APPENDIX D

SOIL BORING LOGS, WELL CONSTRUCTION AND DEVELOPMENT LOGS, AND WELL COMPLETION REPORTS

APPENDIX E

LABORATORY ANALYTICAL REPORTS GROUND WATER SAMPLING LOGS

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

03/06/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA51986

Sampling Dates: 02/21/18 - 02/22/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: 74

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 74 FA51986

Table of Contents

N

ယ

4

S

6

7

8

ပ

-1-

*	
Section 1: Sample Summary	3
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: FA51986-1: MW 1	7
3.2: FA51986-2: MW 2	10
3.3: FA51986-3: MW 3	13
3.4: FA51986-4: MW 4	16
3.5: FA51986-5: MW 5	19
3.6: FA51986-6: MW 6	22
3.7: FA51986-7: MW 7	25
3.8: FA51986-8: MW 8	31
3.9: FA51986-9: MW B	34
Section 4: Misc. Forms	37
4.1: Chain of Custody	38
Section 5: MS Volatiles - QC Data Summaries	40
5.1: Method Blank Summary	41
5.2: Blank Spike Summary	45
5.3: Matrix Spike/Matrix Spike Duplicate Summary	49
Section 6: MS Semi-volatiles - QC Data Summaries	53
6.1: Method Blank Summary	54
6.2: Blank Spike Summary	55
6.3: Matrix Spike/Matrix Spike Duplicate Summary	56
Section 7: GC Volatiles - QC Data Summaries	57
7.1: Method Blank Summary	58
7.2: Blank Spike Summary	59
7.3: Matrix Spike/Matrix Spike Duplicate Summary	60
Section 8: GC/LC Semi-volatiles - QC Data Summaries	61
8.1: Method Blank Summary	62
8.2: Blank Spike Summary	64
8.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 9: Metals Analysis - QC Data Summaries	68
9.1: Prep QC MP33393: Pb	69

SGS

Sample Summary

ATC Group Services LLC.

Job No: FA51986

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA51986-1	02/21/18	12:05 LR	02/23/18	AQ	Ground Water	MW 1
FA51986-2	02/21/18	15:01 LR	02/23/18	AQ	Ground Water	MW 2
FA51986-3	02/21/18	14:11 LR	02/23/18	AQ	Ground Water	MW 3
FA51986-4	02/21/18	13:26 LR	02/23/18	AQ	Ground Water	MW 4
FA51986-5	02/22/18	12:53 LR	02/23/18	AQ	Ground Water	MW 5
FA51986-6	02/22/18	12:08 LR	02/23/18	AQ	Ground Water	MW 6
FA51986-7	02/22/18	10:26 LR	02/23/18	AQ	Ground Water	MW 7
FA51986-8	02/22/18	11:26 LR	02/23/18	AQ	Ground Water	MW 8
FA51986-9	02/22/18	13:44 LR	02/23/18	AQ	Ground Water	MW B

Summary of Hits

Job Number:	FA51986
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	02/21/18 thru 02/22/18

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA51986-1	MW 1					
Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		0.39 I 40.2 38.9 0.59 I 1.79	0.80 8.0 8.0 0.80 0.24	0.20 3.2 3.2 0.32 0.14	ug/l ug/l ug/l ug/l mg/l	SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-2	MW 2					
Benzene Acenaphthene Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene Phenanthrene TPH (C8-C40)		0.32 I 0.65 I 0.63 I 9.5 8.2 1.5 0.37 I 2.13	$ \begin{array}{c} 1.0\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.24\\ \end{array} $	0.31 0.32 0.20 0.32 0.32 0.32 0.20 0.14	ug/l ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-3	MW 3					
Benzene Toluene Ethylbenzene Xylene (total) Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		0.58 I 0.32 I 0.50 I 1.3 I 0.43 I 13.4 21.8 13.4 1.63	$ \begin{array}{c} 1.0\\ 1.0\\ 3.0\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.24 \end{array} $	$\begin{array}{c} 0.31 \\ 0.30 \\ 0.36 \\ 0.72 \\ 0.20 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.14 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-4	MW 4					
1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		2.5 2.4 0.49 I 0.300	0.80 0.80 0.80 0.24	0.32 0.32 0.32 0.14	ug/l ug/l ug/l mg/l	SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO

FA51986-5 MW 5

No hits reported in this sample.

FA51986-6 MW 6

No hits reported in this sample.

N

Summary of Hits

Job Number:	FA51986
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	02/21/18 thru 02/22/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method
FA51986-7 MW 7					
Benzene	0.32 I	1.0	0.31	ug/l	SW846 8260B
Ethylbenzene	3.5	1.0	0.36	ug/l	SW846 8260B
Xylene (total)	0.80 I	3.0	0.72	ug/l	SW846 8260B
Fluorene	0.54 I	0.80	0.20	ug/l	SW846 8270D BY SIM
1-Methylnaphthalene	75.1	8.0	3.2	ug/l	SW846 8270D BY SIM
2-Methylnaphthalene	118	8.0	3.2	ug/l	SW846 8270D BY SIM
Naphthalene	84.9	8.0	3.2	ug/l	SW846 8270D BY SIM
Phenanthrene	0.23 I	0.80	0.20	ug/l	SW846 8270D BY SIM
TPH (C8-C40)	3.25	1.3	0.75	mg/l	FLORIDA-PRO
Lead	17.5	5.0	1.1	ug/l	SW846 6010C
				e e	

FA51986-8 **MW 8**

No hits reported in this sample.

FA51986-9 MW B

No hits reported in this sample.

N

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

Report	of	Anal	ysis
--------	----	------	------

Client Sample ID:MW 1Lab Sample ID:FA51986-1Matrix:AQ - Ground WaterMethod:SW846 8260BProject:Jak Service Center(United Fuel); 6900 SW				00 SW 3	Date Sampled:02/21/18Date Received:02/23/18Percent Solids:n/aW 8th St, Miami, FL			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1 ^a	1A10046.D	1	03/01/18 18:26	SP	n/a	n/a	V1A370	
Run #2	O50968.D	1	02/26/18 13:35	SP	n/a	n/a	VO1914	
	Purge Volume	•						
Run #1	5.0 ml							
Run #2	5.0 ml							
Purgeable CAS No.	e Aromatics, MT Compound	BE	Result	PQL	MDL Units	s Q		

(a) Sample vial(s) contained significant headspace; reported results are considered minimum values.(b) Result is from Run# 2

U = Not detected MDL = Method Detection Limit PQL = Practical Quantitation Limit L = Indicates value exceeds calibration range

7 of 74

FA51986

Page 1 of 1

ω

ω ___

Client Sa	mple ID:	MW 1					
Lab Sam	ple ID:	FA51986-1			Date	Sampled:	02/21/18
Matrix: AQ - Ground Water				Date	Received:	02/23/18	
Method:	Method: SW846 8270D BY SIM SW846 3510C				Percent Solids: n/a		
Project:		Jak Service C	enter(United Fuel); 69	900 SW	8th St, Miami, FL		
	File ID	DF	Analyzed	By	Prep Date	Prep Batc	h Analytical Batch
Run #1	R475620).D 1	03/02/18 02:0	9 RV	02/26/18 16:00	OP68917	SR2877

03/03/18 01:08 RV

02/26/18 16:00 OP68917

Report	of	Analysis

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2	250 ml	1.0 ml

10

U064542.D

BN PAH List

Run #2

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.39	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	40.2 ^a	8.0	3.2	ug/l	
91-57-6	2-Methylnaphthalene	38.9 ^a	8.0	3.2	ug/l	
91-20-3	Naphthalene	0.59	0.80	0.32	ug/l	Ι
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	81%	62%	41-1	29%	
321-60-8	2-Fluorobiphenyl	67%	93%	41-1	18%	
1718-51-0	Terphenyl-d14	97%	100%	45-1		

(a) Result is from Run# 2

- I = Result > = MDL but < PQL J = Estimated value
- V = Indicates analyte found in associated method blank
- $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

SU2816

<u>ω</u>

8 of 74

FA51986

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - C FLOR	Fround Wate DA-PRO	r SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2	File ID LR03248.D	DF 1	Analyzed 02/28/18 19:45	By SJL	Prep D 02/27/1	ate .8 10:50	Prep Batch OP68927	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1050 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	1.79	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		95%		41-1	46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

ω ____

ω

9 of 74 SGS

Lab Samp Matrix: Method: Project:	AQ - SW84	986-2 Ground Wa 6 8260B	ater er(United Fuel); 690	0 SW	Da Pe	te Received: 02 rcent Solids: n/	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A10047.D	1	03/01/18 18:49	SP	n/a	n/a	V1A370
Run #2 ^a	O50969.D	1	02/26/18 13:56	SP	n/a	n/a	VO1914
	Purge Volum	e					
Run #1	5.0 ml						
Run #2	5.0 ml						

Report of Analysis

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.32 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	Ι
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 109% 99% 104%	100% 102% 96% 100%	83-1 79-1 85-1 83-1	25% 12%	

(a) Confirmation run.

N = Indicates presumptive evidence of a compound

ယ

Report of Anal	vsis
-----------------------	------

	Initial Volume	Final V	/olume				
Run #1 Run #2	U064543.D	1	03/03/18 01:33	RV	02/26/18 16:00	OP68917	SU2816
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Matrix: Method: Project:	SW846		ater Y SIM SW846 351 er(United Fuel); 690		Perc	Received: 02 ent Solids: n/	
Client Saı Lab Samı	mple ID: MW 2 ple ID: FA519	86-2			Date	Sampled: 02	2/21/18

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.65	0.80	0.32	ug/l	Ι
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.63	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	9.5	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene	8.2	0.80	0.32	ug/l	
91-20-3	Naphthalene	1.5	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.37	0.80	0.20	ug/l	Ι
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	85%		41-1	29%	
321-60-8	2-Fluorobiphenyl	82%		41-1	18%	
1718-51-0	Terphenyl-d14	85%		45-1	45%	

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- $V = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

3 2

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Wate DA-PRO	r SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2 Run #1 Run #2	File ID LR03249.D Initial Volume 1050 ml	DF 1 Final Vol 1.0 ml	Analyzed 02/28/18 20:05 ume	By SJL	Prep D 02/27/1	ate 8 10:50	Prep Batch OP68927	Analytical Batch GLR283
CAS No.	Compound TPH (C8-C40)	1	Result	PQL 0.24	MDL 0.14	Units mg/l	Q	
CAS No. 84-15-1	Surrogate Rec	coveries	Run# 1 99%	Run# 2	Lim 41-1	its 46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

L = Indicates value exceeds calibration range

Report	of	Analysis
--------	----	----------

Lab Samp Matrix: Method: Project:	AQ - SW84	FA51986-3 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 3			Date Sampled:02/21/18Date Received:02/23/18Percent Solids:n/aW 8th St, Miami, FL			
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	1A10048.D	1	03/01/18 19:12	SP	n/a	n/a	V1A370	
Run #2 ^a	O50970.D	1	02/26/18 14:17	SP	n/a	n/a	VO1914	
	Purge Volume	9						
Run #1	5.0 ml							
Run #2	5.0 ml							

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.58 0.32 0.50 1.3 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	I I I I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 104% 100% 107%	100% 102% 97% 101%	83-1 79-1 85-1 83-1	25% 12%	

(a) Confirmation run.

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

Report of A	Analysis
--------------------	----------

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	File ID T036651.D	DF 1	Analyzed 03/06/18 14:25	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch ST1357

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

Compound	Result	PQL	MDL	Units	Q
Acenaphthene	0.32 U	0.80	0.32	ug/l	
Acenaphthylene	0.32 U	0.80	0.32	ug/l	
Anthracene	0.20 U	0.80	0.20	ug/l	
Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
Chrysene	0.032 U	0.16	0.032	ug/l	
Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
Fluoranthene	0.20 U	0.80	0.20	ug/l	
Fluorene	0.43	0.80	0.20	ug/l	Ι
Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
1-Methylnaphthalene	13.4	0.80	0.32	ug/l	
2-Methylnaphthalene	21.8	0.80	0.32	ug/l	
Naphthalene	13.4	0.80	0.32	ug/l	
Phenanthrene	0.20 U	0.80	0.20	ug/l	
Pyrene	0.20 U	0.80	0.20	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Nitrobenzene-d5	89%		41-1	29%	
2-Fluorobiphenyl	85%		41-1	18%	
Terphenyl-d14	91%		45-1	45%	
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Acenaphthene0.32 UAcenaphthylene0.32 UAnthracene0.20 UBenzo(a)anthracene0.032 UBenzo(a)pyrene0.032 UBenzo(b)fluoranthene0.032 UBenzo(g, h, i)perylene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UDibenzo(a, h)anthracene0.032 UFluoranthene0.032 UFluoranthene0.032 UFluorene0.43Indeno(1,2,3-cd)pyrene0.032 U1-Methylnaphthalene13.42-Methylnaphthalene13.4Phenanthrene0.20 UPyrene0.20 USurrogate RecoveriesRun# 1Nitrobenzene-d589%2-Fluorobiphenyl85%	Acenaphthene 0.32 U 0.80 Acenaphthylene 0.32 U 0.80 Anthracene 0.20 U 0.80 Benzo(a)anthracene 0.032 U 0.16 Benzo(a)pyrene 0.032 U 0.16 Benzo(b)fluoranthene 0.032 U 0.16 Benzo(g,h,i)perylene 0.032 U 0.16 Benzo(k)fluoranthene 0.032 U 0.16 Benzo(k)fluoranthene 0.032 U 0.16 Dibenzo(a, h)arthracene 0.032 U 0.16 Dibenzo(a, h)anthracene 0.032 U 0.16 Fluoranthene 0.20 U 0.80 Fluorene 0.43 0.80 Indeno(1, 2, 3-cd)pyrene 0.032 U 0.16 1-Methylnaphthalene 21.8 0.80 Naphthalene 13.4 0.80 Phenanthrene 0.20 U 0.80 Surrogate Recoveries Run# 1 Run# 2 Nitrobenzene-d5 89% 85%	Acenaphthene 0.32 U 0.80 0.32 Acenaphthylene 0.32 U 0.80 0.32 Anthracene 0.20 U 0.80 0.20 Benzo(a)anthracene 0.032 U 0.16 0.032 Benzo(a)pyrene 0.032 U 0.16 0.032 Benzo(b)fluoranthene 0.032 U 0.16 0.032 Benzo(g,h,i)perylene 0.032 U 0.16 0.032 Benzo(k)fluoranthene 0.032 U 0.16 0.032 Benzo(k)fluoranthene 0.032 U 0.16 0.032 Chrysene 0.032 U 0.16 0.032 Dibenzo(a,h)anthracene 0.032 U 0.16 0.032 Fluoranthene 0.20 U 0.80 0.20 Fluorene 0.43 0.80 0.20 Indeno(1,2,3-cd)pyrene 0.032 U 0.16 0.032 1-Methylnaphthalene 13.4 0.80 0.32 Naphthalene 13.4 0.80 0.32 Naphthalene 0.20 U 0.80 0.20 Pyrene 0.20 U 0.80 0.20 Surrogate RecoveriesRun#1Run#2LimiNitrobenzene-d5 89% $41-1$ 2-Fluorobiphenyl 85% $41-1$	Acenaphthene 0.32 U 0.80 0.32 ug/l Acenaphthylene 0.32 U 0.80 0.32 ug/l Anthracene 0.20 U 0.80 0.20 ug/l Benzo(a)anthracene 0.032 U 0.16 0.032 ug/l Benzo(a)pyrene 0.032 U 0.16 0.032 ug/l Benzo(b)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(g,h,i)perylene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Fluorene 0.43 0.80 0.20 ug/l Indeno(1,2,3-cd)pyrene 0.032 U 0.16 0.032 ug/l I-Methylnaphthalene 13.4 0.80 0.32 ug/l Naphthalene 13.4 0.80 0.20 ug/l Pyrene 0.20 U 0.80 0.20 ug/l <t< td=""></t<>

- $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$
- V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

Page 1 of 1

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - Q FLOR	986-3 Ground Wate IDA-PRO	r SW846 3510C (United Fuel); 69	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2	File ID LR03250.D	DF 1	Analyzed 02/28/18 20:26	By 5 SJL	Prep D 02/27/1	ate .8 10:50	Prep Batch OP68927	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1050 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	1.63	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		106%		41-1	46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω ω

ယ

SGS

Client San Lab Samj Matrix: Method: Project:	AQ - SW84	FA51986-4 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 8th S				Date Sampled:02/21/18Date Received:02/23/18Percent Solids:n/a8th St, Miami, FL			
Run #1 Run #2	File ID O50971.D	DF 1	Analyzed 02/26/18 14:37	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914		
Run #1 Run #2	Purge Volum 5.0 ml	e							

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 101% 96% 97%		83-1 79-1 85-1 83-1	25% 12%	

SGS

16 of 74

FA51986

Page 1 of 1

ω

Lab Sam	-	MW 4 FA5198	6-4			Date	Sampled: (02/21/18
Matrix:	-	AQ - Ground Water			Date Received: 02/23/18			
Method: SW846			8270D B	Y SIM SW846 351	0C	Perc	ent Solids: n	n/a
Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Project:		Jak Serv	vice Cente	er(United Fuel); 690	0 SW 8	8th St, Miami, FL		
Project:	File ID	Jak Serv	vice Cente	er(United Fuel); 690 Analyzed	0 SW 8	Sth St, Miami, FL Prep Date	Prep Batch	Analytical Batch
Project: Run #1					By	, ,	Prep Batch OP68917	Analytical Batch ST1357

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	2.5	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene	2.4	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.49	0.80	0.32	ug/l	Ι
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	84%		41-1	29%	
321-60-8	2-Fluorobiphenyl	101%		41-1	18%	
1718-51-0	Terphenyl-d14	94%		45-1	45%	

- $I=\ Result>=\ MDL\ but<\ PQL\ \ J=\ Estimated\ value$
- $V = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

	Report of Analysis									
Client Sam Lab Sampl Matrix: Method: Project:	le ID: FA	LORID	ound Wate A-PRO S	r SW846 3510C United Fuel); 690	00 SW 8t	h St, Mia	Date Perce	Sampled: Received: ent Solids:	02/21/18 02/23/18 n/a	
Run #1 Run #2	File ID LR03251.1	D	DF 1	Analyzed 02/28/18 20:47	By SJL	Prep D a 02/27/1		Prep Batcl OP68927	h Analyti GLR28	i cal Batch 3
Run #1 Run #2	Initial Vo l 1050 ml	lume	Final Vol 1.0 ml	ume						
CAS No.	Compour	nd		Result	PQL	MDL	Units	Q		
	TPH (C8	G-C40)		0.300	0.24	0.14	mg/l			
CAS No.	Surrogat	te Reco	veries	Run# 1	Run# 2	Limi	its			
84-15-1	o-Terphe	nyl		112%		41-1-	46%			

ω

3.4

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Lab Samp Matrix: Method: Project:	AQ - SW84	MW 5 FA51986-5 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 8			Date Sampled:02/22/18Date Received:02/23/18Percent Solids:n/a8th St, Miami, FL			
Run #1 Run #2	File ID O50972.D	DF 1	Analyzed 02/26/18 14:58	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914	
Run #1 Run #2	Purge Volum 5.0 ml	e						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 101% 97% 98%		83-1 79-1 85-1 83-1	25% 12%	

19 of 74

FA51986

Page 1 of 1

ა 5

ω

	Initial Volume	Final V	Jume					
Run #1 Run #2	R475624.D	1	03/02/18 04:16	•	02/26/18 16:00	OP68917	SR2877	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Method: Project:			Y SIM SW846 351 er(United Fuel); 690			ent Solids: n/	a	
		cound Water			Date	Received: 02	02/23/18	
Lab Sam	ple ID: FA5198	FA51986-5			Date	Sampled: 02	02/22/18	
Client Sa	mple ID: MW 5							

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	89%		41-1	29%	
321-60-8	2-Fluorobiphenyl	80%		41-1	18%	
1718-51-0	Terphenyl-d14	97%		45-1	45%	

(a) Associated CCV outside of control limits high, sample was ND.

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ω 5

Report of Analysis Pag								Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Wate DA-PRO	er SW846 3510C (United Fuel); 690	00 SW 8t	02/22/18 02/23/18 n/a			
Run #1 Run #2 Run #1	File ID LR03307.D Initial Volume 1020 ml	DF 1 Final Vol 1.0 ml	Analyzed 03/01/18 15:49 lume	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #2 CAS No.	Compound TPH (C8-C40))		PQL 0.25	MDL 0.15	Units mg/l	Q	
CAS No. 84-15-1	Surrogate Red	coveries	Run# 1 97%	Run# 2	Lim 41-1	its 46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω 5

ω

SGS

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW8	MW 6 FA51986-6 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 8t			Date Sampled: 02/22/18 Date Received: 02/23/18 Percent Solids: n/a 8th St, Miami, FL			
Run #1 Run #2	File ID O50973.D	DF 1	Analyzed 02/26/18 15:19	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914	
Run #1 Run #2	Purge Volum 5.0 ml	le						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 101% 97% 98%		83-1 79-1 85-1 83-1	25% 12%	

22 of 74

FA51986

Page 1 of 1

3.6

ω

Report	of	Anal	lysis
--------	----	------	-------

Matrix: Method:	•	Ground Wa	ater Y SIM SW846 351	00	Date Date Perc	2/22/18 2/23/18	
Project:			er(United Fuel); 690				u
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	R475625.D	1	03/02/18 04:47	RV	02/26/18 16:00	OP68917	SR2877

	initial volume	rinal volum
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	91%		41-1	29%	
321-60-8	2-Fluorobiphenyl	81%		41-1	18%	
1718-51-0	Terphenyl-d14	97%		45-145%		

(a) Associated CCV outside of control limits high, sample was ND.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

			Report	of An	alysis			Page 1 of 1
Matrix: AQ Method: FLC		5 986-6 Ground Wate IDA-PRO S ervice Center(00 SW 8t	h St, Mia	2/22/18 2/23/18 /a			
Run #1 Run #2	File ID LR03308.D	DF 1	Analyzed 03/01/18 16:10	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #1 Run #2	Initial Volum 1000 ml	e Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C4))	0.15 U	0.25	0.15	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		99%		41-1	46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ

REDUCT OF ADDIVSIS	Report	of	Analysis
--------------------	--------	----	----------

Lab Samj Matrix:	ple ID: FA	W 7 \$51986-7 Q - Ground W	ater		Date Sampled: 02/22/18 Date Received: 02/23/18				
Method:	SV	V846 8260B			Pe	ercent Solids: r	n/a		
Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
Run #1	File ID B125756.I		Analyzed 02/28/18 10:37	•	Prep Date n/a	Prep Batch n/a	Analytical Batch VB5064		
Run #1 Run #2			•	•	-	-	•		
		0 1	•	•	-	-	•		

Run #2

VOA 8021 List

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2	Benzene	0.32	1.0	0.31	ug/l	Ι
75-27-4	Bromodichloromethane	0.24 U	1.0	0.24	ug/l	
75-25-2	Bromoform	0.41 U	1.0	0.41	ug/l	
56-23-5	Carbon Tetrachloride	0.36 U	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	0.20 U	1.0	0.20	ug/l	
75-00-3	Chloroethane	0.67 U	2.0	0.67	ug/l	
110-75-8	2-Chloroethyl Vinyl Ether ^a	2.1 U	5.0	2.1	ug/l	
67-66-3	Chloroform	0.30 U	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	0.28 U	1.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	0.50 U	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	0.32 U	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	0.22 U	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	0.26 U	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	0.34 U	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	0.31 U	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	0.32 U	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.28 U	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.22 U	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	0.43 U	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.29 U	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	3.5	1.0	0.36	ug/l	
74-83-9	Methyl Bromide	0.59 U	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	0.50 U	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	2.0 U	5.0	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.23 U	1.0	0.23	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.30 U	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	0.22 U	1.0	0.22	ug/l	
108-88-3	Toluene	0.30 U	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	0.25 U	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	0.47 U	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	0.35 U	1.0	0.35	ug/l	

U = Not detected MDL = Method Detection Limit

PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$ V = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

ယ

17060-07-0

2037-26-5

460-00-4

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		MW 7 FA51986-7 AQ - Ground Water SW846 8260B Jak Service Center(U	United Fuel); 6	Date Perce	Sampled: Received: ent Solids:	02/22/18 02/23/18 n/a			
VOA 8021	List								
CAS No.	Comp	ound	Result	PQL	MDL	Units	Q		
75-69-4 75-01-4 1330-20-7	Vinyl	orofluoromethane Chloride e (total)	0.50 U 0.41 U 0.80	2.0 1.0 3.0	0.50 0.41 0.72	ug/l ug/l ug/l	Ι		
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its			
1868-53-7	Dibro	mofluoromethane	100%		83-1	18%			

79-125%

85-112%

83-118%

Report of Analysis

(a) Result reported from HCl preserved sample and should be used for screening purposes only.

