm} \cdot \mathbf{b}_{1} \cdot \left(\beta_{1} \cdot c_{\dot{i}} - \mathbf{t}_{slab}\right) \end{array} \right|$$

$$\begin{bmatrix} \mathsf{Com}_{\dot{1}} \leftarrow \alpha_{1}{}_{\dot{1}} \cdot \mathsf{fc}_{-bm} \cdot \mathsf{b}_{transf} \cdot \mathsf{tslab} + \alpha_{1}{}_{\dot{1}} \cdot \mathsf{fc}_{-bm} \cdot \mathsf{fw}_{transf} \cdot \left(\beta_{1}{}_{\dot{1}} \cdot \mathsf{c}_{\dot{1}} - \mathsf{tslab}\right) \\ \end{bmatrix}$$

$$\begin{bmatrix} \text{Com}_{\mathbf{i}} \leftarrow \alpha_{1_{\mathbf{i}}} \cdot \mathbf{f}_{\mathbf{c}_\mathbf{bm}} \cdot \mathbf{b}_{\text{trans}\mathbf{f}} \cdot \mathbf{t}_{\text{slab}} + \alpha_{1_{\mathbf{i}}} \cdot \mathbf{f}_{\mathbf{c}_\mathbf{bm}} \cdot \left(\mathbf{h}_{1} + \mathbf{h}_{2}\right) \cdot \mathbf{fw}_{\text{trans}\mathbf{f}} + \alpha_{1_{\mathbf{i}}} \cdot \mathbf{f}_{\mathbf{c}_\mathbf{bm}} \cdot \left(\beta_{1_{\mathbf{i}}} \cdot \mathbf{c}_{\mathbf{i}} - \mathbf{t}_{\text{slab}} - \mathbf{h}_{1} - \mathbf{h}_{2}\right) \cdot \left(\mathbf{b}_{\mathbf{w}} + \mathbf{b}_{4}\right) + \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \left(\beta_{1_{\mathbf{i}}} \cdot \mathbf{c}_{\mathbf{i}} - \mathbf{t}_{\text{slab}} - \mathbf{h}_{1} - \mathbf{h}_{2}\right) \cdot \left(\mathbf{b}_{\mathbf{w}} + \mathbf{b}_{4}\right) + \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \left(\beta_{1_{\mathbf{i}}} \cdot \mathbf{c}_{\mathbf{i}} - \mathbf{t}_{\text{slab}} - \mathbf{h}_{1} - \mathbf{h}_{2}\right) \cdot \left(\mathbf{b}_{\mathbf{w}} + \mathbf{b}_{4}\right) + \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}_{\mathbf{m}} \cdot \mathbf{b}_{\mathbf{c}} \cdot \mathbf{b}$$

if
$$\beta_{1} \cdot c_{1} > h_{1} + h_{2} + h_{4} + t_{slab}$$

$$\begin{bmatrix} \text{Com}_{\mathbf{i}} \leftarrow \alpha_{1} \cdot \mathbf{f}_{\mathbf{c_bm}} \cdot \mathbf{b}_{\text{trans}\mathbf{f}} \cdot \mathbf{t_{slab}} + \alpha_{1} \cdot \mathbf{f}_{\mathbf{c_bm}} \cdot \left(\mathbf{h}_{1} + \mathbf{h}_{2}\right) \cdot \mathbf{fw}_{\text{trans}\mathbf{f}} + \alpha_{1} \cdot \mathbf{f}_{\mathbf{c_bm}} \cdot \left(\mathbf{h}_{4} \cdot \mathbf{b_{w}} + \mathbf{h}_{4} \cdot \mathbf{b}_{4}\right) \dots \\ + \alpha_{1} \cdot \mathbf{f}_{\mathbf{c_bm}} \cdot \left[\beta_{1} \cdot \mathbf{c_{i}} - \mathbf{t_{slab}} - \left(\mathbf{h}_{1} + \mathbf{h}_{2} + \mathbf{h}_{4}\right)\right] \cdot \mathbf{b_{w}}$$

return augment(Ten, Com)

Strain Compatability Calcs

CONSOR ENGINEERS, LLC.

CFRP FLEXURE DESIGN

(INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021

Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

▼ Ultimate Flexural Capacity Pt.2

Ten Com = (585.349 585.521)·kip

Check if section is in equilibrium

Tension Compression

Equilibrium = ("Equilibrium achieved")

Nominal flexural strength:

$$M_{np} := \overline{\left[A_{ps} \cdot f_{ps} \cdot \left(d_p - \frac{\beta_1 \cdot c}{2}\right)\right]} = (358.946) \cdot \text{kip} \cdot \text{ft}$$

Prestressing steel contribution to flexural strength

Percent difference of calculated nominal strength of section without CFRP vs Conspan flexural capacity. Use nominal section strength for check since AASHTO uses $\phi = 1.0$ and ACI use $\phi = 0.9$

$$\frac{\boxed{\frac{M_{np_g} - \phi M_{n_no_wrap_g}}{\phi M_{n_no_wrap_g}}} = 4.151.\%$$

$$M_{nf} := \overline{\left[A_{ff} \cdot f_{fe} \cdot \left(d_f - \frac{\beta_1 \cdot c}{2}\right)\right]} = (242.864) \cdot \text{kip} \cdot \text{ft}$$

CFRP contribution to flexural strength

Design flexural strength:

$$\begin{split} \varphi_g \coloneqq & \left| \begin{array}{l} \varphi \leftarrow 0.9 & \text{if } \varepsilon_{ps_g} \geq 0.013 \\ \\ \varphi \leftarrow 0.65 + \frac{0.25 \cdot \left(\varepsilon_{ps_g} - 0.010\right)}{0.013 - 0.010} & \text{if } \varepsilon_{ps_g} > 0.010 \wedge \varepsilon_{ps_g} < 0.013 \\ \\ \varphi \leftarrow 0.65 & \text{if } \varepsilon_{ps_g} \leq 0.01 \end{array} \right. \end{split}$$

Strength reduction factor ACI 440.2R-08 (10-19)

$$\phi = (0.65)$$

$$\phi \mathbf{M}_{n} := \overline{\left[\phi \cdot \left(\mathbf{M}_{np} + \psi_{f} \cdot \mathbf{M}_{nf}\right)\right]} = (367.497) \cdot \text{kip} \cdot \text{ft}$$

Design strength of composite section with CFRP wrap ACI 440.2R-08 (10-26)

■ Ultimate Flexural Capacity Pt.2

▼ Service I

FRP Reinforcement - Service Check

Check service stresses using Service I load combinations: SDG Vol 4. 4.2

Check if section will crack under service loads

$$f_D := \frac{-P_{pe}}{A_{nc}} + \frac{-P_{pe} \cdot e_{nc} + M_g + M_{pc}}{S_{b \ nc}} + \frac{M_c}{S_b} = (-0.599) \cdot ksi$$

Stress at soffit due to dead load. Tension is positive and compression is negative

Check if section is cracked due to live load moment:

Is section cracked := for $i \in g$

$$\begin{split} & \text{Is_section_cracked}_i \leftarrow \text{"Section is cracked; CFRP Strengthening Required"} & \text{if } f_{D_i} + \frac{M_{LL_FL.Legal_i}}{S_b} \geq f_r \\ & \text{Is_section_cracked}_i \leftarrow \text{"Section is not cracked OK"} & \text{otherwise} \end{split}$$

Is_section_cracked = ("Section is cracked; CFRP Strengthening Required")

Check stress in prestressing steel

Strain in prestressing steel. Tension is positive and compression is negative.

$$\varepsilon_{\text{ps_s}} := \varepsilon_{\text{pe}} - \frac{P_{\text{pe}}}{A_{\text{nc}} \cdot E_{\text{c_bm}}} \cdot \left(1 + \frac{e_{\text{nc}}^2}{r^2}\right) + \frac{\left(M_g + M_{\text{pc}}\right) \cdot e_{\text{nc}}}{I_{\text{nc}} \cdot E_{\text{c_bm}}} + \frac{\left(M_c + M_{\text{LL_FL.Legal}}\right) \cdot e}{I \cdot E_{\text{c_bm}}} = \left(5.736 \times 10^{-3}\right)$$

$$\begin{split} f_{ps_s} &:= \text{ for } i \in g \\ & f_{ps_s}_i \leftarrow 28500 \cdot \varepsilon_{ps_s}_i \cdot \text{ksi } \text{ if } \varepsilon_{ps_s}_i \leq 0.0076 \\ & f_{ps_s}_i \leftarrow \left(250 - \frac{0.04}{\left|\varepsilon_{ps_s}_i\right| - 0.0064}\right) \cdot \text{ksi } \text{ if } \varepsilon_{ps_s}_i > 0.0076 \end{split}$$

Stress in prestressing steel (applicable for 250 grade steel) ACI 440.2R-08 (10-24b)

 $f_{ps \ s} = (163.468) \cdot ksi$

Check steel stress := for $i \in g$

Check if stress in prestressing steel satisfies ACI 440.2R-08 (10-20a) & (10-20b)

Check_steel_stress = ("OK")

Check compressive stress in concrete

Tension is positive and compression is negative

Check top of precast slab unit:

$$f_{c_top_gir} \coloneqq \frac{-P_{pe}}{A_{nc}} + \frac{P_{pe} \cdot e_{nc} - M_g - M_{pc}}{S_{t_nc}} - \frac{M_c}{S_{top_girder_c}} - \frac{M_{LL_FL.Legal}}{S_{top_girder_c}} = (-1.964) \cdot ksi$$

Stress at top of precast girder

 $Check_top_girder_stress := for i \in g$

Check_top_girder_stress_i
$$\leftarrow$$
 "OK" if $|f_{c_top_gir_i}| \le 0.45 \cdot f_{c_bm}$
Check_top_girder_stress_i \leftarrow "NOT OK" otherwise

Check top girder stress = ("OK")

Check top of deck: - [NO DECK PRESENT; CHECK NOTAPPLICABLE]

$$f_{c_top_deck} := if \left(t_{slab} = 0in, 0ksi, \frac{M_c}{S_t} \cdot n - \frac{M_{LL_FL.Legal}}{S_t} \cdot n \right) = 0 \cdot ksi$$

Stress at top of deck

 $Check_top_deck_stress := if \Big(t_{slab} = 0 \text{ in, "NOT APPLICABLE" , for } \ i \in g$

Check top deck stress = "NOT APPLICABLE"

CFRP FLEXURE DESIGN (INTERIOR SLAB UNIT - SPAN 2)

Job No.: D210107FL.00 Designer: YRA Date: 10/2021 Reviewer: MAP Date: 12/2021

Check stress in CFRP

Tension is positive and compression is negative

$$f_{\underline{f}_s} := \frac{E_f}{E_{\underline{c}_bm}} \cdot \left(f_D + \frac{M_{\underline{L}\underline{L}_FL.Legal}}{S_b} \right) - \varepsilon_{\underline{b}i} \cdot E_f = (4.115) \cdot ksi$$

Stress in CFRP

Check FRP stress := for $i \in g$

Check that stress in CFRP satisfies ACI 440.2R-08 Table 10.1

Check FRP stress = ("OK")

▲ Service I

▼ FRP Fatigue Check

FRP Reinforcement - Fatigue

SDG Vol4. 4.2 states that the standard fatigue truck from LRFD should be used to check fatigue stresses in CFRP composite. By inspection, the standard fatigue truck will produce lower stresses within the section when compared to the truck used for the Service I stress check. If Service I is satisfied, no further analysis is required. (Refer to ACI 440.2R-08 10.2.9)

FRP Fatigue Check

Summary:

The Flexural Loading Rating (LR) controlled by SU4 Legal Strength loading which produced a LR of 0.931 was increased by CFRP strengthening along the bottom face of the slab unit length. The CFRP strengthening design consisted of U-wrap method plies which are 36" wide (C200HM) along the controlling sections. The strengthened section resulted in a flexural load rating shown below:

Number of Plies for U-Wrap Shear

Width of Plies

n = 2

 $w_f = 36 \cdot in$

FRP Development Length

 $1_{df} = 7.174 \cdot in$

FRP Stress Check

Check FRP stress = ("OK")

▼ Rating Factor (Moment)

RATING FACTOR FOR CONTROLLING TRUCK LOADING MOMENT

Design Rating Factors:

(Note: Final Condition ensures that repaired structure satisfies a minimum Rating Factor of 1.0 for all Legal Loads)

$$RF_{OPT.moment_HL93} \coloneqq \frac{\varphi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL \ HL93}}$$

$$RF_{INV.moment_HL93} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{INV} \cdot M_{LL \ HL93}}$$

$$RF_{OPT.moment_FL120} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW} \right)}{\gamma_{OPT} \cdot M_{LL \ FL120}}$$

$$RF_{OPT.moment_SU2} \coloneqq \frac{\varphi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL_SU2}}$$

$$RF_{OPT.moment_SU3} \coloneqq \frac{\varphi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL} \ \ SU3}$$

$$RF_{OPT.moment_SU4} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL} \ \ \text{SU4}}$$

$$RF_{OPT.moment_C3} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL_C3}}$$

$$RF_{OPT.moment_C4} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL \ C4}}$$

$$RF_{OPT.moment_C5} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL_C5}}$$

$$RF_{OPT.moment_ST5} \coloneqq \frac{\phi M_n - \left(\gamma_{DC} \cdot M_{DC} + \gamma_{DW} \cdot M_{DW}\right)}{\gamma_{OPT} \cdot M_{LL \ ST5}}$$

LRFR Load Rating Summary Table										
Rati	ng Type	Gross Axle Weight (tons)	Limit	Rating Factor	Rating Factor - Weight (tons)					
Vehicle	Rating Level	Weight		RF *	Rating *					
HL93	Inventory	36	Moment Strength	0.700	25.2					
HL 93	Operating	36	Moment Strength	0.908	32.7					
FL120	Permit	60	Moment Strength	0.833	50.0					
FL120	Permit	60	Moment Strength	0.833	50.0					
SU2		17	Moment Strength	1.896	32.2					
SU3		33	Moment Strength	1.009	33.3					
SU 4		35	Moment Strength	0.990	34.7					
C3	Legal	Legal 28 Moment Strength		1.768	49.5					
C4		36.7	Moment Strength	1.251	45.9					
C5		40	Moment Strength	1.213	48.5					
ST5		40	Moment Strength	1.257	50.3					

^{*} Per FDOT BLRM, Sectio 7.4 - Posting Avoidance, Rating results for SU4 Legal load computed based on the approximate AASHTO distribution equations may be rounded-up by up to 5%.

▲ Rating Factor (Moment)

Matheson Hmk Road over Matheson Hammock Canal SUMMARY OF LOAD RATING RESULTS

Project #: D210107FL00.00
Designed By: YRA YRA Jan-22 MAP Jan-22 Design Date: Checked By: Check Date:

1.25 1.5 1.75 1.35

(Load Factor for Dead Load per FDOT BLRM Table 6A.4.2.2-1)

= TO

Load Factors:

(Load Factor for Dead Load from Wearing Surface per FDOT BLRM Table 6A.4.2.2-1) (Load Factor for Desing Inventory Live Load per FDOT BLRM Table 6A.4.2.2-1) (Load Factor for Operating Live Load per FDOT BLRM Table 6A.4.2.2-1)

(Rounding up Factor for Posting Avoidance per FDOT BLRM Section 7.4) DW = LL-INV = LL-OPE = Factor_{PA} =

					-										_	_					_						_
	Rating Factor -	Weight	(tons)	*	Rating	25.2	202	7 66	35.7	50.0		0 03	0.00	27.7	37.7	33,3		7 1/6	24.7	40 F	49.0	c L	45.9	18 E	40.3	r C	50.3
		ocation		Controlling Location	(% span)	50.0	0.00	0.03	0.00	50.0		20.0	0.00	0 03	30.0	50.0		0 0	20.00	0	50.0	C	50.0	0 0	0.00	0	20.0
red)		Governing Location		Controlling Member	[spail # - (IvieIIIDel #/J	2 - 8	0 2	9-6	7 - 0	2 - 8)	3 - 8	7 - 0	9-6	7 - 0	2 - 8		0 (7 - 0	c	7 - 9	ď	8-7	0 (7 - 0	ć	2 - 8
ng Resto	201770	Factor	1000	*	L	0 200	2	0000	0.500	0.833		0 822	0.033	1 996	T.030	1.009		0000	0.66.0	1 700	T./08	1 27.4	1.251	1 212	1.213	0.0.0	1.258
SUMMARY OF LRFR RATINGS - SONOVOID SLAB UNITS (w/ Concrete Repairs and Post Tensioning Restored)	Unfactored LL	Moment	(kip-ft)	[84] - 11]	[LL T IIVI]		2 V 7 T T 1	Ct: //T			193.33	00 10	04.30	159.7		171 EE	1/1.33	04.42	91.12	71 007	128.76	000	128.11				
Concrete Repair	Unfactored	DW Moment	(kip-ft)	[MA]	[wu]		89 89																				
LAB UNITS (w/	Unfactored	DL Moment	(kip-ft)	[DC +	Attacillietiisj		109.6																				
NGS - SONOVOID S	Design Flexural	Strength	(kip-ft) **	~~~	divie		367.50																				
OF LRFR RATII	Live Load	Distribution	Factor	3011	ווחר	956 0	0.53.0	9360	0.256 0.256 0.256 0.256 0.256 0.256								0.256			0.256							
SUMMAR		Condition	Factor	Jacon												0.9											
		ar/ Service		i mi		Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength	Moment	Strength
		Moment/Shear/ Service		Our Landwork	ivieliibei iype	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete	Prestressed	Concrete
	Gross Axle	Weight	(tons)	Moicht	weigill	98	2	96	OC.	09	}	9	9		17		33							07	0+	ů,	40
		Rating Type		0.00	Venicle nating tever	Inventory		Operating	Operating	Permit		Dormit	ובוווו	Legal													
		Rati		111111	venicie	HI 03		60	111.33	FL120		EI 120	LLIZO	6112	SU2 SU3 SU 4				ξ	ວ	Ü	2	Ę	H	SIS		

* Per FDOT BLRM, Sectio 7.4 - Posting Avoidance, Rating results for SU4 Legal load computed based on the approximate AASHTO distribution equations may be rounded-up by up to 5%.

** Design Flexural Strength including strengthening repairs using the CFRP wraps (Refer to Appendix C).

Matheson Hammock Park Bridge No.874294 over Matheson Hammock Canal
APPENDIX D – LRFR BRIDGE RATING MATHCAD QUCIK CHECK

Mathcad Check for VIRTIS LRFD Moment Analysis

Bridge No: 874294

Description: Simply-supported, Prestressed Concrete Sonovoid Slab Units Bridge

Analysis Method: LRFD, HL93 Vehicle, 2 lane

ASSUMPTIONS

CONTROLLING MEMBER: Slab Unit 2-8
GOVERNING LIMIT STATE AND LOCATION: Strength I, Moment @ 0.5L

VIRTIS COMPUTED MOMENTS

MU := 367.5kip·ft Factored Ultimate Moment (Capacity)

 $MDC_{self} := 87.1 \cdot kip \cdot ft$ Dead Load Moment from Selfweight only

MDW := 8.68·kip·ft Wearing Surface Moment

 $MLT := 0 \cdot kip \cdot ft$ Design Truck Load Moment

MLL := 177.43·kip·ft Controlling Legal Load Moment

FACTORS

 $\phi_s := 1.0$ System Factor

 $\phi c := 0.90$ Condition Factor

 $\gamma DC := 1.25$ Dead Load Load Factor

 $\gamma DW := 1.5$ Wearing Surface Load Factor $\gamma Linv := 1.75$ Inventory Live Load Factor

φmoment := 0.90 Nominal Moment Reduction Factor

DESIGN STRENGTH

$$Mn := \frac{MU}{(\phi s \cdot \phi c \cdot \phi moment)}$$

$$Mn = 453.7 \text{ kip · ft}$$

$$\phi$$
Mn := ϕ moment·(Mn) ϕ Mn = 408.33·kip·ft

REQUIRED STRENGTH

$$Mu := \gamma DC \cdot \left(MDC_{self} + MDC_{attachment} \right) + \gamma DW \cdot MDW + \gamma Linv \cdot (MLL)$$

$$Mu = 460.52 \cdot kip \cdot ft$$

CONSOR ENGINEERS, LLC.