99%

100%

101%

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

26 of 74

FA51986

f 2 😽

ω

Lab Sam	ple ID: FA519	86-7			Date Sampled: 02/22/18				
Matrix:	AQ - 0	Fround Wa	ater		Date Received: 02/23/18				
Method:	SW846	5 8270D B	Y SIM SW846 351	0C	Percent Solids: n/a				
Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
Run #1	File ID R475626.D	DF 1	Analyzed 03/02/18 05:18	•	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877		
		DF 1 10	•	RV	1	-	·		
Run #1 Run #2	R475626.D	1 10	03/02/18 05:18 03/03/18 01:57	RV	02/26/18 16:00	OP68917	SR2877		

Report of Analysis

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.54	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	75.1 ^a	8.0	3.2	ug/l	
91-57-6	2-Methylnaphthalene	118 ^a	8.0	3.2	ug/l	
91-20-3	Naphthalene	84.9 ^a	8.0	3.2	ug/l	
85-01-8	Phenanthrene	0.23	0.80	0.20	ug/l	Ι
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	71%	50%	41-1	29%	
321-60-8	2-Fluorobiphenyl	77%	91%	41-1		
1718-51-0	Terphenyl-d14	98%	94%	45-1		

(a) Result is from Run# 2

- $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$
- V = Indicates analyte found in associated method blank
- $N= \ Indicates \ presumptive \ evidence \ of \ a \ compound$

2

Run #1
 250 ml 1.0 ml

 Run #2
 250 ml 1.0 ml

			Report	of Ana	Page 1 of 1				
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - C EPA 5					Date Sampled: 02/22/18 Date Received: 02/23/18 Percent Solids: n/a W 8th St, Miami, FL			
Run #1 Run #2	File ID DD97839.D	DF 1	Analyzed 03/01/18 21:55	By NJ	Prep D 03/01/1	ate 8 12:00	Prep Batch OP68970	Analytical Batch GDD2849	
Run #1 Run #2	Initial Volume 34.8 ml	Final Vo 2.0 ml	olume						
CAS No.	Compound		Result	PQL	MDL	Units	Q		
106-93-4	1,2-Dibromoe	thane	0.010 U	0.020	0.010	ug/l			
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its			
460-00-4	4-Bromofluor	obenzene	111%		63-1	37%			

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

			Report	of An	alysis			Page 1 of 1
Client Sample ID:MW 7Lab Sample ID:FA51986-7Matrix:AQ - GroundMethod:FLORIDA-PHProject:Jak Service C		round Water DA-PRO S	Date			e Sampled: 02/22/18 e Received: 02/23/18 cent Solids: n/a		
Run #1 Run #2	File ID LR03309.D	DF 5	Analyzed 03/01/18 16:30	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1000 ml	Final Volu 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	3.25	1.3	0.75	mg/l		
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		95%		41-1	46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.7

ယ

					• • -				ruge r or r
Client Sampl	le ID: MW 7	7							
Lab Sample	ID: FA51	986-7					Date Sam	npled: 02/22/18	8
Matrix:	AQ - 0	Ground W	/ater				Date Rec	eived: 02/23/18	8
							Percent S	Solids: n/a	
Project:	Jak Se	ervice Cer	nter(Unite	d Fuel); 6	5900 S	W 8th St, N	Aiami, FL		
Total Metals	Analysis								
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	17.5	5.0	1.1	ug/l	1	02/27/18	02/27/18 lm	SW846 6010C 1	SW846 3010A ²

Report of Analysis

(1) Instrument QC Batch: MA14711

(2) Prep QC Batch: MP33393

3.7

ω

Page 1 of 1

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	986-8 Ground Wa 6 8260B	ater er(United Fuel); 690	0 SW	Da Pe	ate Received: 02 ercent Solids: n/	
Run #1 Run #2	File ID O50974.D	DF 1	Analyzed 02/26/18 15:39	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914
Run #1 Run #2	Purge Volum 5.0 ml	e					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 102% 97% 98%		83-1 79-1 85-1 83-1	25% 12%	

SGS

31 of 74

FA51986

Page 1 of 1

ა .8

ω

	Initial Volume	Final V	olume				
Run #1 Run #2	File ID R475627.D	DF 1	Analyzed 03/02/18 05:50	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877
Lab Samı Matrix: Method: Project:	AQ - G SW846 Jak Ser	round Wa 8270D B vice Cent	Y SIM SW846 351 er(United Fuel); 690	0 SW	Date Perc 3th St, Miami, FL	Received: 02 ent Solids: n/	/a
	mple ID: MW 8						

Run #1 250 ml 1.0 ml Run #2

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	86%		41-1	29%	
321-60-8	2-Fluorobiphenyl	77%		41-1	18%	
1718-51-0	Terphenyl-d14	93%		45-1	45%	

(a) Associated CCV outside of control limits high, sample was ND.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ω. 8

	Report of Analysis							
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - Q FLOR	986-8 Ground Wate IDA-PRO	er SW846 3510C (United Fuel); 690	00 SW 81	th St, Mia	Date Perc	Received:	02/22/18 02/23/18 n/a
Run #1 Run #2	File ID LR03310.D	DF 1	Analyzed 03/01/18 16:51	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1000 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	0.15 U	0.25	0.15	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		117%		41-1	46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

- L = Indicates value exceeds calibration range
- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ 8

ယ

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW84	986-9 Ground Wa 46 8260B	nter er(United Fuel); 690	0 SW	D Pe	ate Received: 02 ercent Solids: n/	
Run #1 Run #2	File ID O50975.D	DF 1	Analyzed 02/26/18 16:01	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914
Run #1 Run #2	Purge Volum 5.0 ml	e					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 101% 97% 99%		83-1 79-1 85-1 83-1	25% 12%	

Page 1 of 1

3.9

ω

34 of 74 FA51986

Report of	f Anal	vsis
-----------	--------	------

Run #2									
Run #1	File ID R475628.D	DF 1	Analyzed 03/02/18 06:21	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877		
Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 6 8270D B	ater BY SIM SW846 351 er(United Fuel); 690		Date Perc	Received: 02 ent Solids: n/	02/23/18		
Client Sar Lab Sam	mple ID: MW B ple ID: FA519				Date	Sampled: 02	2/22/18		

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CA	AS No.	Compound	Result	PQL	MDL	Units	Q
83-	-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208	8-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120	0-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-	-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-	-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205	5-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
19	1-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207	7-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218	8-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-	-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206	5-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-	-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193	3-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-	-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-	-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-	-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-	-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129	9-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CA	AS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
416	65-60-0	Nitrobenzene-d5	81%		41-12	29%	
32	1-60-8	2-Fluorobiphenyl	74%		41-11	18%	
17	18-51-0	Terphenyl-d14	91%		45-14	45%	

(a) Associated CCV outside of control limits high, sample was ND.

- $I=\ Result>=\ MDL\ but<\ PQL\ \ J=\ Estimated\ value$ V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3.9

SGS North America Inc.

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Wate DA-PRO	er SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received: 0	2/22/18 2/23/18 /a
Run #1 Run #2	File ID LR03313.D	DF 1	Analyzed 03/01/18 17:54	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1000 ml	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	0.15 U	0.25	0.15	mg/l		
CAS No.	Surrogate Rec	overies	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		116%		41-1	46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.9

SGS

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

		PRE	Μ	SG	S Ac	cut	test \$	Soi	ut	he	ast	t			F	F		5	۱	7	8	lc				
¢		ACCUTEST			Cha										sgs	AC	CUTE	ST	JOB	#:		_	PAGE	E	0	F
		ACCUIESI		4	405 Vinelau TEL. 407	-425-67	Suite C-15 00 FAX: .accutest.co	407-43			I			[SGS	Acc	utes	t Qu	ote #	¥		SKI	FF #			
新闻 · · · · · · · · · · · · · · · · · · ·	Client / Repor	ting Information		10 6A 8 66 58 69 8 40	御殿谷		ct Infor		ion	0.40	1. 梁寶台 1. 梁勇行	がない		11	を 第二日 第二日 第二日 第二日 第二日 第二日 第二日 第二日 第二日 第二日	1. 12 年 16 2 学 学 16 2 学 学 16	のないの	0.0	Ana	lytic	al Inf	orm	ation	2.446	た 居ら 容者音 感者音	Matrix Codes
Company	lamo .	Group Services		Project N	ame:	14 5	iervice	Con	iter	c d	ha	Ľ	Inite	16	.)	入			7	1						DW - Drinking Water
Address: c	1955 NW	166th Way Suit	el	Street (900								<u>vii</u> u				S	ΡH								GW - Ground Water
Citur			178	City A	<i>hiami</i>			` ,		Sta	ite	F	L		Ľ,	ð	T	5		Ø						WW - Water SW - Surface
Project Co	ntact:	Email: ndeman		Project #	210	214	- 30	16	90	7				_	BTEYUN	31 Priver	5	1	5	9						Water SO - Soil
Phone #:				Fax #		~		<u> </u>	<u> </u>	· · · · ·					$\tilde{\omega}$	ñ	<u> ?</u>		D_	Ш						SL- Sludge
) Name(s) (Printed)	-8200		Client Pu	rchase O	rder #								-	1		1	Pro								OI - Oil IQ - Other Liquid.
	: Leif Rodneys:	ampler 2:		COLLECTION				ONTA	NER	NEORM				_	0	603	20	4	О	5						AIR - Air SOL - Other Solid
SGS				COLLECTION			TOTAL #						ER	П	9			1	010	50					ľ	<u>502 - 0110</u> 0010
Accutest Sample #	Field ID	/ Point of Collection	DATE	TIME	SAMPLED BY:	MATRIX	OF BOTTLES	DTHER		a Ha	N03	12504	NAOH+ZNA DI WATER	EOH	S	00	67	ų,	୨	5						LAB USE ONLY
Sample #	MW i	r Fount of Gollection	03/21/15	12:05	LR-	Giw	6		1	/	T	7	20		$\overline{\mathbf{v}}$		1	$\overline{\mathbf{A}}$								
2	MW 2		02/21/18	15:01	Le	Giw	6		1	/		1			$\overline{\mathbf{v}}$		1	/								
3	MW 3		02/21/18	14:11	2ª	GW	6		1	1		1			1		1	~	, ,							_
4	MW 4		62/21/18	13:26	In	GW	6		$\overline{\mathbf{A}}$	1					\checkmark		\checkmark	1								_
5	M₩ 5		02/22/18	12:53	IR	Gew	6		1	1		\checkmark			\checkmark		1									
6	MW 6		02/22/18	12:08	Le	Ğω	6			4		\checkmark			1		\checkmark	\checkmark								
7	MW 7		02/22/18	10:26	Lp	GW	10	1	1	4		1			\checkmark	1	\checkmark		\checkmark	\checkmark						
8	MW 8		02/22/18	11:26	LE	GIW	6		1.	4		\checkmark		\square	\checkmark		1	\checkmark								
9	MW B		02/22/18	13:44	JP.	GW	6		4.	4		V		\square	_/		V	\checkmark								
														\square										_		
									_					\square												
1444 2 3 4 4 7 8 9 0 4 4	Turneraund	Time (Business days)	· · · · · · · · · · · · · · · · · · ·	الأشعاد في الم	111111111111	D	ta Deli	Voral		Info	-	tion	· & *	1.00	<u> </u>	1223	10 0 0 0 0 10 0 0 0 0	301	1000-14	100 5 6	Co	mme	nts / F	Remar	ke	
并按通行官官号	10 Day (Business)		By: / Date:	<u>19 19 8 8 8 8 8 8</u>			IAL "A"						1张寿	水臺區	<u>a 3-57</u>	<u>6 6 8 4</u>	1443		10012	Torac.	001	i i i i i	111371	ternu	no j	NA CLIPPINGAS
	7 Day	Approved	By. / Dute.				IAL "B"					C)														
	5 Day	1					A LEVE																			
	3 Day RUSH	570				LT1 (El	PA LEVE	L 4)																		
	2 Day RUSH	·			EDD	'S																				
	1 Day RUSH																									
	Other Rush T/A Dat	ta Available VIA Email or Labl	ink																						Λ	~ **
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sam	ple Custod		documer	ted be	low each	time								uding	cour					在發展。 医病 (1)()	11	2 5 1 4 2 5 1 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	4	9413
	shed by Sampler/Affilia	ation Date Time: Rec 02/02/18 16:10 2	eived By/A	ffiliation	FR	d E	-~		R	telinq	ulsh	ed B T	By/Affil	lation	Έ.				Date	Time		Rece	VĽ	y/Affilia	aion .	nolash
Li Con	shed by/Affiliation	-	eived By/A	ffiliation		Чь	~ /			telina	uish	ed B	F <u>≺C</u> By/Affil	A_ iatior	1	~			Date	Time:		Rece	ived By	y/Athilia	tion	- un popul
5		6	,						7													8		/		
Lab Use	Only: Cooler Temp	erature (s) Celsius (corrected	. 4.2	24.	6																ht	tp://w	ww.sqs	.com/en	n/term	s-and-conditions
	i											_				-							Effec	tive De	to 04	24/2017

SGS COC Florida new art 5 2 17.xls rev 042417 SI

FA51986: Chain of Custody Page 1 of 2 44

4

SGS Sample Receipt Summary

Job Number: FA5198	6 Client	: ATC	Project: JAK SEF	RVICE CENT	ER	
Date / Time Received: 2/23/20	18 9:45:00 AM	Delivery Method:	FED EX Airbill #'s: 10019	10553310003	32811007	789847973210
Therm ID: IR 1;		Therm CF: 0.4;	# of Co	olers: 2		
Cooler Temps (Raw Measure	ed) °C: Cooler 1: (3.	8); Cooler 2: (4.2);				
Cooler Temps (Correcte	ed) °C: Cooler 1: (4.	2); Cooler 2: (4.6);				
Cooler Information	Y or N		Sample Information	Yo	r N	_N/A_
1. Custody Seals Present			1. Sample labels present on bottles	\checkmark		
2. Custody Seals Intact			2. Samples preserved properly	\checkmark		
3. Temp criteria achieved			3. Sufficient volume/containers recvd for analys	is: 🗸		
4. Cooler temp verification	IR Gun		4. Condition of sample	Intact		
5. Cooler media	<u>lce (Bag)</u>		5. Sample recvd within HT	\checkmark		
			6. Dates/Times/IDs on COC match Sample Lab	el 🗌	\checkmark	
Frip Blank Information	Y or N	N/A	VOCs have headspace		\checkmark	
1. Trip Blank present / cooler			8. Bottles received for unspecified tests		\checkmark	
2. Trip Blank listed on COC			9. Compositing instructions clear			\checkmark
	W or S	N/A	10. Voa Soil Kits/Jars received past 48hrs?			\checkmark
3. Type Of TB Received			11. % Solids Jar received?			\checkmark
3. Type Of TB Necelved			12. Residual Chlorine Present?			
Misc. Information						
Number of Encores: 25-Grar	n 5-Gram	Num	ber of 5035 Field Kits: Number	of Lab Filtered	Metals:	
Test Strip Lot #s:	pH 0-32303	15 рН	110-12 <u>219813A</u> Other: (\$	Specify)		
Residual Chlorine Test Strip Lo	t #:					

Comments 250ml Amber Bottles received for 8270.1 Amber Bottle received instead of 2 for Extractions. SAMPLE #8 1- 250ML AND 1- 1000ML AMBER ID LABEL READS MW-A.

SM001 Rev. Date 05/24/17

Technician: SHAYLAP Date: 2/23/2018 9:45:00 AM

Reviewer: _____ Date: _____

FA51986: Chain of Custody Page 2 of 2

4.1 **4**

Section 5

MS Volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA51986

Project:	Jak Service Cen	ter(United	Fuel); 6900 SW	8th St,	Miami, FL		
Sample VO1914-MB	File ID O50963.D	DF 1	Analyzed 02/26/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914
The QC repor	ted here applies t	o the follo	wing samples:			Method: SW84	6 8260B

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

Q

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	106%	83-118%
17060-07-0	1,2-Dichloroethane-D4	109%	79-125%
2037-26-5	Toluene-D8	97%	85-112%
460-00-4	4-Bromofluorobenzene	102%	83-118%

5.1.1

G

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC Jak Service Cent			' 8th St,	Miami, FL		
Sample	File ID	DF	Analyzed 02/28/18	By	Prep Date	Prep Batch	Analytical Batch
VB5064-MB	B125755.D	1		AJ	n/a	n/a	VB5064

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.31	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
110-75-8	2-Chloroethyl Vinyl Ether	ND	5.0	2.1	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l

Method Blank SummaryJob Number:FA51986Account:ATCFLM ATC Group Services LLC.

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VB5064-MB	B125755.D	1	02/28/18	AJ	n/a	n/a	VB5064

FA51986-7

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	96%	85-112%
460-00-4	4-Bromofluorobenzene	101%	83-118%

Page 2 of 2

5.1.2 G

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC Jak Service Cent	-		7 8th St,	Miami, FL		
Sample V1A370-MB	File ID 1A10030.D	DF 1	Analyzed 03/01/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A370
The QC repor	ted here applies to	o the follo	wing samples:]	Method: SW84	6 8260B
FA51986-1, FA	A51986-2, FA5198	6-3					

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 1634-04-4 108-88-3	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene	ND ND ND ND	1.0 1.0 1.0 1.0	0.31 0.36 0.23 0.30	ug/l ug/l ug/l ug/l
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	112%	83-118%
17060-07-0	1,2-Dichloroethane-D4	107%	79-125%
2037-26-5	Toluene-D8	99%	85-112%
460-00-4	4-Bromofluorobenzene	108%	83-118%

5.1.3

S

Project:	Jak Service Cen	ter(United	Fuel), 0900 SW	oui si,	Ivitanii, FL		
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO1914-BS	O50962.D	1	02/26/18	SP	n/a	n/a	VO1914

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

CAS No.	Compound	Spike ug/l	BSI ug/l		BSP %	Limits
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	25 25 25 25 75	27.9 27.4 27.6 27.4 84.2	4 5 4	112 110 110 110 112	81-122 81-121 72-117 80-120 80-126
CAS No.	Surrogate Recoveries	BSP		Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 107% 98% 99%		83-1 79-1 85-1 83-1	25% 12%	

Account: Project:	ATCFLM ATC Jak Service Cent	1		8th St,	Miami, FL		
Sample VB5064-BS	File ID B125754.D	DF 1	Analyzed 02/28/18	By AJ	Prep Date n/a	Prep Batch n/a	Analytical Batch VB5064
The QC repo	rted here applies to	o the follo	wing samples:			Method: SW84	5 8260B

FA51986-7

CAS No.	Compound	Spike ug/l	BSP	BSP %	Limits
CAS NO.	Compound	ug/1	ug/l	70	Linnts
71-43-2	Benzene	25	25.3	101	81-122
75-27-4	Bromodichloromethane	25	25.1	100	79-123
75-25-2	Bromoform	25	23.1	92	66-123
56-23-5	Carbon Tetrachloride	25	25.7	103	76-136
108-90-7	Chlorobenzene	25	24.2	97	82-124
75-00-3	Chloroethane	25	28.8	115	62-144
110-75-8	2-Chloroethyl Vinyl Ether	125	148	118	56-122
67-66-3	Chloroform	25	24.6	98	80-124
124-48-1	Dibromochloromethane	25	23.5	94	78-122
75-71-8	Dichlorodifluoromethane	25	29.6	118	42-167
95-50-1	1,2-Dichlorobenzene	25	23.0	92	82-124
541-73-1	1,3-Dichlorobenzene	25	24.0	96	84-125
106-46-7	1,4-Dichlorobenzene	25	23.2	93	78-120
75-34-3	1,1-Dichloroethane	25	26.7	107	81-122
107-06-2	1,2-Dichloroethane	25	25.3	101	75-125
75-35-4	1,1-Dichloroethylene	25	25.3	101	78-137
156-59-2	cis-1,2-Dichloroethylene	25	24.7	99	78-120
156-60-5	trans-1,2-Dichloroethylene	25	26.4	106	76-127
78-87-5	1,2-Dichloropropane	25	25.3	101	76-124
10061-01-5	cis-1,3-Dichloropropene	25	23.5	94	75-118
10061-02-6	trans-1,3-Dichloropropene	25	24.1	96	80-120
100-41-4	Ethylbenzene	25	23.8	95	81-121
74-83-9	Methyl Bromide	25	27.3	109	59-143
74-87-3	Methyl Chloride	25	29.2	117	50-159
75-09-2	Methylene Chloride	25	25.2	101	69-135
1634-04-4	Methyl Tert Butyl Ether	25	23.1	92	72-117
79-34-5	1,1,2,2-Tetrachloroethane	25	24.0	96	72-120
127-18-4	Tetrachloroethylene	25	24.6	98	76-135
108-88-3	Toluene	25	23.5	94	80-120
71-55-6	1,1,1-Trichloroethane	25	24.5	98	75-130
79-00-5	1,1,2-Trichloroethane	25	23.6	94	76-119
79-01-6	Trichloroethylene	25	25.4	102	81-126
75-69-4	Trichlorofluoromethane	25	29.6	118	71-156
75-01-4	Vinyl Chloride	25	29.1	116	69-159
1330-20-7	Xylene (total)	75	71.7	96	80-126

* = Outside of Control Limits.

Project:	Jak Service Cent			8th St,	Miami, FL		
Sample VB5064-BS	File ID B125754.D	DF 1	Analyzed 02/28/18	By AJ	Prep Date n/a	Prep Batch n/a	Analytical Batch VB5064
The QC report	rted here applies to	o the follo	owing samples:			Method: SW84	6 8260B
FA51986-7							

ATCFLM ATC Group Services LLC. Account:

CAS No.	Surrogate Recoveries	BSP	Limits
1868-53-7	Dibromofluoromethane	102%	83-118%
	1,2-Dichloroethane-D4	104%	79-125%
2037-26-5	Toluene-D8	100%	85-112%
460-00-4	4-Bromofluorobenzene	98%	83-118%

Page 2 of 2

ample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batcl
1A370-BS	1A10031.D	1	03/01/18	SP	n/a	n/a	V1A370
1370 25	11110031.2	1	05/01/10	51	ii) u	11) u	111070

85-112%

83-118%

FA51986-1, FA51986-2, FA51986-3

2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	23.8	95	81-122
100-41-4	Ethylbenzene	25	23.6	94	81-121
1634-04-4	Methyl Tert Butyl Ether	25	19.8	79	72-117
108-88-3	Toluene	25	24.0	96	80-120
1330-20-7	Xylene (total)	75	70.0	93	80-126
CAS No.	Surrogate Recoveries	BSP	Lim	iits	
1868-53-7	Dibromofluoromethane	103%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	102%	79-1	25%	

95%

99%

5.2.3

G

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA51930-1MS	O51001.D	20	02/27/18	SP	n/a	n/a	VO1914
FA51930-1MSD	O51002.D	20	02/27/18	SP	n/a	n/a	VO1914
FA51930-1	O50967.D	1	02/26/18	SP	n/a	n/a	VO1914

The QC reported here applies to the following samples:

* = Outside of Control Limits.

Method: SW846 8260B

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

CAS No.	Compound	FA51930- ug/l	-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	1.3 619	E E E	500 500 500 500 1500	645 1010 580 1550 3390	121 131* 116 186* 148*	500 500 500 500 1500	599 981 539 1540 3310	112 125* 108 184* 143*	7 3 7 1 2	81-122/14 81-121/14 72-117/14 80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS		MSD	F	\$51930-1	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 106% 98% 99%		100% 104% 99% 99%	10 10	5% 7% 3% 3%	83-1189 79-1259 85-1129 83-1189	6 10			

Page 1 of 1

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analvzed	Bv	Prep Date	Prep Batch	Analytical Batch
FA52006-2MS	B125765.D	50	02/28/18	AJ	n/a	n/a	VB5064
FA52006-2MSD	B125766.D	50	02/28/18	AJ		,	VB5064 VB5064
					n/a	n/a	
FA52006-2	B125757.D	50	02/28/18	AJ	n/a	n/a	VB5064

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Compound	FA5200 ug/l	06-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	28.9	J	1250	1380	108	1250	1370	107	1	81-122/14
75-27-4	Bromodichloromethane	ND		1250	1340	107	1250	1330	106	1	79-123/19
75-25-2	Bromoform	ND		1250	1100	88	1250	1070	86	3	66-123/21
56-23-5	Carbon Tetrachloride	ND		1250	1330	106	1250	1330	106	0	76-136/23
108-90-7	Chlorobenzene	ND		1250	1230	98	1250	1240	99	1	82-124/14
75-00-3	Chloroethane	791		1250	2550	141	1250	2550	141	0	62-144/20
110-75-8	2-Chloroethyl Vinyl Ether	ND		6250	6020	96	6250	5420	87	10	56-122/23
67-66-3	Chloroform	ND		1250	1360	109	1250	1310	105	4	80-124/15
124-48-1	Dibromochloromethane	ND		1250	1180	94	1250	1170	94	1	78-122/19
75-71-8	Dichlorodifluoromethane	ND		1250	1440	115	1250	1460	117	1	42-167/19
95-50-1	1,2-Dichlorobenzene	ND		1250	1220	98	1250	1200	96	2	82-124/14
541-73-1	1,3-Dichlorobenzene	ND		1250	1240	99	1250	1250	100	1	84-125/14
106-46-7	1,4-Dichlorobenzene	ND		1250	1250	100	1250	1220	98	2	78-120/15
75-34-3	1,1-Dichloroethane	120		1250	1570	116	1250	1570	116	0	81-122/15
107-06-2	1,2-Dichloroethane	ND		1250	1360	109	1250	1330	106	2	75-125/14
75-35-4	1,1-Dichloroethylene	ND		1250	1410	113	1250	1360	109	4	78-137/18
156-59-2	cis-1,2-Dichloroethylene	221		1250	1550	106	1250	1500	102	3	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND		1250	1460	117	1250	1430	114	2	76-127/17
78-87-5	1,2-Dichloropropane	ND		1250	1360	109	1250	1340	107	1	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND		1250	1310	105	1250	1260	101	4	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND		1250	1260	101	1250	1220	98	3	80-120/22
100-41-4	Ethylbenzene	90.0		1250	1360	102	1250	1320	98	3	81-121/14
74-83-9	Methyl Bromide	ND		1250	1480	118	1250	1400	112	6	59-143/19
74-87-3	Methyl Chloride	ND		1250	1560	125	1250	1500	120	4	50-159/19
75-09-2	Methylene Chloride	ND		1250	1410	113	1250	1390	111	1	69-135/16
1634-04-4	Methyl Tert Butyl Ether	ND		1250	1240	99	1250	1210	97	2	72-117/14
79-34-5	1,1,2,2-Tetrachloroethane	ND		1250	1310	105	1250	1280	102	2	72-120/14
127-18-4	Tetrachloroethylene	ND		1250	1260	101	1250	1210	97	4	76-135/16
108-88-3	Toluene	1620		1250	3000	110	1250	2930	105	2	80-120/14
71-55-6	1,1,1-Trichloroethane	ND		1250	1310	105	1250	1290	103	2	75-130/16
79-00-5	1,1,2-Trichloroethane	ND		1250	1250	100	1250	1210	97	3	76-119/14
79-01-6	Trichloroethylene	ND		1250	1350	108	1250	1320	106	2	81-126/15
75-69-4	Trichlorofluoromethane	ND		1250	1480	118	1250	1480	118	0	71-156/21
75-01-4	Vinyl Chloride	75.9		1250	1560	119	1250	1590	121	2	69-159/18
1330-20-7	Xylene (total)	453		3750	4370	104	3750	4310	103	1	80-126/15

* = Outside of Control Limits.

5.3.2

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
B125765.D	50	02/28/18	AJ	n/a	n/a	VB5064
B125766.D	50	02/28/18	AJ	n/a	n/a	VB5064
B125757.D	50	02/28/18	AJ	n/a	n/a	VB5064
	B125765.D B125766.D	B125765.D 50 B125766.D 50	B125765.D 50 02/28/18 B125766.D 50 02/28/18	B125765.D 50 02/28/18 AJ B125766.D 50 02/28/18 AJ	B125765.D 50 02/28/18 AJ n/a B125766.D 50 02/28/18 AJ n/a	B125765.D 50 02/28/18 AJ n/a n/a B125766.D 50 02/28/18 AJ n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Surrogate Recoveries	MS	MSD	FA52006-2	Limits
1868-53-7	Dibromofluoromethane	100%	102%	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	106%	107%	105%	79-125%
2037-26-5	Toluene-D8	99%	100%	101%	85-112%
460-00-4	4-Bromofluorobenzene	102%	102%	104%	83-118%

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA51998-5MS	1A10051.D	20	03/01/18	SP	n/a	n/a	V1A370
FA51998-5MSD	1A10052.D	20	03/01/18	SP	n/a	n/a	V1A370
FA51998-5	1A10044.D	20	03/01/18	SP	n/a	n/a	V1A370

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-1, FA51986-2, FA51986-3

CAS No.	Compound	FA51998-5 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	ND ND ND ND ND	500 500 500 500 1500	499 497 391 487 1450	100 99 78 97 97	500 500 500 500 1500	506 497 406 491 1470	101 99 81 98 98	1 0 4 1 1	81-122/14 81-121/14 72-117/14 80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS	MSD	FA	51998-5	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 99% 91% 102%	102% 99% 90% 102%	112 108 989 107	3% %	83-1189 79-1259 85-1129 83-1189	6 6			

Section 6

MS Semi-volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample OP68917-MB	File ID R475611.D	DF 1	Analyzed 03/01/18	By RV	Prep Date 02/26/18	Prep Batch OP68917	Analytical Batch SR2877				
The QC reported here applies to the following samples: Method: SW846 8270D BY SIM											

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.80	0.32	ug/l
208-96-8	Acenaphthylene	ND	0.80	0.32	ug/l
120-12-7	Anthracene	ND	0.80	0.20	ug/l
56-55-3	Benzo(a)anthracene	ND	0.16	0.032	ug/l
50-32-8	Benzo(a)pyrene	ND	0.16	0.032	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.16	0.032	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.16	0.032	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.16	0.032	ug/l
218-01-9	Chrysene	ND	0.16	0.032	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.16	0.032	ug/l
206-44-0	Fluoranthene	ND	0.80	0.20	ug/l
86-73-7	Fluorene	ND	0.80	0.20	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.16	0.032	ug/l
90-12-0	1-Methylnaphthalene	ND	0.80	0.32	ug/l
91-57-6	2-Methylnaphthalene	ND	0.80	0.32	ug/l
91-20-3	Naphthalene	ND	0.80	0.32	ug/l
85-01-8	Phenanthrene	ND	0.80	0.20	ug/l
129-00-0	Pyrene	ND	0.80	0.20	ug/l

CAS No.	Surrogate Recoveries		Limits
321-60-8	Nitrobenzene-d5	86%	41-129%
	2-Fluorobiphenyl	75%	41-118%
	Terphenyl-d14	93%	45-145%

Account: Project:	ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL											
Sample OP68917-BS	File ID R475610.D	DF 1	Analyzed 03/01/18	By RV	Prep Date 02/26/18	Prep Batch OP68917	Analytical Batch SR2877					
The QC reported here applies to the following samples: Method: SW846 8270D BY SIM												

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
83-32-9	Acenaphthene	8	8.1	101	54-128
208-96-8	Acenaphthylene	8	8.1	101	55-128
120-12-7	Anthracene	4	3.7	93	57-129
56-55-3	Benzo(a)anthracene	4	4.5	113	60-134
50-32-8	Benzo(a)pyrene	4	4.1	103	58-131
205-99-2	Benzo(b)fluoranthene	4	4.3	108	62-139
191-24-2	Benzo(g,h,i)perylene	4	4.7	118	48-136
207-08-9	Benzo(k)fluoranthene	4	3.9	98	60-139
218-01-9	Chrysene	4	4.5	113	64-136
53-70-3	Dibenzo(a,h)anthracene	4	5.0	125	46-131
206-44-0	Fluoranthene	8	8.4	105	59-140
86-73-7	Fluorene	8	9.7	121	55-129
193-39-5	Indeno(1,2,3-cd)pyrene	4	3.8	95	46-139
90-12-0	1-Methylnaphthalene	8	7.5	94	52-128
91-57-6	2-Methylnaphthalene	8	8.6	108	50-117
91-20-3	Naphthalene	8	7.9	99	52-124
85-01-8	Phenanthrene	8	8.7	109	60-130
129-00-0	Pyrene	8	7.9	99	53-134

CAS No.	Surrogate Recoveries	BSP	Limits		
4165-60-0	Nitrobenzene-d5	93%	41-129%		
321-60-8	2-Fluorobiphenyl	83%	41-118%		
1718-51-0	Terphenyl-d14	101%	45-145%		

Page 1 of 1

* = Outside of Control Limits.

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP68917-MS ^a	U064540.D	20	03/03/18	RV	02/26/18	OP68917	SU2816
OP68917-MSD a	U064541.D	20	03/03/18	RV	02/26/18	OP68917	SU2816
FA51975-3 a	U064539.D	20	03/02/18	RV	02/26/18	OP68917	SU2816

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	FA51975-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	16 U	16	16.7	104	16	15.5	97	7	54-128/23
208-96-8	Acenaphthylene	16 U	16	15.1	94	16	14.1	88	7	55-128/23
120-12-7	Anthracene	16 U	8	ND	0*	8	ND	0*	nc	57-129/22
56-55-3	Benzo(a)anthracene	3.2 U	8	7.5	94	8	7.0	88	7	60-134/18
50-32-8	Benzo(a)pyrene	3.2 U	8	6.2	78	8	5.7	71	8	58-131/20
205-99-2	Benzo(b)fluoranthene	3.2 U	8	6.4	80	8	5.9	74	8	62-139/21
191-24-2	Benzo(g,h,i)perylene	3.2 U	8	6.2	78	8	5.8	73	7	48-136/23
207-08-9	Benzo(k)fluoranthene	3.2 U	8	7.1	89	8	6.8	85	4	60-139/19
218-01-9	Chrysene	3.2 U	8	8.8	110	8	8.2	103	7	64-136/19
53-70-3	Dibenzo(a,h)anthracene	3.2 U	8	5.7	71	8	4.9	61	15	46-131/25
206-44-0	Fluoranthene	16 U	16	16.7	104	16	15.8	99	6	59-140/18
86-73-7	Fluorene	16 U	16	16.9	106	16	16.5	103	2	55-129/23
193-39-5	Indeno(1,2,3-cd)pyrene	3.2 U	8	5.9	74	8	5.4	68	9	46-139/24
90-12-0	1-Methylnaphthalene	26.7	16	42.5	99	16	33.3	41*	24*	52-128/22
91-57-6	2-Methylnaphthalene	39.9	16	53.1	83	16	41.7	11* ^b	24*	50-117/23
91-20-3	Naphthalene	163	16	174	69	16	131	-200* b	28*	52-124/23
85-01-8	Phenanthrene	16 U	16	17.2	108	16	16.5	103	4	60-130/22
129-00-0	Pyrene	16 U	16	17.4	109	16	16.1	101	8	53-134/18
CAS No.	Surrogate Recoveries	MS	MSD	FA	51975-3	Limits				
4165-60-0	Nitrobenzene-d5	0% * c	0% * c	00	ó * c	41-1299	V			
4165-60-0 321-60-8		0% * c	0% * c	- /	о*с 6*с	41-1299				
	2-Fluorobiphenyl	0% * c	0% * c	- /	о*с 6*с					
1718-51-0	Terphenyl-d14	0%***	0% * 0	0%	b . C	45-1459	70			

(a) Dilution required due to matrix interference (internal standard failure).

(b) Outside control limits due to high level in sample relative to spike amount.

(c) Outside control limits due to dilution.

GC Volatiles

Orlando, **FL**

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC C Jak Service Cente	-			st, Miami	, FL		
Sample OP68970-N	File ID 4B DD97836.D	DF 1	Analyz 03/01/1	· ·		p Date 01/18	Prep Batch OP68970	Analytical Batch GDD2849
The QC re FA51986-7	ported here applies to	the followi	ng samp	les:			Method: EPA 5	04.1
CAS No.	Compound	R	lesult	RL	MDL	Units	Q	
106-93-4	1,2-Dibromoethane	N	D	0.020	0.010	ug/l		
CAS No.	Surrogate Recoveries	5		Limits				
460-00-4	4-Bromofluorobenzen	e 8	8%	63-137	%			

Account: Project:	ATCFLM ATC (Jak Service Cente	-			8th St, M	liami, FL		
Sample OP68970-I	File ID 3S DD97835.D	DF 5.D 1		Analyzed 03/01/18		Prep Date 03/01/18	Prep Batch OP68970	Analytical Batch GDD2849
The QC re FA51986-7	eported here applies to	the foll	owing sai	mples:			Method: EPA 5	04.1
CAS No.	Compound		Spike ug/l	BSP ug/l	BSP %	Limits		
106-93-4	1,2-Dibromoethane		0.25	0.24	96	70-130		
CAS No.	Surrogate Recoverie	S	BSP	L	imits			
460-00-4	4-Bromofluorobenzer	e	89%	63	3-137%			

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

	Sample OP68970-MS OP68970-MSD FA51986-7	File ID DD97840.1 DD97841.1 DD97839.1	D 1	Anal 03/01 03/01 03/01	/18 /18	By NJ NJ NJ	Prep Date 03/01/18 03/01/18 03/01/18	OP OP	e p Batch 68970 68970 68970 68970	GDI GDI	lytical Batch D2849 D2849 D2849 D2849
	The QC reported	l here applies	to the follo	wing san	ples:			Metho	od: EPA	504.1	
	FA51986-7										
CAS No.	Compound		FA51986-7 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-93-4	1,2-Dibromoethar	ne	0.020 U	0.244	0.27	110	0.25	0.27	108	0	70-130/25
CAS No.	Surrogate Recov	eries	MS	MSD]	FA51986-7	/ Limits				
460-00-4	4-Bromofluorober	nzene	120%	114%		111%	63-137%				

GC/LC Semi-volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

 $\boldsymbol{\infty}$

Method Blank Summary Job Number: FA51986

Job Number Account: Project:	r: FA51986 ATCFLM ATC Jak Service Cent	-			t, Miami	, FL		
Sample OP68927-M	File ID B LR03237.D	DF 1	Analyz 02/28/1	•		e p Date 27/18	Prep Batch OP68927	Analytical Batch GLR283
	orted here applies to FA51986-2, FA5198			les:			Method: FLOR	IDA-PRO
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C8-C40)		ND	0.25	0.15	mg/l		
CAS No.	Surrogate Recoverie	es		Limits				
84-15-1	o-Terphenyl		100%	41-146	%			

8.1.1 8

Method Blank Summary Job Number: FA51986

Job Numbe Account: Project:	r: FA51986 ATCFLM ATC (Jak Service Cente	-			St, Miami	i, FL		
Sample OP68936-M	File ID B LR03302.D	DF 1	Analyz 03/01/	v		e p Date /27/18	Prep Batch OP68936	Analytical Batch GLR283
	oorted here applies to FA51986-6, FA5198						Method: FLOR	IDA-PRO
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C8-C40)		ND	0.25	0.15	mg/l		
CAS No.	Surrogate Recoverie	S		Limit	s			
84-15-1	o-Terphenyl		114%	41-14	6%			

Page 1 of 1

o-Terphenyl

84-15-1

Account: Project:	ATCFLM ATC	-			8th St, M	liami, FL		
Sample OP68927-E	File ID 3S LR03236.D	DF 1		lyzed 8/18	By SJL	Prep Date 02/27/18	Prep Batch OP68927	Analytical Batch GLR283
-	ported here applies to		U	nples:]	Method: FLOR	IDA-PRO
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	Limits		
	TPH (C8-C40)		0.85	0.950	112	51-121		
CAS No.	Surrogate Recoverie	S	BSP	Li	mits			

41-146%

131%

SGS

8.2.1

œ

Account: Project:		Group Services Ll er(United Fuel); 6		8th St, M	liami, FL		
Sample OP68936-BS	File ID LR03301.D		lyzed)1/18	By SJL	Prep Date 02/27/18	Prep Batch OP68936	Analytical Batch GLR283
	orted here applies to FA51986-6, FA5198	0	-	-9]	Method: FLOR	IDA-PRO
CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	Limits		
	TPH (C8-C40)	0.85	0.801	94	51-121		

CAS No.	Surrogate Recoveries	BSP	Limits
84-15-1	o-Terphenyl	122%	41-146%

8.2.2

 $\mathbf{\infty}$

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP68927-MS	LR03241.D	1	02/28/18	SJL	02/27/18	OP68927	GLR283
OP68927-MSD	LR03242.D	1	02/28/18	SJL	02/27/18	OP68927	GLR283
FA51939-3	LR03291.D	2	03/01/18	SJL	02/27/18	OP68927	GLR283

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

FA51986-1, FA51986-2, FA51986-3, FA51986-4

CAS No.	Compound	FA51939-3 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD	8.3.1
	ТРН (С8-С40)	3.82	1.63	5.31	91	1.63	6.68	175* a	23 ^b	51-121/29	8
CAS No.	Surrogate Recoveries	MS	MSD	FA	51939-3	Limits					
84-15-1	o-Terphenyl	126%	135%	116	5%	41-146%	<i></i> ́0				

(a) Outside control limits due to high level in sample relative to spike amount.

(b) Outside control limits.

SGS

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Batch	Analytical E	ep Batch	I	Prep Date	By	Analyzed	DF	File ID	Sample
	GLR283	68936	(02/27/18	SJL	03/01/18	1	LR03315.D	OP68936-MS
	GLR283	68936	(02/27/18	SJL	03/01/18	1	LR03316.D	OP68936-MSD
	GLR284	68936	(02/27/18	SJL	03/02/18	4	LR03332.D	FA52032-3
	GLR284	68936	(02/27/18	SJL	03/02/18	4	LR03332.D	FA52032-3

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	FA52032-3 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD	8.3.2
	ТРН (С8-С40)	4.59	1.7	4.51	-5* ^a	1.7	4.79	12* a	б	51-121/29	8
CAS No.	Surrogate Recoveries	MS	MSD	FA52032-3		Limits					
84-15-1	o-Terphenyl	101%	110%	76%	76%		6				

(a) Outside control limits due to high level in sample relative to spike amount.