Job No.: D210107FL.00 Designer: YRA Date: 1/2022 Reviewer: MAP Date: 1/2022

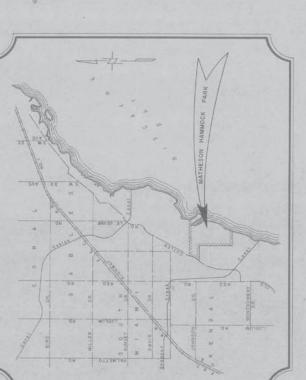
RATINGS

$$Rinventory := \frac{\left[\phi s \cdot \phi c \cdot \phi Mn - \left[\gamma DC \cdot \left(MDC_{self} + MDC_{attachment} \right) + \gamma DW \cdot MDW \right] \right]}{\gamma Linv \cdot (MLL)}$$

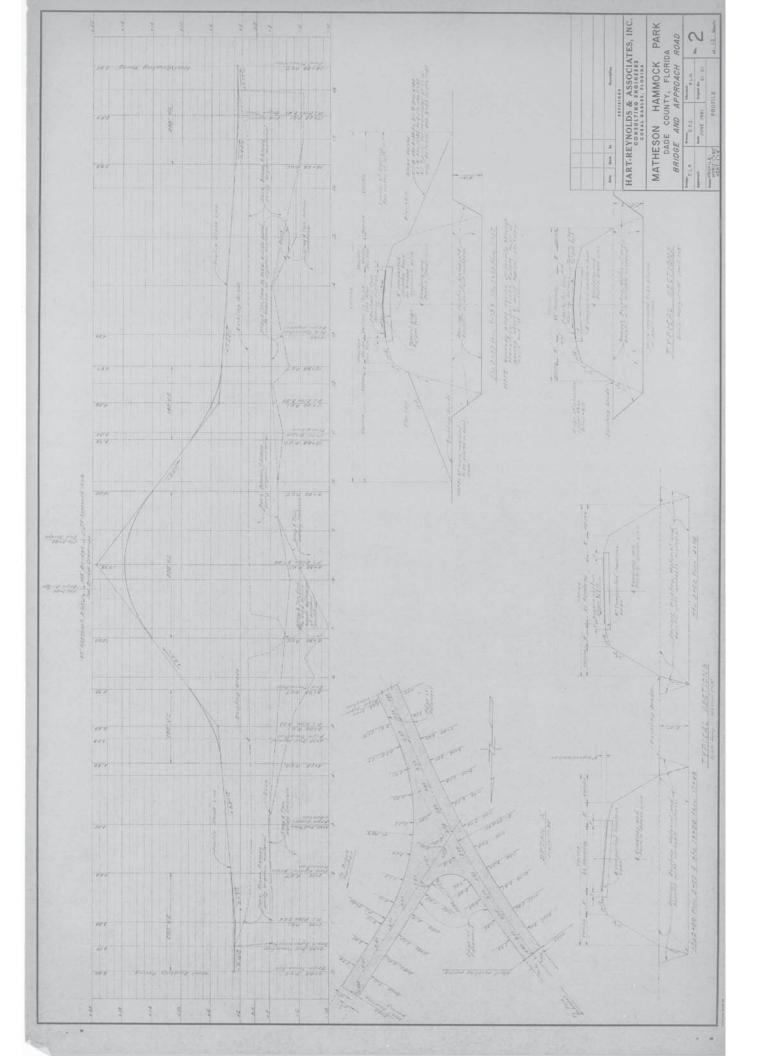
$$Roperating := \frac{\left[\phi s \cdot \phi c \cdot \phi Mn - \left[\gamma DC \cdot \left(MDC_{self} + MDC_{attachment} \right) + \gamma DW \cdot MDW \right] \right]}{\gamma Lopt \cdot (MLL)}$$

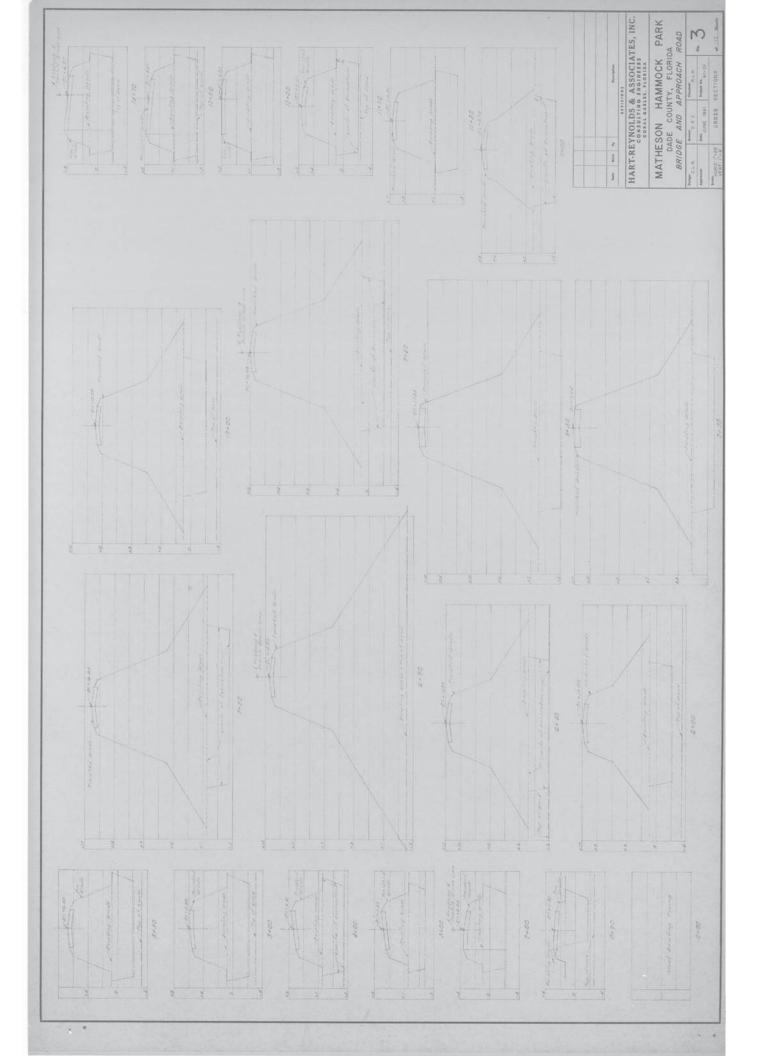
Rinventory = 0.7

Roperating = 0.91

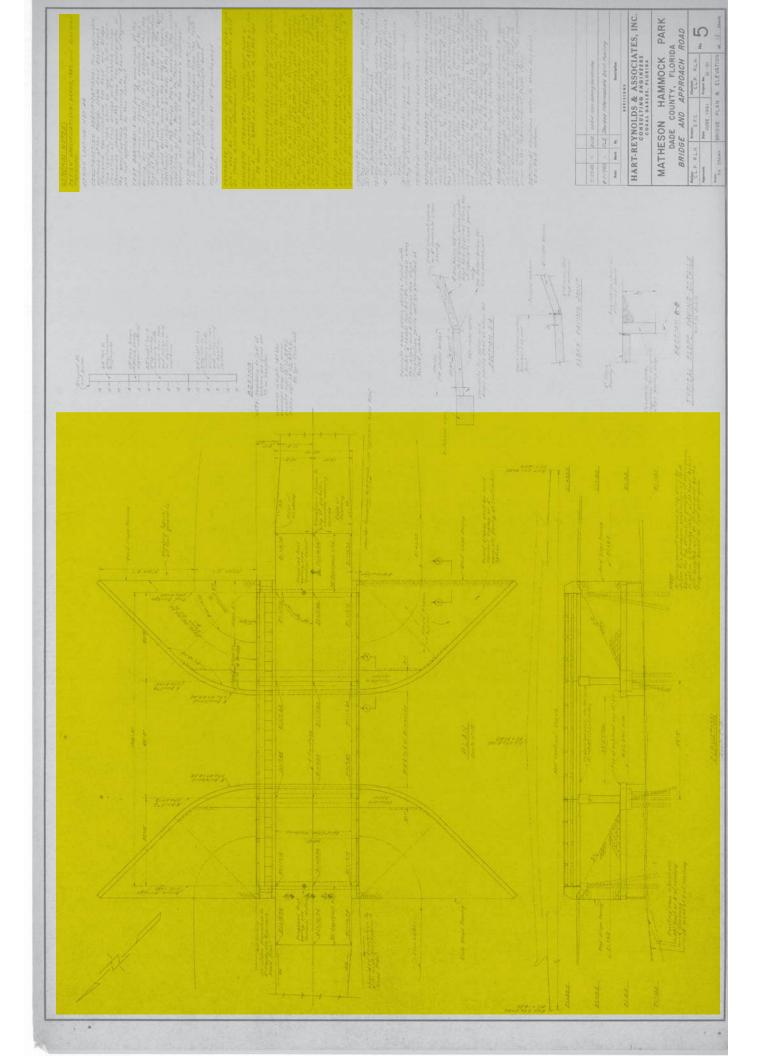

Matheson Hammoo	k Park Bridge	No 874294	over Matheson	Hammock Cana
iviatilesoni i laitilitot	N Fair Diluge	110.0/4234	Over Matheson	Hallillock Calla

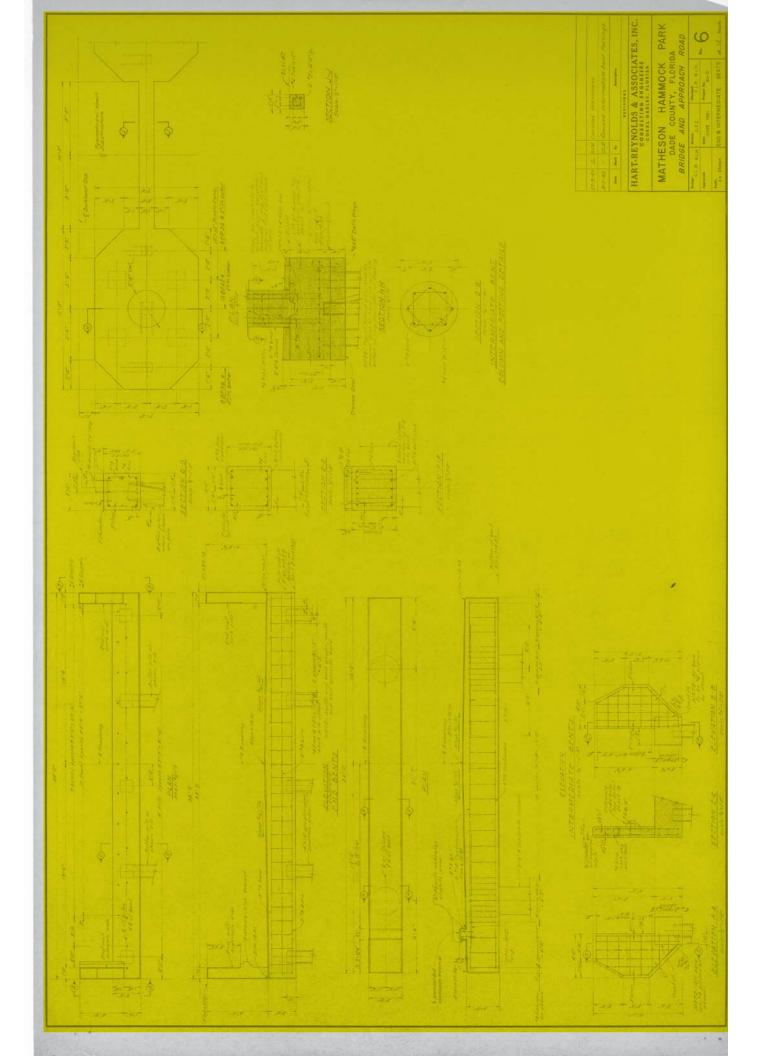
APPENDIX E – AS-BUILT BRIDGE PLANS

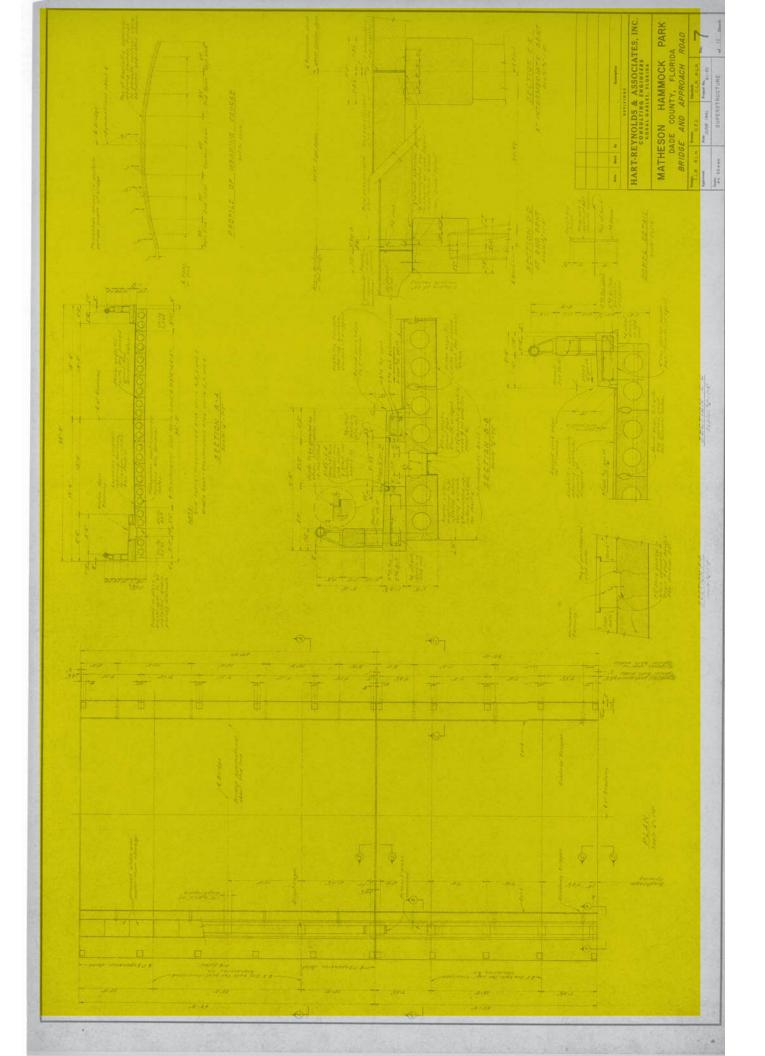

MATHESON HAMMOCK PARK

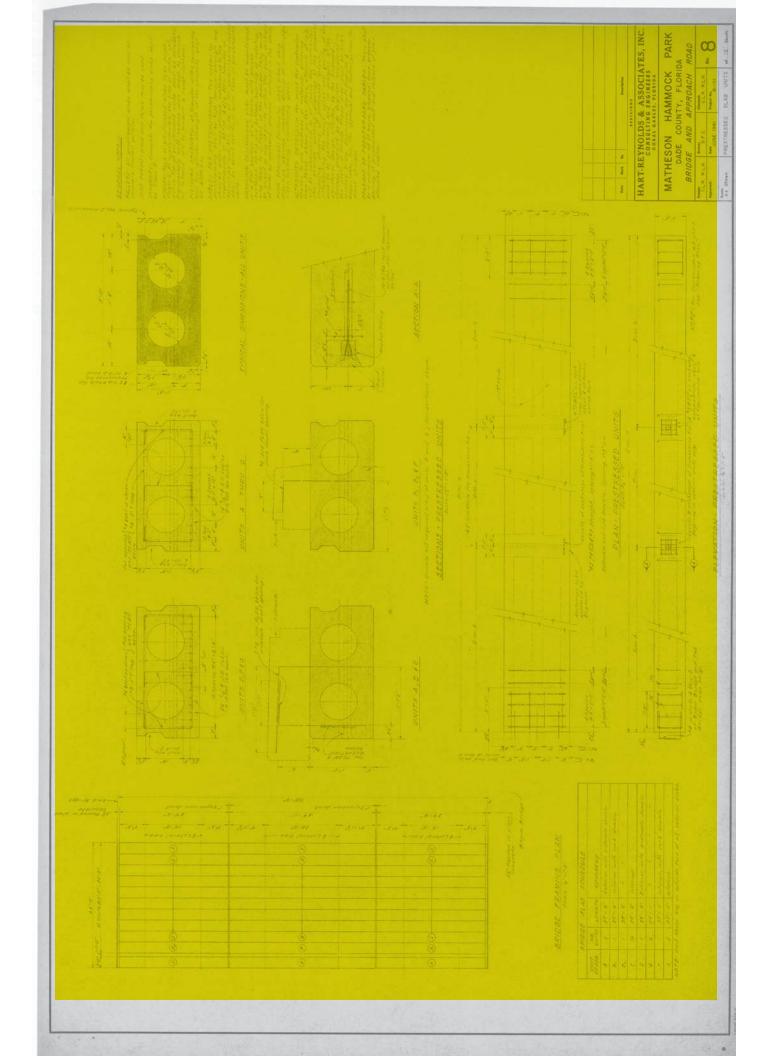

DADE COUNTY, FLORIDA

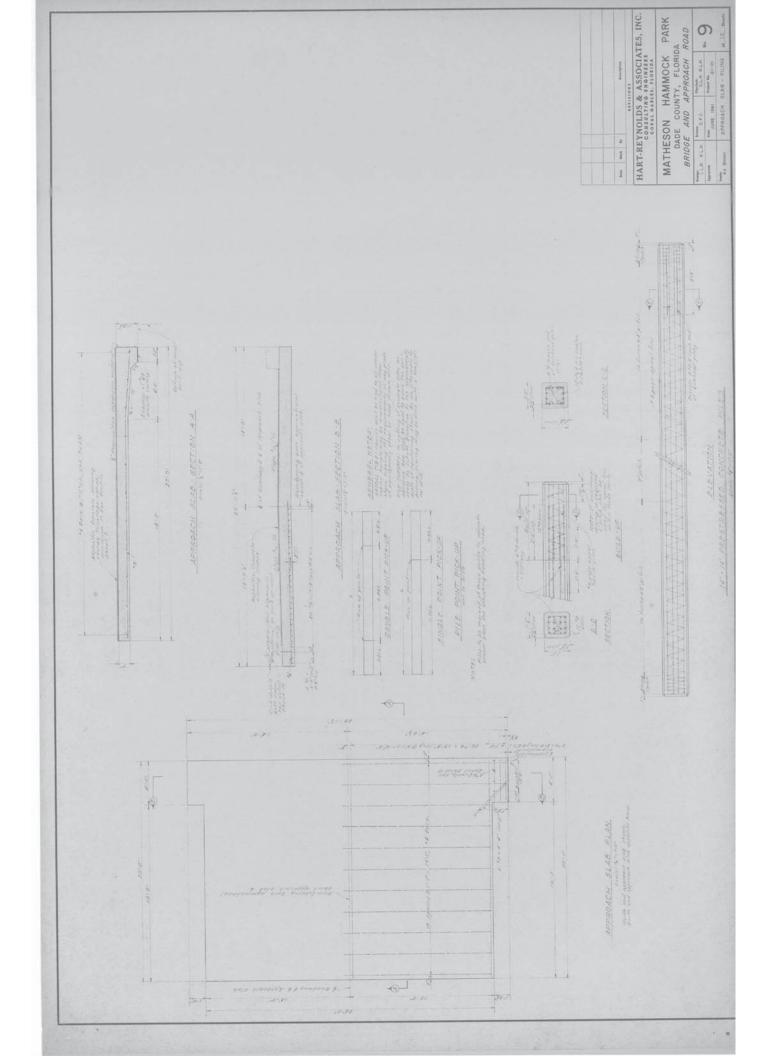

BRIDGE AND APPROACH ROAD

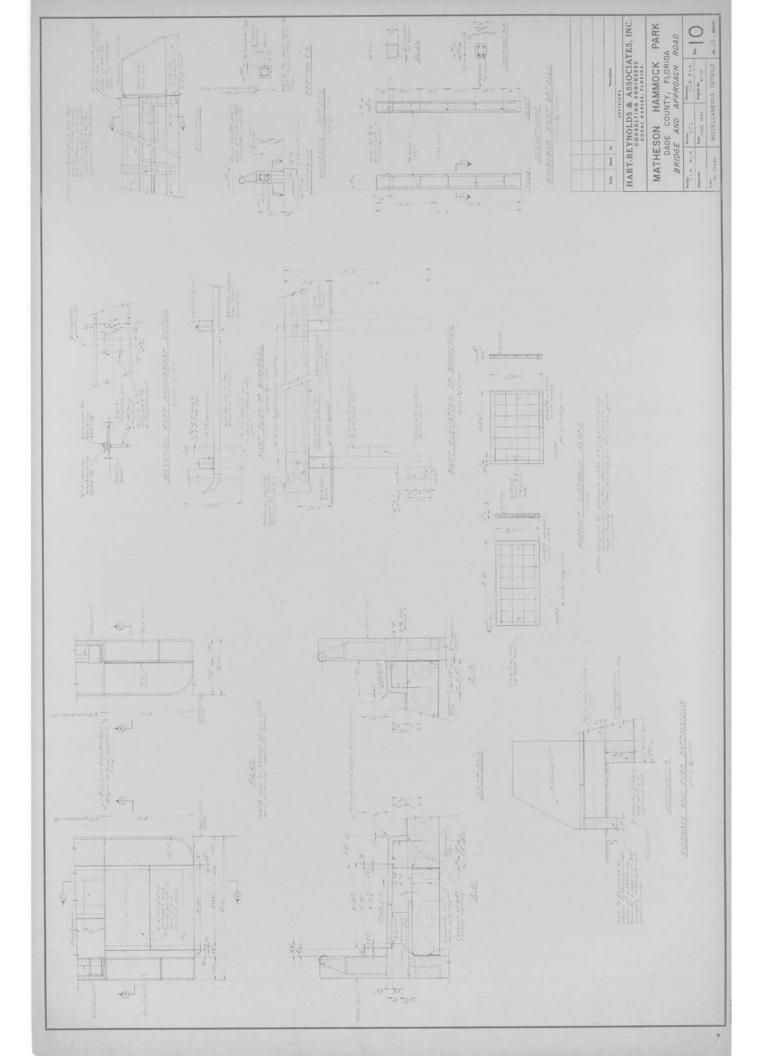


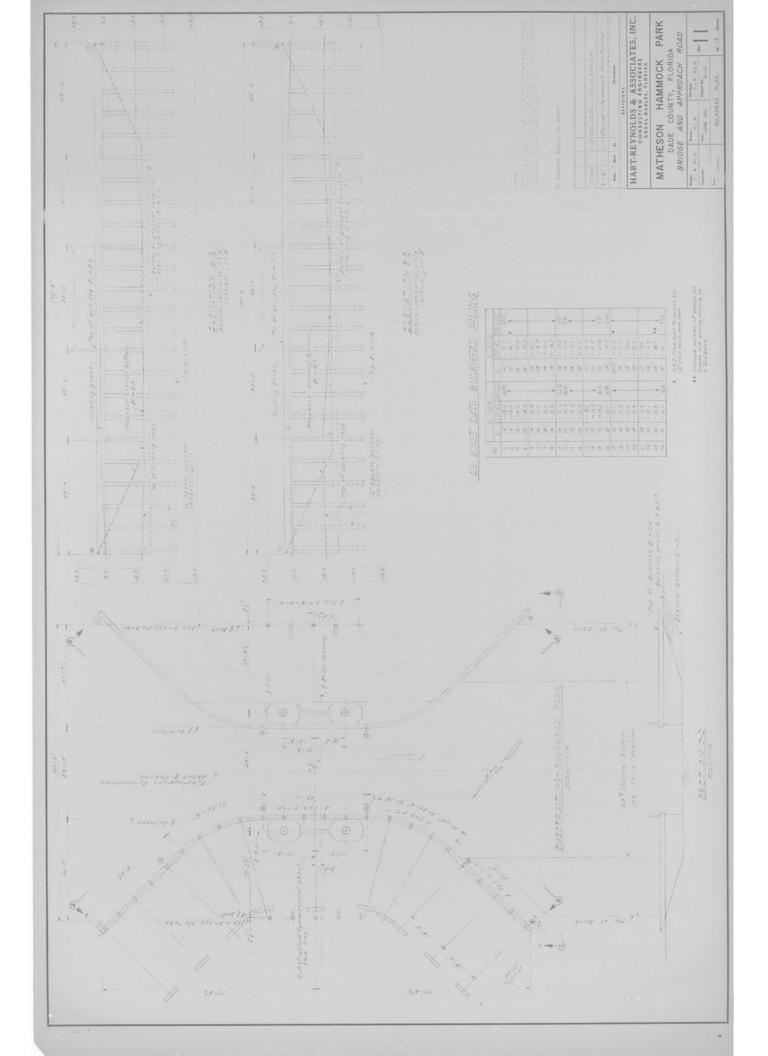


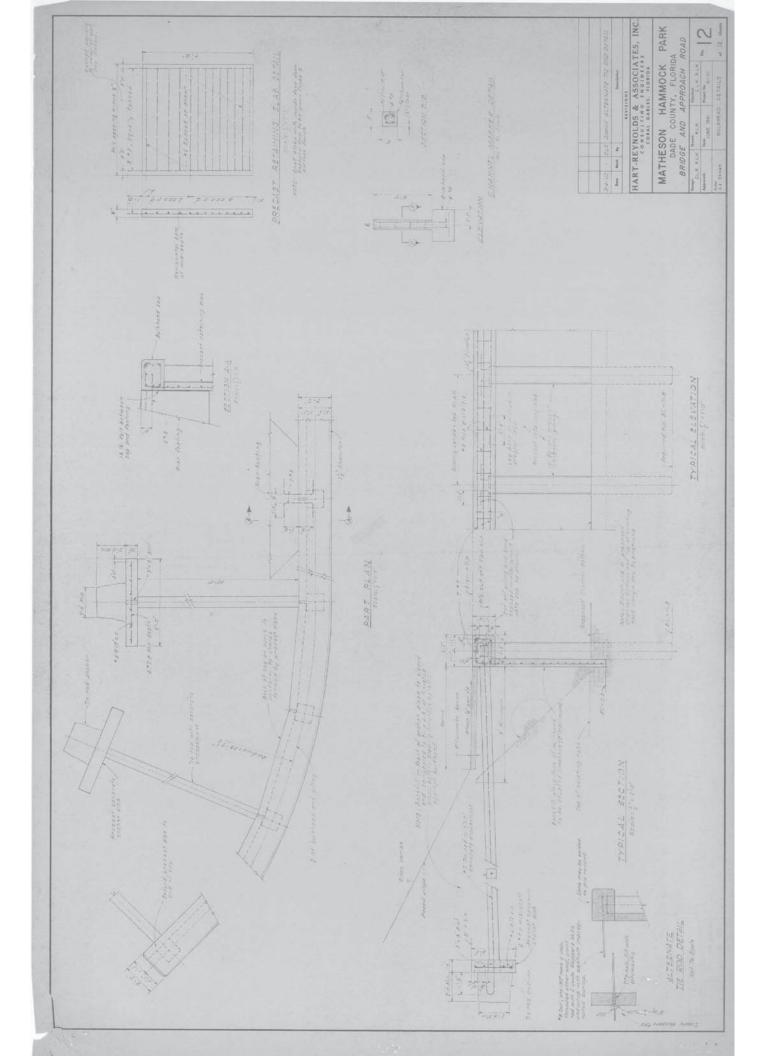












Matheson Hammock Park	Bridge No 87/29/ over 1	Matheson Hammock Ca	nal
ivialneson nammock Park	BN028 NO.874294 OVELT	viaineson nammock ca	Hal

APPENDIX F – FDOT BRIDGE INSPECTION REPORT AND SUBSEQUENT INTERIM REPORTS

BRIDGE INSPECTION REPORT

REPORT CONTAINS

PREPARED FOR: FDOT District 6
BRIDGE OWNER: MIAMI-DADE COUNTY

INSPECTION TYPE: Regular NBI

CONTRACT No. CA611

Inspected by: Marlin Engineering, Inc.