Section 9

Metals Analysis

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:					02/27/18			
Metal	RL	IDL	MDL	MB raw	final			
Aluminum	200	14	14					
Antimony	6.0	1	1					
Arsenic	10	1.3	1.3					
Barium	200	1	1					
Beryllium	4.0	. 2	.2					
Cadmium	5.0	. 2	.2					
Calcium	1000	50	50					
Chromium	10	1	1					
Cobalt	50	.2	.2					
Copper	25	1	1					
Iron	300	17	17					
Lead	5.0	1	1.1	-0.10	<5.0			
Magnesium	5000	35	35					
Manganese	15	.5	1					
Molybdenum	50	.3	.3					
Nickel	40	.4	.4					
Potassium	10000	200	200					
Selenium	10	2.4	2.9					
Silver	10	.7	.7					
Sodium	10000	500	500					
Strontium	10	.5	.5					
Thallium	10	1.1	1.4					
Tin	50	.9	1					
Titanium	10	.5	1					
Vanadium	50	.5	.6					
Zinc	20	3	4.4					
Associated sa	amples MP3	3393: FA	451986-7					

Associated samples MP33393: FA51986-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Methods: SW846 6010C

Matrix Type: A	Methods: SW846 6010C Units: ug/l										
Prep Date:			02/27/18				02/27/18				
Metal	FA51986- Original		RPD	QC Limits	FA51986- Original		Spikelot MPFLICP2	% Rec	QC Limits		
Aluminum											
Antimony											
Arsenic	anr										
Barium											
Beryllium											
Cadmium	anr										
Calcium											
Chromium	anr										
Cobalt											
Copper	anr										
Iron	anr										
Lead	17.5	18.1	3.4	0-20	17.5	510	500	98.5	80-120		
Magnesium											
Manganese	anr										
Molybdenum	anr										
lickel	anr										
Potassium											
Selenium											
Silver	anr										
Sodium											
Strontium											
Thallium											
ſin											
Fitanium											
Vanadium											
Zinc	anr										

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

QC Batch ID: MP33393

9.1.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:			02/27/1	8
Metal	FA51986-7 Original MSD	Spikelot MPFLICP2 % Rec	MSD RPD	QC Limit
Aluminum				
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper	anr			
Iron	anr			
Lead	17.5 509	500 98.3	0.2	20
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Associated sa	mples MP33393: FA	151986-7		
(*) Outside o (N) Matrix Sp		o for calculation of QC limits	purposes	

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID:	MP33393
Matrix Type:	AQUEOUS

Methods: SW846 6010C Units: ug/l

Metal	BSP Result	Spikelot MPFLICP2		QC Limits	
luminum					
Antimony					
Arsenic	anr				
Barium					
Beryllium					
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt					
Copper	anr				
Iron	anr				
Lead	493	500	98.6	80-120	
Magnesium					
Manganese	anr				
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium					
Silver	anr				
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Vanadium					
Zinc	anr				
Associated sa	mples MP3	3393: FA51	986-7		

(*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:		02/27/18	
Metal	FA51986-7 Original SDL 1:5	%DIF	QC Limits
Aluminum			
Antimony			
Arsenic	anr		
Barium			
Beryllium			
Cadmium	anr		
Calcium			
Chromium	anr		
Cobalt			
Copper	anr		
Iron	anr		
ead	17.5 21.1	20.6 (a)	0-10
lagnesium			
langanese	anr		
lolybdenum	anr		
ickel	anr		
otassium			
elenium			
ilver	anr		
odium			
trontium			
hallium			
'in			
itanium			
anadium			
linc	anr		
ssociated sa	mples MP33393: FA5	1986-7	
(*) Outside o	not requested		lation purposes

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

POST DIGESTATE SPIKE SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Matrix Type: AQUEOUS						Uni				
Prep Date:									02/27/1	8
Metal	Sample ml	Final ml	FA51986- Raw	.7 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	17.5	17.15	63.7	0.2	2.5	50	93.1	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3393: FA5	1986-7							
Results < IDL (*) Outside c (**) Corr.s (anr) Analyte	of QC limi ample res	ts ult = Raw				olume)				

9.1.5

0

74 of 74

FA51986

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

06/13/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA54762

Sampling Date: 06/05/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: 55

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 55 FA54762

Table of Contents

N ယ 4 S 6

7

∞

-1-	
Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	
3.1: FA54762-1: SB 3	
3.2: FA54762-2: SB 4	10
3.3: FA54762-3: SB 2	14
3.4: FA54762-4: SB 1	
3.5: FA54762-5: SB 5	22
Section 4: Misc. Forms	27
4.1: Chain of Custody	28
Section 5: MS Volatiles - QC Data Summaries	30
5.1: Method Blank Summary	
5.2: Blank Spike Summary	33
5.3: Matrix Spike/Matrix Spike Duplicate Summary	35
Section 6: MS Semi-volatiles - QC Data Summaries	37
6.1: Method Blank Summary	
6.2: Blank Spike Summary	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	43
Section 7: GC/LC Semi-volatiles - QC Data Summaries	45
7.1: Method Blank Summary	46
7.2: Blank Spike Summary	47
7.3: Matrix Spike/Matrix Spike Duplicate Summary	48
Section 8: Metals Analysis - QC Data Summaries	49
8.1: Prep QC MP33856: Pb	50

Sample Summary

ATC Group Services LLC.

Job No: FA54762

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
i (unito ei	Dute	Thire D _j	Heeenveu	couc	Type	
FA54762-1	06/05/18	09:25 LR	06/06/18	SO	Soil	SB 3
FA54762-2	06/05/18	09:55 LR	06/06/18	SO	Soil	SB 4
FA54762-3	06/05/18	10:20 LR	06/06/18	SO	Soil	SB 2
	00/00/20	10110 210	00,00,20	20	2011	
EA 54709 4	00/05/10	10.40 T D	00/00/10	50	C.:I	CD 1
FA54762-4	00/03/18	10:40 LR	06/06/18	50	Soil	SB 1
FA54762-5	06/05/18	11:05 LR	06/06/18	SO	Soil	SB 5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

3 of 55

FA54762

Summary of Hits

Job Number:	FA54762
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	06/05/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method
FA54762-1 SB 3	C				
Benzo(a)pyrene Equivalents ^a	0.060			mg/kg	SW846 8270D BY SIM
Benzo(a)anthracene	52.5	14	3.5	ug/kg	SW846 8270D BY SIM
Benzo(a)pyrene	44.7	14	3.5	ug/kg	SW846 8270D BY SIM
Benzo(b)fluoranthene	44.4	14	3.5	ug/kg	SW846 8270D BY SIM
Benzo(g,h,i)perylene	38.3	14	3.5	ug/kg	SW846 8270D BY SIM
Benzo(k)fluoranthene	43.8	14	3.5	ug/kg	SW846 8270D BY SIM
Chrysene	65.3	14	3.5	ug/kg	SW846 8270D BY SIM
Fluoranthene	116	70	17	ug/kg	SW846 8270D BY SIM
Indeno(1,2,3-cd)pyrene	36.1	14	3.5	ug/kg	SW846 8270D BY SIM
Phenanthrene	29.5 I	70	17	ug/kg	SW846 8270D BY SIM
Pyrene	90.8	70	17	ug/kg	SW846 8270D BY SIM
TPH (C8-C40)	9.07	8.9	5.3	mg/kg	FLORIDA-PRO
FA54762-2 SB 4					
Xylene (total)	1.2 I	8.5	1.2	ug/kg	SW846 8260B
ТРН (С8-С40)	9.12 I	9.3	5.6	mg/kg	FLORIDA-PRO
FA54762-3 SB 2					
No hits reported in this sample.					
FA54762-4 SB 1					
No hits reported in this sample.					
FA54762-5 SB 5					
Lead ^b	4.0 I	4.9	0.25	mg/kg	SW846 6010C

(a) Total Benzo(a)pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07] (b) Sample dilution required due to difficult matrix.

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

108-88-3

100-41-4

1330-20-7

1634-04-4

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

Toluene

Ethylbenzene

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Report of Analysis Client Sample ID: SB 3 Lab Sample ID: FA54762-1 06/05/18 Date Sampled: Matrix: SO - Soil Date Received: 06/06/18 Method: SW846 8260B Percent Solids: 93.5 Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL **Project:** File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V2B333 Run #1 2B8811.D 1 06/07/18 16:27 SP n/a n/a Run #2 **Final Volume Initial Weight** Run #1 5.0 ml 4.81 g Run #2 **Purgeable Aromatics, MTBE** Compound CAS No. Result PQL MDL Units 0 71-43-2 Benzene 1.4 U 5.6 ug/kg 1.4

5.6

5.6

17

5.6

Run# 2

1.1

1.1

2.3

1.1

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

ug/kg

ug/kg

1.1 U

1.1 U

2.3 U

1.1 U

Run#1

53% a

118%

103%

99%

(a) Outside control limits due to matrix interference (high pH).

<u>ω</u>

ω

Page 1 of 1

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	SO - So SW846	il 8270D BY	SIM SW846 354 (United Fuel); 690		Date Perc	1	5/05/18 5/06/18 8.5
Run #1 Run #2	File ID 8H03229.D	DF 1	Analyzed 06/11/18 14:53	By FS	Prep Date 06/11/18 08:38	Prep Batch OP70433	Analytical Batch S8H126
Run #1 Run #2	Initial Weight 15.3 g	Final Vo 1.0 ml	lume				

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	28 U	70	28	ug/kg	
208-96-8	Acenaphthylene	28 U	70	28	ug/kg	
120-12-7	Anthracene	17 U	70	17	ug/kg	
56-55-3	Benzo(a)anthracene	52.5	14	3.5	ug/kg	
50-32-8	Benzo(a)pyrene	44.7	14	3.5	ug/kg	
205-99-2	Benzo(b)fluoranthene	44.4	14	3.5	ug/kg	
191-24-2	Benzo(g,h,i)perylene	38.3	14	3.5	ug/kg	
207-08-9	Benzo(k)fluoranthene	43.8	14	3.5	ug/kg	
218-01-9	Chrysene	65.3	14	3.5	ug/kg	
53-70-3	Dibenzo(a, h)anthracene	3.5 U	14	3.5	ug/kg	
206-44-0	Fluoranthene	116	70	17	ug/kg	
86-73-7	Fluorene	28 U	70	28	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	36.1	14	3.5	ug/kg	
90-12-0	1-Methylnaphthalene	28 U	70	28	ug/kg	
91-57-6	2-Methylnaphthalene	28 U	70	28	ug/kg	
91-20-3	Naphthalene	28 U	70	28	ug/kg	
85-01-8	Phenanthrene	29.5	70	17	ug/kg	Ι
129-00-0	Pyrene	90.8	70	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	81 %		40-1	05%	
321-60-8	2-Fluorobiphenyl	82%		43-107%		
1718-51-0	Terphenyl-d14	94%		45-1	19 %	

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

SGS

7 of 55

FA54762

	Report of Analysis										
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 3 FA54762-1 SO - Soil SW846 8270D BY Jak Service Center(00 SW 8	8th St, Miam	Date Perc	I	06/05/18 06/06/18 93.5			
Run #1 Run #2	File ID	DF 1	Analyzed 06/11/18 14:53	By FS	Prep Dat n/a	e	Prep Batch n/a	Analytical Batch R45799			
CAS No.	Comp	ound	Result	PQL	Units	Q					
	Benzo	(a)pyrene Equivalent	s ^a 0.060		mg/kg						

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

<u>ω</u>

			Report		Page 1 of 1			
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA547 SO - S FLOR	oil IDA-PRO	SW846 3550C (United Fuel); 690	00 SW 8t	h St, Mia	Received: 06	06/05/18 06/06/18 93.5	
Run #1 Run #2	File ID YR18456.D	DF 1	Analyzed 06/11/18 18:39	By SJL	Prep D 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.1 g	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	9.07	8.9	5.3	mg/kg		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl	103%		52-1	33%			

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

<u>ω</u>

ယ

9 of 55 FA54762

SGS

1330-20-7

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

			1		v			8
Client Sam Lab Sampl Matrix: Method: Project:	le ID: FA5476 SO - So SW846	vil 8260B	(United Fuel); 69(00 SW 8	Received: 06	6/05/18 6/06/18 9.7		
Run #1 Run #2	File ID 2B8812.D	DF 1	Analyzed 06/07/18 16:51	By SP	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V2B333
Run #1 Run #2	Initial Weight 9.82 g	Final Vo 5.0 ml	lume					
Purgeable	Aromatics, MTE	BE						
CAS No.	Compound		Result	PQL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene		0.69 U 0.57 U 0.57 U	2.8 2.8 2.8	0.69 0.57 0.57	ug/kg ug/kg ug/kg		

8.5

2.8

Run# 2

1.2

0.57

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

I

1.2

0.57 U

Run#1

103%

113%

108%

115%

Report of Analysis

10 of 55

FA54762

Page 1 of 1

Report of Analysis

Client San	nple ID: SB 4									
Lab Samp	le ID: FA5476	62-2				Date Sampled: 06/05/18				
Matrix:	SO - So	il				Date	Received: 06	5/06/18		
Method:	SW846	8270D B	Y SIM SW846 354	6		Perc	ent Solids: 89).7		
Project:	Jak Serv	vice Cente	er(United Fuel); 690	0 SW	8th St, Mia	ımi, FL				
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch		
Run #1 Run #2	8H03181.D	1	06/07/18 21:17	FS	06/07/1	8 09:00	OP70388	S8H124		
	Initial Weight	Final V	olume							
Run #1 Run #2	15.4 g	1.0 ml								
BN PAH I	List									
CAS No.	Compound		Result	PQL	MDL	Units	Q			

CAS No.	Compound	Result	PQL	MDL	Units
83-32-9	Acenaphthene	29 U	72	29	ug/kg
208-96-8	Acenaphthylene	29 U	72	29	ug/kg
	Anthracene				
120-12-7		18 U	72	18	ug/kg
56-55-3	Benzo(a)anthracene	3.6 U	14	3.6	ug/kg
50-32-8	Benzo(a)pyrene	3.6 U	14	3.6	ug/kg
205-99-2	Benzo(b)fluoranthene	3.6 U	14	3.6	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	3.6 U	14	3.6	ug/kg
207-08-9	Benzo(k)fluoranthene ^b	3.6 U	14	3.6	ug/kg
218-01-9	Chrysene ^a	3.6 U	14	3.6	ug/kg
53-70-3	Dibenzo(a, h)anthracene ^a	3.6 U	14	3.6	ug/kg
206-44-0	Fluoranthene	18 U	72	18	ug/kg
86-73-7	Fluorene	29 U	72	29	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	3.6 U	14	3.6	ug/kg
90-12-0	1-Methylnaphthalene	29 U	72	29	ug/kg
91-57-6	2-Methylnaphthalene	29 U	72	29	ug/kg
91-20-3	Naphthalene	29 U	72	29	ug/kg
85-01-8	Phenanthrene	18 U	72	18	ug/kg
129-00-0	Pyrene	18 U	72	18	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	94%		40-1	05%
321-60-8	2-Fluorobiphenyl	101%		43-1	07%
1718-51-0	Terphenyl-d14	109%		45-1	19%

(a) Associated BS outside control limits high. Sample was ND.

(b) Associated BS recovery outside control limits.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

FA54762

Page 1 of 1

	Report of Analysis										
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 4 FA5476 SO - Soi SW846 8 Jak Serv	Y SIM er(United Fuel); 69(Date Sampled Date Receive Percent Solid i, FL	6/05/18 6/06/18 9.7					
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 21:17	By FS	Prep Da n/a	ate	e Prep B n/a	atch	Analytical Batch R45783	
CAS No.	Comp	ound		Result	PQL	Units	Q	2			
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg					

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

			Report	of An	alysis			Page 1 of 1	
Client Sample ID: SB 4 Lab Sample ID: FA54762-2 Matrix: SO - Soil Method: FLORIDA-PRO SW846 3550C Percent Solids: Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
Run #1 Run #2	File ID YR18457.D	DF 1	Analyzed 06/11/18 18:54	By SJL	Prep D 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414	
Run #1 Run #2	Initial Weight 30.1 g	Final Vol 1.0 ml	lume						
CAS No.	Compound		Result	PQL	MDL	Units	Q		
	TPH (C8-C40))	9.12	9.3	5.6	mg/kg	Ι		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its			
84-15-1	o-Terphenyl	109%		52-1	33%				

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

ω

108-88-3

100-41-4

1330-20-7

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Toluene

Ethylbenzene

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

			1					8
Client San Lab Samp Matrix: Method: Project:	le ID: FA5476 SO - So SW846	il 8260B	er(United Fuel); 690	00 SW 8	8th St, Mia	Date Date Perc ami, FL	6/05/18 6/06/18 5.6	
Run #1 Run #2	File ID 3C1154.D	DF 1	Analyzed 06/07/18 19:16	By SP	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V3C48
Run #1 Run #2	Initial Weight 6.60 g	Final V 5.0 ml	<i>T</i> olume					
Purgeable	Aromatics, MTE	BE						
CAS No.	Compound		Result	PQL	MDL	Units	Q	
71-43-2	Benzene		1.1 U	4.4	1.1	ug/kg		

4.4

4.4

13

4.4

Run# 2

0.89

0.89

1.9

0.89

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

ug/kg

ug/kg

0.89 U

0.89 U

1.9 U

0.89 U

Run#1

101%

116%

107%

96%

Report of Analysis

14 of 55

FA54762

Page 1 of 1

ယ ယ

120-12-7

56-55-3

50-32-8

205-99-2

191-24-2

207-08-9

218-01-9

53-70-3

206-44-0

86-73-7

193-39-5

90-12-0

91-57-6

91-20-3

85-01-8

129-00-0

CAS No.

4165-60-0

321-60-8

1718-51-0

Anthracene

Chrysene ^a

Fluoranthene

Naphthalene

Phenanthrene

Pyrene

Fluorene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene ^a

Benzo(k)fluoranthene ^a

Dibenzo(a,h)anthracene ^a

Indeno(1,2,3-cd)pyrene ^a

1-Methylnaphthalene

2-Methylnaphthalene

Surrogate Recoveries

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

Benzo(a)pyrene

Report of Analysis

Client Sam	ple ID: SB 2									
Lab Sampl	e ID: FA5476	2-3			Date Sampled: 06/05/18					
Matrix:	SO - Soi	1			Date Received: 06/06/18					
Method:	SW846 8	8270D BY	SIM SW846 354	6	Percent Solids: 85.6					
Project:	Jak Serv	ice Center(United Fuel); 690	0 SW 8	8th St, Mia	ami, FL				
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch		
Run #1	8H03182.D	1	06/07/18 21:40	FS	06/07/1	8 09:00	OP70388	S8H124		
Run #2										
	Initial Weight	Final Vol	ume							
Run #1	15.1 g	1.0 ml								
Run #2	0									
BN PAH L	ist									
CAS No.	Compound		Result	PQL	MDL	Units	Q			
83-32-9	Acenaphthene		31 U	77	31	ug/kg				
208-96-8	Acenaphthylene			77	31	ug/kg				

77

15

15

15

15

15

15

15

77

77

15

77

77

77

77

77

Run# 2

19

3.9

3.9

3.9

3.9

3.9

3.9

3.9

19

31

3.9

31

31

31

19

19

Limits

40-105%

43-107%

45-119%

ug/kg

ug/kg

ug/kg

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

19 U

3.9 U

19 U

31 U

3.9 U

31 U

31 U

31 U

19 U

19 U

88%

92%

104%

Run#1

(a) Associated BS outside control limits high. Sample was ND.

I = Result > = MDL but < PQL J = Estimated valueV = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω ω

	Report of Analysis											
Client Sam Lab Samp Matrix: Method: Project:	-	011010	il 8270D B	Y SIM er(United Fuel); 69(00 SW 8	Date Received: Percent Solids:				06/	06/05/18 06/06/18 85.6	
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 21:40	By FS	Prep Da n/a	ate		Prep Batcl n/a	h	Analytical Batch R45784	
CAS No. Comp		ound		Result	PQL	Units	Q)				
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg						

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ယ

			Page 1 of 1					
Client Sam Lab Sampl Matrix: Method: Project:	e ID: FA547 SO - So FLORI	oil DA-PRO S	5W846 3550C (United Fuel); 690	00 SW 81	th St, Mia	Date Date Perce ami, FL	5/05/18 5/06/18 5.6	
Run #1 Run #2	File ID YR18458.D	DF 1	Analyzed 06/11/18 19:10	By SJL	Prep Da 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.5 g	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	5.7 U	9.6	5.7	mg/kg		
CAS No.	No. Surrogate Recoveries		Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl	95%		52-1	33%			

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ သ

ယ

			Report	of A	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	•	06/05/18 06/06/18 80.1					
Run #1 Run #2	File ID 2B8814.D	DF 1	Analyzed 06/07/18 17:38	By SP	Prep Date n/a	e Prep Bate n/a	ch Analytical Batch V2B333
Run #1 Run #2	Initial Weight 4.11 g	Final Vo 5.0 ml	lume				
Purgeable CAS No.	Aromatics, MT Compound	BE	Result	PQL	MDL U	Units Q	

CAS NO.	Compound	Kesuit	IQL	MDL	Units	•
71-43-2	Benzene	1.9 U	7.6	1.9	ug/kg	
108-88-3	Toluene	1.5 U	7.6	1.5	ug/kg	
100-41-4	Ethylbenzene	1.5 U	7.6	1.5	ug/kg	
1330-20-7	Xylene (total)	3.2 U	23	3.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	1.5 U	7.6	1.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		75-1	24%	
17060-07-0	1,2-Dichloroethane-D4	113%		72-1	35%	
2037-26-5	Toluene-D8	105%		75-1	26%	
460-00-4	4-Bromofluorobenzene	97 %		71-1	33%	

18 of 55

FA54762

3.4

ω

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	le ID: FA5476 SO - So SW846	il 8270D BY	 SIM SW846 354 r(United Fuel); 690 		Date Sampled: 06/05/18 Date Received: 06/06/18 Percent Solids: 80.1 8th St, Miami, FL				
Run #1 Run #2	File ID 8H03183.D	DF 1	Analyzed 06/07/18 22:03	By FS	Prep D 06/07/1	ate 8 09:00	Prep Batch OP70388	Analytical Batch S8H124	
Run #1 Run #2	Initial Weight 15.4 g	Final Vo 1.0 ml	blume						
BN PAH I	List								
CAS No.	Compound		Result	PQL	MDL	Units	Q		
83-32-9 208-96-8	Acenaphthene Acenaphthylen	e		81 81	32 32	ug/kg ug/kg			
120-12-7 56-55-3	Anthracene Benzo(a)anthra			81 16	20 4.1	ug/kg ug/kg			

00 00 0	Denzo(u)ununucene		10	1.1	46/16
50-32-8	Benzo(a)pyrene	4.1 U	16	4.1	ug/kg
205-99-2	Benzo(b)fluoranthene	4.1 U	16	4.1	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	4.1 U	16	4.1	ug/kg
207-08-9	Benzo(k)fluoranthene ^a	4.1 U	16	4.1	ug/kg
218-01-9	Chrysene ^a	4.1 U	16	4.1	ug/kg
53-70-3	Dibenzo(a, h)anthracene ^a	4.1 U	16	4.1	ug/kg
206-44-0	Fluoranthene	20 U	81	20	ug/kg
86-73-7	Fluorene	32 U	81	32	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	4.1 U	16	4.1	ug/kg
90-12-0	1-Methylnaphthalene	32 U	81	32	ug/kg
91-57-6	2-Methylnaphthalene	32 U	81	32	ug/kg
91-20-3	Naphthalene	32 U	81	32	ug/kg
85-01-8	Phenanthrene	20 U	81	20	ug/kg
129-00-0	Pyrene	20 U	81	20	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits
4165-60-0	Nitrobenzene-d5	92 %		40_	105%
321-60-8	2-Fluorobiphenyl	96%			107%
1718-51-0	Terphenyl-d14	111%		45-	119%

(a) Associated BS outside control limits high. Sample was ND.

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4 Page 1 of 1

SGS

				Report	of Ar	nalysis				Page 1 of 1		
Client Sam Lab Samp Matrix: Method: Project:		I de la construcción de la constru						Date Sampled: 06/05/18 Date Received: 06/06/18 Percent Solids: 80.1 V 8th St, Miami, FL				
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 22:03	By	Prep Da n/a	-	-	tch	Analytical Batch R45785		
CAS No.	Comp	ound		Result	PQL	Units	Q	2				
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg						

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	le ID: FA547 SO - So FLOR	oil DA-PRO S	SW846 3550C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perce	Received: 06	5/05/18 5/06/18).1
Run #1 Run #2	File ID YR18459.D	DF 1	Analyzed 06/11/18 19:26	By SJL	Prep Da 06/07/1		Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.1 g	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	6.2 U	10	6.2	mg/kg		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Limi	its		
84-15-1	o-Terphenyl		97 %		52-1	33%		

 $I = Result > = MDL \ but < \ PQL \ \ J = \ Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

			Report	of A	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA547(SO - So SW846	il 8260B	(United Fuel); 690	00 SW	8th St, Miam	Date Sampled: Date Received: Percent Solids: i, FL	
Run #1 Run #2	File ID 2B8815.D	DF 1	Analyzed 06/07/18 18:02	By SP	Prep Date n/a	e Prep Bate n/a	ch Analytical Batch V2B333
Run #1 Run #2	Initial Weight 8.21 g	Final Vo 5.0 ml	lume				
Purgeable	Aromatics, MTE	BE					
CAS No.	Compound		Result	PQL	MDL U	U nits Q	

	compound	Rebuit	1 22		emus	
71-43-2	Benzene	0.82 U	3.4	0.82	ug/kg	
108-88-3	Toluene	0.67 U	3.4	0.67	ug/kg	
100-41-4	Ethylbenzene	0.67 U	3.4	0.67	ug/kg	
1330-20-7	Xylene (total)	1.4 U	10	1.4	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	0.67 U	3.4	0.67	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	105%		75-1	24%	
17060-07-0	1,2-Dichloroethane-D4	119%		72-1	35%	
2037-26-5	Toluene-D8	103%		75-1	26%	
460-00-4	4-Bromofluorobenzene	98 %		71-1	33%	

22 of 55

FA54762

Page 1 of 1

ω 5

ω

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	le ID: FA5476 SO - Soi SW846 8	l 8270D BY	SIM SW846 354 (United Fuel); 690		Date Sampled: 06/05/18 Date Received: 06/06/18 Percent Solids: 90.6 8th St, Miami, FL				
Run #1 Run #2	File ID 8H03184.D	DF 1	Analyzed 06/07/18 22:27	By FS	Prep D 06/07/1	ate .8 09:00	Prep Batch OP70388	Analytical Batch S8H124	
Run #1 Run #2	Initial Weight 15.5 g	Final Vo 1.0 ml	lume						
BN PAH I	list								
CAS No.	Compound		Result	PQL	MDL	Units	Q		
83-32-9 208-96-8 120-12-7	Acenaphthene Acenaphthylene Anthracene			71 71 71	28 28 18	ug/kg ug/kg ug/kg			

Page 1 of 1

ω

ω 5

CAS No.	Compound	Result	PQL	MDL	Units
83-32-9	Acenaphthene	28 U	71	28	ug/kg
208-96-8	Acenaphthylene	28 U	71	28	ug/kg
120-12-7	Anthracene	18 U	71	18	ug/kg
56-55-3	Benzo(a)anthracene	3.6 U	14	3.6	ug/kg
50-32-8	Benzo(a)pyrene	3.6 U	14	3.6	ug/kg
205-99-2	Benzo(b)fluoranthene	3.6 U	14	3.6	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	3.6 U	14	3.6	ug/kg
207-08-9	Benzo(k)fluoranthene ^a	3.6 U	14	3.6	ug/kg
218-01-9	Chrysene ^a	3.6 U	14	3.6	ug/kg
53-70-3	Dibenzo(a,h)anthracene ^a	3.6 U	14	3.6	ug/kg
206-44-0	Fluoranthene	18 U	71	18	ug/kg
86-73-7	Fluorene	28 U	71	28	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	3.6 U	14	3.6	ug/kg
90-12-0	1-Methylnaphthalene	28 U	71	28	ug/kg
91-57-6	2-Methylnaphthalene	28 U	71	28	ug/kg
91-20-3	Naphthalene	28 U	71	28	ug/kg
85-01-8	Phenanthrene	18 U	71	18	ug/kg
129-00-0	Pyrene	18 U	71	18	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4105 00 0		050/		40.1	050/
4165-60-0	Nitrobenzene-d5	95%			05%
321-60-8	2-Fluorobiphenyl	100%			07%
1718-51-0	Terphenyl-d14	115%		45-1	19%

(a) Associated BS outside control limits high. Sample was ND.

- I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Report	of Aı	nalysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 5 FA5476 SO - Soi SW846 Jak Serv	l 8270D B	Y SIM er(United Fuel); 69(00 SW 8	8th St, Miar]	Date Sampled: Date Received: Percent Solids: FL	6/18
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 22:27	By FS	Prep Da n/a	te	Prep Batc n/a	Analytical Batch R45782
CAS No.	Comp	ound		Result	PQL	Units	Q		
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg			

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

a 1 of 1

ω 5

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	e ID: FA547 SO - S FLOR	oil IDA-PRO	SW846 3550C (United Fuel); 69(00 SW 81	h St, Mia	Date Perce	Received: 06	5/05/18 5/06/18).6
Run #1 Run #2	File ID YR18460.D	DF 1	Analyzed 06/11/18 19:41	By SJL	Prep D 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.3 g	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	ТРН (С8-С40)	5.5 U	9.1	5.5	mg/kg		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		101%		52-1	33%		

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ω 5

				Repor	t of	Analysi	S		Page 1 of 1
Client Sample I Lab Sample ID:		762-5					Date Sam	1) 10 10 10 10 10 10 10 10 10 10 10 10 10	3
Matrix:	SO - S	Soil					Date Rec Percent S		3
Project:	Jak Se	ervice Cer	nter(United	d Fuel); 6	900 S	W 8th St, N	liami, FL		
Metals Analysis									
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead ^a	4.0 I	4.9	0.25	mg/kg	5	06/08/18	06/08/18 LM	SW846 6010C ¹	SW846 3050B ²
(1) Instrument Q	C Batch: M	/IA14960							

(2) Prep QC Batch: MP33856

(a) Sample dilution required due to difficult matrix.

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

(C	cc'	REN	4			Cha	in c	of C	ust	ody	y			s	GS -	ORL	.AND	0 JO	В#:		F	PAGE	0)F
9			1.1.127			44	05 Vinelan TEL, 407	-425-670	Suite C-1 00 FAX vw.sgs.co	: 407-42	io, Fl 3 25-0701	2811 7			S	GS -	ORL	AND	O Qu	ote #		SKIFF	÷ #		
		Client / Reporting	Information				1000		ct Info		on	· 草 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马 马		144 144 144	8 Åi 6 8 Åi 8		10.00			alytic	al Inf	ormat	tion 👫	14.4 14.4 14.4 14.4	Matrix Codes
mpany N			-	-		Project Na	ame: J	J.	Sen	200	G	ente	'x					-the	\uparrow	5					Water
ddress:		ATC GLOU		2		Street	1.00	SL		th S								-		4					GW - Ground Water
	ર ૧૬	State:				City	6900	- <i>5</i>	<u>0 0</u>			State	· 171		-	7		म] १	3	3					WW - Water SW - Surface
ty: M	am	.t				Project #	Vinmi		_							SCH ZZ	L	žΗ	To the star	-	1				Water SO - Soil
wight	Sc	hwend eman (Dategs con	n	_	Fax #				_					-1	2	RA V	Ê.	6 5	10	1				SL- Sludge
none#:	882	2-8300								_							۲ľ	Υľ	x D						OI - Oil LIQ - Other Liquid
amplaris) Nam	ne(s) (Printed)	lor 2:			Client Pu	rchase O	rder #								6	JI.	e d	1±	- 4					AIR - Air
ampler 1	: he	18- Rocheysamp				COLLECTION			1	CONTA	NER INF	FORMAT	NON	- 		32601	2	3 .	5 0	2	1				SOL - Other Solid
SGS							SAMPLED		TOTAL	# HE	QNE QNE	HOH	1N03 12SO4	NAOH+ZNA DI WATER	EOH	ŝ	ର୍ଜ୍ଧ	Ĩ.		0					
Orlando Sample-#-		Field ID / Po	int of Collection		DATE	TIME	BY:	MATRIX		sĖ	ố 갖 갖	ž.	ΞŸ	D N		v	8	$\overline{\mathbf{v}}$		-	+				LAB USE ONLY
513_3_	1			+	sijoslis		·LK	80	$+ \varphi$	┥┡	-+-	┝┼	+-		K	×	4	$\frac{2}{2}$	\checkmark		+			+	
<u>5B4</u>	2					09:55		++				++		┼┼╂		· ·	2	X	┢	-	+			-	
SB2	3				_	10:20	+	++-	++	╶┼╼╁		+	-	┼─┼╊	╢╋	x	-	$\overline{\mathbf{x}}$	+	+	-	1 1		+	
SR I	4				+-	10:40		H	1	++			+	+1	H	¥	£	5	-1-	х				+	
<u> 58 5</u>	5					11:05		-		++	-	++			-	-	~	/+	+-		1				
										-	-	+	+-	++			-							1	
		· · · · · · · · · · · · · · · · · · ·		_ +						-+-+		+	+				-		T						
	-							-	1-				-		1										
							-												Τ						
	-	_						- · ·	\top				_												
						t							-			_			1	PPZM			te (Der		1074 59 4 325 375
		Turnaround Tim	ne (Business d	ays)		17 41 5 M		<u>a</u>	ata De					<u>n 👬</u>			298		_						HIZHAHANI.
	10 0	Day (Business)	A	pproved B	y: / Date	:			CIAL "A										IA	rch	₩e	Ye	ndir	29	Results
	7 D						1 -		CIAL "E		OLIS	PLU	5 QC)				ŀ		<u> </u>					1	
	5 D	•							EPA LE																
		ay RUSH Day RUSH	-				N∈D				1	17	- [>			ſ			_					
		ay RUSH					17			`+	JV	ヒ	15				ŀ							— ,	
	Oti	her	_								0		v											1	
	21.44	<u>Rush T/A Data A</u>	vailable VIA Emai	Samp	e Custo	dy must be	docume	nted b	elow ea	ch tim	e sam	ples c	hang	e posse	ssion	, inclu	ding	courie	r deliv	ery.		12-54	<u> </u>	<u>A</u>	901
		by Sampler/Affiliatio	n Date Time:	Rece	ved By//	Affiliation	Fed				R	elinqu	lished	By/Aff	liation	1	Eν		Da	te Tim	e:	Rece	ved By/A		- of low It
1 L	11	by/Affiliation	06/05/18 Date Time:	2 2		A 66111-61	140	L	-7-		3	elinov	lished	r By/Aff			<u>- x</u>		Da	te Tim	e:	Precei	ived By	filiatio	n
						Affiliation					- 10	Sundr				•			1.0			*	- 1		

ORLD-SMT-0001-03-FORM-COC (1) Rev 031318

FA54762: Chain of Custody Page 1 of 2

28 of 55 FA54762

44

4

SGS Sample Receipt Summary

Job Number: FA5476	62	Client:	ATC		Project: 6900 SW 8	TH ST.		
Date / Time Received: 6/6/201	18 9:00:00 AM		Delivery Method:	FED EX	Airbill #'s: 10019105	1076000	32811007	81282184622
Therm ID: IR 1;			Therm CF: 0.4;		# of Coole	rs: 1		
Cooler Temps (Raw Measur	ed) °C: Cool	er 1: (1.2);					
Cooler Temps (Correct	ed) °C: Cool	er 1: (1.6);					
Cooler Information	<u>Y</u> or	N		Sample Information		Yo	or N	N/A
1. Custody Seals Present	\checkmark			1. Sample labels presen	t on bottles			
2. Custody Seals Intact	\checkmark			2. Samples preserved pr	operly	\checkmark		
3. Temp criteria achieved	\checkmark			3. Sufficient volume/cont	ainers recvd for analysis:	\checkmark		
4. Cooler temp verification	IR Gun			4. Condition of sample		Intact		
5. Cooler media	Ice (Bag)			5. Sample recvd within H	IT	\checkmark		
				6. Dates/Times/IDs on C	OC match Sample Label	\checkmark		
rip Blank Information	<u>Y or</u>	<u>N</u>	N/A	7. VOCs have headspac	e			\checkmark
1. Trip Blank present / cooler				8. Bottles received for ur	nspecified tests			
2. Trip Blank listed on COC				9. Compositing instruction	ons clear			\checkmark
		_		10. Voa Soil Kits/Jars re	ceived past 48hrs?			
	<u>W or</u>	<u>s</u> .	N/A	11. % Solids Jar receive	d?			
3. Type Of TB Received			\checkmark	12. Residual Chlorine Pr	resent?			
Misc. Information			•					
Number of Encores: 25-Gra	im 5	5-Gram	Num	nber of 5035 Field Kits: 5	Number of L	ab Filterec	Metals:	
Test Strip Lot #s:	pH 0-3	23031	 5 6	H 10-12 219813A				
Residual Chlorine Test Strip Lo								
Comments								
SM001 Technicia	an: SHAYLAP		Date: 6/6/2018 9	9:00:00 AM	Reviewer: BR		Date:	6/6/2018
Rev. Date 05/24/17 Technicia	an: <u>SHAYLAP</u>		Date: <u>6/6/2018</u>	9:00:00 AM	Reviewer: <u>BR</u>		Date:	6/6/2018

FA54762: Chain of Custody Page 2 of 2

FA54762

4.1 **4**

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

G

Method Blank Summary Job Number: FA54762

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
V2B333-MB	2B8804.D	1	06/07/18	SP	n/a	n/a	V2B333	
The OC repor	ted here applies t	o the follo	Method: SW846 8260B					

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	5.0	1.2	ug/kg
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/kg
108-88-3	Toluene	ND	5.0	1.0	ug/kg
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg
CAS No.	Surrogate Recoveries		Limits	5	
1868-53-7	Dibromofluoromethane	100%	75-124	1 %	
17060-07-0	1,2-Dichloroethane-D4	107%	72-13	5%	
2037-26-5	Toluene-D8	101%	75-120	6%	
460-00-4	4-Bromofluorobenzene	99 %	71-133	3 %	

5.1.1 5

Page 1 of 1

Method Blank Summary Job Number: FA54762

Job Number: Account: Project:	FA54762 ATCFLM ATC G Jak Service Center			St, Miami	i, FL		
Sample V3C48-MB		DF Anal 1 06/07	•	Pro n/a	ep Date	Prep Batch n/a	Analytical Batch V3C48
Гһе QC геро FA54762-3	rted here applies to t	he following sam	ıples:			Method: SW84	6 8260B
CAS No. C	Compound	Result	RL	MDL	Units	Q	
100-41-4 E 1634-04-4 M 108-88-3 T	enzene Cthylbenzene Tethyl Tert Butyl Ethe Coluene Cylene (total)	ND ND r ND 1.1 ND	5.0 5.0 5.0 5.0 15	1.2 1.0 1.0 1.0 2.1	ug/kg ug/kg ug/kg ug/kg ug/kg	J	

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	106%	72-135%
2037-26-5	Toluene-D8	104%	75-126 %
460-00-4	4-Bromofluorobenzene	104%	71-133%

Page 1 of 1

5.1.2

G

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2B333-BS	2B8805.D	1	06/07/18	SP	n/a	n/a	V2B333

ATCFLM ATC Group Services LLC. Account:

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	50 50 50 50 150	53.3 55.9 48.9 51.6 171	107 112 98 103 114	76-126 77-123 77-120 76-124 80-129
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	BSP 100% 101% 100% 97%	72-1 75-1	nits 124% 135% 126% 133%	

FA54762

Account:ATCFLM ATC Group Services LLC.Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
Sample V3C48-BS	File ID DF 3C1142.D 1		lyzed)7/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C48		
The QC re FA54762-3	ported here applies to the f	ollowing sa	nples:			Method: SW84	6 8260B		
CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits				
71-43-2	Benzene	50	49.3	99	76-126				
100-41-4	Ethylbenzene	50	51.2	102	77-123				
1634-04-4	Methyl Tert Butyl Ether	50	50.1	100	77-120				
108-88-3	Toluene	50	47.4	95	76-124				

150

BSP

102%

100%

99%

155

103

Limits

75-124%

72-135%

75-126%

71-133%

80-129

CAS No. **Surrogate Recoveries** 1868-53-7 Dibromofluoromethane 103%

4-Bromofluorobenzene

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

Xylene (total)

1330-20-7

460-00-4

Page 1 of 1

5.2.2

S

Matrix	Spike/Matrix	Spike	Duplicate	Summary
T 1 N7 1	TIA # 4900			

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
~ .	

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA54803-3MS	3C1150.D	1	06/07/18	SP	n/a	n/a	V3C48
FA54803-3MSD	3C1151.D	1	06/07/18	SP	n/a	n/a	V3C48
FA54803-3	3C1149.D	1	06/07/18	SP	n/a	n/a	V3C48

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54762-3

CAS No.	Compound	FA54803-3 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	ND ND ND ND ND	41.1 41.1 41.1 41.1 123	33.3 35.7 32.3 33.3 112	81 87 79 81 91	40.1 40.1 40.1 40.1 120	31.9 34.5 32.3 34.4 107	80 86 81 86 89	4 3 0 3 5	76-126/26 77-123/31 77-120/24 76-124/30 80-129/30
CAS No.	Surrogate Recoveries	MS	MSD	FA	54803-3	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	69%* ^b 109% 102% 98%	65%* ^b 102% 104% 96%	49% 109 105 98%	5%	75-1249 72-1359 75-1269 71-1339	6 6			

(a) Outside control limits due to matrix interference (alkaline pH). Confirmed by MS/MSD.(b) Outside control limits due to matrix interference (high pH).

٦

Page 1 of 1

SGS

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	FA54835-1 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	6.1 U	63.1	56.7	90	59.9	54.7	91	4	76-126/26
100-41-4	Ethylbenzene	6.1 U	63.1	57.3	91	59.9	54.5	91	5	77-123/31
1634-04-4	Methyl Tert Butyl Ether	6.1 U	63.1	61.9	98	59.9	59.5	99	4	77-120/24
108-88-3	Toluene	6.1 U	63.1	55.1	87	59.9	54.8	92	1	76-124/30
1330-20-7	Xylene (total)	18 U	189	176	93	180	168	94	5	80-129/30
CAS No.	Surrogate Recoveries	MS	MSD	FA	54835-1	Limits				
1868-53-7	Dibromofluoromethane	101%	102%	102	%	75-124%	, D			
17060-07-0	1,2-Dichloroethane-D4	101%	100%	104	%	72-135%	, D			
2037-26-5	Toluene-D8	101%	101%	105	%	75-126%	ź			
460-00-4	4-Bromofluorobenzene	106%	104%	110	%	71-133%	, D			

(a) Confirmation run.

Orlando, FL

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary Job Number: FA54762

Account:	ATCFLM ATC Group Services LLC.								
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
OP70388-MB	8H03165.D	1	06/07/18	FS	06/07/18	OP70388	S8H124		
The QC report	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM		

FA54762-2, FA54762-3, FA54762-4, FA54762-5

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	67	27	ug/kg
208-96-8	Acenaphthylene	ND	67	27	ug/kg
120-12-7	Anthracene	ND	67	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	13	3.3	ug/kg
50-32-8	Benzo(a)pyrene	ND	13	3.3	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	13	3.3	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	13	3.3	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	13	3.3	ug/kg
218-01-9	Chrysene	ND	13	3.3	ug/kg
53-70-3	Dibenzo(a, h)anthracene	ND	13	3.3	ug/kg
206-44-0	Fluoranthene	ND	67	17	ug/kg
86-73-7	Fluorene	ND	67	27	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13	3.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	67	27	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	27	ug/kg
91-20-3	Naphthalene	ND	67	27	ug/kg
85-01-8	Phenanthrene	ND	67	17	ug/kg
129-00-0	Pyrene	ND	67	17	ug/kg
	-				

CAS No.	Surrogate Recoveries		Limits
321-60-8	Nitrobenzene-d5	92%	40-105%
	2-Fluorobiphenyl	90%	43-107%
	Terphenyl-d14	117%	45-119%

Method Blank Summary Job Number: FA54762

Account:	ATCFLM ATC Group Services LLC.									
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch			
OP70433-MB	8H03226.D	1	06/11/18	FS	06/11/18	OP70433	S8H126			
The QC repor	ted here applies to	o the follo	owing samples:			Method: SW84	6 8270D BY SIM			

FA54762-1

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	67	27	ug/kg
208-96-8	Acenaphthylene	ND	67	27	ug/kg
120-12-7	Anthracene	ND	67	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	13	3.3	ug/kg
50-32-8	Benzo(a)pyrene	ND	13	3.3	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	13	3.3	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	13	3.3	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	13	3.3	ug/kg
218-01-9	Chrysene	ND	13	3.3	ug/kg
53-70-3	Dibenzo(a, h)anthracene	ND	13	3.3	ug/kg
206-44-0	Fluoranthene	ND	67	17	ug/kg
86-73-7	Fluorene	ND	67	27	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13	3.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	67	27	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	27	ug/kg
91-20-3	Naphthalene	ND	67	27	ug/kg
85-01-8	Phenanthrene	ND	67	17	ug/kg
129-00-0	Pyrene	ND	67	17	ug/kg
	-				2 0

CAS No.	Surrogate Recoveries	Limits	
321-60-8	Nitrobenzene-d5	91%	40-105%
	2-Fluorobiphenyl	91%	43-107%
	Terphenyl-d14	101%	45-119%

Account: Project:		ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Sample OP70388-BS	File ID 8H03166.D	DF 1	Analyzed 06/07/18	By FS	Prep Date 06/07/18	Prep Batch OP70388	Analytical Batch S8H124		
The QC repor	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM		

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	643	96	53-100
208-96-8	Acenaphthylene	667	601	90	51-100
120-12-7	Anthracene	333	323	97	60-102
56-55-3	Benzo(a)anthracene	333	308	92	60-10 ²
50-32-8	Benzo(a)pyrene	333	323	97	58-105
205-99-2	Benzo(b)fluoranthene	333	327	98	59-112
191-24-2	Benzo(g,h,i)perylene	333	378	113*	56-109
207-08-9	Benzo(k)fluoranthene	333	386	116*	58-109
218-01-9	Chrysene	333	359	108*	62-104
53-70-3	Dibenzo(a, h)anthracene	333	371	111*	55-110
206-44-0	Fluoranthene	667	617	93	59-109
86-73-7	Fluorene	667	654	98	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	370	111*	54-110
90-12-0	1-Methylnaphthalene	667	577	87	50-101
91-57-6	2-Methylnaphthalene	667	550	82	49-100
91-20-3	Naphthalene	667	622	93	49-101
85-01-8	Phenanthrene	667	652	98	57-104
129-00-0	Pyrene	667	663	99	58-106
120 00 0	I yrene	001	000	00	00 100
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
	_				
4165-60-0	Nitrobenzene-d5	87 %	40-	105%	
321-60-8	2-Fluorobiphenyl	98 %	43-	107%	
1718-51-0	Terphenyl-d14	110%	45-	119%	

6.2.1 6

* = Outside of Control Limits.