Inspection Date: 4-06-2020

Bridge No. 874294

CIDR Information

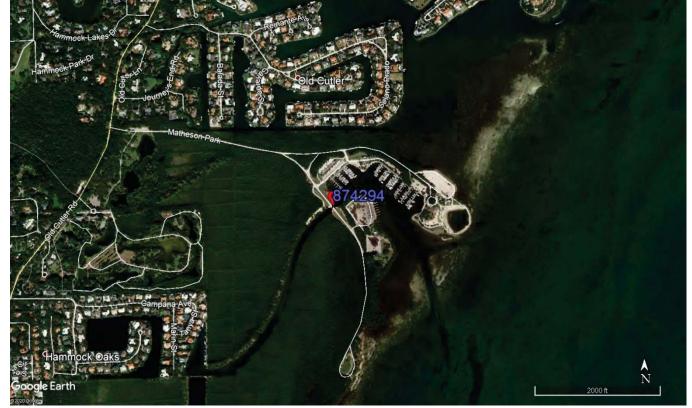
BrM Inspection Report

 \boxtimes

UW Inspection Report

☐ Fracture Critical Data☒ Load Rating Summary Sheet

☐ Addendum☐ Mechanical


Mechanical and Electrical Data

Matheson Hammock Road over Matheson Hammock Canal

Facility Carried & Location

Matheson Hammock Park

Location Map Detour Length = N/A

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

BY: Marlin Engineering, Inc. STRUCTURE NAME: Not recorded

OWNER: 2 County Hwy Agency YEAR BUILT: 1967

MAINTAINED BY: 2 County Hwy Agency SECTION NO.: 87 000 757

STRUCTURE TYPE: 5 Prestressed Concrete - 01 Slab MP: 0.080

LOCATION: Matheson Hammock Park ROUTE: 00000

SERV. TYPE ON: 5 Highway-pedestrian FACILITY CARRIED: Matheson Hmk Road
SERV. TYPE UNDER: 5 Waterway FEATURE INTERSECTED: Matheson Hammock Canal

FUNCTIONALLY OBSOLETE

X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Regular NBI

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 4/6/2020 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5

HEALTH INDEX: 86.68

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294
DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

OWNER: MAINTAINED BY: STRUCTURE TYPE: LOCATION: SERV. TYPE ON: SERV. TYPE UNDER: THIS BRIDGE CONTA	INS FRACTURE CRITICAL	k	FACILIT	ROUTE: FY CARRIED:	1967 87 000 757 0.080
THIS BRIDGE IS SCO	UR CRITICAL				
X THIS REPORT IDENT	IFIES DEFICIENCIES WHI	ICH REQUIRE P	ROMPT CORRE	CTIVE ACTIO	N
FUNCTIONALLY OBS	OLETE	X STF	RUCTURALLY D	EFICIENT	
TYPE OF INSPECTION: DATE FIELD INSPECTION OVERALL NBI RATINGS:	Regular NBI WAS PERFORMED: AB	BOVE WATER:	4/6/2020 UN	IDERWATER:	4/6/2020
DECK: 3		CHANN	NEL: 6 Bank Slu	mping	
SUPERSTRUCTURE: 3			ERT: N N/A (NBI)	
SUBSTRUCTURE: 4		SUFF. RATI			
PERF. RATING: F		HEALTH IND)EX: 86.68		
FIELD PERSONNEL / TITL					INITIALS
Porras, Omar - Senior Diver		68) (lead)			
Gomez, Hiram - Bridge Insp					
Jacob Popp - Bridge Inspect Burgos, Daniel - Bridge Insp					
Campo, Luis - Bridge Inspe					
Campo, Eula - Bridge maper	Jioi Assistant				
REVIEWING BRIDGE INSF	PECTION SUPERVISOR:				
Rego, Alexis - Bridge Inspe	ctor (CBI#00409)				
CONFIRMING REGISTERS	D PROFESSIONAL ENGI	INEER:			
Vers, Julie - Structural Designation NW 66 Avenue Suite 106 Plantation Florida 33313	gn Manager (P.E. # 77896)) Marlin Engineer	ing	711111	* No. 77896 : *
-				= = = = = = = = = = = = = = = = = = = =	n: * :~=
DATE:				= =	STATE OF : US
The official record of this package has been electrous and sealed by Julie A. Vers, P.E. on the date adjaces seal as required by Rule 61G15-23.004, F.A.C. Proof this document are not considered signed and se	cent to the rinted copies			7.	SONAL ENTINE

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

signature must be verified on any electronic copies.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

All Elements

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3178	89.88	114	3.22	244	6.9	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		114	59.07	79	40.93	0		193 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110 / 3	Cracking (PSC)	0		0		144	100	0		144 (SF)
0	510 / 3	Wearing Surfaces	1929	73.23	0		705	26.77	0		2634 sq.ft
0	3220 /	3 Crack (Wearing Surface)	0		0		705	100	0		705 sq.ft

Element Inspection Notes:

8099/3

Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

- _Object markers and centerline raised pavement markers are missing on the structure. Refer to Photo 01. NO CHANGE.
- _Sidewalk panels are loose and moves under pedestrian load. Refer to Photo 02. NO CHANGE.
- _The slab unit joints show evidence of water seepage. NO CHANGE. NCAR.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Replace the southern utility access panel of Span 1.
- _Shim all sidewalk panels throughout the structure.
- _Rehab/replace slab units 1-7, 1-8, 2-7, 2-8, 3-7 and 3-8.
- _Clean efflorescence on slab units 1-6 and 1-7 to monitor the cracks.
- Repair cracks on slab units 1-6, 1-9, 2-6, 2-9, 3-6.
- _Repair spalled/delaminated areas on slab units 1-6, 1-9, 2-6, 2-9, and 3-6 as needed.

CORRECTIVE ACTION EVALUATION:

- _The recommendation noted above was completed.
- _The recommendation noted above was not completed. Recommendation will be repeated.
- _The recommendation noted above was not completed. Recommendation will be repeated
- _The recommendation noted above was not completed. Recommendation will be repeated.
- _The recommendation noted above was not completed. Recommendation will be repeated

Refer to Defects 1080, 1090, 1100, and 1110 for additional deficiencies.

1080/3 CS-3:

_Slab Unit 1-8 east edge has a spall/delamination 4ft. L \times 15in. W \times 2in. D and associated cracks with corrosion bleed-out near mid-span. Previously noted a delamination with associated cracks. (Total 8 SF) Refer to Photo 03. INCREASE.

_Slab Unit 1-9, center line has a spall/delamination up to 36in. L \times 24in. W \times 2in. D over Abutment 1. (Total 6 SF) Refer to Photo 04. NO CHANGE.

_Slab Unit 3-7 has an unsound repaired area $11ft.\ L \times 2ft.\ W$ starting from Abutment 4 with hollow sounding throughout and associated cracks up to $1/16in.\ W$ with efflorescence and corrosion bleed-out. (Total 22 SF) Refer to Photo 05. NO CHANGE.

_Slab Unit 3-8 has a spall/delamination up to 7ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (Total 21 SF) Refer to Photo $06.\ NO$ CHANGE.

_Slab Unit 3-8 west edge has an unsound repaired area 11ft. L \times 18in. W starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence. (Total 22 SF) NO CHANGE.

CS-2:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

_Slab Unit 1-6, east edge has a delamination up to full length x 12in. W starting at Pier 2 cap. Previously noted as 3in. W. (Total 30 SF) INCREASE.

_Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, starting at Pier 2 cap. (Total 7 SF) NEW.

_Slab Unit 1-9, west edge has a delamination up to 10ft. L x 14in. W, starting at Pier 2 cap. (Total 10 SF) NO CHANGE.

_Slab Unit 2-6, east edge has a delamination 30in. L x 4in. W starting at Pier 2 cap. (Total 3 SF). Refer to Photo 07. NO CHANGE.

_Slab Unit 2-7, west edge has a delamination up to 24in. L \times 4in. W starting at Pier 2 cap. (Total 2 SF) Refer to Photo 07. NO CHANGE.

_Slab Unit 2-8 west half has two delaminated areas up to 15ft. L \times 18in. W (average width) at south and north ends. (Total 60 SF). Refer to Photo 08. NO CHANGE.

_Slab Unit 3-6 has a delamination up to 24in. L \times 6in. W on the east edge over Pier 3. (Total 2 SF) NO CHANGE.

1090/3 CS-3:

_Slab Unit 1-6 exhibits a spall with exposed rebar up to 15in. L \times 6in. W \times 1/2in. D with evidence of previous failed repair, at 9ft. from Abutment 1. (Total 1 SF) Refer to Photo 09. NO CHANGE.

1100/3 CS-3:

_Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads). (Total 20 SF) Refer to Photos 08 and 10. NO CHANGE.

1110/3 CS-3:

_Slab Unit 1-6 east edge has a delamination area full length \times 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. Previously noted as a delamination full length \times 3in. W. (Total 30 SF) INCREASE.

_Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. No corrosion bleed out was previously noted. (Total 2 SF) Refer to Photo 11. INCREASE.

_Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L \times 15in. W with associated cracks up to 1/8in. W with efflorescence and corrosion bleed-out, starting at Abutment 1. (Total 15 SF) Refer to Photo 11. NO CHANGE.

_Slab Unit 1-8 has a delaminated area up to 7ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (Total 21 SF) NO CHANGE.

_Slab Unit 1-9 west edge has a delaminated area 8ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (Total 8 SF) NO CHANGE.

_Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width). (Total 38 SF) NO CHANGE.

_Slab Unit 2-9 west edge has a delaminated area up to 5ft. L x 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (Total 5 SF). NO CHANGE.
_Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in.

W. (Total 25 SF) NO CHANGE.

510/3 PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Repair the asphalt overlay over the expansion joints and slab unit joints as needed.

CORRECTIVE ACTION EVALUATION:

The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 3220 for deficiencies.

3220/3 CS-3:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

_The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated

_The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated rutting over the slab unit joints with upheaving up to 1in. H at the shoulders, possibly indicating independent slab units movement. (Total 600 SF) Refer to Photo 12. NO CHANGE.

_The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. H and vegetation growth over the expansion joints. (Total 105 SF) Refer to Photo 13. NO CHANGE.

DECKS: Joints

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0		104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

Element Inspection Notes:

301/3 Note: The roadway joints are not visible due to an asphalt overlay.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:
_Clean and seal the expansion joints.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 2310 and 2330 for deficiencies.

2310/3 CS-3:

_There is evidence of moderate to heavy water seepage through the expansion joints on bents and abutment caps. (Total 104 LF) Refer to Photo 14. NO CHANGE. NCAR.

2330/3 CS-4

_The sealant along the sidewalk expansion joints has deteriorated. (Total $36\ \text{LF}$) Refer to Photo $15\ \text{NO}$ CHANGE.

MISCELLANEOUS: Channel

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8290 / 3	Channel	0		0		1	100	0		1 (EA)
0	9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

Element Inspection Notes:

8290/3 FROM THE 2020 UNDERWATER INSPECTION:

Divers conducting the Underwater Inspection. Refer to Photo 16.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Repair undermining areas at the north seawall.

CORRECTIVE ACTION EVALUATION:

The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 9150 for deficiencies.

9150/3 CS-3:

_There are two areas of undermining up to 22ft. L \times 3in. H \times 21in. of penetration with backfill migration under the north seawall, below Slab Units 2-2 and 2-5. Previously noted

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

T: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

undermining up to 22ft. L \times 9in. H \times 21in. of penetration. (Total 1 ea.) Refer to Photo 17. NO CHANGE.

MISCELLANEOUS: Other Elements

Str U	nit E	lem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	32	21 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0		510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
O		3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

Element Inspection Notes:

321/3 Note: The approach slabs are not visible due to an asphalt overlay.

SECONDARY:

_There are several approach roadway guardrails posts spalled/delaminated up to 14in. H \times 3.5in. W \times 1-1/4in D with exposed and corroded rebars at the following locations: NW guardrail, Posts 1, 2, 3, and 4, SW guardrail, Posts 2 and 4 from the bridge, SE guardrail, Post 1 from the bridge. Post 4 in NW guardrail was not previously noted. Refer to Photo 18. INCREASE.

_The approach guardrail panels exhibit moderate to heavy corrosion with numerous corrosion holes throughout. Refer to Photo 19. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Replace the approach guardrail panels and posts.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated.

510/3 Refer to Defect 3220 for deficiencies.

3220/3 CS-3

_The asphalt over the north approach slab has two longitudinal ravel cracks up to slab length x 1/8in. W in Lanes 1 and Lane 2. Previously noted cracks up to 1/16in. W (Total 40 SF) INCREASE. NCAR.

_The asphalt in both approach slab to approach roadway transitions has a transverse crack up to roadway width \times 1/4in. W. (Total 53 SF) NO CHANGE. NCAR.

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

Element Inspection Notes:

205/3 Note: At high tide, the seawater reaches the lower section of the columns.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

_Repair delaminated areas in columns.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1090 and 1130 for deficiencies.

1090/3 CS-3:

_Column 2-2, south face has a spall/delamination up to 7ft. H x 3ft. W x 3in. D with one

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

exposed rebar and one stirrup, having areas of up to 80% section remaining. Additionally,

there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W. No exposed rebar was previously noted.

(Total 1 ea.) Refer to Photo 20. INCREASE.

1130/3 CS-3:

_Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height \times 1/16in. W, as a result of corrosion of the steel reinforcement. (Total 3 ea.) Refer to Photo 21. NO CHANGE.

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

Element Inspection Notes:

215/3 Refer to Defect 1080 for deficiencies.

1080/3 CS-3:

_Abutment 4 cap has a spall/delamination up to 5ft. L x full height x 2in. D with associated cracks up to 1/16in. W under Slab Units 3-10 and 3-11. (Total 5 LF) Refer to Photo 22. NEW.

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

Element Inspection Notes:

234/3 SECONDARY:

_Bents 2 and 3 caps have vegetation growth along the west end. Refer to Photo 23. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Remove vegetation from west end of caps.
- _Repair delaminations in Pier 2 and 3 caps.

CORRECTIVE ACTION EVALUATION:

- _The corrective action noted above was not completed. Recommendation will be repeated.
- The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defect 1080 for additional deficiencies.

1080/3 CS-3

_Bent 2 cap has a spall/delamination up to 3ft. L \times 16in. H \times 1 in. D on the south face over Column 2-2, and on the same location, north face a delamination 20in. L \times 12in. H. Previously noted only a delamination 3ft. L \times 16in. H. (Total 3 LF) Refer to Photo 24. INCREASE.

_Bent 3 cap, bottom and north faces has two unsound repaired areas with multidirectional cracks up to 1/64in. W. No unsound concrete with cracks was previously noted. (Total 4 LF) INCREASE.

CS-2:

_Pier 3 cap has intermittent delaminated areas up to 3ft. L \times 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges. Previously noted delaminations up to 3ft. L

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

ISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

x 16in. H totaling 5 LF. (Total 12 LF) INCREASE.

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Materia	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft
0	6000 / 3	Scour	0		0		40	100	0		40 ft

Element Inspection Notes:

8393/3

Note: This element represents the concrete seawall that lines both sides of the channel. The seawall is underwater during high tide. The seawalls have a total of 44 piles; 22 piles at each seawall.

SECONDARY:

_The brackets and fasteners attaching the clearance gauges to the seawalls exhibit heavy to severe corrosion. Refer to Photo 25.

FROM THE 2020 UNDERWATER INSPECTION:

SECONDARY:

_SE and NW clearance gauges have moderate decay at bottom 3ft. Refer to Photo 26. NO $\sf CHANGE$.

_The south seawall has two open joints up to 4in. W with backfill leakage behind Piles 15 and 18 from west. Refer to Photo 27. NO CHANGE.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Clean & seal cracks & repair delaminations/spalls in seawall caps.
- _Seal open joints at the south seawall behind Piles 15 and 18.

CORRECTIVE ACTION EVALUATION:

- _The corrective action noted above was not completed. Recommendation will be repeated.
- _The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1130 and 6000 for additional deficiencies.

1130/3 CS-3

_The seawall caps on the north and south walls have up to 1/4in W cracks, with associated delaminations/spalls throughout their entire lengths. (Total 314 LF) Refer to Photo 28. NO CHANGE.

_The south seawall at Pile 13, SE corner has a spall 14in. H \times 3-1/2in. W \times 1in. D, 3ft. 9in. below cap. NO CHANGE. NCAR.

_South seawall piles have vertical cracks up to 31in. L \times 1/8in. W, some with corrosion bleed out as follows: NO CHANGE. NCAR.

-Pile 3, NE corner has a crack, and west, north and east faces have cracks with corrosion bleed out.

- -Pile 4, north face has a crack with corrosion bleed out.
- -Pile 16, east face has a crack with corrosion bleed out.
- -Pile 17, west, north and east faces have cracks with corrosion bleed out.
- -Piles 19, 20 and 21, SW and SE corners have cracks.

_North seawall piles have vertical cracks intermittently throughout, up to 34in. L x 1/16in. W, some with corrosion bleed out as follows: NO CHANGE. NCAR.

- -Piles 5 and 6, SW and SE corners have cracks with corrosion bleed out.
- -Pile 3, SW corner has a crack.
- -Pile 4, NW corner has a crack.
- -Piles 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23 have cracks in the SW and SE corners.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

-Pile 11, SE corner has a crack.

6000/3 From the 2020 Underwater Inspection:

CS-3:

_There are two areas of undermining up to 22ft. L x 9in. H x 21in. of penetration with backfill migration under the north seawall, below Slab Units 2 and 5. Refer to Element 8290 for related comments and recommended corrective actions. (Total 40 LF) NO CHANGE.

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
0	1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

Element Inspection Notes:

8394/3

Note: At high tide, the seawater reaches the lower section of the concrete slope pavement.

SECONDARY:

_There is vegetation growth in the joints between the panels of slope protection in several locations. NO CHANGE. NCAR.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

Repair settled & fractured sections of slope pavement.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was not completed. Recommendation will be repeated.

Refer to Defects 1130 and 4000 for additional deficiencies.

1130/3 CS-3:

_The slope pavement has multidirectional cracks up to 5ft. L \times 1/8in. W along the NE corner near the toe. (Total 320 SF) NO CHANGE. NCAR.

4000/3 CS-3

_The top slope pavement section along the SW and NW corners has settled up to 4in. H. (Total 933 SF) NO CHANGE.

_The slope protection toe has a fractured and settled area of 15ft. \times 7ft. \times 2ft deep at the NW corner behind the seawall cap. Possibly due to water reaching this area at high tide, no undermining or backfill migration are noted in the channel adjacent area. (Total 105 SF) Refer to Photo 29. NO CHANGE.

_The SW slope protection toe has 5 fractured panels that have settled up to 3in. H. Possibly due to water reaching this area at high tide, no undermining or backfill migration are noted in the channel adjacent area. (Total 50 SF) Refer to Photo 30. NO CHANGE.

SUPERSTRUCTURE: Superstructure

St	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
	0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
	0	1020 / 3	Connection	0		3	100	0		0		3 ft

Element Inspection Notes:

333/3 Note: This element represents the concrete post and beam bridge rail with

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

> aluminum handrail on top across both sides of the structure. _The concrete bridge rail beams have 1/64in W cracks at the junctures with the posts in several locations. NO CHANGE. NCAR. PREVIOUS RECOMMENDED CORRECTIVE ACTION: _Replace the approach guardrail panels and posts. _Replace the missing railing nuts on left side of Bent 3. _Clean & coat the corroded nuts of railing. CORRECTIVE ACTION EVALUATION: _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. _The corrective action noted above was not completed. Recommendation will be repeated. Refer to Defects 1000 and 1020 for additional deficiencies. 1000/3 The rail anchor bolt nuts and washers have moderate corrosion at random locations: 25 nuts at west railing, and 5 nuts at east railing. (Total 30 LF) Refer to Photo 31. NO CHANGE. 1020/3 CS-2: _There are several missing anchor bolt nuts at the aluminium rail posts at the following locations: (Total 3 ea.) Refer to Photo 32. INCREASE. _West rail, Post 1-1 is missing 1 of 4 nuts. NEW. West rail, Post 2-6 is missing 2 of 4 nuts. NO CHANGE. East rail, Post 1-5 is missing 1 of 4 nuts. NEW.

Total Number of Elements*: 10 *excluding defects/protective systems

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 **DISTRICT: D6 - Miami**

INSPECTION DATE: 4/6/2020 GZJW

Inspector Recommendations

UNIT: 0 **DECKS**

ELEMENT/ENV: 301:2330 / 3 Seal Damage **ELEM CATEGORY: Joints**

CONDITION

STATE **PRIORITY** Element Estimated Quantity: 36 ft

MMS Quantity: 36 If WORK ORDER RECOMMENDATION:

Install new sealant along the sidewalk expansion joints. Photo 15

ELEMENT/ENV: 8099 / 3 PS Conc Slab (Sonovoid) **ELEM CATEGORY: Decks/Slabs**

CONDITION **STATE PRIORITY** Element Estimated Quantity: 4 (SF) 1,2,3 MMS Quantity: 4 sf 3 WORK ORDER RECOMMENDATION: Replace missing object markers at the four corners of the bridge. Photo 01 MMS Quantity: 300 sf Element Estimated Quantity: 300 (SF) 1,2,3 3 WORK ORDER RECOMMENDATION:

ELEMENT/ENV:

Properly secure the sidewalk panels. Photo 02

ELEM CATEGORY: Decks/Slabs 8099:510:3220 / 3 Crack (Wearing Surface)

CONDITION STATE		PRIORITY		
3	MMS Quantity: 600 sf Element Estimated Quantity: 600 sq.ft	0		
WORK ORDER RECOMMENDATION:				
Mo				
3	MMS Quantity: 600 sf Element Estimated Quantity: 600 sq.ft	3		
WORK ORDER RECOMMENDATION:				
Repair cracks on the asphalt along the slab unit joints. Photo 12				
3 WORK C	MMS Quantity: 105 sf Element Estimated Quantity: 105 sq.ft DRDER RECOMMENDATION:	3		

ELEMENT/ENV: 8099:1080 / 3 Delamination/Spall/Patched Area **ELEM CATEGORY: Decks/Slabs**

CONDITION STATE			PRIORITY
2,3	MMS Quantity: 338 sf	Element Estimated Quantity: 338 (SF)	3

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units. Photos 03 to 11

Clean and repair cracks and rutting along the expansion joints. Photo 13

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

PRINTED: 05/18/2020 REPORT ID: INSP005

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294

DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

Inspector Recommendations

UNIT: 0 DECKS

ELEMENT/ENV: 8099:1100 / 3 Exposed Prestressing ELEM CATEGORY: Decks/Slabs

CONDITION STATE

PRIORITY

3 MMS Quantity: 20 sf Element Estimated Quantity: 20 (SF)

3

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing and reinforce Slab Unit 2-8. Photos 08 and 10

UNIT: 0 MISCELLANEOUS

ELEMENT/ENV: 321 / 3 Re Conc Approach Slab ELEM CATEGORY: Other Elements

CONDITION
STATE

1 MMS Quantity: 80 sf Element Estimated Quantity: 80 sq.ft

PRIORITY 3

WORK ORDER RECOMMENDATION:

Replace all the approach guardrail panels. Photo 19

1 MMS Quantity: 7 sf Element Estimated Quantity: 7 sq.ft

3

WORK ORDER RECOMMENDATION:

Replace spalled and delaminated posts along the roadway approach guardrails. Photo 18

ELEMENT/ENV: 8290:9150 / 3 Bank Erosion ELEM CATEGORY: Channel

CONDITION STATE PRIORITY

3 MMS Quantity: 8 mh Element Estimated Quantity: 1 (EA)

3

3

WORK ORDER RECOMMENDATION:

Repair undermining areas at the north seawall. Photo 17

UNIT: 0 SUBSTRUCTURE

ELEMENT/ENV: 205:1090 / 3 Exposed Rebar ELEM CATEGORY: Substructure

CONDITION STATE PRIORITY

3 MMS Quantity: 16 mh Element Estimated Quantity: 1 each WORK ORDER RECOMMENDATION:

Remove any loose concrete and repair delaminations and spalls along the Column 2-2. Photo 20

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294

DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

Inspector Recommendations

UNIT: 0 SUBSTRUCTURE

ELEMENT/ENV: 205:1130 / 3 Cracking (RC and Other) ELEM CATEGORY: Substructure

CONDITION STATE PRIORITY

3 MMS Quantity: 8 mh Element Estimated Quantity: 4 each 3

WORK ORDER RECOMMENDATION:
Install cathodic protection to Bents 2 and 3 columns. Photos 20 and 21

3 MMS Quantity: 80 mh Element Estimated Quantity: 4 each 3

Repair delaminations and seal cracks along Bents 2 and 3 columns. Photo 21

ELEMENT/ENV: 215:1080 / 3 Delamination/Spall/Patched Area ELEM CATEGORY: Substructure

CONDITION
STATE

9 PRIORITY

3 MMS Quantity: 8 mh Element Estimated Quantity: 5 ft

3

WORK ORDER RECOMMENDATION:

WORK ORDER RECOMMENDATION:

Repair spall/delamination on Abutment 4 cap under Slab Units 3-10 and 3-11. Photo 22

ELEMENT/ENV: 234 / 3 Re Conc Pier Cap ELEM CATEGORY: Substructure

CONDITION
STATE
PRIORITY

1,2,3 MMS Quantity: 2 mh Element Estimated Quantity: 2 ft 3

WORK ORDER RECOMMENDATION:

Remove vegetation growing on west end of Bents 2 and 3 caps. Photo 23

ELEMENT/ENV: 234:1080 / 3 Delamination/Spall/Patched Area ELEM CATEGORY: Substructure

CONDITION
STATE

2,3 MMS Quantity: 16 mh Element Estimated Quantity: 19 ft 3

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps. Photo 24

ELEMENT/ENV: 8393 / 3 Bulkhead Seawall Any Material ELEM CATEGORY: Substructure

CONDITION
STATE

PRIORITY

3 MMS Quantity: 8 mh Element Estimated Quantity: 4 ft 3

WORK ORDER RECOMMENDATION:

Replace the clearance gauges and hardware on the seawall at both sides of the channel. Photos 25 and 26

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294

DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

Inspector Recommendations

UNIT: 0 **SUBSTRUCTURE**

ELEMENT/ENV: 8393 / 3 Bulkhead Seawall Any Material **ELEM CATEGORY: Substructure**

CONDITION STATE

Element Estimated Quantity: 2 ft

PRIORITY 3

MMS Quantity: 8 mh

Seal open joints at the south seawall behind Piles 15 and 18. Photo 27

ELEMENT/ENV: 8393:1130 / 3 Cracking (RC and Other) **ELEM CATEGORY: Substructure**

CONDITION

STATE **PRIORITY**

3 MMS Quantity: 40 mh Element Estimated Quantity: 314 ft 3

WORK ORDER RECOMMENDATION:

WORK ORDER RECOMMENDATION:

Repair delaminations and spalls along the seawall caps. Photo 28

ELEMENT/ENV: 8394:4000 / 3 Settlement **ELEM CATEGORY: Substructure**

CONDITION

PRIORITY STATE

MMS Quantity: 160 mh Element Estimated Quantity: 1088 (SF) 3

WORK ORDER RECOMMENDATION:

Repair settled and fractured areas along the slope protections. Photos 29 and 30

UNIT: 0 **SUPERSTRUCTURE**

ELEM CATEGORY: Superstructure ELEMENT/ENV: 333:1000 / 3 Corrosion

CONDITION

PRIORITY STATE

2 Element Estimated Quantity: 30 ft MMS Quantity: 30 If

3

WORK ORDER RECOMMENDATION:

Clean and paint or replace corroded hardware along the bridge aluminium rail. Photo 31

ELEMENT/ENV: 333:1020 / 3 Connection **ELEM CATEGORY: Superstructure**

CONDITION

STATE **PRIORITY**

MMS Quantity: 3 If Element Estimated Quantity: 3 ft 3

WORK ORDER RECOMMENDATION:

Replace missing nuts at the aluminium rail post connections. Photo 32

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north.

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 33 and 34.

REVIEWED BY:

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

INSPECTION DATE: 4/6/2020 GZJW

INSPECTION NOTES: GZJW 4/6/2020

Sufficiency Rating Calculation Accepted by knmeira at 5/13/2020 9:36:35 AM

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020)

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020)

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020)

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/06/2020 per Julie A.Vers, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

Element 8475 R/Conc Walls was replaced by 8393 Bulkhead Seawall Any Material during this inspection cycle. All previous notes were transferred accordingly. (04/06/2020)

The following elements were inspected underwater by the divers:

8290 Channel

8393 Bulkhead Seawall Any Material

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED.

RT: Right LT: Left

NC: No Change INC: Increase

CAT: Corrective Action Taken

L: Long W: Wide H: High D: Deep

UW: Underwater S.L.: Section Loss

in.: Inches ft.: Feet

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 01 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Object markers and centerline raised pavement markers are missing on the structure.

WORK ORDER RECOMMENDATION:

Replace missing object markers at the four corners of the bridge.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 02 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Sidewalk panels are loose and moves under pedestrian load.

WORK ORDER RECOMMENDATION: Properly secure the sidewalk panels.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 03 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-8 east edge has a spall/delamination 4ft. L x 15in. W x 2in. D and associated cracks with corrosion bleed-out near mid-span.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 04 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2in. D over Abutment 1.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 05 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 11ft. L x 2ft. W starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294
DISTRICT: D6 - Miami

Photo 06 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 7ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 07 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Units 2-6 and 2-7, east and west edges have delaminations up to 30in. L x 4in. W, starting at Pier 2 cap.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 08 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, and at midspan has a spall 10ft. L x 24in. W x up to 4in. D with exposed strands. Refer to Photo 10 for additional information.

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

Repair spalls delaminations and cracks along the underside of the slabs units.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 09 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-6 exhibits a spall with exposed rebar up to 15in. L x 6in. W x 1/2in. D with evidence of previous failed repair, at 9ft. from Abutment 1.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 10 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads).

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

Repair spalls delaminations and cracks along the underside of the slabs units.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 11 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleedout over Abutment 1. Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W with associated cracks up to 1/8in. W with efflorescence and corrosion bleed-out, starting at Abutment 1.

WORK ORDER RECOMMENDATION:

Repair spalls delaminations and cracks along the underside of the slabs units.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 12 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated rutting over the slab unit joints with upheaving up to 1in. H at the shoulders, possibly indicating independent slab units movement.

WORK ORDER RECOMMENDATION: Repair cracks on the asphalt along the slab unit joints. Monitor the slab units for independent movement.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 13 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. H and vegetation growth over the expansion joints.

WORK ORDER RECOMMENDATION:

Clean and repair cracks and rutting along the expansion joints.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 14 Element/Env 301/3: Pourable Joint Seal

There is evidence of moderate to heavy water seepage through the expansion joints on bents and abutment caps.

WORK ORDER RECOMMENDATION: None.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 15 Element/Env 301/3: Pourable Joint Seal

The sealant along the sidewalk expansion joints has deteriorated.

WORK ORDER RECOMMENDATION:

Install new sealant along the sidewalk expansion joints.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 16 Element/Env 8290/3: Channel

Divers conducting the Underwater Inspection.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

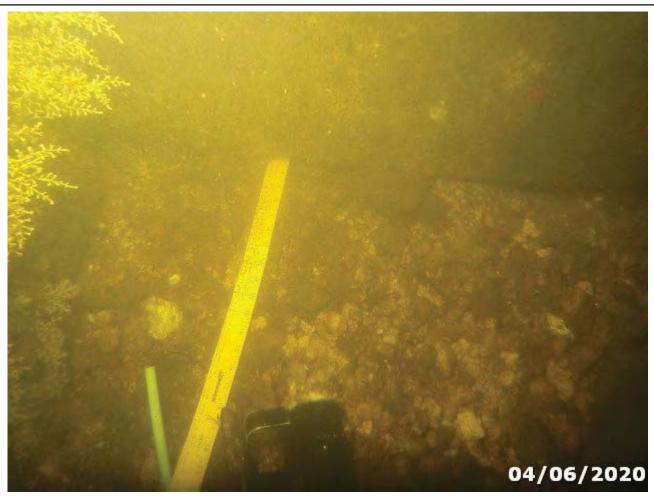


Photo 17 Element/Env 8290/3: Channel

There are two areas of undermining up to 22ft. L x 3in. H x 21in. of penetration with backfill migration under the north seawall, below Slab Units 2-2 and 2-5.

WORK ORDER RECOMMENDATION: Repair undermining areas at the north seawall.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 18 Element/Env 321/3: R/Conc Approach Slab

There are several approach roadway guardrails posts spalled/delaminated up to 14in. H x 3.5in. W x 1-1/4in D with exposed and corroded rebars. Shown Post 1 at NW approach guardrail.

WORK ORDER RECOMMENDATION:

Replace spalled and delaminated posts along the roadway approach guardrails.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294
DISTRICT: D6 - Miami INSPECTION DATE: 4/6/2020 GZJW

Photo 19 Element/Env 321/3: R/Conc Approach Slab

The approach guardrail panels exhibit moderate to heavy corrosion with numerous corrosion holes throughout.

WORK ORDER RECOMMENDATION: Replace all the approach guardrail panels.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 20 Element/Env 205/3: Re Conc Column

Column 2-2, south face has a spall/delamination up to 7ft. H x 3ft. W x 3in. D with one exposed rebar and one stirrup, having areas of up to 80% section remaining. Additionally, there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W.

WORK ORDER RECOMMENDATION:

Remove any loose concrete and repair delaminations and spalls along the Column 2-2. Install cathodic protection to Bents 2 and 3 columns.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 21 Element/Env 205/3: Re Conc Column

Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height x 1/16in. W, as a result of corrosion of the steel reinforcement.

WORK ORDER RECOMMENDATION: Install cathodic protection to Bents 2 and 3 columns.

Repair delaminations and seal cracks along Bents 2 and 3 columns.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 22 Element/Env 215/3: Re Conc Abutment

Abutment 4 cap has a spall/delamination up to 5ft. L x full height x 2in. D with associated cracks up to 1/16in. W under Slab Units 3-10 and 3-11.

WORK ORDER RECOMMENDATION:

Repair spall/delamination on Abutment 4 cap under Slab Units 3-10 and 3-11.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 23 Element/Env 234/3: Re. Concrete Pier Cap

Bents 2 and 3 caps have vegetation growth along the west end.

WORK ORDER RECOMMENDATION:

Remove vegetation growing on west end of Bents 2 and 3 caps.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 24 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap has a spall/delamination up to 3ft. L x 16in. H x 1 in. D on the south face over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H.

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 25 Element/Env 8393/3: Bulkhead Seawall Any Material

The brackets and fasteners attaching the clearance gauges to the seawalls exhibit heavy to severe corrosion.

WORK ORDER RECOMMENDATION:

Replace the clearance gauges and hardware on the seawall at both sides of the channel.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 26 Element/Env 8393/3: Bulkhead Seawall Any Material

SE and NW clearance gauges have moderate decay at bottom 3ft.

WORK ORDER RECOMMENDATION:

Replace the clearance gauges and hardware on the seawall at both sides of the channel.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

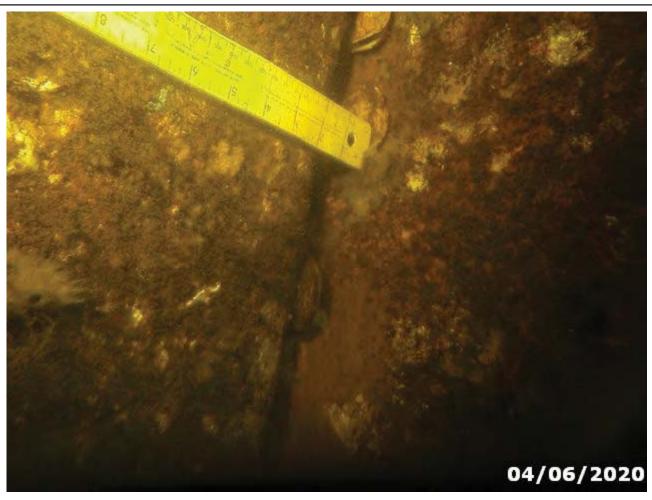


Photo 27 Element/Env 8393/3: Bulkhead Seawall Any Material

The south seawall has two open joints up to 4in. W with backfill leakage behind Piles 15 and 18 from west.

WORK ORDER RECOMMENDATION:

Seal open joints at the south seawall behind Piles 15 and 18.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 28 Element/Env 8393/3: Bulkhead Seawall Any Material

The seawall caps on the north and south walls have up to 1/4in W cracks, with associated delaminations/spalls throughout their entire lengths.

WORK ORDER RECOMMENDATION:

Repair delaminations and spalls along the seawall caps.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 29 Element/Env 8394/3: R/Conc Abut Slope Protection

The slope protection toe has a fractured and settled area of 15ft. x 7ft. x 2ft deep at the NW corner behind the seawall cap. The channel water reach this area at high tide.

WORK ORDER RECOMMENDATION:

Repair settled and fractured areas along the slope protections.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 30 Element/Env 8394/3: R/Conc Abut Slope Protection

The SW slope protection toe has 5 fractured panels that have settled up to 3in. H. The channel water reach this area at high tide.

WORK ORDER RECOMMENDATION:

Repair settled and fractured areas along the slope protections.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 31 Element/Env 333/3: Other Bridge Railing

The rail anchor bolt nuts and washers have moderate corrosion at random locations: 25 nuts at west railing, and 5 nuts at east railing.

WORK ORDER RECOMMENDATION:

Clean and paint or replace corroded hardware along the bridge aluminium rail.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 32 Element/Env 333/3: Other Bridge Railing

There are several missing anchor bolt nuts at the aluminium rail posts: west rail, Posts 1-1 and 2-6; and east rail, Post 1-5.

WORK ORDER RECOMMENDATION:

Replace missing nuts at the aluminium rail post connections.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 33 STRUCTURE NOTES: South Approach Posting Sign

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

Photo 34 STRUCTURE NOTES: North Approach Posting Sign

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

SCOUR EVALUATION

Channel looking West

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) Inspection

Structure ID: 874294 DISTRICT: D6 - Miami

SCOUR EVALUATION

Channel looking East

F. FIELD PREPARATION and CHECKLIST

Structure ID: 874294

Inspection Date: <u>04/06/2020</u> Underwater: <u>04/06/2020</u>

A. Tools and Equipment

Full Size Cargo Van: Yes: X No: Pick-up Truck: Yes: X No:

Automobile: Yes: No: X

Camera: Yes: X No: Video: Yes: _ No: X

NDT Equipment: Yes: No: X

NDT Type: <u>N/A</u>

Binoculars: Yes: No: X

Diving Performed: Yes: X No: Max Depth: 10.6 ft. Current: Moderate

Dive Mode: SCUBA

Hand Tools:

Standard Inspection Tools
 Chipping Hammer

3. Inspection Hand Tools 4. Flashlight

5. Folding Rulers

Other:

B. Services

Flag Crew: N/A Snooper: N/A Shooper: N/A Other:

C. Scheduling (Brief Explanation)

Routine Inspection, no special scheduling needed.

Man Hours: <u>0 hrs.</u> Dive Time: <u>2 hrs.</u> Travel Time: <u>1 hr.</u> Office Time: <u>1 hr.</u>

D. Site Conditions

Boat Needed: NO Type of Boat: N/A

Location of Boat Ramp: <u>N/A</u> Lengthy Travel Required: <u>N/A</u>

Difficult Access: NO

Water Obviously Polluted: NO Water quality is fair: Yes Strong Water Current: Yes

Other: N/A

E. UNDERWATER ELEMENTS INSPECTED:

- 8290 Channel 1ea.
- 8393 Bulkhead Seawall Any Material 354 ft.

Bridge No. 874294 Analysis Method: LRFR-LRFD

Location Matheson hammock Road over matheson Hammock Canal

Description 3 Spans, 2-30'&1-40', Prestressed voided slab beams 36"x17"

FDOT Bridge Load Rating Summary
Form (Page 1 of 1)

Rating Type	Rating Type	Gross Axle Weight (tons)	Moment/Shear	/Service	Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF-Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	LL	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600	P		-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S16	-44	
Rating Type, Analysis	LRFR-LRFD		
Distribution Method	Others		
Impact Factor	33.0%	(axle loading)	
FL120 Gov. Span Length	38.3	(feet)	
Minimum Span Length	28.3	(feet)	
Recommended Posting	> 39.9% below (0.000-	0.600) (Required)	
Recommended SU Posting*	11	(tons)	
Recommended C Posting	16	(tons)	P
Recommended ST5 Posting	18	(tons)].
Owner	02 County Highway Ag	ency	
Location	Neither interstate traff		1
EV Posting	reasonable access to a No. EV posting is not r FAST Act does not app	ecommended. The	
Floor Beam Present?	No		
Segmental Bridge?	No		
Project No. & Reason	432907-1-72-02	Deterioration	
Plans Status	Built		1

Juan Sobrino

Performed by:

Checked by:

Sealed By:

FL P.E. No.:

Company:

Address:

Cert. Auth. No.:

Phone & email:

Digitally signed by Juan Sobrino Date: 2020.01.13 15:58:25 -05'00'

Date:

Date:

Date:

01/13/20

01/13/20

01/13/20

Juan A. Sobrino, State of Florida, Professional Engineer, License No 73121.

Mengyuan Chen

Juan A. Sobrino

Juan A. Sobrino

(+1) 305 648 00 10, miami@pedelta.om

2000 Ponce de Leon Blvd., Suite 624, Coral Gables. Florida

73121

27244

Pedelta Inc.