Account:	ATCFLM ATC Group Services LLC.							
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
OP70388-BS	8H03228.D	1	06/11/18	FS	06/07/18	OP70388	S8H126	
The QC report	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM	

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	520	78	53-100
208-96-8	Acenaphthylene	667	489	73	51-100
200-30-3 120-12-7	Anthracene	333	405 249	75	60-102
56-55-3	Benzo(a)anthracene	333	249 256	77	60-102 60-106
50-55-5 50-32-8		333	256 256	77	58-105
	Benzo(a)pyrene				
205-99-2	Benzo(b)fluoranthene	333	268	80	59-112
191-24-2	Benzo(g,h,i)perylene	333	291	87	56-109
207-08-9	Benzo(k)fluoranthene	333	277	83	58-109
218-01-9	Chrysene	333	281	84	62-104
53-70-3	Dibenzo(a,h)anthracene	333	307	92	55-110
206-44-0	Fluoranthene	667	485	73	59-109
86-73-7	Fluorene	667	520	78	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	291	87	54-110
90-12-0	1-Methylnaphthalene	667	458	69	50-101
91-57-6	2-Methylnaphthalene	667	466	70	49-100
91-20-3	Naphthalene	667	504	76	49-101
85-01-8	Phenanthrene	667	525	79	57-104
129-00-0	Pyrene	667	525	79	58-106
	5				
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
4165-60-0	Nitrobenzene-d5	76%	40-	105%	
321-60-8	2-Fluorobiphenyl	81%		107%	
1718-51-0	Terphenyl-d14	87%		119%	
1/10-31-0	rerpnenyi-ur4	0170	43-	113/0	

Page 1 of 1

Account:	ATCFLM ATC Group Services LLC.								
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
OP70433-BS	8H03227.D	1	06/11/18	FS	06/11/18	OP70433	S8H126		
The QC report	ted here applies to	o the follo	owing samples:			Method: SW84	6 8270D BY SIM		

FA54762-1

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	585	88	53-100
208-96-8	Acenaphthylene	667	556	83	51-100
120-12-7	Anthracene	333	292	88	60-102
56-55-3	Benzo(a)anthracene	333	301	90	60-106
50-32-8	Benzo(a)pyrene	333	303	91	58-105
205-99-2	Benzo(b)fluoranthene	333	306	92	59-112
191-24-2	Benzo(g,h,i)perylene	333	338	101	56-109
207-08-9	Benzo(k)fluoranthene	333	322	97	58-109
218-01-9	Chrysene	333	331	99	62-104
53-70-3	Dibenzo(a, h)anthracene	333	359	108	55-110
206-44-0	Fluoranthene	667	573	86	59-109
86-73-7	Fluorene	667	593	89	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	343	103	54-110
90-12-0	1-Methylnaphthalene	667	505	76	50-101
91-57-6	2-Methylnaphthalene	667	522	78	49-100
91-20-3	Naphthalene	667	552	83	49-101
85-01-8	Phenanthrene	667	614	92	57-104
129-00-0	Pyrene	667	609	91	58-106
	·				
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
4165-60-0	Nitrobenzene-d5	83%	10	105%	
4105-00-0 321-60-8	ind ob one one do	83% 91%		105% 107%	
	2-Fluorobiphenyl				
1718-51-0	Terphenyl-d14	103%	40-	119%	

42 of 55

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample OP70388-MS OP70388-MSD FA54784-2	File ID 8H03187.D 8H03188.D 8H03186.D	DF 1 1 1	Analyzed 06/07/18 06/08/18 06/07/18	By FS FS FS	Prep Date 06/07/18 06/07/18 06/07/18	Prep Batch OP70388 OP70388 OP70388	Analytical Batch S8H124 S8H124 S8H124 S8H124
--	--	-------------------	--	----------------------	---	---	--

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		FA54784-2	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/kg Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
00 00 0	A	70.11	700	710	100*	001	500	0.0	10	50 100/00
83-32-9	Acenaphthene	70 U	700	719	103*	691	593	86	19	53-100/28
208-96-8	Acenaphthylene	70 U	700	689	98	691	565	82	20	51-100/25
120-12-7	Anthracene	70 U	350	360	103*	345	294	85	20	60-102/29
56-55-3	Benzo(a)anthracene	14 U	350	363	104	345	295	85	21	60-106/30
50-32-8	Benzo(a)pyrene	14 U	350	376	107*	345	304	88	21	58-105/30
205-99-2	Benzo(b)fluoranthene	14 U	350	401	115*	345	324	94	21	59-112/33
191-24-2	Benzo(g,h,i)perylene	14 U	350	229	65	345	182	53*	23	56-109/31
207-08-9	Benzo(k)fluoranthene	14 U	350	418	119*	345	341	99	20	58-109/33
218-01-9	Chrysene	14 U	350	395	113*	345	328	95	19	62-104/30
53-70-3	Dibenzo(a,h)anthracene	14 U	350	313	89	345	242	70	26	55-110/31
206-44-0	Fluoranthene	70 U	700	711	102	691	582	84	20	59-109/29
86-73-7	Fluorene	70 U	700	741	106*	691	615	89	19	56-104/27
193-39-5	Indeno(1,2,3-cd)pyrene	14 U	350	274	78	345	214	62	25	54-110/32
90-12-0	1-Methylnaphthalene	70 U	700	628	90	691	513	74	20	50-101/30
91-57-6	2-Methylnaphthalene	70 U	700	632	90	691	518	75	20	49-100/26
91-20-3	Naphthalene	70 U	700	684	98	691	564	82	19	49-101/28
85-01-8	Phenanthrene	70 U	700	744	106*	691	615	89	19	57-104/27
129-00-0	Pyrene	70 U	700	725	104	691	591	86	20	58-106/29
CAS No.	Surrogate Recoveries	MS	MSD	FA	54784-2	Limits				
4165-60-0	Nitrobenzene-d5	92%	74%	85%		40-105%				
321-60-8	2-Fluorobiphenyl	103%	84%	95 %		43-1079				
1718-51-0	Terphenyl-d14	111%	89 %	111	.%	45-1199	%			

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample File ID DF OP70433-MS 8H03237.D 1 OP70433-MSD 8H03238.D 1 FA54843-1 8H03236.D 1	06/11/18 H 06/11/18 H	By Prep Date FS 06/11/18 FS 06/11/18 FS 06/11/18	Prep Batch OP70433 OP70433 OP70433	Analytical Batch S8H126 S8H126 S8H126 S8H126
--	--------------------------	--	---	--

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA54762-1

~ . ~	~ .	FA54843-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/kg Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
83-32-9	Acenaphthene	83 U	821	796	97	821	719	88	10	53-100/28
208-96-8	Acenaphthylene	83 U	821	764	93	821	683	83	11	51-100/25
120-12-7	Anthracene	83 U	410	380	93	410	337	82	12	60-102/29
56-55-3	Benzo(a)anthracene	17 U	410	386	94	410	342	83	12	60-106/30
50-32-8	Benzo(a)pyrene	17 U	410	383	93	410	340	83	12	58-105/30
205-99-2	Benzo(b)fluoranthene	17 U	410	400	97	410	356	87	12	59-112/33
191-24-2	Benzo(g,h,i)perylene	17 U	410	279	68	410	246	60	13	56-109/31
207-08-9	Benzo(k)fluoranthene	17 U	410	406	99	410	361	88	12	58-109/33
218-01-9	Chrysene	17 U	410	426	104	410	371	90	14	62-104/30
53-70-3	Dibenzo(a, h)anthracene	17 U	410	366	89	410	321	78	13	55-110/31
206-44-0	Fluoranthene	83 U	821	720	88	821	645	79	11	59-109/29
86-73-7	Fluorene	83 U	821	793	97	821	710	86	11	56-104/27
193-39-5	Indeno(1,2,3-cd)pyrene	17 U	410	323	79	410	289	70	11	54-110/32
90-12-0	1-Methylnaphthalene	83 U	821	695	85	821	614	75	12	50-101/30
91-57-6	2-Methylnaphthalene	83 U	821	730	89	821	652	79	11	49-100/26
91-20-3	Naphthalene	83 U	821	775	94	821	695	85	11	49-101/28
85-01-8	Phenanthrene	83 U	821	805	98	821	719	88	11	57-104/27
129-00-0	Pyrene	83 U	821	771	94	821	687	84	12	58-106/29
CAS No.	Surrogate Recoveries	MS	MSD	FA	54843-1	Limits				
4165-60-0	Nitrobenzene-d5	99 %	86 %	95 %	6	40-1059	Vo			
321-60-8	2-Fluorobiphenyl	104%	92 %	98%		43-107				
1718-51-0	Terphenyl-d14	107%	94%	99%		45-1199				
1/10-31-0	rerphenyr-ur4	107/0	JH /0	33/	0	45-115	0			

GC/LC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA54762

Job Number: Account: Project:	: FA54762 ATCFLM ATC (Jak Service Cento	-			St, Miami	i, FL		
Sample OP70393-MB	File ID YR18455.D	DF 1	Analyz 06/11/2	•		ep Date /07/18	Prep Batch OP70393	Analytical Batch GYR414
	orted here applies to FA54762-2, FA5476		.				Method: FLOR	IDA-PRO
CAS No. (Compound		Result	RL	MDL	Units	Q	
1	ГРН (С8-С40)		ND	8.3	5.0	mg/kg		
CAS No. S	Surrogate Recoverie	s		Limit	s			
84-15-1 o	o-Terphenyl		100%	52-13	3%			

o-Terphenyl

84-15-1

Job Number Account: Project:	r: FA54762 ATCFLM ATC Jak Service Cente	-			sth St, M	liami, FL		
Sample OP70393-BS	File ID S YR18454.D	DF 1	Anal 06/1	•	By SJL	Prep Date 06/07/18	Prep Batch OP70393	Analytical Batch GYR414
	oorted here applies to FA54762-2, FA5476		0	-	5		Method: FLOR	IDA-PRO
CAS No.	Compound		Spike ng/kg	BSP mg/kg	BSP %	Limits		
	ТРН (С8-С40)	2	28.3	25.1	89	53-120		
CAS No.	Surrogate Recoverie	s I	BSP	Lir	nits			

52-133%

100%

7.2.1 7

Matrix Spi	ke/Matrix (FA54762	Spike Dı	uplicat	e Sum	mary	7				Page 1 of 1
Account:	ATCFLM ATC	C Group Ser	vices LLC							
Project:	Jak Service Cer	-			h St, M	liami, FL				
Sample	File ID	DF	Analy	zed B	By	Prep Date	Pre	p Batch	Anal	ytical Batch
OP70393-MS	YR18462.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414
OP70393-MSD	YR18463.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414
FA54784-1	YR18461.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414
The QC reporte FA54762-1, FA				•	i		Metho	d: FLO	RIDA-PI	RO
Compound		FA54784-1	Spike	MS mg/kg	MS %	Spike mg/kg	MSD	MSD %	RPD	Limits Rec/RPD
•		mg/kg Q 9.1 U	mg/kg 30.9	ш <u>д</u> /к <u>д</u> 27.8	⁷⁰ 90	31.2	mg/kg 25.4	⁷⁰ 81	9 9	53-120/34
TPH (C8-C40)	:	9.1 U	30.9	£1.0	90	31.2	23.4	01	9	33-120/34

105%

52-133%

CAS No.	Compound	mg/kg	Q	mg/kg	mg/kg	%	mg/kg	m
	TPH (C8-C40)	9.1 U		30.9	27.8	90	31.2	25
CAS No.	Surrogate Recoveries	MS		MSD	FA5	54784-1	Limits	

92%

105%

o-Terphenyl

84-15-1

7.3.1 7

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:					06/08/18
Metal	RL	IDL	MDL	MB raw	final
Aluminum	10	.7	1.8		
Antimony	1.0	.05	.065		
Arsenic	0.50	.065	.1		
Barium	10	.05	.05		
Beryllium	0.25	.01	.025		
Cadmium	0.20	.01	.025		
Calcium	250	2.5	2.5		
Chromium	0.50	.05	.05		
Cobalt	2.5	.01	.025		
Copper	1.3	.05	.05		
Iron	15	.85	.85		
Lead	1.0	.05	.05	0.050	<1.0
Magnesium	250	1.8	1.8		
Manganese	0.75	.025	.025		
Molybdenum	2.5	.015	.025		
Nickel	2.0	.02	.025		
Potassium	500	10	10		
Selenium	1.0	.12	.12		
Silver	0.50	.035	.041		
Sodium	500	25	25		
Strontium	0.50	.025	.025		
Thallium	0.50	.055	.055		
Tin	2.5	.045	.045		
Titanium	0.50	.025	.025		
Vanadium	2.5	.025	.025		
Zinc	1.0	.15	.15		
Associated sa	mples MP3	33856: FA	54762-5		

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

œ

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:					hods: SW846 nits: mg/kg	6010C	
Prep Date:		06/08/1	8			06/08/1	8
Metal	FA54762-5 Original DUP	RPD	QC Limits	FA54762-5 Original MS	Spikelot MPFLICP2		QC Limits
Aluminum							
Antimony	anr						
Arsenic	anr						
Barium	anr						
Beryllium	anr						
Cadmium	anr						
Calcium							
Chromium	anr						
Cobalt	anr						
Copper	anr						
Iron							
Lead	4.0 3.8 (a)	5.1	0-20	4.0 29.5	(a) 25.8	98.9	80-120
Magnesium							
Manganese							
Molybdenum	anr						
Nickel	anr						
Potassium							
Selenium	anr						
Silver	anr						
Sodium							
Strontium							
Thallium	anr						
Tin							
Titanium							
Vanadium	anr						
Zinc	anr						
Associated sa	mples MP33856: FA5	4762-5					

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested
(a) Sample dilution required due to difficult matrix.</pre>

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:				06/08/18	
Metal	FA54762-5 Original MSD	Spikelot MPFLICP2		MSD RPD	QC Limit
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron					
Lead	4.0 21.4 (a	a) 18.2	95.8	31.8 (b)	20
Magnesium					
Manganese					
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	anr				
Associated sa	mples MP33856: FA	54762-5			
<pre>(*) Outside o (N) Matrix Sp (anr) Analyte (a) Sample di</pre>	are shown as zero f QC limits ike Rec. outside of not requested lution required do due to possible so	of QC limit ue to diffi	s cult matr	rix.	

52 of 55

FA54762

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:			06/08/18		
Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits	
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron					
Lead	23.8	25	95.2	80-120	
Magnesium					
Manganese					
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	anr				
Associated sam	ples MP3	3856: FA54'	762-5		
Results < IDL (*) Outside of			for calcu	lation purp	Ę

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

Metal	FA54762- Original		%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	81.4	83.0	2.0	0-10
Magnesium				
Manganese				
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

(*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

Prep Date:									06/08/1	8
Metal	Sample ml	Final ml	FA54762 Raw	-5 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	81.4	79.772	121.9	0.2	2.5	50	84.3	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3856: FA5	4762-5							
Results < IDL (*) Outside o (**) Corr.s (anr) Analyte	f QC limi ample res	ts ult = Raw				olume)				

55 of 55 FA54762

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

06/18/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA54891

Sampling Date: 06/07/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: **31**

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 31 FA54891

Table of Contents

N

ယ

4

S

6

7

∞

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
3.1: FA54891-1: MW 9	
Section 4: Misc. Forms	10
4.1: Chain of Custody	11
Section 5: MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	14
5.2: Blank Spike Summary	15
5.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 6: MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	18
6.2: Blank Spike Summary	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 7: GC/LC Semi-volatiles - QC Data Summaries	
7.1: Method Blank Summary	22
7.2: Blank Spike Summary	
7.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 8: Metals Analysis - QC Data Summaries	
8.1: Prep QC MP33873: Pb	

SGS

Sample Summary

ATC Group Services LLC.

Job No: FA54891 Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA54891-1	06/07/18	00:00 LR	06/09/18	AQ	Ground Water	MW 9

Summary of Hits

Г

Job Number:	FA54891
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	06/07/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method
FA54891-1 MW 9					
2-Methylnaphthalene TPH (C8-C40) Lead	0.72 I 0.665 5.4	0.80 0.24 5.0	0.32 0.14 1.1	ug/l mg/l ug/l	SW846 8270D BY SIM FLORIDA-PRO SW846 6010C

N

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

Report of Analysis

			1		v			0
Client Sam	T S S	W 9						
Lab Sampl		454891-1						6/07/18
Matrix:		Q - Ground Wa	ater					6/09/18
Method:		V846 8260B					ent Solids: n/	a
Project:	Ja	k Service Cent	er(United Fuel); 690	0 SW 8	8th St, Mia	ami, FL		
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	O54087.D	1	06/14/18 10:16	SP	n/a		n/a	VO2040
Run #2								
	Purge Vol	ume						
Run #1 Run #2	5.0 ml							
Purgeable	Aromatics,	MTBE						
CAS No.	Compour	nd	Result	PQL	MDL	Units	Q	
71-43-2	Benzene		0.31 U	1.0	0.31	ug/l		
108-88-3	Toluene		0.30 U	1.0	0.30	ug/l		
100-41-4	Ethylbenz	ene	0.36 U	1.0	0.36	ug/l		
1330-20-7	Xylene (t		0.72 U	3.0	0.72	ug/l		
						5		

1.0

Run# 2

0.23

Limits

83-118%

79-125%

85-112%

83-118%

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ug/l

0.23 U

Run#1

104%

101%

99%

102%

3.4

ω

Page 1 of 1

6 of 31 FA54891

SGS

Report of Analysis

					-			
Client San Lab Samp Matrix: Method: Project:	le ID: FA548 AQ - G SW846	Fround Wate 88270D BY	er SIM SW846 35 (United Fuel); 69(8th St, Mi	Date Perc	T	5/07/18 5/09/18 'a
Run #1 Run #2	File ID T038518.D	DF 1	Analyzed 06/13/18 05:42	By RV	Prep D 06/11/1	0ate 18 17:00	Prep Batch OP70444	Analytical Batch ST1407
Run #1 Run #2	Initial Volume 250 ml	Final Vo 1.0 ml	lume					
BN PAH L	List							
CAS No.	Compound		Result	PQL	MDL	Units	Q	
83-32-9	Acenaphthene		0.32 U	0.80	0.32	ug/l		
208-96-8	Acenaphthyler	ie	0.32 U	0.80	0.32	ug/l		
120-12-7	Anthracene		0.20 U	0.80	0.20	ug/l		
56-55-3	Benzo(a)anthra		0.032 U	0.16	0.032	ug/l		
50-32-8	Benzo(a)pyren		0.032 U	0.16	0.032	ug/l		
205-99-2	Benzo(b)fluora		0.032 U	0.16	0.032	ug/l		
191-24-2	Benzo(g,h,i)pe		0.032 U	0.16	0.032	ug/l		
207-08-9	Benzo(k)fluora	anthene	0.032 U	0.16	0.032	ug/l		
218-01-9	Chrysene	_	0.032 U	0.16	0.032	ug/l		
53-70-3	Dibenzo(a,h)a	nthracene	0.032 U	0.16	0.032	ug/l		
206-44-0	Fluoranthene		0.20 U	0.80	0.20	ug/l		
86-73-7	Fluorene	D	0.20 U	0.80	0.20	ug/l		
193-39-5	Indeno(1,2,3-c		0.032 U	0.16	0.032	ug/l		
90-12-0	1-Methylnapht		0.32 U	0.80	0.32	ug/l		
91-57-6	2-Methylnapht	inalene	0.72	0.80	0.32	ug/l	Ι	
91-20-3	Naphthalene Phenanthrene		0.32 U	0.80	0.32	ug/l		
85-01-8 129-00-0	Phenanthrene Pyrene		0.20 U 0.20 U	0.80 0.80	0.20 0.20	ug/l ug/l		
CACN			D #1	D #/		•.		

CAS No. **Surrogate Recoveries** Run#1 **Run# 2** Limits 4165-60-0 Nitrobenzene-d5 55% 41-129% 321-60-8 2-Fluorobiphenyl **70%** 41-118% 1718-51-0 **Terphenyl-d14** 81% 45-145%

ω

ω -

N = Indicates presumptive evidence of a compound

			Report	of An	alysis	Page 1 of 1		
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA548 AQ - (FLOR	891-1 Ground Water IDA-PRO S	W846 3510C United Fuel); 69	00 SW 8t	h St, Mia	/07/18 /09/18 a		
Run #1 Run #2	File ID YR18575.D	DF 1	Analyzed 06/13/18 18:33	By SJL	Prep Da 06/11/1		Prep Batch OP70443	Analytical Batch GYR416
Run #1 Run #2	Initial Volume 1050 ml	Final Volu 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	0.665	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Limi	its		
84-15-1	o-Terphenyl		87 %		41-1	46%		

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

Report of Analysis									
Client Sample Lab Sample II Matrix:	D: FA54	9 1891-1 Ground V	Vater				Date San Date Rec Percent S	1	-
Project: Total Metals A		ervice Cei	nter(Unite	d Fuel); (6900 S	W 8th St, N			
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	5.4	5.0	1.1	ug/l	1	06/13/18	06/13/18 LM	SW846 6010C ¹	SW846 3010A ²
(1) Instrument	QC Batch:]	MA14972							

(2) Prep QC Batch: MP33873

<u>ω</u>

ω

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	REM	SG	S No	rth A	١me	erica	Ir	ıc	- ()r	lan	Ido		-	4	5	Ч	X	34				
CCC '	0 8.0			Cha	in o	of C	ust	od	v				SG	s - 0	RLA	NDC	JOB	#:		P	AGE	1	0F
200	chalantered a		4	405 Vinelar	d Road, S		Orland	do, Fi	32811				SG	s - 0	RLA	NDO	Quo	te #		SKIFF	#		
Client / Reportin	a Information	12121		4.6.2		w.sgs.com		on	694	112	****	198.66		2.946		112	Δna	lytics	al Info	rmat	ion 🖄	1 4 40 - 10 A	Matrix Codes
Company Name:	<u> </u>	<u>1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	Project N	lame:					-		2222.2	1999.94	8182)	2 24.4%	***	815		ynot		T			DW - Drinking
Addross	sp Services		Street	k Sex					Dbo	7			-						1				Water GW - Ground
<u>9955 NW</u>	116th Way S		690	<u>0 Su</u>	<u>v</u> &	4h S	+		Sta	to			_										Water WW - Water
City: Micmi State	FL UD	78	mia							<u> </u>	ÈL							1					SW - Surface
Project Contact: Dwig n+ Jehrwenden	Email:		Project #	τv	01	430	160	79					٤		ĺ								Water SO - Soil
Phone #: (305)852 -			Fax #			_ در یه د		<u></u>					× 1	A A									SL- Sludge OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1: Lei & Rochespame			Client Pu	rchase O	rder #								_ @	0		0							LIQ - Other Liquid AIR - Air
			COLLECTION	<u> </u>		r— (ONTAI	NER IN	FORM	ATION		ET T	13	2		ad							SOL - Other Solid
SGS Orlando				SAMPLED		TOTAL #	£٣.		I.	8	8	DI WATER	5 0	60	68	百							
Septimie # Field ID / Po	bint of Collection	DATE	TIME	BY:		BOTTLES	OTHER			HN03	H2SO4				-								LAB USE ONLY
(1) MW	<u>}</u>	06/07	18	RK	Giw	<i>\$</i> 61	[·	1	1	-	1		1	~		/							
								\perp	\square	_		+ +		ļ	<u> </u>								
								_			_												L
· · · · · · · · · · · · · · · · · · ·																							
									ŀ														
									\square	-	1											+-	
								1						-									
Turnaround Tim	ie (Business days)	11111	1227113		Da	ta Deliv	verak	ole li	nfor	mat	ion	· 均均增少1 (均均分)	10807 1689 - 179		#14 第1世	通辞 売程			Com	ment	s / Re	marks	1100
10 Day (Business)	Approved	By: / Date:			IMERCI	IAL "A"	RESI	JLTS	ONL	.Y)		_											
7 Day				CON	IMERCI	IAL "B"	RESU	JLTS	PLU	s Q	2)												
5 Day				RED	T1 (EP	A LEVE	L 3)																
3 Day RUSH				FUL	LT1 (EP	PA LEVE	L4)																
2 Day RUSH					'S																		
1 Day RUSH																		-					
Other																						,	<u>a</u>
Rush T/A Data A	vailable VIA Email or Labli	nk ple Custod	ly must be	documen	ted bei	ow each	time	samr	oles c	han	ge po	ssessi	on, inc	luding	couri	er de	liverv		Г	1	1.13		945
Relinquished by San pler/Affiliation	Date Time: Q Rec	eived By/A		M 1								Affiliat	ion		-		Date 1		R	ecelve		fiation	
1 7 Kerthy / ATC	04/08/18 22		-	ted	Ľ	\times		3				Ŧ÷		b	<u>×</u>				4	ЖĽ	-1		- 06[04]18
Relinquished by/Affil ation	Date Time: Rec	eived By/A	filiation					Re 7	linqu	iishe	ed By/	Affiliati	ion				Date 1	'ime:	₿ o	eceive		ffiliatio	
Lab Use Only : Cooler Temperat	ure (s) Celsius (corrected)	. 3.0)	_																://www	.sas.co	m/en/ter	ms-and-conditions

ORLD-SMT-0001-03-FORM-COC (1) Rev 031318

FA54891: Chain of Custody Page 1 of 2

4.1 4

c-Orlando FAEUQQI CCC North A . т.