This document has been electronically signed and sealed by Juan A. Sobrino on January 13th, 2020 using a SHA authentication code. Printed copies of this document are not considered signed and sealed and the SHA authentication code must be verified on any electronic copies.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) CIDR

DATE PRINTED: 5/18/2020

Description

Structure Unit Identification

Bridge/Unit Key: 874294 0

Structure Name:

Description: SPANS 1 THRU 3

Type: M - Main

Roadway Identification

NBI Structure No (8): 874294

Position/Prefix (5): 1 - Route On Structure

Kind Hwy (Rte Prefix): 4 County Hwy Design Level of Service: 8 Service Road

Route Number/Suffix: 00000 / 0 N/A (NBI)

Feature Intersect (6): Matheson Hammock Canal

Critical Facility: Not Defense-crit
Facility Carried (7): Matheson Hmk Road

Mile Point (11): 0.08

Latitude (16): 025d40'44.2"

Long (17): 080d15'43.8"

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS

National base Net (12): 0 - Not on Base Network

LRS Inventory Rte (13a): 87 000 757 Sub Rte (13b): 00

Functional Class (26): 09 Rural Local

Federal Aid System: OFF

Defense Hwy (100): 0 Not a STRAHNET hwy

Direction of Traffic (102): 2 2-way traffic

Emergency: X

NBI Project Data

Proposed Work (075A): Not Applicable (P)

Work To Be Done By (075B): Not Applicable (P)

Improvement Length (076): 0 ft

NBI Rating

Channel (61): 6 Bank Slumping

Deck (58): 3 Serious

Superstructure (59): 3 Serious Substructure (60): 4 Poor

Roadway Traffic and Accidents

Lanes (28): 2 Medians: 0 Speed: 15 mph

ADT Class: 2 ADT Class 2

Recent ADT (29): 736 Year (30): 2014 Future ADT (114): 1168 Year (115): 2036

Truck % ADT (109): 1
Detour Length (19): 99 mi

Detour Speed:

Accident Count: -1 Rate:

Roadway Clearances

Vertical (10): 99.99 ft Appr. Road (32): 26.25 ft

Horiz. (47): 26.25 ft Roadway (51): 26.25 ft

Truck Network (110): 0 Not part of natl netwo

Toll Facility (20): 3 On free road Fed. Lands Hwy (105): 0 N/A (NBI)

School Bus Route:

Transit Route:

Improvement Cost (094): \$ 0.00

Roadway Improvement Cost (095): \$ 0.00

Total Cost (096): \$ 0.00

Year of Estimate (097):

Culvert (62): N N/A (NBI)

Waterway (71): 8 Equal Desirable

Unrepaired Spalls: -1 sq.ft.

Review Required: X

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) CIDR

DATE PRINTED: 5/18/2020

Structure Identification

Admin Area: Miami-Dade
District (2): D6 - Miami
County (3): (87)Miami-Dade
Place Code (4): South Miami Heights
Location (9): Matheson Hammock Park
Border Br St/Reg (98): Not Applicable (P) Share: 0 %

Border Struct No (99):

FIPS State/Region (1): 12 Florida Region 4-Atlanta

NBIS Bridge Len (112): Y - Meets NBI Length

Parallel Structure (101): No || bridge exists
Temp. Structure (103): Not Applicable (P)
Maint. Resp. (21): 2 County Hwy Agency
Owner (22): 2 County Hwy Agency
Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft

Bridge Median (33): 0 No median

Main Span Material (43A): 5 Prestressed Concrete Appr Span Material (44A): Not Applicable (P)

Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load
Deck Geometry (68): 5 Above Tolerable
Underclearances (69): N Not applicable (NBI)
Approach Alignment (72): 8-No Speed Red thru Curv

Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard

Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft

Under (reference) (54a): N Feature not hwy or RR

Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 04/06/2020

Inspector: KNMEIOP - Omar Porras

Bridge Group: CA611

Alt. Bridge Group:

Primary Type: Regular NBI

Review Required: X

Geometrics

Spans in Main Unit (45): 3
Approach Spans (46): 0
Length of Max Span (48): 38.3 ft
Structure Length (49): 100.33 ft
Total Length: 140.33 ft
Deck Area: 3536 sqft
Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0

Type of Service On (42a): 5 Highway-pedestrian

Under (42b): 5 Waterway
Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft Skew (34): 0 deg

Deck Type (107): 2 Concrete Precast Panel

Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required

Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft

Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 86.68

Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR

Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

NBI: 04/06/2022 Element: 10/06/2020

Fracture Critical:

Underwater: 04/06/2022 Other/Special: 10/06/2020

Inventory Photo Update Due: 04/06/2024

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR/Bridge Profile Report with PDF attachment(s) **REPORT ID: INSP005**

CIDR Structure ID: 874294 **DATE PRINTED: 5/18/2020** Schedule Cont. **Inspection Types** NBI X Element X Fracture Critical Underwater X Other Special X **Performed Inspection Intervals** Required (92) Frequency (92) Last Date (93) **Inspection Resources** Fracture Critical Crew Hours: mos 04/06/2020 Underwater 24 mos Flagger Hours: 04/06/2020 6 mos Helper Hours: Other Special 04/06/2020 Snooper Hours: NBI 24 (90)mos (91)Special Crew Hours: **Bridge Related** Special Equip Hours: 0 **General Bridge Information** Parallel Bridge Seq: Bridge Rail 1: Conc parapet-alum-rail Channel Depth: 10.6 ft Bridge Rail 2: Not applicable-No rail Radio Frequency: -1 Electrical Devices: No electric service Phone Number: Culvert Type: Not applicable Maintenance Yard: Not FDOT Maintained **Exception Date:** Exception Type: Unknown FIHS ON / OFF: No Routes on FIHS Accepted By Maint: 01/01/1967 Previous Structure: Warranty Expiration: 00/00/0000 2nd Previous Structure: Replacement Structure: Performance Rating: Poor Permitted Utilities: Power [Fiber Optic Sewage X Other **Bridge Load Rating Information** Inventory Type (065): 3 LRFR Load & Res. Fact Inventory Rating (066): 7.6 tons Operating Type (063): 3 LRFR Load & Res. Fact Operating Rating (064): 11.9 tons Original Design Load (031): HL 93 FL120 Permit Rating: 16.2 tons Date: 01/13/2020 HS20/FL120 Max Span Rating: 16.2 tons Initials: JA Dynamic Impact in Percent: 33 % Load Rating Rev. Recom.: No Governing Span Length: 38.3 ft Load Rating Plans Status: Field Measurements Minimum Span Length: 28.3 ft Distribution Method: Others Load Rating Notes: **LEGAL LOADS POSTING** SU2: 11.7 tons Recom. SU Posting: 11 tons SU3: 12.2 tons Recom. C Posting: 16 tons SU4: 11.9 tons Recom. ST5 Posting: 18 tons C3: 18.2 tons Actual SU Posting: 11 tons C4: 16.9 tons Actual C Posting: 16 tons C5: 17.6 tons Actual ST5 Posting: 18 tons ST5: 18.4 tons Actual Blanket Posting: 99 tons Posting (070): 2 20.0-29.9%below Emergency Vehicle: 1 EV inapplicable Open/Posted/Closed (041): P Posted for load FLOOR BEAM (FB) FB Present: No **SEGMENTAL (SEG)** FB Span Length, Gov: 0.0 ft SEG Wing-Span: -1.0 ft FB Spacing, Gov: 0.0 ft SEG Web-to-Web Span: -1.0 ft FB OPR Rating: 0.0 tons SEG Transverse HL93 Operating: -1.00 RF FB SU4 OPR Rating: 0.0 tons FB FL120 Rating: 0.0 tons Bridge Scour and Storm Information Pile Driving Record: No pile driving records Scour Recommended I: Unknown Foundation Type: Unknown Scour Recommended II: Unknown

Scour Recommended III: Unknown

Storm Frequency: -1

Scour Elevation: -1 ft

Action Elevation: -1 ft

Mode of Flow: Tidal

Rating Scour Eval: Unknown

Highest Scour Eval: Unknown

Scour Evaluation Method:

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005 Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Structure ID: 874294 CIDR DATE PRINTED: 5/18/2020

Elements

Inspection Date: 04/06/2020 GZJW

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3178	89.88	114	3.22	244	6.9	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		114	59.07	79	40.93	0		193 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110 / 3	Cracking (PSC)	0		0		144	100	0		144 (SF)
0	510 / 3	Wearing Surfaces	1929	73.23	0		705	26.77	0		2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		705	100	0		705 sq.ft

DECKS: Joints

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0		104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

MISCELLANEOUS: Channel

Str	Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	3	8290 / 3	Channel	0		0	-	1	100	0		1 (EA)
0		9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS: Other Elements

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0	510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Structure ID: 874294 CIDR DATE PRINTED: 5/18/2020

0	6000 / 3	Scour	0	0	-	40	100	0	40 ft

SUBSTRUCTURE: Substructure

Str	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
70	0	1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
[0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

SUPERSTRUCTURE: Superstructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0		0		3 ft

Total Number of Elements*: 10 *excluding defects/protective systems

Inspection Information

Inspection Date: 04/06/2020 Type: Regular NBI

Inspector: KNMEIOP - Omar Porras

Inspection Notes: Sufficiency Rating Calculation Accepted by knmeira at 5/13/2020 9:36:35 AM

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020)

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020)

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020)

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/06/2020 per Julie A.Vers, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

Element 8475 R/Conc Walls was replaced by 8393 Bulkhead Seawall Any Material during this inspection cycle. All previous notes were transferred accordingly. (04/06/2020)

The following elements were inspected underwater by the divers:

8290 Channel

8393 Bulkhead Seawall Any Material

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED.

RT: Right LT: Left NC: No Change INC: Increase

CAT: Corrective Action Taken

L: Long
W: Wide
H: High
D: Deep
UW: Underwater
S.L.: Section Loss
in.: Inches

ft.: Feet

Page 60 of 63

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Structure ID: 874294 CIDR DATE PRINTED: 5/18/2020

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north.

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 33 and 34.

REVIEWED BY:

Schedule Notes

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)

Bridge Profile

DATE PRINTED: 5/18/2020 12:12:35 PM

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b). Florida Statutes. Only the cover page of this report may be inspected and copied.

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Bridge Profile

DATE PRINTED: 5/18/2020 12:12:35 PM

	(All Heights are in Feet)																	
	Right Height	5.80	18.20	29.40	18.20	5.90					5.80	18.10	29.00	18.20	5.90			
erical Summary	Left Height	5.70	18.00	28.50	19.50	5.80					5.60	18.00	29.00	18.80	5.70			
Profile Data - Numerical Summary	Bent#	-	2	2.5	က	4					-	2	2.5	က	4			
	MCZ9								rete barriers. = 18.8 ft.	ODLG							rete barriers. = 18.4 ft.	
	Inspection Date and Key: 4/6/2020						Air Temp: 82 Drofilo Notes:	Floring Notes.	Measurements were referenced from the top of the concrete barriers. Waterline taken at mid channel: Left = 18.7 ft. and Right = 18.8 ft. Maximum channel depth: 10.6 ft.	Inspection Date and Key: 4/19/2018						Air Temp: 74 Profile Notes:	Measurements were referenced from the top of the concrete barriers. Waterline taken at mid channel: Left = 18.3 ft. and Right = 18.4 ft.	Maxmum cnannel deptn: 10.7 ft.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b). Florida Statutes. Only the cover page of this report may be inspected and copied.

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR/Bridge Profile Report with PDF attachment(s)
Bridge Profile

DATE PRINTED: 5/18/2020 12:12:35 PM

	Inspection Date and Key: 4/29/2016 MQSY	Profile Data - Numerical Summary Bent # Left Height 1 6.50 2 18.00 2.5 29.60 3 19.30 4 6.70		Right Height (A 6.40 18.00 30.40 6.50	(All Heights are in Feet)
--	---	---	--	---------------------------------------	---------------------------

Air Temp:

Profile Notes:

Measurements referenced from the top of the concrete bridge rail. Waterline at $\it C/L$ of Channel = 19.2ft. Water depth = 11.2ft.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b). Florida Statutes. Only the cover page of this report may be inspected and copied.

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Bridge Number - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Typical Bridge Rail - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Southeast Oncoming Transition - 4/25/2014

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Northwest Oncoming Transition - 4/25/2014

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Southwest Off-Going Transition - 4/25/2014

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Northeast Off-Going Transition - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

South Approach Looking North - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

South Approach Looking South - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

North Approach Looking South - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

North Approach Looking North - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

West Elevation - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

East Elevation - 4/25/2014

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Typical Underside - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Channel Looking West - 4/25/2014

BRIDGE ID: 874294 Structure Inventory Photo Due Date: 04/06/2024

Channel Looking East - 4/25/2014

BRIDGE INSPECTION REPORT

PREPARED FOR: FDOT District 6 BRIDGE OWNER: Miami-Dade County

INSPECTION TYPE: Interim CONTRACT No. CA611 Inspected by: LARS Engineering, Inc.

Inspection Date: 10-22-20

Bridge No. 874294

REPORT CONTAINS

BrM Inspection Report Fracture Critical Data Addendum Bridge Profile **CIDR** Information

UW Inspection Report Load Rating Summary Sheet Mechanical and Electrical Data

Matheson Hammock Road over Matheson Hammock Canal

Facility Carried & Location

Matheson Hammock Park

Location Map Detour Length = 3.13 mi.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

BY: LARS Engineering, Inc. STRUCTURE NAME: Not recorded

OWNER: 2 County Hwy Agency YEAR BUILT: 1967

MAINTAINED BY: 2 County Hwy Agency SECTION NO.: 87 000 757

STRUCTURE TYPE: 5 Prestressed Concrete - 01 Slab MP: 0.080

LOCATION: Matheson Hammock Park ROUTE: 00000

SERV. TYPE ON: 5 Highway-pedestrian FACILITY CARRIED: Matheson Hmk Road
SERV. TYPE UNDER: 5 Waterway FEATURE INTERSECTED: Matheson Hammock Canal

FUNCTIONALLY OBSOLETE X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Interim

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 10/22/2020 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5

HEALTH INDEX: 85.67

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami				INSPE	CTION DA	TE: 10/22/202	0 MIGV
OWNER: MAINTAINED BY: STRUCTURE TYPE: LOCATION: SERV. TYPE ON: SERV. TYPE UNDER: THIS BRIDGE CONTA	INS FRACTURE CRITICAL	(L COMPONENTS	FACILI FEATURE IN		0.080 00000 Matheson H Matheson H		
FUNCTIONALLY OBS	OLETE	X STRU	CTURALLY [DEFICIENT			
TYPE OF INSPECTION: DATE FIELD INSPECTION OVERALL NBI RATINGS:	Interim WAS PERFORMED: AB	BOVE WATER: 10	/22/2020	UNDERWATE	R: 4/6/2020		
DECK: 3		CHANNEL	_: 6 Bank Slı	ımping			
SUPERSTRUCTURE: 3			Γ: N N/A (NB	1)			
SUBSTRUCTURE: 4		SUFF. RATING					
PERF. RATING: F		HEALTH INDEX	N. 65.67				
FIELD PERSONNEL / TITL					ll l	NITIALS	
Marquez, Loren - Profession Lledias, Jorge - Bridge Insp	- ,) (leau)			_		
REVIEWING BRIDGE INSP	PECTION SUPERVISOR:						
Leon, Adrian - Professional	Engineer (P.E. #83827)						
CONFIRMING REGISTERE	ED PROFESSIONAL ENG	INEER:			_		
Marquez, Loren - Professio 7225 NW 25th Street Suite 211 Miami Florida 33122	nal Engineer (P.E. # 85631) LARS Engineering	յ, Inc.		3 THILLY	No 85631	William Charles
SIGNATURE:					_≣./		1 1
DATE:					_=*	*	* E
The official record of this packag by Loren Marquez, P.E. on the d 61G15-23.004, F.A.C. Printed c signed and sealed and the signat	date adjacent to the seal as requopples of this document are no	uired by Rule t considered			TROCKS,	STATE OF	MILITA

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

All Elements

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3122	88.29	5	0.14	409	11.57	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0	·	5	45.45	6	54.55	0		11 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110 / 3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510 / 3	Wearing Surfaces	1629	61.85	0		1005	38.15	0		2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		1005	100	0		1005 sq.ft

Element Inspection Notes:

8099/3

Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

_Object markers and centerline raised pavement markers are missing on the structure. (14 SF). - NO CHANGE. Refer to Photo 01.

_Sidewalk panels are loose and move under pedestrian load. (300 SF). - NO CHANGE.

_The slab unit joints show evidence of water seepage. - NO CHANGE. NCAR.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- 1_Replace missing object markers at the four corners of the bridge.
- 2_Properly secure the sidewalk panels.
- 3_Repair spalls, delaminations, and cracks along the underside of the slab units.
- 4_Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

CORRECTIVE ACTION EVALUATION:

- 1_Work not completed. Recommendation will be repeated.
- 2_Work not completed. Recommendation will be repeated.
- 3_Work not completed. Recommendation will be repeated.
- 4 Work not completed. Recommendation will be repeated.

For additional deficiencies refer to Defects 1080, 1090, 1100, 1110, and 1900.

1080/3 CS-3:

_Slab Unit 1-9, center line has a spall/delamination up to 36in. L \times 24in. W \times 2.5in. D over Abutment 1, with an exposed stirrup. (6 SF). – INCREASE. Refer to Photo 02.

CS-2:

_Slab Unit 2-6, east edge has a delamination 30in. L \times 4in. W starting at Pier 2 cap. (3 SF). - NO CHANGE.

_Slab Unit 2-7, west edge has a delamination up to 24in. L \times 4in. W starting at Pier 2 cap. (2 SF). - NO CHANGE.

1090/3 CS-3:

_Slab Unit 1-6 exhibits a spall with exposed rebar up to 11in. L \times 5in. W \times 1/8in. D with minor section loss and evidence of previous failed repair, at 9ft. from Abutment 1. (1

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

SF). - NO CHANGE. Refer to Photo 03.

1100/3 CS-3

_Slab Unit 2-8 has a spall 10ft. L \times 24in. W \times up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads). (20 SF). - NO CHANGE. Refer to Photo 04.

1110/3 CS-3:

_Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Previously noted as a delamination full length x 12in. W.) (14 SF). - DECREASE. Refer to Photos 05 and 06.

_Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. (2 SF). - NO CHANGE. Refer to Photo 07.

_Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap. (7 SF). - INCREASE. Refer to Photo 08.

_Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1. (Spalling was previously noted as spall/delamination on the east edge) (19 SF). - INCREASE. Refer to Photos 09 and 10.

_Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2. (Previously noted as spall/delamination near mid-span). (5 SF). - DECREASE. Refer to Photo 11.

_Slab Unit 1-8 has a delaminated area up to 8ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2. (24 SF). - INCREASE. Refer to Photo 12.

_Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (9 SF). - NO CHANGE. Refer to Photo 13.

_Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks. (38 SF). - NO CHANGE. Refer to Photo 14.

_Slab Unit 2-8 west half has two delaminated areas up to 15ft. L \times 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W. (60 SF). - NO CHANGE. Refer to Photo 15.

_Slab Unit 2-9 west edge has a delaminated area up to 5ft. L x 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (5 SF). - NO CHANGE.

_Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W. (2 SF). - INCREASE. Refer to Photo 16.

_Slab Unit 3-6 east edge has a delaminated area up to 42in. L \times 8in. W with associated cracks up to 1/16in. W. (4 SF). - NEW. Refer to Photo 17.

_Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L \times 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L \times 30in. W. (25 SF). - NO CHANGE. Refer to Photos 18 and 19.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

INSPECTION DATE: 10/22/2020 MIGV

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

_Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (30 SF). - INCREASE. Refer to Photo 20.

_Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (24 SF). – INCREASE. Refer to Photo 21.

_Slab Unit 3-8 has an unsound repair/delamination up to 42in. L \times 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4. (9 SF). – INCREASE. Refer to Photo 22.

_Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4. (15 SF). - INCREASE. Refer to Photo 23.

1900/3 CS-3:

DISTRICT: D6 - Miami

_Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. (90 SF). - NO CHANGE. Refer to Photo 24.

510/3 PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- 1_Monitor the slab units for independent movement.
- 2_Repair cracks on the asphalt along the slab unit joints.
- 3 Clean and repair cracks and rutting along the expansion joints.

CORRECTIVE ACTION EVALUATION:

- $1_{\rm Work}$ not completed. Recommendation will be repeated. $2_{\rm Work}$ not completed. Recommendation will be repeated.
- 3 Work not completed. Recommendation will be repeated.

For deficiencies refer to Defect 3220.

3220/3 CS-3:

_The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement. (600 SF). - NO CHANGE. Refer to Photos 25 and 26.

_The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a 19.5ft L x 11ft. W area with hollow-sounding starting 1 ft. from the right sidewalk. (300 SF). - NEW. Refer to Photo 27.

_The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. W and vegetation growth over the expansion joints. (105 SF). - NO CHANGE. Refer to Photo 28.

Total Number of Elements*: 1

*excluding defects/protective systems

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

Inspector Recommendations

UNIT: 0 DECKS

ELEMENT/ENV: 8099 / 3 PS Conc Slab (Sonovoid) ELEM CATEGORY: Decks/Slabs

CONDITION			
STATE			PRIORITY
1,2,3	MMS Quantity: 14 sf	Element Estimated Quantity: 14 (SF)	3
WORK OF	RDER RECOMMENDATION	N:	
	place missing object marke ughout the bridge. Refer to	rs at the four corners of the bridge and provide missing RPMs Photo 01.	
1,2,3	MMS Quantity: 300 sf	Element Estimated Quantity: 300 (SF)	3
WORK OF	DED DECOMMENDATION	d.	

WORK ORDER RECOMMENDATION:

Properly secure the sidewalk panels.

ELLIVILIA I/LIA V. 0033.3 IV.3220 I 3 OTACK IVVEATITIC SUITACEI ELLIVI CATLOCIXI. DECKS/SIC	ELEMENT/ENV:	8099:510:3220 / 3	Crack (Wearing Surface)	ELEM CATEGORY: Decks/	/Slabs
---	--------------	-------------------	-------------------------	-----------------------	--------

CONDITION STATE			PRIORITY
3	MMS Quantity: 900 sf	Element Estimated Quantity: 900 sq.ft	3
WORK OF	RDER RECOMMENDATION	l:	
_Sea Spai	al cracks on the asphalt alor ns 1 and 2. Refer to Photos	ng the slab unit joints and multi-directional cracks on Lane 2 (NB) in 25, 26, and 27.	
3	MMS Quantity: 105 sf	Element Estimated Quantity: 105 sq.ft	3
WORK OF	RDER RECOMMENDATION	l:	
_Cle	ean and seal cracks and rutti	ing along the expansion joints. Refer to Photo 28.	
3	MMS Quantity: 600 sf	Element Estimated Quantity: 600 sq.ft	3
WORK OF	RDER RECOMMENDATION	l:	
_	nitor cracks along slab unit j nd 26.	oints for independent movement of the slab units. Refer to Photos	

ELEMENT/ENV:	8099:1080 / 3 Delamination/Spall/Patched Area	ELEM CATEGORY: Decks/Slabs

CONDITION
STATE

2,3 MMS Quantity: 303 sf Element Estimated Quantity: 303 (SF)

3

WORK ORDER RECOMMENDATION:

_Repair spalls, delaminations, and cracks along the underside of the slab units. Refer to Photos 02 and 05 through 23.

ELEMENT/ENV: 8099:1090 / 3 Exposed Rebar

-	CONDITION			
	STATE			PRIORITY
_	3	MMS Quantity: 1 sf	Element Estimated Quantity: 1 (SF)	3

ELEM CATEGORY: Decks/Slabs

WORK ORDER RECOMMENDATION:

_Clean and coat exposed rebar and repair spall along the underside of slab unit 1-6, 9ft. from Abutment 1. Refer to Photo 03.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

Inspector Recommendations

UNIT: 0 DECKS

ELEMENT/ENV: 8099:1100 / 3 Exposed Prestressing ELEM CATEGORY: Decks/Slabs

CONDITION STATE

3

MMS Quantity: 20 sf Element Estimated Quantity: 20 (SF)

PRIORITY 3

ELEM CATEGORY: Decks/Slabs

WORK ORDER RECOMMENDATION:

_Clean and coat exposed prestressing and reinforce Slab Unit 2-8. Refer to Photo 04.

ELEMENT/ENV: 8099:1900 / 3 Distortion

CONDITION
STATE
PRIORITY

3 MMS Quantity: 90 sf Element Estimated Quantity: 90 (SF)
3

WORK ORDER RECOMMENDATION:

Monitor slab unit 1-1 for possible independent movement on the slab unit. Refer to Photo 24.

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

Element 8475/3 R/Conc Walls notes have been replaced by Element 8393/3 Bulkhead Seawall Any Material on 04/06/2020.

The NBI Rating for Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020).

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020).

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020).

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 29 and 30.

REVIEWED BY:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

INSPECTION NOTES: MIGV 10/22/2020

Sufficiency Rating Calculation Accepted by KNLREJP at 11/18/2020 2:56:35 PM

This Interim inspection (10/22/2020) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 10/22/2020 per Loren Marguez, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (10/22/2020).

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED

NCAR: NO C RT: Right LT: Left L: Long W: Wide H: High D: Deep in.: Inches ft.: Feet

IL: Feet LF: Linear Feet SF: Square Feet NE: Northeast NW: Northwest SE: Southeast

SW: Southwest

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 01: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Object markers and centerline raised pavement markers are missing on the structure.

REPAIR RECOMMENDATION:

Replace missing object markers at the four corners of the bridge and provide missing RPMs throughout the bridge.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 02: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-9, center line has a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 03: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 exhibits a spall with exposed rebar up to 11in. L x 5in. W x 1/8in. D with minor section loss and evidence of previous failed repair, at 9ft. from Abutment 1.

REPAIR RECOMMENDATION:

Clean and coat exposed rebar and repair spall along the underside of slab unit 1-6, 9ft. from Abutment 1.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 04: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-8 has a spall 10ft. L x 24in. W x up to 4in. D at mid-span with 6 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (2 broken threads).

REPAIR RECOMMENDATION:

Clean and coat exposed prestressing and reinforce Slab Unit 2-8.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 05: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Abutment 1 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 06: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L x 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L x 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Pier Cap 2 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 07: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

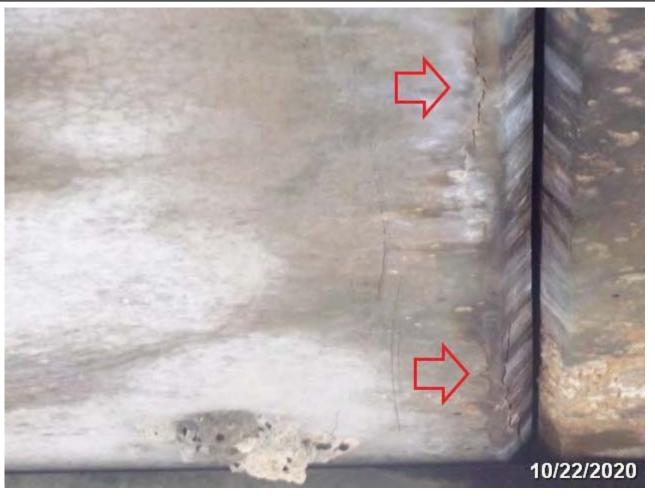


PHOTO 08: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 09: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 10: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 11: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 12: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-8 has a delaminated area up to 8ft. L x 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 13: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

(.....

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 14: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 15: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 2-8 west half has two delaminated areas up to 15ft. L x 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 16: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-6 has a delamination up to 24in. L x 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 17: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-6 east edge has a delaminated area up to 42in. L x 8in. W with associated cracks up to 1/16in. W.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 18: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Pier 3 shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 19: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L x 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L x 30in. W. (Mid-span shown).

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 20: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow-sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 21: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

INSPECTION DATE: 10/22/2020 MIGV

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection
DISTRICT: D6 - Miami

PHOTO 22: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has an unsound repair/delamination up to 42in. L x 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 23: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4.

REPAIR RECOMMENDATION:

Repair spalls, delaminations, and cracks along the underside of the slab units.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 24: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure.

REPAIR RECOMMENDATION:

Structure ID: 874294

Monitor slab unit 1-1 for possible independent movement of the slab unit.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 25: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

REPAIR RECOMMENDATION:

- 1) Monitor cracks along slab unit joints for independent movement of the slab units.
- 2) Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 26: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

REPAIR RECOMMENDATION:

- 1) Monitor cracks along slab unit joints for independent movement of the slab units.
- 2) Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 27: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a 19.5ft L x 11ft. W area with hollow-sounding starting 1 ft. from the right sidewalk.

REPAIR RECOMMENDATION:

Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 28: ELEMENT/ENV: 8099/3 PS Conc Slab (Sonovoid)

The asphalt overlay has transverse cracks up to roadway width x 1/4in. W with rutting and upheaving up to 3in. W and vegetation growth over the expansion joints.

REPAIR RECOMMENDATION:

Clean and seal cracks and rutting along the expansion joints.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 29: STRUCTURE NOTES

South Approach Posting Sign.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 10/22/2020 MIGV

PHOTO 30: STRUCTURE NOTES

North Approach Posting Sign.

Bridge No. 874294 Analysis Method: LRFR-LRFD

Location Matheson hammock Road over matheson Hammock Canal

Description 3 Spans, 2-30'&1-40', Prestressed voided slab beams 36"x17"

FDOT Bridge Load Rating Summary
Form (Page 1 of 1)

Rating Type	Rating Type	Gross Axle Weight (tons)	Moment/Shear/Service		Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF-Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	LL	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
ĺ	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	C3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600			-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S16	5-44	
Rating Type, Analysis	LRFR-LRFD		
Distribution Method	Others		
Impact Factor	33.0%	(axle loading)	
FL120 Gov. Span Length	38.3	(feet)	
Minimum Span Length	28.3	(feet)	T
Recommended Posting	> 39.9% below (0.000	-0.600) (Required)	
Recommended SU Posting*	11	(tons)	
Recommended C Posting	16	(tons)	P
Recommended ST5 Posting	18	(tons)	1.
Owner	02 County Highway A	gency	
Location	Neither interstate traf		1.
EV Posting	No. EV posting is not FAST Act does not app	recommended. The	
Floor Beam Present?	No		1
Segmental Bridge?	No		
Project No. & Reason	432907-1-72-02	Deterioration	
Plans Status	Built		

Juan Sobrino

Performed by:

Checked by:

Sealed By:

FL P.E. No.:

Company:

Address:

Cert. Auth. No.:

Phone & email:

Digitally signed by Juan Sobrino Date: 2020.01.13 15:58:25 -05'00'

Date:

Date:

Date:

01/13/20

01/13/20

01/13/20

Juan A. Sobrino, State of Florida, Professional Engineer, License No 73121.

Mengyuan Chen

Juan A. Sobrino

Juan A. Sobrino

(+1) 305 648 00 10, miami@pedelta.om

2000 Ponce de Leon Blvd., Suite 624, Coral Gables. Florida

73121

27244

Pedelta Inc.

This document has been electronically signed and sealed by Juan A. Sobrino on January 13th, 2020 using a SHA authentication code. Printed copies of this document are not considered signed and sealed and the SHA authentication code must be verified on any electronic copies.

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Description

REPORT ID: INSP005

Structure ID: 874294

Structure Unit Identification

Bridge/Unit Key: 874294 0

Structure Name:

Description: SPANS 1 THRU 3

Type: M - Main

Roadway Identification

NBI Structure No (8): 874294

Position/Prefix (5): 1 - Route On Structure

Kind Hwy (Rte Prefix): 4 County Hwy Design Level of Service: 8 Service Road

Route Number/Suffix: 00000 / 0 N/A (NBI)
Feature Intersect (6): Matheson Hammock Canal

Critical Facility: Not Defense-crit

Facility Carried (7): Matheson Hmk Road

Mile Point (11): 0.08

Latitude (16): 025d40'44.2"

Long (17): 080d15'43.8"

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS

National base Net (12): 0 - Not on Base Network

LRS Inventory Rte (13a): 87 000 757 Sub Rte (13b): 00

Functional Class (26): 09 Rural Local

Federal Aid System: OFF

Defense Hwy (100): 0 Not a STRAHNET hwy

Direction of Traffic (102): 2 2-way traffic

Emergency: X

NBI Project Data

Proposed Work (075A): Not Applicable (P) Work To Be Done By (075B): Not Applicable (P)

Improvement Length (076): 0 ft

Droposed Work (

NBI Rating

Channel (61): 6 Bank Slumping Deck (58): 3 Serious

Superstructure (59): 3 Serious

Substructure (60): 4 Poor

Roadway Traffic and Accidents

Lanes (28): 2 Medians: 0 Speed: 15 mph

ADT Class: 2 ADT Class 2

Recent ADT (29): 736 Year (30): 2014
Future ADT (114): 1168 Year (115): 2041

Truck % ADT (109): 1
Detour Length (19): 99 mi
Detour Speed:

Accident Count: -1 Rate:

Roadway Clearances

Vertical (10): 99.99 ft Appr. Road (32): 26.25 ft

Horiz. (47): 26.25 ft Roadway (51): 26.25 ft

Truck Network (110): 0 Not part of natl netwo

Toll Facility (20): 3 On free road Fed. Lands Hwy (105): 0 N/A (NBI)

School Bus Route: ____

Improvement Cost (094): \$ 0.00

Roadway Improvement Cost (095): \$ 0.00 Total Cost (096): \$ 0.00

Year of Estimate (097):

Culvert (62): N N/A (NBI)

Waterway (71): 8 Equal Desirable

Unrepaired Spalls: -1 sq.ft.

D : D : 1 -

Review Required: X

Inspection/CIDR Report with PDF attachment(s) **REPORT ID: INSP005 CIDR** Structure ID: 874294

DATE PRINTED: 11/24/2020

Structure Identification

Admin Area: Miami-Dade District (2): D6 - Miami County (3): (87)Miami-Dade Place Code (4): South Miami Heights Location (9): Matheson Hammock Park

Border Br St/Reg (98): Not Applicable (P) Share: 0 %

Border Struct No (99):

FIPS State/Region (1): 12 Florida Region 4-Atlanta

NBIS Bridge Len (112): Y - Meets NBI Length

Parallel Structure (101): No || bridge exists Temp. Structure (103): Not Applicable (P) Maint. Resp. (21): 2 County Hwy Agency Owner (22): 2 County Hwy Agency Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft

Bridge Median (33): 0 No median

Main Span Material (43A): 5 Prestressed Concrete

Appr Span Material (44A): Not Applicable (P)

Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load Deck Geometry (68): 5 Above Tolerable Underclearances (69): N Not applicable (NBI) Approach Alignment (72): 8-No Speed Red thru Curv

Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard

Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft

Under (reference) (54a): N Feature not hwy or RR

Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 10/22/2020

Inspector: KNLRELM - Loren Marquez

Bridge Group: CA611 Alt. Bridge Group:

Primary Type: Interim

Review Required: X

Geometrics

Spans in Main Unit (45): 3 Approach Spans (46): 0 Length of Max Span (48): 38.3 ft Structure Length (49): 100.33 ft Total Length: 140.33 ft Deck Area: 3536 sqft

Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0

Type of Service On (42a): 5 Highway-pedestrian

Under (42b): 5 Waterway Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft

Skew (34): 0 deg

Deck Type (107): 2 Concrete Precast Panel

Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required

Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft

Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 85.67

Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR

Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

NBI: 04/06/2022 Element: 04/06/2021

Fracture Critical:

Underwater: 04/06/2022 Other/Special: 04/06/2021

Inventory Photo Update Due: 04/06/2024

Inspection/CIDR Report with PDF attachment(s)

REPORT ID: INSP005

Structure ID: 874294 CIDR DATE PRINTED: 11/24/2020

Schedule Cont. **Inspection Types** NBI 🗀 Element X Fracture Critical Underwater Other Special X **Performed Inspection Intervals** Required (92) Frequency (92) Last Date (93) **Inspection Resources** Fracture Critical Crew Hours: mos 04/06/2020 Underwater 24 mos Flagger Hours: 10/22/2020 6 mos Helper Hours: Other Special 04/06/2020 Snooper Hours: NBI 24 (90)mos (91)Special Crew Hours: **Bridge Related** Special Equip Hours: 0 **General Bridge Information** Parallel Bridge Seq: Bridge Rail 1: Conc parapet-alum-rail Channel Depth: 10.6 ft Bridge Rail 2: Not applicable-No rail Radio Frequency: -1 Electrical Devices: No electric service Phone Number: Culvert Type: Not applicable Maintenance Yard: Not FDOT Maintained **Exception Date:** Exception Type: Unknown FIHS ON / OFF: No Routes on FIHS Accepted By Maint: 01/01/1967 Previous Structure: Warranty Expiration: 00/00/0000 2nd Previous Structure: Replacement Structure: Performance Rating: Poor Permitted Utilities: Power [Gas Fiber Optic Sewage X Other **Bridge Load Rating Information** Inventory Type (065): 3 LRFR Load & Res. Fact Inventory Rating (066): 7.6 tons Operating Type (063): 3 LRFR Load & Res. Fact Operating Rating (064): 11.9 tons Original Design Load (031): HL 93 FL120 Permit Rating: 16.2 tons Date: 01/13/2020 HS20/FL120 Max Span Rating: 16.2 tons Initials: JS Dynamic Impact in Percent: 33 % Load Rating Rev. Recom.: No Governing Span Length: 38.3 ft Load Rating Plans Status: Field Measurements Minimum Span Length: 28.3 ft Distribution Method: Others Load Rating Notes: **LEGAL LOADS POSTING** SU2: 11.7 tons Recom. SU Posting: 11 tons SU3: 12.2 tons Recom. C Posting: 16 tons SU4: 11.9 tons Recom. ST5 Posting: 18 tons C3: 18.2 tons Actual SU Posting: 11 tons C4: 16.9 tons Actual C Posting: 16 tons C5: 17.6 tons Actual ST5 Posting: 18 tons ST5: 18.4 tons Actual Blanket Posting: 99 tons Posting (070): 2 20.0-29.9%below Emergency Vehicle: 1 EV inapplicable Open/Posted/Closed (041): P Posted for load FLOOR BEAM (FB) FB Present: No **SEGMENTAL (SEG)** FB Span Length, Gov: 0.0 ft SEG Wing-Span: -1.0 ft FB Spacing, Gov: 0.0 ft SEG Web-to-Web Span: -1.0 ft FB OPR Rating: 0.0 tons SEG Transverse HL93 Operating: -1.00 RF FB SU4 OPR Rating: 0.0 tons FB FL120 Rating: 0.0 tons Bridge Scour and Storm Information Pile Driving Record: No pile driving records Scour Recommended I: Unknown Foundation Type: Unknown Scour Recommended II: Unknown Mode of Flow: Tidal Scour Recommended III: Unknown Rating Scour Eval: Minimal Risk Scour Elevation: -1 ft Highest Scour Eval: Unknown Action Elevation: -1 ft Scour Evaluation Method: Storm Frequency: -1

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Elements

REPORT ID: INSP005

Structure ID: 874294

Inspection Date: 10/22/2020 MIGV

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3122	88.29	5	0.14	409	11.57	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		5	45.45	6	54.55	0		11 (SF)
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 (SF)
0	1100 / 3	Exposed Prestressing	0		0		20	100	0		20 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510 / 3	Wearing Surfaces	1629	61.85	0		1005	38.15	0		2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		1005	100	0		1005 sq.ft

DECKS: Joints

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0	-	104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

MISCELLANEOUS: Channel

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8290 / 3	Channel	0		0		1	100	0		1 (EA)
0	9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS: Other Elements

Str U	nit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	(321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0		510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
C)	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

SUBSTRUCTURE: Substructure

Str	Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		205 / 3	Re Conc Column	0		0		4	100	0		4 each
0		1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0		1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

SUBSTRUCTURE: Substructure

St	r Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
	0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0		5 ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	49	72.06	12	17.65	7	10.29	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	63.16	7	36.84	0		19 ft

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005 Inspection/CIDR F

Inspection/CIDR Report with PDF attachment(s) CIDR

SUBSTRUCTURE: Substructure

Structure ID: 874294

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft
0	6000 / 3	Scour	0		0		40	100	0		40 ft

SUBSTRUCTURE: Substructure

Str U	nit Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
0	1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
0	4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

SUPERSTRUCTURE: Superstructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0		0		3 ft

Total Number of Elements*: 10 *excluding defects/protective systems

Inspection Information

Inspection Date: 10/22/2020 Type: Interim

Inspector: KNLRELM - Loren Marquez

Inspection Notes: Sufficiency Rating Calculation Accepted by KNLREJP at 11/18/2020 2:56:35 PM

This Interim inspection (10/22/2020) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 10/22/2020 per Loren Marquez, P.E.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure.

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (10/22/2020).

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED

RT: Right
LT: Left
L: Long
W: Wide
H: High
D: Deep
in.: Inches
ft.: Feet
LF: Linear Fee

LF: Linear Feet SF: Square Feet NE: Northeast NW: Northwest SE: Southeast SW: Southwest

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Structure ID: 874294
Structure Notes

REPORT ID: INSP005

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

Element 227/3 Re Conc Pile notes have been replaced by Element 205/3 Re Conc Column on 10/29/2019.

Element 8475/3 R/Conc Walls notes have been replaced by Element 8393/3 Bulkhead Seawall Any Material on 04/06/2020.

The NBI Rating for Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/06/2020).

The Substructure NBI Rating is coded 4 (Poor) due to the significant deterioration of Column 2-2. (04/06/2020).

The Channel NBI Rating was lowered from 7 to 6 due to areas of undermining on the channel below the North seawall. (04/06/2020).

TRAFFIC RESTRICTIONS

Based on the current load rating analysis dated 1/13/2020, it is recommended that this bridge be posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. The bridge is currently posted for SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 29 and 30.

REVIEWED BY:

Schedule Notes

BRIDGE INSPECTION REPORT

PREPARED FOR: FDOT District 6

BRIDGE OWNER: MIAMI-DADE COUNTY

INSPECTION TYPE: Interim CONTRACT No. CA611

Inspected by:

Marlin Engineering, Inc.

Bridge No. 874294

REPORT CONTAINS

Inspection Date: 04-26-21

☑ BrM Inspection Report

 $\ \square$ Bridge Profile

☐ Fracture Critical Data

☐ Addendum

CIDR Information

☐ Underwater Inspection

□ Load Rating Summary Sheet

 $\hfill \square$ Mechanical and Electrical Data

Matheson Hmk Road over Matheson Hammock Canal

Facility Carried & Location

Matheson Hammock Park

Location Map Detour Length = N/A

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

BY: Marlin Engineering, Inc. STRUCTURE NAME: Not recorded

OWNER: 2 County Hwy Agency YEAR BUILT: 1967

MAINTAINED BY: 2 County Hwy Agency SECTION NO.: 87 000 757

STRUCTURE TYPE: 5 Prestressed Concrete - 01 Slab MP: 0.080

LOCATION: Matheson Hammock Park ROUTE: 00000

SERV. TYPE ON: 5 Highway-pedestrian FACILITY CARRIED: Matheson Hmk Road
SERV. TYPE UNDER: 5 Waterway FEATURE INTERSECTED: Matheson Hammock Canal

FUNCTIONALLY OBSOLETE X STRUCTURALLY DEFICIENT

TYPE OF INSPECTION: Interim

DATE FIELD INSPECTION WAS PERFORMED: ABOVE WATER: 4/26/2021 UNDERWATER: 4/6/2020

SUFFICIENCY RATING: 15.5

HEALTH INDEX: 85.48

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami		IN	ISPECTION DATE: 4/26/2021 HIXS
BY: Marlin Er OWNER: 2 County MAINTAINED BY: 2 County STRUCTURE TYPE: 5 Prestre: LOCATION: Mathesor SERV. TYPE ON: 5 Highwa SERV. TYPE UNDER: 5 Waterw THIS BRIDGE CONTAINS FRAC THIS BRIDGE IS SCOUR CRITIC	Hwy Agency Hwy Agency essed Concrete - 01 Slab in Hammock Park ay-pedestrian way ETURE CRITICAL COMPONEN	ROUT FACILITY CARRIE FEATURE INTERSECTE	T: 1967).: 87 000 757 P: 0.080
THIS REPORT IDENTIFIES DEF	ICIENCIES WHICH REQUIRE	PROMPT CORRECTIVE ACT	ION
FUNCTIONALLY OBSOLETE		STRUCTURALLY DEFICIENT	
TYPE OF INSPECTION: II DATE FIELD INSPECTION WAS PER OVERALL NBI RATINGS:	nterim RFORMED: ABOVE WATER	a: 4/26/2021 underwate	ER: 4/6/2020
DECK: 3 Serious		NNEL: 6 Bank Slumping	
SUPERSTRUCTURE: 3 Serious		VERT: N N/A (NBI)	
SUBSTRUCTURE: 4 Poor		ATING: 15.5	
PERF. RATING: Poor		NDEX: 85.48	
FIELD PERSONNEL / TITLE / NUMB	ER:		INITIALS
Guzman, Armando - Bridge Inspector Montersil, Jonathan - Assistant Bridge Rego, Alexis - Bridge Inspector (CBI#C Campo, Luis - Bridge Inspector (CBI # Alfonso, Rene - Bridge Inspector Assis	Inspector 00409) 400619)		
REVIEWING BRIDGE INSPECTION S	SUPERVISOR:		
Rego, Alexis - Bridge Inspector (CBI#0	00409)		
CONFIRMING REGISTERED PROFE	SSIONAL ENGINEER:		
Vers, Julie - Structural Design Manage 1700 NW 66 Avenue Suite 106 Plantation Florida 33313 SIGNATURE:	ər (P.E. # 77896) Marlin Engine	eering	* No. 77896 *
DATE:		= ==	p: ★ :¤Ξ
The official record of this package has been electronically signed and sealed by Julie A. Vers, P.E. on the date adjacent to the seal as required by Rule 61G15-23.004, F.A Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.			STATE OF STA

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

All Elements

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3099	87.64	14	0.4	423	11.96	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		14	70	6	30	0		20 (SF)
0	1100 / 3	Exposed Prestressing	0		0		35	100	0		35 (SF)
0	1110/3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510 / 3	Wearing Surfaces	1734	65.83	0		900	34.17	0		2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		900	100	0		900 sq.ft

Element Inspection Notes:

8099/3

Notes: The top of the slab units is not visible due to an asphalt overlay. The width of the sonovoid slab units was field verified to be 3ft. wide.