	2
--	---

SGS Sample Receipt Summary

Job Number: FA54891 Clier Date / Time Received: 6/9/2018 9:45:00 AM		Client:	ATC	Project: JAK SERVI	Project: JAK SERVICE CENTER DBA Airbill #'s: 1001893311210003281100781333940218				
			Delivery Method: FED EX	Airbill #'s: 10018933					
Therm ID: IR 1;			Therm CF: 0.4; # 0		Coolers: 1				
Cooler Temps (Raw Measured) ° C : Cool	er 1: (2.6	;						
Cooler Temps (Corrected) ° C : Cool	er 1: (3.0	;						
Cooler Information	Y or	N_	Sample Info	rmation	Y	or	N	N/A	
1. Custody Seals Present			1. Sample lat	pels present on bottles					
2. Custody Seals Intact				2. Samples preserved properly					
3. Temp criteria achieved	\checkmark			3. Sufficient volume/containers recvd for analysis:					
4. Cooler temp verification	IR Gun	<u> </u>	4. Condition of sample		□ Intac	t	ىت		
5. Cooler media	Ice (Bag)		5. Sample re	cvd within HT	✓	_			
			6. Dates/Tim	es/IDs on COC match Sample Label	~				
Trip Blank Information	Y or	<u>N</u>	V/A 7. VOCs have						
1. Trip Blank present / cooler		\checkmark	8. Bottles rec	eived for unspecified tests				_	
2. Trip Blank listed on COC		\checkmark	9. Compositi	ng instructions clear					
	14/	<u> </u>	10. Voa Soil	Kits/Jars received past 48hrs?					
				Jar received?					
3. Type Of TB Received			✓ 12. Residual	Chlorine Present?				\checkmark	
Misc. Information									
Number of Encores: 25-Gram		5-Gram	Number of 5035 Field	Kits: Number of L	ab Filte	red Me	tals:		
Test Strip Lot #s: pH 0-3 23031		230315	pH 10-12 219813A Other: (Spec						
Residual Chlorine Test Strip Lot #	: :								
			ctions.250ml Amber Bottles received fo	or 8270.					
SM001 Technician:	SHAYLAP		Date: 6/9/2018 9:45:00 AM	Reviewer: SP		_ (Date:	6/9/2018	

FA54891: Chain of Custody Page 2 of 2

4.1 **4**

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

G

Method Blank Summary Job Number: FA54891

108-88-3

CAS No.

460-00-4

Toluene

1868-53-7 Dibromofluoromethane

17060-07-0 1,2-Dichloroethane-D4

Surrogate Recoveries

4-Bromofluorobenzene

1330-20-7 Xylene (total)

2037-26-5 Toluene-D8

Account: Project:	Account: ATCFLM ATC Group Services LLC.								
Sample VO2040-MI	File ID B O54084.D	DF 1	Analyzed 06/14/18	By SP	Prep n/a	Date	Prep Batch n/a	Analytical Batch VO2040	
The QC rep FA54891-1	ported here applies to	o the follow	ing samples	:			Method: SW84	6 8260B	
CAS No.	Compound	1	Result	RL	MDL	Units	Q		
71-43-2 100-41-4 1634-04-4	Benzene Ethylbenzene Methyl Tert Butyl Et	I	ND	1.0 1.0 1.0	0.36	ug/l ug/l ug/l			

1.0

3.0

Limits

83-118%

79-125%

85-112%

83-118%

ND

ND

104%

106%

108%

98%

ug/l

ug/l

0.30

0.72

Page 1 of 1

Blank Spike Summary Job Number: FA54891

CAS No.

460-00-4

Surrogate Recoveries

4-Bromofluorobenzene

1868-53-7 Dibromofluoromethane

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

BSP

105%

106%

100%

87%

Account: Project:	ATCFLM ATC Grouj Jak Service Center(Ur	•		8th St, M	liami, FL		
Sample VO2040-BS	File ID DF S O54083.D 1		lyzed 4/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO2040
The QC re FA54891-1	ported here applies to the	following sa	mples:			Method: SW84	6 8260B
CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits		
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	25 25 25 25 75	28.0 27.2 26.9 28.0 79.0	112 109 108 112 105	81-122 81-121 72-117 80-120 80-126		

Limits

83-118%

79-125%

85-112%

83-118%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54891
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA54810-1MS	O54106.D	5	06/14/18	SP	n/a	n/a	VO2040
FA54810-1MSD	O54107.D	5	06/14/18	SP	n/a	n/a	VO2040
FA54810-1	O54091.D	1	06/14/18	SP	n/a	n/a	VO2040

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54891-1

CAS No.	Compound	FA54810-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4	Benzene Ethylbenzene	1.0 U 1.0 U	125 125	127 121	102 97	125 125	138 131	110 105	8 8	81-122/14 81-121/14
1634-04-4	Methyl Tert Butyl Ether	1.0 U	125	120	96	125	138	110	14	72-117/14
108-88-3 1330-20-7	Toluene Xylene (total)	1.0 U 3.0 U	125 375	123 342	98 91	125 375	133 376	106 100	8 9	80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS	MSD	FA	54810-1	Limits				
1868-53-7	Dibromofluoromethane	106%	108%	105	%	83-1189	6			
17060-07-0	1,2-Dichloroethane-D4	112%	110%	102	%	79-125 %	6			
2037-26-5	Toluene-D8	99%	99%	108	%	85-112 %	6			
460-00-4	4-Bromofluorobenzene	87 %	88 %	99 %	6	83-118 %	6			

Orlando, FL

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

FA54891

Method Blank Summary Job Number: FA54891

Account:	ATCFLM ATC Group Services LLC.						
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL						
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP70444-MB	T038501.D	1	06/12/18	RV	06/11/18	OP70444	ST1407
The QC repor	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM

FA54891-1

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.80	0.32	ug/l
208-96-8	Acenaphthylene	ND	0.80	0.32	ug/l
120-12-7	Anthracene	ND	0.80	0.20	ug/l
56-55-3	Benzo(a)anthracene	ND	0.16	0.032	ug/l
50-32-8	Benzo(a)pyrene	ND	0.16	0.032	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.16	0.032	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.16	0.032	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.16	0.032	ug/l
218-01-9	Chrysene	ND	0.16	0.032	ug/l
53-70-3	Dibenzo(a, h)anthracene	ND	0.16	0.032	ug/l
206-44-0	Fluoranthene	ND	0.80	0.20	ug/l
86-73-7	Fluorene	ND	0.80	0.20	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.16	0.032	ug/l
90-12-0	1-Methylnaphthalene	ND	0.80	0.32	ug/l
91-57-6	2-Methylnaphthalene	ND	0.80	0.32	ug/l
91-20-3	Naphthalene	ND	0.80	0.32	ug/l
85-01-8	Phenanthrene	ND	0.80	0.20	ug/l
129-00-0	Pyrene	ND	0.80	0.20	ug/l
CAS No.	Surrogate Recoveries		Limit	S	

	0		
321-60-8	Nitrobenzene-d5	62%	41-129%
	2-Fluorobiphenyl	83%	41-118%
	Terphenyl-d14	86%	45-145%

6.1.1 6

Blank Spike Summary Job Number: FA54891 Account: ATCFLM ATC Group Services LLC.

Froject:	Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample OP70444-BS	File ID T038500.D	DF 1	Analyzed 06/12/18	By RV	Prep Date 06/11/18	Prep Batch OP70444	Analytical Batch ST1407		
The QC reported here applies to the following samples: Method: SW846 8270D BY SIM									

FA54891-1

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
83-32-9	Acenaphthene	8	8.0	100	54-128
208-96-8	Acenaphthylene	8	7.6	95	55-128
120-12-7	Anthracene	4	3.5	88	57-129
56-55-3	Benzo(a)anthracene	4	3.7	93	60-134
50-32-8	Benzo(a)pyrene	4	3.6	90	58-131
205-99-2	Benzo(b)fluoranthene	4	4.0	100	62-139
191-24-2	Benzo(g,h,i)perylene	4	3.9	98	48-136
207-08-9	Benzo(k)fluoranthene	4	3.9	98	60-139
218-01-9	Chrysene	4	4.0	100	64-136
53-70-3	Dibenzo(a, h)anthracene	4	4.0	100	46-131
206-44-0	Fluoranthene	8	7.5	94	59-140
86-73-7	Fluorene	8	6.4	80	55-129
193-39-5	Indeno(1,2,3-cd)pyrene	4	4.0	100	46-139
90-12-0	1-Methylnaphthalene	8	6.3	79	52-128
91-57-6	2-Methylnaphthalene	8	6.7	84	50-117
91-20-3	Naphthalene	8	6.9	86	52-124
85-01-8	Phenanthrene	8	7.9	99	60-130
129-00-0	Pyrene	8	8.1	101	53-134
	5				
CAS No.	Surrogate Recoveries	BSP	Li	mits	
4165-60-0	Nitrobenzene-d5	72%	41	-129%	
321-60-8	2-Fluorobiphenyl	96%	41	-118%	
1718-51-0	Terphenyl-d14	91%	45	-145%	
	· · · · · · · · · · · · · · · · · · ·				

Page 1 of 1

Method: SW846 8270D BY SIM

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54891
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

OP70444-MS TO OP70444-MSD TO	le ID 138509.D 138510.D 138508.D 138508	1 1	06/13/18 06/13/18	RV RV	06/11/18 06/11/18	OP70444 OP70444	Analytical Batch ST1407 ST1407 ST1407
---------------------------------	--	--------	----------------------	----------	----------------------	--------------------	--

The QC reported here applies to the following samples:

FA54891-1

MS FA54906-7 Spike MS Spike MSD MSD Limits CAS No. Compound ug/l Q ug/l % ug/l ug/l % RPD **Rec/RPD** ug/l 83-32-9 0.80 U 16.7 82 16.7 10 54-128/23 Acenaphthene 13.7 15.1 91 208-96-8 Acenaphthylene 16.7 13.3 80 16.7 0.80 U 14.6 88 9 55-128/23 120-12-7 Anthracene 0.80 U 8.33 6.2 74 8.33 6.9 83 11 57-129/22 56-55-3 Benzo(a)anthracene 8.33 6.9 83 8.33 7.5 90 8 0.16 U 60-134/18 8.33 78 10 50-32-8 Benzo(a)pyrene 0.16 U 6.5 8.33 7.2 86 58-131/20 Benzo(b)fluoranthene 8.33 7.4 89 8.33 97 205-99-2 0.16 U 8.1 9 62-139/21 Benzo(g,h,i)perylene 8.33 7.0 8.33 92 10 48-136/23 191-24-2 0.16 U 84 7.7 207-08-9 Benzo(k)fluoranthene 0.16 U 8.33 6.7 80 8.33 7.5 90 11 60-139/19 218-01-9 Chrysene 0.16 U 8.33 7.3 88 8.33 7.9 95 8 64-136/19 53-70-3 Dibenzo(a,h)anthracene 8.33 7.1 85 8.33 7.9 95 0.16 U 11 46-131/25 206-44-0 Fluoranthene 0.80 U 83 16.7 89 16.7 13.8 14.8 7 59-140/18 86-73-7 Fluorene 65 74 14 0.80 U 16.7 10.8 16.7 12.4 55-129/23 193-39-5 Indeno(1,2,3-cd)pyrene 0.16 U 8.33 7.1 85 8.33 7.9 95 11 46-139/24 1-Methylnaphthalene 90-12-0 0.80 U 16.7 10.8 65 16.7 11.7 70 8 52-128/22 91-57-6 2-Methylnaphthalene 0.80 U 16.7 11.4 68 16.7 12.6 76 10 50-117/23 Naphthalene 70 12.9 91-20-3 0.80 U 16.7 11.7 16.7 77 10 52-124/23 85-01-8 Phenanthrene 0.80 U 16.7 14.2 85 16.7 15.7 94 10 60-130/22 16.7 16.4 129-00-0 **Pyrene** 0.80 U 14.9 89 16.7 **98** 10 53-134/18 CAS No. **Surrogate Recoveries** MS **MSD** FA54906-7 Limits 4165-60-0 Nitrobenzene-d5 58% 63% 60% 41-129% 321-60-8 2-Fluorobiphenyl 75% 83% 80% 41-118% 1718-51-0 **Terphenyl-d14** 76% 84% 82% 45-145%

GC/LC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number Account: Project:	nt: ATCFLM ATC Group Services LLC.												
Sample OP70443-MI	File ID 3 YR18547.D	DF 1	Analyz 06/13/2				Prep Batch OP70443	Analytical Batch GYR416					
The QC repo FA54891-1	orted here applies to	o the foll	owing samp	les:			Method: FLOR	IDA-PRO					
	Compound ГРН (C8-C40)		Result ND	RL 0.25	MDL 0.15	Units mg/l	Q						
CAS No.	Surrogate Recoverie	es		Limit	8								
84-15-1	o-Terphenyl		94%	41-14	6%								

Blank Spike Summary Job Number: FA54891

Job Number: FA54891 Account: ATCFLM ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL												
Sample OP70443-BS	File ID YR18548.D	DF 1		lyzed 3/18	By SJL	Prep Date 06/11/18	Prep Batch OP70443	Analytical Batch GYR416				
The QC rep FA54891-1	orted here applies to	the follo	owing sai	nples:			Method: FLOR	IDA-PRO				
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	Limits						
	ТРН (С8-С40)		0.85	0.771	91	51-121						
CAS No.	Surrogate Recoverie	s	BSP	Li	mits							
84-15-1	o-Terphenyl		101%	41	-146%							

	Matrix Spi Job Number: Account: Project:	Account: ATCFLM ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL													
	Sample File ID DF Analyzed By Prep Date Prep Batch Analyzed OP70443-MS YR18566.D 1 06/13/18 SJL 06/11/18 OP70443 GYI OP70443-MSD YR18567.D 1 06/13/18 SJL 06/11/18 OP70443 GYI FA54884-4 YR18565.D 1 06/13/18 SJL 06/11/18 OP70443 GYI														
	The QC reported here applies to the following samples: Method: FLORIDA-PRO FA54891-1														
CAS No.	Compound		FA54884-4 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD				
	TPH (C8-C40)		0.24 U	1.63	1.72	105	1.63	1.60	98	7	51-121/29				
CAS No.	Surrogate Reco	veries	MS	MSD	F	FA54884-4	Limits								

107%

41-146%

84-15-1

o-Terphenyl

120%

113%

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:					06/13/18
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1		
Arsenic	10	1.3	1.3		
Barium	200	1	1		
Beryllium	4.0	.2	. 2		
Cadmium	5.0	.2	.2		
Calcium	1000	50	50		
Chromium	10	1	1		
Cobalt	50	. 2	.2		
Copper	25	1	1		
Iron	300	17	17		
Lead	5.0	1	1.1	0.80	<5.0
Magnesium	5000	35	35		
Manganese	15	.5	1		
Molybdenum	50	.3	.3		
Nickel	40	.4	. 4		
Potassium	10000	200	200		
Selenium	10	2.4	2.9		
Silver	10	.7	.7		
Sodium	10000	500	500		
Strontium	10	.5	.5		
Thallium	10	1.1	1.4		
Tin	50	.9	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4		
Associated sa	mples MD?	3873: FA	54891-1		

Associated samples MP33873: FA54891-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

œ

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:				Methods: SW846 6010C Units: ug/l								
Prep Date:			06/13/18					06/13/18				
Metal	FA54763- Original		RPD	QC Limits	FA54763- Original		Spikelot MPFLICP2		QC Limits			
Aluminum												
Antimony												
Arsenic												
Barium												
Beryllium												
Cadmium												
Calcium	anr											
Chromium	anr											
Cobalt												
Copper												
Iron	anr											
Lead	1.5	2.5	50.0 (a)	0-20	1.5	516	500	102.9	80-120			
Magnesium												
Manganese	anr											
Molybdenum												
Nickel												
Potassium												
Selenium												
Silver												
Sodium	anr											
Strontium												
Thallium												
Tin												
Titanium												
Vanadium												
Zinc												
Associated sa	amples MP33	873: FA54	891-1									
Results < IDI (*) Outside ((N) Matrix Sp (anr) Analyte	of QC limit pike Rec. c e not reque	s outside of sted	QC limit	S		ations						

(a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:				Methods: SW846 6010C Units: ug/l					
Prep Date:					06/13/1	8			
Metal	FA5476: Origina		Spikelc MPFLICF	t 2 % Rec	MSD RPD	QC Limit			
Aluminum									
Antimony									
Arsenic									
Barium									
Beryllium									
Cadmium									
Calcium	anr								
Chromium	anr								
Cobalt									
Copper									
Iron	anr								
Lead	1.5	505	500	100.7	2.2	20			
Magnesium									
Manganese	anr								
Molybdenum									
Nickel									
Potassium									
Selenium									
Silver									
Sodium	anr								
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc									
Associated sa	amples MP:	33873: FA	54891-1						
Results < IDI (*) Outside ((N) Matrix Sp (anr) Analyte	of QC lim: pike Rec.	its outside			urposes				

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:			06/13/18	
Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Cadmium				
Calcium	anr			
Chromium	anr			
Cobalt				
Copper				
Iron	anr			
Lead	512	500	102.4	80-120
Magnesium				
Manganese	anr			
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				
Associated sam	nples MP33	873: FA54	891-1	
Results < IDL (*) Outside of (anr) Analyte	QC limit	s	for calcu	lation purposes

29 of 31

FA54891

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:		06/13/18	
Metal	FA54763-40 Original SDL 1:5	%DIF	QC Limits
Aluminum			
Antimony			
Arsenic			
Barium			
Beryllium			
Cadmium			
Calcium	anr		
Chromium	anr		
Cobalt			
Copper			
Iron	anr		
Lead	1.50 0.00	100.0(a)	0-10
Magnesium			
Manganese	anr		
Molybdenum			
Nickel			
Potassium			
Selenium			
Silver			
Sodium	anr		
Strontium			
Thallium			
Tin			
Titanium			
Vanadium			
Zinc			
Associated sa	mples MP33873: FA54	1891-1	
(*) Outside o (anr) Analyte	not requested		lation purposes low initial sample concentration (< 50 times IDL).