SECONDARY:

_Centerline raised pavement markers are missing along the structure. Previously missing object markers were installed. Refer to Photo 01. NO CHANGE.

_Sidewalk concrete panels are loose and move under pedestrian load. (Total 300 SF). Refer to Photo 02. NO CHANGE.

_The underside of the slab unit joints and bent caps show evidence of water seepage. NO CHANGE. NCAR.

_There is one exposed piece of corroded scrap metal on Slab Unit 1-6 underside at 9ft. from Abutment 1. Previously documented under Defect 1090 as a spall with exposed rebar having minor section loss. Refer to Photo 03. NO CHANGE.

Refer to Defects 1080, 1100, 1110, and 1900 for additional deficiencies

PREVIOUS RECOMMENED CORRECTIVE ACTION:

- _Replace missing object markers at the four corners of the bridge and provide missing RPMs throughout the bridge.
- _Properly secure the sidewalk panels.
- _Monitor slab unit 1-1 for possible independent movement on the slab unit.
- _Clean and coat exposed prestressing and reinforce Slab Unit 2-8.
- _Repair spalls, delaminations, and cracks along the underside of the slab units
- _Clean and coat exposed rebar and repair spall along the underside of slab unit 1-6, 9ft. from Abutment 1.

CORRECTIVE ACTION EVALUATION:

_The corrective action noted above was partially completed. Recommendation will be issued to provide missing RPMs.

_The corrective action noted above was not completed. Recommendation will be repeated.

_The corrective action noted above was not completed. Recommendation will be repeated.

_The corrective action noted above was not completed. Recommendation will be repeated.

_The corrective action noted above was not completed. Recommendation will be repeated.

_The corrective action noted above was not completed. Recommendation will be repeated.

1080/3 CS-3:

_Slab Unit 1-9 exhibits a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup, no measurable section loss. (Total 6 SF). Refer to Photo 04. NO CHANGE.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

CS-2:

_Slab Unit 2-6, east edge exhibits a delamination 30in. L x 4in. W starting at Pier 2 cap. (Total 3 SF). NO CHANGE.

_Slab Unit 2-7, west edge exhibits a delamination up to 24in. L \times 4in. W starting at Pier 2 cap. (Total 2 SF). NO CHANGE.

_Slab Unit 2-8 underside exhibits a delamination up to full width x 36in. L with associated cracks and rust staining, starting at Bent 2 cap. (Total 9 SF). Refer to Photo 05. NEW.

1100/3 CS-3:

_Slab Unit 2-8, midspan has a spall 15ft. L x 24in. W x up to 4in. D with 7 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (3 broken strands). Previously noted a spall 10ft. L x 24in. W x up to 4in. D with 5 exposed strands, 2 broken threads, and 6 exposed transverse rebars. (Total 20 SF). Refer to Photo 06. INCREASE.

_Slab Unit 2-9, midspan has a spall/delamination up to 15ft. L \times 12in. W \times 2in. D with 2 prestressing strands and 7 transverse rebars having up to 90% section remaining. (Total 15 SF). Refer to Photo 06. NEW.

1110/3 CS-3

_Slab Unit 1-6 east edge has two delamination areas, one up to 5ft. L \times 6in. W starting at Abutment 1 and the other starting at Pier Cap 2 up to 9ft. L \times 12in. W with associated cracks up to 1/16in. W with efflorescence throughout. (Total 14 SF). NO CHANGE.

_Slab Unit 1-7 east edge has a spall/delamination 24in. L x 12in. W with associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out over Abutment 1. (Total 2 SF). NO CHANGE.

_Slab Unit 1-7, east edge has a delamination 7ft. L x 4in. W, with an associated crack of up to 1/16in. starting at Pier 2 cap. (Total 7 SF). NO CHANGE.

_Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L \times 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L \times 6in. W \times 2in. D approximately 10ft from Abutment 1. (Total 19 SF). Refer to Photo 07. NO CHANGE.

_Slab Unit 1-8 east edge has a delamination 4ft. L x 15in. W and associated cracks up to 1/32in. W with efflorescence and corrosion bleed-out, 9ft. from Pier Cap 2. (Total 5 SF). NO CHANGE.

_Slab Unit 1-8 has a delaminated area up to 8ft. L \times 3ft. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out starting at Pier Cap 2. (Total 24 SF). NO CHANGE.

_Slab Unit 1-9 west edge has a delaminated area 9ft. L x 10in. W and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out, starting near the 3/4 point and extending to Pier 2 cap. (Total 9 SF). NO CHANGE.

_Slab Unit 2-7 east edge is intermittently cracked/delaminated up to span length x 16in. W (average width) with up to 1/4in. W cracks. (Total 38 SF). NO CHANGE.

_Slab Unit 2-8 west half has two delaminated areas up to 15ft. L \times 18in. W (average width) at south and north ends, with associated cracks of up to 1/4in. W. (Total 60 SF). NO CHANGE.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

_Slab Unit 2-9 west edge has a delaminated area up to 5ft. L \times 5in. W with associated cracking up to 1/4in. wide, starting at the Pier 2 cap. (Total 5 SF). NO CHANGE.

_Slab Unit 3-6 has a delamination up to 24in. L \times 6in. W on the east edge over Pier 3, with an associated crack of up to 1/16in. W. (Total 2 SF). NO CHANGE.

_Slab Unit 3-6 east edge has a delaminated area up to 42in. L \times 8in. W with associated cracks up to 1/16in. W. (Total 4 SF). NO CHANGE.

_Slabs Unit 3-7 has two delaminated areas, one starting at Pier 3 up to 8ft. L \times 15in. W (average width) with associated cracks, and the second, near mid-span up to 3ft. L \times 30in. W. (Total 25 SF). NO CHANGE.

_Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out. (Total 30 SF). Refer to Photo 08. NO CHANGE.

_Slab Unit 3-8 has a spall/delamination up to 8ft. L \times 3ft. W \times 1in. D and associated cracks with corrosion bleed-out starting at Pier 3. (Total 24 SF). Refer to Photo 09. NO CHANGE.

_Slab Unit 3-8 has an unsound repair/delamination up to 42in. L x 30in. W with associated cracks up to 1/16in. W with efflorescence starting at Abutment 4. (Total 9 SF). NO CHANGE.

_Slab Unit 3-8 has an unsound repair/delamination up to 74in. L x up to slab width (3ft.) with associated cracks up to 1/16in. W with efflorescence starting 5.5ft. from Abutment 4. (Total 15 SF). NO CHANGE.

1900/3 CS-3:

_Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. (Total 90 SF). Refer to Photo 10. NO CHANGE. NCAR.

510/3 For deficiencies refer to Defect 3220.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Clean and seal cracks and rutting along the expansion joints.
- _Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.
- Monitor cracks along slab unit joints for independent movement of the slab units.

CORRECTIVE ACTION EVALUATION:

- _The corrective action noted above was completed.
- _The corrective action noted above was not completed. Recommendation will be repeated.
- The corrective action noted above was not completed. Recommendation will be repeated.

3220/3 CS-3:

_The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated lin. W rutting over the slab unit joints and upheaving up to lin. H at the shoulders, possibly indicating independent slab unit movement. (Total 600 SF). Refer to Photo 11. NO CHANGE.

_The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a hollow-sounding area 19.5ft L x 11ft. W, starting 1 ft. from the right sidewalk. (Total 300 SF). Refer to Photo 12. NO CHANGE.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0	1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0	1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

Element Inspection Notes:

205/3 Note: At high tide, the seawater reaches the lower section of the columns.

Refer to Defects 1090 and 1130 for deficiencies.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Remove any loose concrete and repair delaminations and spalls along the Column 2-2.
- _Repair delaminations and seal cracks along Bents 2 and 3 columns.
- _Install cathodic protection to Bents 2 and 3 columns.

CORRECTIVE ACTION EVALUATION:

- _The corrective action noted above was not completed. Recommendation will be repeated.
- _The corrective action noted above was not completed. Recommendation will be repeated.
- _The corrective action noted above was not completed. Recommendation will be repeated.

1090/3 CS-3:

_Column 2-2, south face has a spall/delamination up to 55in. H \times 32in. W \times 4in. D with two exposed longitudinal rebars and five stirrups, having areas of up to 80% section remaining. Additionally, there are areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W as a consequence of corrosion of the steel reinforcement. Previously noted as a spall/delamination 7ft. H \times 3ft. W \times 3in. D with one exposed rebar and one stirrup. (Total 1 ea.) Refer to Photos 13, 14, and 15. INCREASE.

1130/3 CS-3:

_Columns 2-1, 3-1, and 3-2 have delaminated areas along their entire length with associated cracks up to full height x 1/16in. W, as a result of corrosion of the steel reinforcement. (Total 3 ea.) NO CHANGE.

SUBSTRUCTURE: Substructure

S	tr Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0		234 / 3	Re Conc Pier Cap	48	70.59	12	17.65	8	11.76	0		68 ft
	0	1080 / 3	Delamination/Spall/Patched Area	0		12	60	8	40	0		20 ft

Element Inspection Notes:

234/3 Refer to Defect 1080 for additional deficiencies.

PREVIOUS RECOMMENDED CORRECTIVE ACTION:

- _Remove vegetation growing on west end of Bents 2 and 3 caps.
- _Repair spalls and delaminations along Bents 2 and 3 caps.

CORRECTIVE ACTION EVALUATION:

- _The corrective action noted above was completed.
- _The corrective action noted above was not completed. Recommendation will be repeated.

1080/3 CS-3

_Bent 2 cap, south face has a spall/delamination up to 48in. L \times 17in. H \times 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L \times 12in. H. Previously noted in the south face as a spall/delamination up to 3ft. L \times 16in. H \times 1 in.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

D. (Total 4 LF) Refer to Photos 16 and 17. INCREASE.

_Bent 3 cap, bottom and north faces has two unsound repaired areas up to 30in. L x 24in. W with multidirectional cracks up to 1/64in. W between Columns 3-1 and 3-2. (Total 4 LF) Refer to Photo 18. NO CHANGE.

CS-2:

_Pier 3 cap has intermittent delaminated areas up to 3ft. L x 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges. (Total 12 LF) Refer to Photo 18. NO CHANGE.

Total Number of Elements*: 3 *excluding defects/protective systems

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Inspector Recommendations

UNIT: 0 DECKS

ELEMENT/ENV: 8099 / 3 PS Conc Slab (Sonovoid) ELEM CATEGORY: Decks/Slabs

CONDITION STATE PRIORITY

1,2,3 MMS Quantity: 300 sf Element Estimated Quantity: 300 (SF)

WORK ORDER RECOMMENDATION:
Properly secure the sidewalk concrete panels. Photo 02

1,2,3 MMS Quantity: 10 sf Element Estimated Quantity: 10 (SF)

3

WORK ORDER RECOMMENDATION:

Replace missing raised pavement markers along the centerline of the structure. Photo 01

ELEMENT/ENV: 8099:510:3220 / 3 Crack (Wearing Surface) ELEM CATEGORY: Decks/Slabs

Spans 1 and 2. Photos 11 and 12

ELEMENT/ENV: 8099:1080 / 3 Delamination/Spall/Patched Area

ELEM CATEGORY: Decks/Slabs

CONDITION
STATE

2,3 MMS Quantity: 298 sf Element Estimated Quantity: 298 (SF)

3

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs. Photos 03 to 05 and 07 to 09

ELEMENT/ENV: 8099:1100 / 3 Exposed Prestressing ELEM CATEGORY: Decks/Slabs

CONDITION
STATE

PRIORITY

3 MMS Quantity: 35 sf Element Estimated Quantity: 35 (SF)

2

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing strands and rebars, repair spalls and reinforce the Slab units 2-8 and 2-9. Photo 06

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Inspector Recommendations

UNIT: 0 SUBSTRUCTURE

ELEMENT/ENV: 205:1090 / 3 Exposed Rebar ELEM CATEGORY: Substructure

CONDITION STATE

MMS Quantity: 40 mh Element Estimated Quantity: 1 each

PRIORITY

WORK ORDER RECOMMENDATION:

Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2. Photos 13

to 15

ELEMENT/ENV: 205:1130 / 3 Cracking (RC and Other)

ELEM CATEGORY: Substructure

CONDITION STATE

3 MMS Quantity: 40 mh Element Estimated Quantity: 4 each

PRIORITY 3

WORK ORDER RECOMMENDATION:

Repair delaminations and seal cracks along Bents 2 and 3 columns. Photos 13 to 15

3 MMS Quantity: 80 mh Element Estimated Quantity: 4 each

3

WORK ORDER RECOMMENDATION:

Install jackets with cathodic protection to Bents 2 and 3 columns. Photos 13 to 15

ELEMENT/ENV: 234:1080 / 3 Delamination/Spall/Patched Area

ELEM CATEGORY: Substructure

CONDITION STATE

2, 3 MMS Quantity: 40 mh Element Estimated Quantity: 20 ft

PRIORITY 2

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps. Photos 16 to 18

Structure Notes

BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

TRAFFIC RESTRICTIONS:

Based on the current load rating analysis dated 1/13/2020, the bridge is posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 19 and 20.

REVIEWED BY:

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

INSPECTION NOTES: HIXS 4/26/2021

Sufficiency Rating Calculation Accepted by knmeira at 5/5/2021 3:15 PM.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure. (04/26/2021).

This Interim inspection (04/26/2021) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), Element 234 Re Conc Pier Cap and Element 205 Re Conc Column, for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/26/2021).

The Substructure NBI Rating is coded 4 (Poor) due to extensive spalls with exposed rebars along Column 2-2, and delaminations and cracks along the columns and pier caps throughout the structure. (04/26/2021).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/26/2021 per Julie A. Vers, P.E.

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED

RT: Right
LT: Left
L: Long
W: Wide
H: High
D: Deep
in.: Inches

in.: Inches ft.: Feet LF: Linear Feet

SF: Square Feet NE: Northeast NW: Northwest SE: Southeast SW: Southwest

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 01 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Centerline raised pavement markers are missing along the structure. Previously missing object markers were installed.

WORK ORDER RECOMMENDATION:

Replace missing raised pavement markers along the centerline of the structure.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 02 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Sidewalk concrete panels are loose and move under pedestrian load.

WORK ORDER RECOMMENDATION: Properly secure the sidewalk concrete panels.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 03 Element/Env 8099/3: PS Conc Slab (Sonovoid)

There is one exposed piece of corroded scrap metal on Slab Unit 1-6 underside at 9ft. from Abutment 1.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

(....

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 04 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-9 exhibits a spall/delamination up to 36in. L x 24in. W x 2.5in. D over Abutment 1, with an exposed stirrup, no measurable section loss.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 05 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8 underside exhibits a delamination up to full width x 36in. L with associated cracks and rust staining, starting at Bent 2 cap.

WORK ORDER RECOMMENDATION:

Structure ID: 874294

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 06 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 2-8, midspan has a spall 15ft. L x 24in. W x up to 4in. D with 7 exposed and corroded transverse rebars with up to 60% section remaining and 5 exposed and corroded prestressing strands with up to 0% section remaining (3 broken strands). Slab Unit 2-9, midspan has a spall/delamination up to 15ft. L x 12in. W x 2in. D with 2 prestressing strands and 7 transverse rebars having up to 90% section remaining.

WORK ORDER RECOMMENDATION:

Clean and coat exposed prestressing strands and rebars, repair spalls and reinforce the Slab units 2-8 and 2-9.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 07 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-8 west edge is intermittently delaminated up to 15ft. L x 15in. W starting at Abutment 1 with associated cracks up to 1/4in. W with efflorescence and corrosion bleed-out and associated spalling up to 4ft. L x 6in. W x 2in. D approximately 10ft from Abutment 1.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 08 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-7 has an unsound repaired area 12ft. L x up to slab width (3ft.) starting from Abutment 4 with hollow sounding throughout and associated cracks up to 1/16in. W with efflorescence and corrosion bleed-out.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 09 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 3-8 has a spall/delamination up to 8ft. L x 3ft. W x 1in. D and associated cracks with corrosion bleed-out starting at Pier 3.

WORK ORDER RECOMMENDATION:

Clean and coat exposed steel and repair spalls and delaminations along the underside of sonovoid slabs.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 10 Element/Env 8099/3: PS Conc Slab (Sonovoid)

Slab Unit 1-1 exhibits a slight outward rotation at Abutment 1 with up to 1/4in. height difference in reference to the top of the cap, potentially indicating shear key failure. No anti-rotation block is in place.

WORK ORDER RECOMMENDATION: None.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 11 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay has longitudinal cracks up to span length x 1/4in. W with associated 1in. W rutting over the slab unit joints and upheaving up to 1in. H at the shoulders, possibly indicating independent slab unit movement.

WORK ORDER RECOMMENDATION:

_Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

Monitor the slab units for independent movement.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 12 Element/Env 8099/ 510/3: PS Conc Slab (Sonovoid)/ Wearing Surfaces

The asphalt overlay at Spans 1 and 2 has multi-directional cracking up to 1/2in. W on Lane 2 (NB), worse condition is on Span 1 which has a hollow-sounding area 19.5ft L x 11ft. W, starting 1 ft. from the right sidewalk.

WORK ORDER RECOMMENDATION:

Seal cracks on the asphalt along the slab unit joints and multi-directional cracks on Lane 2 (NB) in Spans 1 and 2.

This report contains information relating to the physical security of a structure and depictions of the structure. This information is confidential and exempt from public inspection pursuant to sections 119.071(3)(a) and 119.071(3)(b), Florida Statutes. Only the cover page of this report may be inspected and copied.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Inspection Structure ID: 874294

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 13 Element/Env 205/3: Re Conc Column

Column 2-2, south face has a spall/delamination up to 55in. H x 32in. W x 4-3/4in. D with two exposed longitudinal rebars and five stirrups, having areas of up to 80% section remaining.

WORK ORDER RECOMMENDATION:

_Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2. _Repair delaminations and seal cracks along Bents 2 and 3 columns.

Install jackets with cathodic protection to Bents 2 and 3 columns.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 14 Element/Env 205/3: Re Conc Column

Spall/delamination with exposed reinforcement having up to 80% remaining in south face of Column 2-2. (close up view)

WORK ORDER RECOMMENDATION:

- _Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2.
- _Repair delaminations and seal cracks along Bents 2 and 3 columns.
- Install jackets with cathodic protection to Bents 2 and 3 columns.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 15 Element/Env 205/3: Re Conc Column

Areas of delamination around the column circumference covering the entire column height with associated cracks up to 1/4in. W as a consequence of corrosion of the steel reinforcement.

WORK ORDER RECOMMENDATION:

_Clean and coat exposed rebars, repair spalls/delaminations and reinforce Column 2-2.

Repair delaminations and seal cracks along Bents 2 and 3 columns.

Install jackets with cathodic protection to Bents 2 and 3 columns.

Inspection/CIDR Report with PDF attachment(s)

(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 16 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap, south face has a spall/delamination up to 48in. L x 17in. H x 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. (south view)

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 17 Element/Env 234/3: Re. Concrete Pier Cap

Bent 2 cap, south face has a spall/delamination up to 48in. L x 17in. H x 3/4 in. D over Column 2-2, and on the same location, north face a delamination 20in. L x 12in. H. (bottom view)

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps.

Inspection/CIDR Report with PDF attachment(s)
(INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 18 Element/Env 234/3: Re. Concrete Pier Cap

Areas of unsound repairs on the bottom face of Pier 3 cap, intermittent delaminated areas up to 3ft. L x 16in. H between Columns 3-1 and 3-2, along the top and bottom north edges.

WORK ORDER RECOMMENDATION:

Repair spalls and delaminations along Bents 2 and 3 caps.

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 19: STRUCTURE NOTES

North Approach Posting Sign

Inspection/CIDR Report with PDF attachment(s) (INTERIM INSPECTION REPORT)

Structure ID: 874294 Inspection

DISTRICT: D6 - Miami INSPECTION DATE: 4/26/2021 HIXS

Photo 20: STRUCTURE NOTES

South Approach Posting Sign

Bridge No. 874294 **Analysis Method: LRFR-LRFD**

Location Matheson hammock Road over matheson Hammock Canal

3 Spans, 2-30'&1-40', Prestressed voided slab beams 36"x17" Description

FDOT Bridge Load Rating Summary Form (Page 1 of 1)

Rating Type	Rating Type	Gross Axle Weight (tons)	Moment/Shear	/Service	Dead Load Factor	Live Load Factor	Live Load Distrib. Factor (axles)	Rating Factor	Span No Girder No., Interior/Exterior, %Span Length	RF-Weight (tons)
Level	Vehicle	Weight	Member Type	Limit	DC	LL	LLDF	RF	Governing Location	RATING
Inventory	HL93	36	Prestressed	Service	1.00	0.80	0.600	0.210	Central span, midspan	7.6
Operating	HL93	36	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.330	Central span, midspan	11.9
Permit	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
Permit Max Span	FL120	60	Prestressed	Strength, Shear	1.25/0.90	1.35	0.500	0.270	Central span, 1/4 point	16.2
	SU2	17	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.690	Central span, midspan	11.7
	SU3	33	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.370	Central span, midspan	12.2
	SU4	35	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.340	Central span, midspan	11.9
Legal	С3	28	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.650	Central span, midspan	18.2
	C4	36.7	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	16.9
	C5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.440	Central span, midspan	17.6
	ST5	40	Prestressed	Strength, Moment	1.25/0.90	1.35	0.600	0.460	Central span, midspan	18.4
Emergency Vehicle	EV2	28.75	Prestressed	NA	NA	NA	0.600	P		-1
(EV)	EV3	43	Prestressed	NA	NA	NA	0.600			-1

Original Design Load	HS20 or HS20-S1	6-44	Performed by:
Rating Type, Analysis	LRFR-LRFD		Checked by:
Distribution Method	Others		Sealed By:
Impact Factor	33.0%	(axle loading)	FL P.E. No.:
FL120 Gov. Span Length	38.3	(feet)	Cert. Auth. No.
Minimum Span Length	28.3	(feet)	Phone & email:
Recommended Posting	> 39.9% below (0.00	0-0.600) (Required)	Company:
Recommended SU Posting*	11	(tons)	Address:
Recommended C Posting	16	(tons)	P ⊈ Syel/, Community
Recommended ST5 Posting	18	(tons)	Juan
Owner	02 County Highway A	Agency	1
Location	Neither interstate tra reasonable access to	affic nor within 1 mile	Sobr
EV Posting		t recommended. The	Juan A. Sobrino,
Floor Beam Present?	No		73121.
Segmental Bridge?	No		This document h Sobrino on Janua
Project No. & Reason	432907-1-72-02	Deterioration	Printed copies of and the SHA auti
Plans Status	Built		copies.

Juan Sobrino Digitally signed by Juan Sobrino Date: 2020.01.13 15:58:25 -05'00'

Date:

Date:

Date:

01/13/20

01/13/20

01/13/20

Juan A. Sobrino, State of Florida, Professional Engineer, License No 73121.

Mengyuan Chen

Juan A. Sobrino

Juan A. Sobrino

(+1) 305 648 00 10, miami@pedelta.om

2000 Ponce de Leon Blvd., Suite 624, Coral Gables. Florida

73121

27244

Pedelta Inc.

This document has been electronically signed and sealed by Juan A. Sobrino on January 13th, 2020 using a SHA authentication code. Printed copies of this document are not considered signed and sealed and the SHA authentication code must be verified on any electronic

DATE PRINTED: 6/25/2021

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Description

REPORT ID: INSP005

Structure ID: 874294

Structure Unit Identification

Bridge/Unit Key: 874294 0

Structure Name:

Description: SPANS 1 THRU 3

Type: M - Main

Roadway Identification

NBI Structure No (8): 874294

Position/Prefix (5): 1 - Route On Structure

Kind Hwy (Rte Prefix): 4 County Hwy
Design Level of Service: 8 Service Road
Route Number/Suffix: 00000 / 0 N/A (NBI)

Feature Intersect (6): Matheson Hammock Canal

Critical Facility: Not Defense-crit
Facility Carried (7): Matheson Hmk Road

Mile Point (11): 0.08

Latitude (16): 025d40'44.2" Long (17): 080d15'43.8"

Roadway Classification

Nat. Hwy Sys (104): 0 Not on NHS

National base Net (12): 0 - Not on Base Network

LRS Inventory Rte (13a): 87 000 757 Sub Rte (13b): 00

Functional Class (26): 09 Rural Local

Federal Aid System: OFF

Defense Hwy (100): 0 Not a STRAHNET hwy

Direction of Traffic (102): 2 2-way traffic

Emergency: X

NBI Project Data

Proposed Work (075A): Not Applicable (P) Work To Be Done By (075B): Not Applicable (P)

Improvement Length (076): 0 ft

NBI Rating

Channel (61): 6 Bank Slumping

Deck (58): 3 Serious

Superstructure (59): 3 Serious Substructure (60): 4 Poor

Roadway Traffic and Accidents

Lanes (28): 2 Medians: 0 Speed: 15 mph

ADT Class: 2 ADT Class 2

Recent ADT (29): 736 Year (30): 2020 Future ADT (114): 1168 Year (115): 2042

Truck % ADT (109): 1
Detour Length (19): 99 mi
Detour Speed:

Accident Count: -1 Rate:

Roadway Clearances

Vertical (10): 99.99 ft Appr. Road (32): 26.25 ft

Horiz. (47): 26.25 ft Roadway (51): 26.25 ft

Truck Network (110): 0 Not part of natl netwo

Toll Facility (20): 3 On free road Fed. Lands Hwy (105): 0 N/A (NBI)

School Bus Route: ____

Improvement Cost (094): \$ 0.00 Roadway Improvement Cost (095): \$ 0.00 Total Cost (096): \$ 0.00

Year of Estimate (097):

Culvert (62): N N/A (NBI) Waterway (71): 8 Equal Desirable

: 10 " 1 = qual 2

Unrepaired Spalls: -1 sq.ft. Review Required: X

DATE PRINTED: 6/25/2021

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

REPORT ID: INSP005 Structure ID: 874294

Inspection/CIDR Report with PDF attachment(s) CIDR

Structure Identification

Admin Area: Miami-Dade
District (2): D6 - Miami
County (3): (87)Miami-Dade
Place Code (4): South Miami Heights
Location (9): Matheson Hammock Park

Border Br St/Reg (98): Not Applicable (P) Share: 0 %

Border Struct No (99):

FIPS State/Region (1): 12 Florida Region 4-Atlanta

NBIS Bridge Len (112): Y - Meets NBI Length

Parallel Structure (101): No || bridge exists
Temp. Structure (103): Not Applicable (P)
Maint. Resp. (21): 2 County Hwy Agency
Owner (22): 2 County Hwy Agency
Historic Signif. (37): 5 Not eligible for NRHP

Structure Type and Material

Curb/Sidewalk (50): Left: 1.5 ft Right: 5.5 ft

Bridge Median (33): 0 No median

Main Span Material (43A): 5 Prestressed Concrete

Appr Span Material (44A): Not Applicable (P)

Main Span Design (43B): 01 Slab Appr Span Design (44B): 00 Other (NBI)

Appraisal

Structure Appraisal

Open/Posted/Closed (41): P Posted for load

Deck Geometry (68): 5 Above Tolerable

Underclearances (69): N Not applicable (NBI)

Approach Alignment (72): 8-No Speed Red thru Curv

Bridge Railings (36a): 0 Substandard Transitions (36b): 0 Substandard

Approach Guardrail (36c): 0 Substandard Approach Guardrail Ends (36d): 0 Substandard

Scour Critical (113): U Unknown Foundation

Minimum Vertical Clearance

Over Structure (53): 99.99 ft

Under (reference) (54a): N Feature not hwy or RR

Under (54b): 0 ft

Schedule

Current Inspection

Inspection Date: 04/26/2021

Inspector: KNMEIAG - Armando Guzman

Bridge Group: CA611 Alt. Bridge Group: Primary Type: Interim

Review Required: X

Geometrics

Spans in Main Unit (45): 3
Approach Spans (46): 0
Length of Max Span (48): 38.3 ft
Structure Length (49): 100.33 ft
Total Length: 140.33 ft
Deck Area: 3536 sqft

Structure Flared (35): 0 No flare

Age and Service

Year Built (27): 1967 Year Reconstructed (106): 0

Type of Service On (42a): 5 Highway-pedestrian

Under (42b): 5 Waterway
Fracture Critical Details: Not Applicable

Deck Type and Material

Deck Width (52): 35.25 ft Skew (34): 0 deg

Deck Type (107): 2 Concrete Precast Panel

Surface (108): 6 Bituminous Membrane: 0 None Deck Protection: None

Navigation Data

Navigation Control (38): Permit Not Required

Nav Vertical Clr (39): 0 ft Nav Horizontal Clr (40): 0 ft Min Vert Lift Clr (116): 0 ft

Pier Protection (111): 1 Not Required

NBI Condition Rating

Sufficiency Rating: 15.5 Health Index: 85.48

Structural Eval (67): 3 Intolerable - Correct Deficiency: Structurally Deficient

Minimum Lateral Underclearance

Reference (55a): N Feature not hwy or RR

Right Side (55b): 0 ft Left Side (56): 0 ft

Next Inspection Date Scheduled

NBI: 04/26/2022 Element: 10/26/2021

Fracture Critical:

Underwater: 04/26/2022 Other/Special: 10/26/2021

Inventory Photo Update Due: 04/26/2024

Inspection/CIDR Report with PDF attachment(s)

REPORT ID: INSP005

Structure ID: 874294 CIDR DATE PRINTED: 6/25/2021

Schedule Cont. **Inspection Types** NBI 🗀 Element X Fracture Critical Underwater Other Special X **Performed Inspection Intervals** Required (92) Frequency (92) Last Date (93) **Inspection Resources** Fracture Critical Crew Hours: mos 04/06/2020 Underwater 24 mos Flagger Hours: 04/26/2021 6 mos Helper Hours: Other Special 04/06/2020 Snooper Hours: NBI 24 (90)mos (91)Special Crew Hours: **Bridge Related** Special Equip Hours: 0 **General Bridge Information** Parallel Bridge Seq: Bridge Rail 1: Conc parapet-alum-rail Channel Depth: 10.6 ft Bridge Rail 2: Not applicable-No rail Radio Frequency: -1 Electrical Devices: No electric service Phone Number: Culvert Type: Not applicable Maintenance Yard: Not FDOT Maintained **Exception Date:** Exception Type: Unknown FIHS ON / OFF: No Routes on FIHS Accepted By Maint: 01/01/1967 Previous Structure: Warranty Expiration: 00/00/0000 2nd Previous Structure: Replacement Structure: Performance Rating: Poor Permitted Utilities: Power [Gas Fiber Optic Sewage X Other **Bridge Load Rating Information** Inventory Type (065): 3 LRFR Load & Res. Fact Inventory Rating (066): 7.6 tons Operating Type (063): 3 LRFR Load & Res. Fact Operating Rating (064): 11.9 tons Original Design Load (031): HL 93 FL120 Permit Rating: 16.2 tons Date: 01/13/2020 HS20/FL120 Max Span Rating: 16.2 tons Initials: JS Dynamic Impact in Percent: 33 % Load Rating Rev. Recom.: No Governing Span Length: 38.3 ft Load Rating Plans Status: Field Measurements Minimum Span Length: 28.3 ft Distribution Method: Others Load Rating Notes: **LEGAL LOADS POSTING** SU2: 11.7 tons Recom. SU Posting: 11 tons SU3: 12.2 tons Recom. C Posting: 16 tons SU4: 11.9 tons Recom. ST5 Posting: 18 tons C3: 18.2 tons Actual SU Posting: 11 tons C4: 16.9 tons Actual C Posting: 16 tons C5: 17.6 tons Actual ST5 Posting: 18 tons ST5: 18.4 tons Actual Blanket Posting: 99 tons Posting (070): 2 20.0-29.9%below Emergency Vehicle: 1 EV inapplicable Open/Posted/Closed (041): P Posted for load FLOOR BEAM (FB) FB Present: No **SEGMENTAL (SEG)** FB Span Length, Gov: 0.0 ft SEG Wing-Span: -1.0 ft FB Spacing, Gov: 0.0 ft SEG Web-to-Web Span: -1.0 ft FB OPR Rating: 0.0 tons SEG Transverse HL93 Operating: -1.00 RF FB SU4 OPR Rating: 0.0 tons FB FL120 Rating: 0.0 tons Bridge Scour and Storm Information Pile Driving Record: No pile driving records Scour Recommended I: Unknown Foundation Type: Unknown Scour Recommended II: Unknown Mode of Flow: Tidal Scour Recommended III: Unknown Rating Scour Eval: Minimal Risk Scour Elevation: -1 ft Highest Scour Eval: Unknown Action Elevation: -1 ft Scour Evaluation Method: Storm Frequency: -1

DATE PRINTED: 6/25/2021

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Elements

REPORT ID: INSP005

Structure ID: 874294

Inspection Date: 04/26/2021 HIXS

DECKS: Decks/Slabs

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8099 / 3	PS Conc Slab (Sonovoid)	3099	87.64	14	0.4	423	11.96	0		3536 (SF)
0	1080 / 3	Delamination/Spall/Patched Area	0		14	70	6	30	0		20 (SF)
0	1100 / 3	Exposed Prestressing	0		0		35	100	0		35 (SF)
0	1110 / 3	Cracking (PSC)	0		0		292	100	0		292 (SF)
0	1900 / 3	Distortion	0		0		90	100	0		90 (SF)
0	510 / 3	Wearing Surfaces	1734	65.83	0		900	34.17	0		2634 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		900	100	0		900 sq.ft

DECKS: Joints

Str Uni	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	301 / 3	Pourable Joint Seal	0		0	-	104	74.29	36	25.71	140 ft
0	2310 / 3	Leakage	0		0		104	100	0		104 ft
0	2330 / 3	Seal Damage	0		0		0		36	100	36 ft

MISCELLANEOUS: Channel

Str	Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	3	8290 / 3	Channel	0		0	-	1	100	0		1 (EA)
0		9150 / 3	Bank Erosion	0		0		1	100	0		1 (EA)

MISCELLANEOUS: Other Elements

Str Uni	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	321 / 3	Re Conc Approach Slab	1410	100	0		0		0		1410 sq.ft
0	510 / 3	Wearing Surfaces	957	91.14	0		93	8.86	0		1050 sq.ft
0	3220 / 3	Crack (Wearing Surface)	0		0		93	100	0		93 sq.ft

SUBSTRUCTURE: Substructure

Str U	Init	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	2	205 / 3	Re Conc Column	0		0		4	100	0		4 each
0		1090 / 3	Exposed Rebar	0		0		1	100	0		1 each
0		1130 / 3	Cracking (RC and Other)	0		0		3	100	0		3 each

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	215 / 3	Re Conc Abutment	65	92.86	0		5	7.14	0		70 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		0		5	100	0	·	5 ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	234 / 3	Re Conc Pier Cap	48	70.59	12	17.65	8	11.76	0		68 ft
0	1080 / 3	Delamination/Spall/Patched Area	0		12	60	8	40	0		20 ft

SUBSTRUCTURE: Substructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	8393 / 3	Bulkhead Seawall Any Material	0		0		354	100	0		354 ft
0	1130 / 3	Cracking (RC and Other)	0		0		314	100	0		314 ft

REPORT ID: INSP005 Inspection/CIDR Report with PDF attachment(s)

CIDR DATE PRINTED: 6/25/2021

0	6000 / 3	Scour	0	0	40	100	0	40 ft

SUBSTRUCTURE: Substructure

Structure ID: 874294

Str U	Jnit l	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	3	8394 / 3	R/Conc Abut Slope Protection	3968	73.81	0		1408	26.19	0		5376 (SF)
0		1130 / 3	Cracking (RC and Other)	0		0		320	100	0		320 (SF)
0		4000 / 3	Settlement	0		0		1088	100	0		1088 (SF)

SUPERSTRUCTURE: Superstructure

Str Unit	Elem/Env	Description	Qty1	%1	Qty2	%2	Qty3	%3	Qty4	%4	T Qty
0	333 / 3	Other Bridge Railing	167	83.5	33	16.5	0		0		200 ft
0	1000 / 3	Corrosion	0		30	100	0		0		30 ft
0	1020 / 3	Connection	0		3	100	0		0		3 ft

Total Number of Elements*: 10 *excluding defects/protective systems

Inspection Information

Inspection Date: 04/26/2021 **Type:** Interim

Inspector: KNMEIAG - Armando Guzman

Inspection Notes: Sufficiency Rating Calculation Accepted by knmeira at 5/5/2021 3:15 PM.

The structure is on a 6 months inspection frequency due to NBI Rating 3 for SIA Items 58 Deck and 59 Superstructure. (04/26/2021).

This Interim inspection (04/26/2021) was conducted to evaluate Element 8099 PS Conc Slab (Sonovoid), Element 234 Re Conc Pier Cap and Element 205 Re Conc Column, for the status of the entire structure refer to the last Regular NBI Inspection (04/06/2020).

The Deck and Superstructure are coded 3 (Serious) due to spalls and delaminations along more than 25% of any of the slab units. Slabs Units 1-6, 2-7, and 2-8 meet this criteria. (04/26/2021).

The Substructure NBI Rating is coded 4 (Poor) due to extensive spalls with exposed rebars along Column 2-2, and delaminations and cracks along the columns and pier caps throughout the structure. (04/26/2021).

LOAD CAPACITY EVALUATION:

Since the current load rating dated 1/13/2020, there is no indication that deterioration, geometric changes or additional dead load have occurred that would warrant a new load rating analysis. This only applies to this inspection dated 04/26/2021 per Julie A. Vers. P.E.

LEGEND:

NCAR: NO CORRECTIVE ACTION RECOMMENDED

RT: Right
LT: Left
L: Long
W: Wide
H: High
D: Deep
in.: Inches
ft.: Feet
LF: Linear Feet
SF: Square Fee

SF: Square Feet NE: Northeast NW: Northwest SE: Southeast SW: Southwest

Page 37 of 37

DATE PRINTED: 6/25/2021

FLORIDA DEPARTMENT OF TRANSPORTATION BRIDGE MANAGEMENT SYSTEM

Inspection/CIDR Report with PDF attachment(s)
CIDR

Structure ID: 874294
Structure Notes

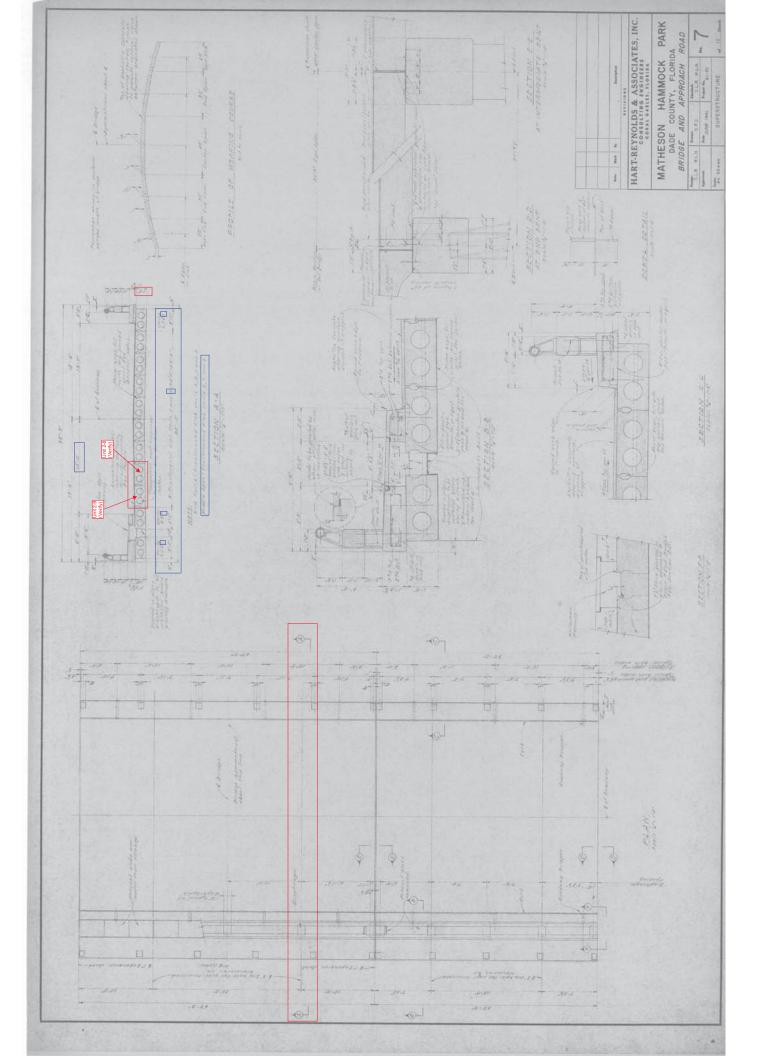
REPORT ID: INSP005

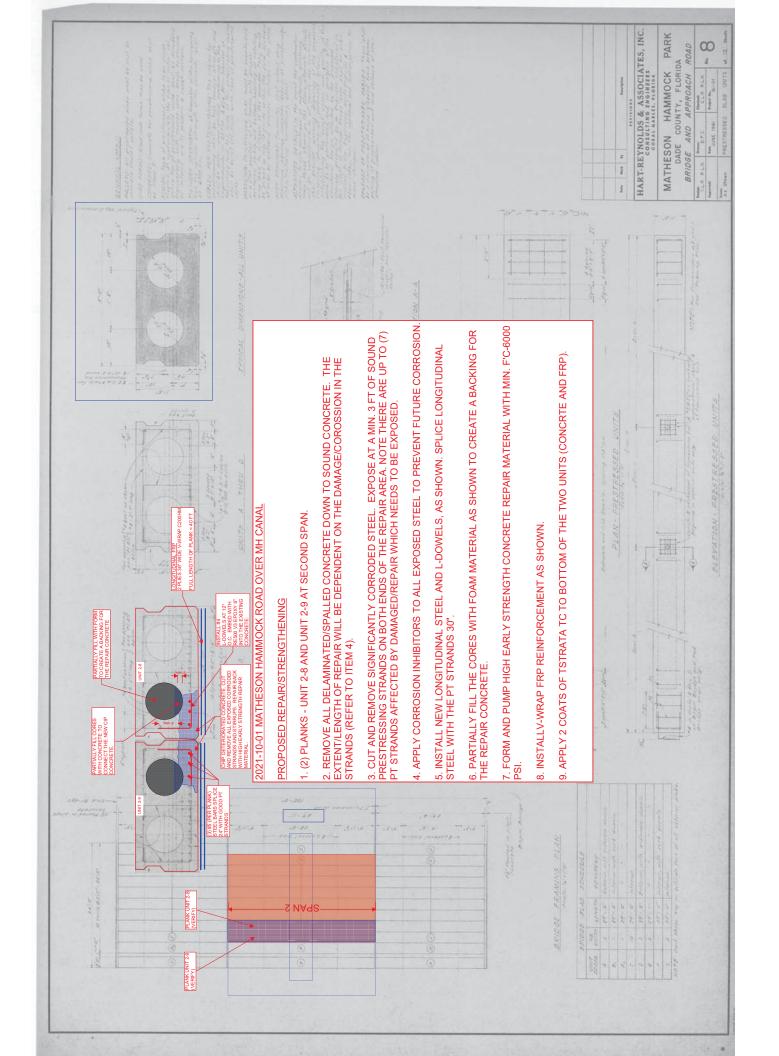
BRIDGE OWNER: MIAMI-DADE COUNTY

Bridge inventoried from south to north. (Entrance on North end, boat ramp on South end).

P/S Slab Units on R/Conc Caps and Abutments over P/Conc Columns. (3 spans)

TRAFFIC RESTRICTIONS:


Based on the current load rating analysis dated 1/13/2020, the bridge is posted for the SU, C and ST5 type vehicles as follows: SU = 11 tons, C = 16 tons, ST5 = 18 tons. Refer to posting signs Photos 19 and 20.


REVIEWED BY:

Schedule Notes

Matheson Hammock Park	Bridge No 87/29/ over 1	Matheson Hammock Cana	ı
Matheson Hammock Park	Bridge No.8/4294 over r	vialneson nammock Cana	ı

APPENDIX G – STRUCTURAL TECHNOLOGIES, LLC., PRELIMINARY BRIDGE REPAIR RECOMMENDATIONS