30 of 31

FA54891

POST DIGESTATE SPIKE SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Matrix Type:	AQUEOUS					Uni	ts: ug/l			
Prep Date:									06/13/1	.8
Metal	Sample ml	Final ml	FA54763 Raw	8-40 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	1.5	1.47	48.4	0.2	2.5	50	93.9	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3873: FA5	4891-1							

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(**) Corr. sample result = Raw * (sample volume / final volume)
(anr) Analyte not requested</pre>

8.1.5

BORING LOG											Pa	ge 1 of		
Borin	g/Well N					Permit	Number:				FDEP Facili	-		
		Ś	SB-1						59-14683	1			85036	
Site N						Boreho	le Start D		06/05/18	Borehole Start	•	025	~	
			nter dba	United	Fuel	<u> </u>	End Da		06/05/18	End		040		AM 🔲 PM
Envire	onmenta		actor: Service	s II C		Geolog	ist's Nam		. Schwendem	an	Environmental Technician's Name: Leif Rodney			
Drillir	ng Com			.5 LLO	Paveme	nt Thicl	kness (inc	•	Borehole Dian		Borehole Depth (feet):			
JA	EE Env	ronme	ental Serv				6			2				6
Drillir	ng Meth HA	od(s): VDP			it Boreho pil moistu				asured Well DTV ater recharges in		OVA (list m MiniRae 3			k type): FID
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:		Drum	Spread	🔽 Backfill	Stoc	kpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked	d):								
Boreh	ole Con	pletion	n (check o	one):		Well	🔲 Gro	out	Bentonite	Backfi	ill 🗖	Other	(descri	be)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size ba and o	e Description sed on USCS, odd ther remarks)	ors, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА		12				0.5	1		<u>te, Fill - Limeste</u> nedium to fine g	one grain, Greyish bro	own treding		D	
НА		12						to pa l e	brown		-	sw	D	
		40				-0.4	2							
HA		12				<0.1	3						D	
HA		12					4	Limest	one, Very light g	grey to white			D	
DP		12				<0.1	5						М	Lab sample
DP		8					6						м	
								6 Feet	- End of Boring					
							_							
							<u> </u>							
							<u> </u>							

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill CuttingsMoisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

BORING LOG											Pa	ge 1 of			
Borin	g/Well N	Jumber	:			Permit	Number:				FDEP Facili	ty Iden	ntificati	on Number:	
		ę	SB-2						59-14683	1		13/8	85036		
Site N	ame:					Boreho	le Start D	ate:	06/05/18	Borehole Start	Time: 1	010	~	AM 🔲 PM	
			nter dba	United	Fuel		End Da		06/05/18	End		020		AM 🔲 PM	
Envire	onmenta		actor: Service			Geolog	ist's Nam		. Schwendem	on	Environmen				
Drilliı	ng Com		Service	S LLC	Paveme	ent Thicl	cness (inc	-	Borehole Dian		Bo	Leif Rodney Borehole Depth (feet):			
		-	ental Serv	vices			6			2	6				
Drilliı	ng Meth HA	od(s): VDP			it Boreho oil moistu				asured Well DTW ater recharges in		OVA (list m MiniRae 3		nd chec	• • •	
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:	I	Drum	Spread	🔽 Backfill	Sto	ckpile		Other	
(descr	ibe if ot	her or i	multiple i	tems are	checked	d):									
Boreh	ole Con	pletion	n (check o	one):		Well	🔲 Gro	out	Bentonite	e 🔽 Backf	ill 🗍	Other	(descri	ibe)	
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	·	de grain size bas and of	e Description sed on USCS, odo ther remarks)	ors, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)	
НА		12				<0.1	1		te, Fill - Limesto nedium to fine o	one grain, Pa l e browr	n treding to		D		
НА		12						light gre		J , · . . .	, a comig co	sw	D	Lab sample	
							2								
HA		12				<0.1	3						D		
HA		12					4	Limesto	one, Very light g	grey to white			D		
DP		12				<0.1	5						м		
DP		8					6						м		
								6 Feet	- End of Boring						
							<u> </u>								
							<u> </u>								

BORING LOG											Pag	ge 1 of		
Borin	g/Well N	Jumber	:			Permit	Number:				FDEP Facili	ty Iden	tificati	on Number:
			SB-3						59-14683			13/8	85036	63
Site N	ame:					Boreho	le Start D	ate:	06/05/18	Borehole Start	Time: C	925	~	AM 🔲 PM
			nter dba	United	Fuel		End Da		06/05/18	End 7		935		AM 🔲 PM
Enviro	onmenta					Geolog	ist's Nam		O altra a da ma		Environmental Technician's Name:			
Drillin	ng Comp		o Service	IS LLC	Paveme	nt Thic	kness (inc	-	Schwendema Borehole Dian		Leif Rodney Borehole Depth (feet):			
		-	ental Serv	vices	i uvenie		6	nes).		2	6			
Drilliı	ng Meth			Apparen	t Boreho	le DTW ((in feet	Mea	asured Well DTW	/ (in feet after	OVA (list m			• • •
	HA	VDP		from so	oil moistu	re conter			ater recharges in	well):	MiniRae 3	3000	13	FID 🔽
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:	I	Drum	Spread	🔽 Backfill	Sto	ckpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked	d):								
Boreh	ole Con	pletior	n (check o	one):		Well	🔲 Gro	out	Bentonite	e 🔽 Backf	ill 🗍	Other	(descri	ibe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	×	de grain size bas and ot	e Description sed on USCS, odo her remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА		12				0.5	1	Concre	te, Fill - Limesto	one mix with P-ro	ck		D	
НА		12											D	Lab sample
							2	Fill - Lir	nestone					
HA		12				<0.1	3						D	
HA		12					4						D	
НА		12				<0.1	5	Sand, r	nedium to fine g	grain, grey to ligh	t grey	sw	м	
DP		8					6						м	
								6 Feet ·	- End of Boring					
							<u> </u>							
							<u> </u>							
							<u> </u>							
							┝							
									- End of Boring					

							BC	DRI	NG LOC	r J		Pag	ge 1 of		
Borin	g/Well N	Jumber	:			Permit	Number:			FDEP Facili	ity Iden	tificati	on Number:		
			SB-4						59-14683			13/8	85036	63	
Site N	ame:					Boreho	le Start D	ate:	06/05/18	Borehole Start	Time: C	945	~	AM 🔲 PM	
			nter dba	United	Fuel		End Da		06/05/18	End 7		955		AM 🔲 PM	
Envir	onmenta					Geolog	ist's Nam		O alexandra a		Environmen				
Drilli	ng Comp		o Service	IS LLC	Paveme	nt Thie	kness (inc	-	Schwendema Borehole Dian	Bo		Rodn	-		
		-	ental Ser	vices	1 avenie		6	nes).		2		Borehole Depth (feet): 6			
Drilliı	ng Meth	od(s):		Apparen	t Boreho	le DTW (in feet	Me	asured Well DTW	/ (in feet after	OVA (list model and check type):				
	HA	/DP		from so	oil moistu	re conter			ater recharges in	well):	MiniRae	3000		FID 🔽	
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:	I	Drum	Spread	🔽 Backfill	Sto	ckpile		Other	
(descr	ibe if ot	her or i	multiple i	tems are	e checked	d):									
Boreh	ole Con	pletion	n (check c	one):		Well	🔲 Gro	out	Bentonite	e 🔽 Backf	ill 🗍	Other	(descri	ibe)	
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	·	de grain size bas and of	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)	
НА		12				<0.1	1		te, Fill - Limesto nedium to fine o	one grain, pa i e brown		-	D		
на		12					2					sw	D		
		10				-0.1		Sand, r	nedium to fine g	grain, grey		sw			
HA		12				<0 <u>.</u> 1	3					300			
HA		12					4						D		
НА		12				0.1	5	Sand, r	nedium to fine g	grain, light reddis	h brown	sw	м		
DP		8					6						м		
								6 Feet	- End of Boring			1			
							<u> </u>								
							<u> </u>								
									- End of Boring						

							BC	DRI	NG LOC	r J		Pag	ge 1 of	
Borin	g/Well N	Jumber	:			Permit	Number:		FDEP Facili	ty Iden	tificati	on Number:		
		9	SB-5						59-14683			13/8	85036	
Site N						Boreho	le Start D		06/05/18	Borehole Start	-	100	~	
			nter dba	United	Fuel	<u> </u>	End D		06/05/18	End 7		110		AM 🔲 PM
Envire	onmenta		actor: Service			Geolog	ist's Nam		. Schwendem	an	Environmen		hnician f Rodn	
Drilliı	ng Com			3 LLO	Paveme	nt Thicl	kness (inc	-	Borehole Dian		Bo		Depth (-
			ental Serv	vices			2			2				3
Drilliı	ng Meth HA	od(s): VDP			it Boreho oil moistu				asured Well DTW ater recharges in		OVA (list m MiniRae 3		nd chec	• 1 /
Dispo	sition of	Drill (Cuttings [check m	ethod(s)]:	I	Drum	Spread	🔽 Backfill	Sto	ckpile		Other
(descr	ibe if ot	her or i	multiple i	tems are	checked	d):								
Boreh	ole Con	pletior	n (check o	one):		Well	🔲 Gr	out	Bentonite	e 🔽 Backf	ĭll 🗍	Other	(descri	ibe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and of	e Description sed on USCS, odo ther remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
НА		12				<0.1	1		t/Concrete, Fill - rith Limestone fi				D	
НА		12							medium to fine g	grain, brown tren	d to light	sw	D	
НА		12				0.3	2	brown					D	
						0.3	3							
HA		12				.0.4	4	Limest	one, Pale brown	I				
DP		8				<0.1	5						M	
DP		8					6						м	
								6 Feet	- End of sample	collection				
							<u> </u>							

WELL CONSTRUCTION AND DEVELOPMENT LOG

	М	ELL CONSTR	UCTION	DATA				
Well Number:	Site Name:			FDEP Facility I.D. Numb	ber:	Well Instal	Date(s):	
MW-9	Jak Service	e Center dba United I	Fuel	13/8503663		06/	05/2018	
Well Location and Type (check	appropriate boxes):	Well Purpose: 🛛 🕅 P	Perched Monit	oring	Well	Install Met	hod:	
	Right-of-Way	🔽 S	hallow(Water	-Table) Monitoring		Direct	Push	
Off-Site Private Property				r Deep Monitoring				
Above Grade (AG)	Flush-to-Grade		Remediation or	r Other (describe)	Surfa	Surface Casing Install Met		
If AG, list feet of riser above land s						N	A	
Borehole Depth Well D	Pepth Borehole I	Diameter Manhole Dia	ameter					
(feet): 13 (feet):	13.00 (inches):	3.25 (inches):	8	feet	by .	2 feet	:	
Riser Diameter and Material:		Flush-Threaded		Riser Length: 3	feet			
1.5 - SCH 40 PVC	Connections:	Other (describe)		from 0	fee	t to 3	feet	
Screen Diameter and Material:		Screen Slot Size:		Screen Length: 10	feet			
1.5 - SCH 40	PVC	0.010-inc	h	from 10	fee	t to 13	feet	
1 st Surface Casing Material:		1 st Surface Casing I.D). (inches):	1 st Surface Casing Length:feet				
also check: 🔲 Permanent	Temporary	•		from	fee	t to	feet	
2 nd Surface Casing Material:		2 nd Surface Casing I.D	D. (inches):	2 nd Surface Casing Lengt				
also check: 🔲 Permanent	Temporary			from	fee	t to	feet	
3 rd Surface Casing Material:		3 rd Surface Casing I.D	D. (inches):	3 rd Surface Casing Lengtl				
also check: 🔲 Permanent	Temporary			from	fee	t to	feet	
Filter Pack Material and Size:	Prepacked Filter Aro	und Screen (check one):	Filter Pack Length:		11 feet	•	
20/30 silica sand	Ves Yes	No		from 2	fee	t to 13	feet	
Filter Pack Seal Material and		Sand 30/65		Filter Pack Seal Length:		1 feet		
Size:		Sanu 30/05		from <u>1</u>	fee	t to 2	feet	
Surface Seal Material:	Port	and Cement Grout		Surface Seal Length:		5 feet		
	FOIL			from 0.5	fee	t to 1	feet	

		WELL DEVELO	PMENT DATA	
Well Development Date:	Well	Development Method (chec	k one): Surge/	Pum 🔽 Pump 🦳 Compressed Air
06/06/18		Other (describe)		
	Centri	fugal 🔽 Peristaltic	Depth to Groundwater (t	before developing in feet):
Submersible Other (describe)				6.15
Pumping Rate (gallons per minute):		Maximum Drawdown of G	Froundwater During	Well Purged Dry (check one):
~0.50		Development (feet):	~0.9	🔽 Yes 🔽 No
Pumping Condition (check one): To	tal Dev	elopment Water	Development Duration	Development Water Drummed
🔽 Continuous 🧮 Intermittent Re	moved	(gallons): ~14	(minutes): 27	(check one): Tyes Ves No
Water Appearance (color and odor) At S	tart of I	Development:	Water Appearance (color	r and odor) At End of Development:
light browninish v	vhite -	none		none - none

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Southwest Northwest St. Johns R South Florid Sumannee F	a	S
1.*Permit Number 13-59-14683 *(CUP/WUP Number*DID Numb	er 62.524 Delinection No.
2.*Number of permitted wells constructed	repaired, or abandoned ¹ *Number of permit	ted wells not constructed, repaired, or abandoned 0
3.*Owner's Name Jorges Ugan & W		
6900 SW 8 St, Miami 331	ii completion but	6/13/18 5. Florida Unique ID
*Well Location - Address, Road Name of		
Dada	*Section Land Grant	*Township*Range
		Kange
	Longitude MapSurvey Datum: _	
0 *Type of Work: Construction		NAD 27NAD 83WGS 84
Remediation:RecoveryAir Sp	Recreation Area IrrigationLive: Recreation Area IrrigationNurs	cultural Irrigation stock Sery Irrigation Imercial/Industrial Course Irrigation HVAC Supply HVAC Return M Recovery Drainage
Other (Describe)	able ToolRotaryCombination (Two	territoria de la companya de la comp
o. measured static water Level	ft. Measured Pumping Water Level	Other
Measuring Point (Describe) S.*Casing Material:Black Steel S.*Total Well Depth <u>13</u> _ft. Cased De T.*Abandonment:Other (Expl. Fromft. Toft. No. of E	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ain)	ft. After Hours at GPM Below Land Surface * Flowing: Yes N Not Cased Other *Screen: From 5 To 15 ft. Slot Size .010 at Cement Bentonite Other at Cement Bentonite Other at Cement Bentonite Other at Cement Bentonite Other at Cement Bentonite Other
4. Measuring Point (Describe)	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ain)	ft. AfterHours atGPM Below Land Surface * Flowing:YesN Not CasedOther Not CasedNot Cased
A. Measuring Point (Describe)	Which is ft. Above Galvanized PVC Stainless Steel ppth 3 ft. *Open Hole: From 0 To 0 ft. ain)	ft. After
A. Weasuring Point (Describe) S. *Casing Material:Black Steel S. *Total Well Depth _13ft. Cased De T. *Abandonment:Other (Expl. Fromft. Toft. No. of E S. *Surface Casing Diameter and Depth: Diain. Fromft. To 9. *Primary Casing Diameter and Depth: Diain. Fromft. To	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Materi	ft. After Hours at GPM Below Land Surface * Flowing: Yes N Not Cased Other 'Screen: From 5 To 15 ft. Slot Size .010 To Cased Other Bentonite Other Bentonite Other Cement Bentonite Other Bentonite Other Cement Bentonite Other Bentonite Other Coher Bentonite Other Bentoni
A. Measuring Point (Describe) 5.*Casing Material: Black Steel 5.*Total Well Depth 13 _ft. Cased Description 5.*Total Well Depth 13 _ft. Cased Description 6.*Total Well Depth 13 _ft. Cased Description 7.*Abandonment: Other (Expl. From ft. To ft. From ft. To ft. No. of E S.*Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To 3 Dia Starter and Depth: Dia in. From ft. To 3 Dia Dia Dia Dia Dia Dia Dia Dia Dia Dia	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ags Seal Material (Check One): Seal ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One)	ft. After Hours at GPM Below Land Surface * Flowing: Yes N Not Cased Other 'Screen: From 5 To 15 ft. Slot Size 010 To Cased Other Bentonite Other Bentonite Other Bentonite Other Bentonite Other Bentonite Other Neat Cement Bentonite Other Neat Cement Bentonite Other Bent
Measuring Point (Describe) S.*Casing Material:Black SteelB.*Total Well Depth _13 _ft. Cased Development	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One) <t< td=""><td>ft. After Hours at GPM Below Land Surface * Flowing: Yes N Not Cased Other 'Screen: From 5 To 15 ft. Slot Size 010 To Cased Other Bentonite Ot</td></t<>	ft. After Hours at GPM Below Land Surface * Flowing: Yes N Not Cased Other 'Screen: From 5 To 15 ft. Slot Size 010 To Cased Other Bentonite Ot
Aveasuring Point (Describe) Casing Material:Black SteelBlack Steel	Which is ft. Above Galvanized PVC Stainless Steel ppth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One	ft. After Hours at GPM Below Land Surface *Flowing: Yes 1 Not Cased Other 'Screen: From 5 To 15 ft. Slot Size_010 at Cement Bentonite Other at Cement Bentonite Other at Cement Bentonite Other at Cement Bentonite Other ben
Measuring Point (Describe) S.*Casing Material:Black Steel S.*Total Well Depth _13 _ft. Cased Development	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One)	ft. After Hours at GPM Below Land Surface *Flowing: Yes M Not Cased Other 'Screen: From 5 To 15 ft. Slot Size 010 To 15 ft. Sl
Measuring Point (Describe) "Casing Material:Black Steel	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One) <t< td=""><td>ft. AfterHours atGPM</td></t<>	ft. AfterHours atGPM
Measuring Point (Describe) "Casing Material:Black Steel	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One) <t< td=""><td>ft. After Hours at GPM Below Land Surface *Flowing: Yes Nest Cement Bentonite Other Cement</td></t<>	ft. After Hours at GPM Below Land Surface *Flowing: Yes Nest Cement Bentonite Other Cement
A weasuring Point (Describe) S.*Casing Material:Black Steel S.*Total Well Depth _13 _ft. Cased Development S.*Total Well Depth _13 _ft. Cased Development S.*Total Well Depth _13 _ft. Cased Development Fromft. Toft. No. of E B.*Surface Casing Diameter and Depth: Diain. Fromft. Toft. To	Which isftAbove	ft. AfterHours atGPM
A. Weasuming Point (Describe) S. *Casing Material:Black Steel S. *Total Well Depth _13 _ft. Cased De Fromft. Toft. No. of E S. *Surface Casing Diameter and Depth:: Diain. Fromft. To B. *Primary Casing Diameter and Depth:: Diain. Fromft. To	Which is ft. Above	ft. AfterHours atGPM
Measuring Point (Describe) S.*Casing Material:Black Steel S.*Total Well Depth _13 _ft. Cased Def S.*Total Well Depth _13 _ft. Cased Def S.*Total Well Depth _13 _ft. Cased Def S.*Casing Material:Other (Expl. Fromft. Toft. No. of E S.*Surface Casing Diameter and Depth: Diain. Fromft. To	Which is ft. Above Galvanized PVC Stainless Steel pth 3 ft. *Open Hole: From 0 To 0 ft. ags Seal Material (Check One): Nea ft. No. of Bags Seal Material (Check One) ft. No. of Bags Seal Material (Check One) <t< td=""><td>ft. AfterHours atGPM</td></t<>	ft. AfterHours atGPM
A. Water Well Contractor	Which isftAbove	ft. AfterHours atGPM
A. Weasuming Point (Describe) S. *Casing Material:Black Steel S. *Total Well Depth _13 _ft. Cased De Fromft. Toft. No. of E S. *Surface Casing Diameter and Depth:: Diain. Fromft. To B. *Primary Casing Diameter and Depth:: Diain. Fromft. To	Which isftAbove	ft. AfterHours atGPM

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT 2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476 WWW.SWFWMD.STATE.FL.US

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429 PHONE: (386) 329-4500 WWW.SJRWMD.COM

NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT 152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712 (U.S. Highway 90, 10 miles west of Tallahassee) PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US SOUTH FLORIDA WATER MANAGEMENT DISTRICT P.O. BOX 24680 3301 GUN CLUB ROAD WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800 WWW.SFWMD.GOV

SUWANNEE RIVER WATER MANAGEMENT DISTRICT 9225 CR 49 LIVE OAK, FL 32060 PHONE: (386) 362-1001 or (800) 226-1066 (Florida only) WWW.MYSUWANNEERIVER.COM

Tom Uft.To15ft.ColorGrain Size (F, M, C)Material sandTromft.Toft.ColorGrain Size (F, M, C)MaterialTromft.Toft.ColorGrain Size (F, M, C)MaterialTromft. <td< th=""><th>Size: F=Fine,</th><th>epth to producing zone. Grain S</th><th>ges. Note cavities and de</th><th>a long zo it, or at lotting</th><th>and odd</th><th>Coarse)</th><th>n, and C=</th><th>M=Medium</th></td<>	Size: F=Fine,	epth to producing zone. Grain S	ges. Note cavities and de	a long zo it, or at lotting	and odd	Coarse)	n, and C=	M=Medium
Trom_tt. To_tt. Color_Grain Size (F. M. C)_Material Trom_tt. To_tt. Color_Grain Size			The second se			To 15	ft.	From 0
From ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft To ft Color Grain Size (F, M, C) Material from ft Color Grain Size (F, M, C) Material Material from ft ft Color Grain Size (F, M, C)			ain Size (F, M, C)	Color	ft.			
Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th To Th Color Grain Size (F, M, C) Material Tom th Color Grain Size (F, M, C) Material Material Tom th Color Grain Size (F, M, C) Material Materi		the second se	ain Size (F, M, C)	Color	ft.	To		Record and a second sec
Tom				Color	ft.			
Tom ft. 100 ft. Color Grain Size (F, M, C) Material from ft. 10 ft. Color Grain Size (F, M, C) Material from ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. ft. Color Grain Size (F, M, C) Material from ft. ft. ft. ft. ft. Material Imaterial from ft. ft. ft. ft. ft. ft. ft. ft. ft. from ft. ft. ft. ft. ft. ft. <t< td=""><td></td><td></td><td>ain Size (F. M. C)</td><td>Color</td><td>ft.</td><td></td><td></td><td></td></t<>			ain Size (F. M. C)	Color	ft.			
Tom		the second		Color	ft.			
Tom ft. 10 ft. Color from ft. 10 ft. Color frain Size (f. M. C) Material from ft. 10 ft. Color frain Size (ft. 0. C) Material from ft. 10 ft. Color frain Size (ft. 0. C) Material from ft. 10 ft. Color frain Size (ft. 0. C) Material ft. 10 ft. Color ft. 10 ft. Color frain Size (ft. 0. C) Material ft. 10 ft. Color ft. 10 ft. Color			ain Size (F. M. C)	Color	ft.			
Tom ft. To ft. Color Grain Size (F, M, C) Material Grain Size (F,			in Size (F. M. C)	Color	ft.		and the second se	
Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color			in Size (F M C)	Color	ft.			
Tom ft. to ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. ft. ft. Color			in Size (F M C)	Color	ft.	And a second sec		
Tom ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Trom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material Tom ft. To ft. Color Grain Size (F, M, C) Material rom ft. To ft. Color Grain Size (F, M, C) <td></td> <td></td> <td>in Size (F M C)</td> <td>Color</td> <td>ft.</td> <td></td> <td></td> <td></td>			in Size (F M C)	Color	ft.			
Tomini, ft., To, ft., Color, Grain Size (F, M, C), Material, Golor, Grain Size (F, M, C), Materi			in Size (F_M_C)	Color	ft.			
Ann It. 10 It. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material from ft. To ft. Color Grain Size (F, M, C) Material rom ft. To ft. Color Grain Size (F, M, C) Material rom ft. To ft. Color Grain Size (F, M, C) Material orm ft. To ft. Color </td <td></td> <td></td> <td>in Size (F M C)</td> <td>Color</td> <td>ft.</td> <td></td> <td></td> <td></td>			in Size (F M C)	Color	ft.			
Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. To ft. Color Grain Size (F. M. C) Material Tom ft. Color ft. Gorain Size			in Size (F_M_C)	Color				the second
A.M. It. It. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material rom ft. TO ft. Color Grain Size (F, M, C) Material ord ft. TO ft. Color Grain Size			in Size (F. M. C)					
Utiling It. IO It. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. TO ft. Color Grain Size (F, M, C) Material irom ft. To ft. Color Grain Size (F, M, C) Material irom ft. To ft. Color Grain Size (F, M, C) Material irom ft. To ft.			in Size (F. M. C)					
m. n. 10 n. Color			in Size (F. M. C)	and the second se				
Adm. IL. 10 IL. Golor			in Size (F. M. C)					
Cont								and the second se
Tom								
NUIIII. IOTL. ColorGrain Size (F. M. C)Material romIL. ToIL. ColorGrain Size (F. M. C)Material ormments:			in Size (F, M, C)			and the second s		
NomI. II. TOTI. COOLOFGrain Size (F, M, C)Material Material romIt. TOTI. ColorGrain Size (F, M, C)Material Material romIt. TOTI. ColorGrain Size (F, M, C)Material Material ornments:			n Size (F. M. C)					and the second s
Nomtt. 10 .tt. ColorGrain Size (F, M, C)MaterialMaterialMaterialMaterialMaterialMaterialMaterialMaterial irromft. Toft. ColorGrain Size (F, M, C)MaterialMaterial ornments:		-	n Size (F. M. C)					
Nomft. 10ft. ColorGrain Size (F, M, C)MaterialMaterialMaterialMaterial Somminents:			n Size (F. M. C)					
comments:		-	n Size (F, M, C)			April 100 million and 100 mill		
Omments:			n Size (F. M. C)	Color	ft.	10	п.	1011
BILLBOARD VENT STACKS BILLBOARD VENT STACKS UNIT STAC			MW-9 SB-5					
BOLLARDS (TYP OF 4) PROPANE AST VENT STACKS BILLEDARD UNIT UT STACKS D 0 0 D 0 0			KIT		1			
BULBOARD BULBOA		STORE SIGN	DISPEN ER (T	FORMER DISPENSE	E			
PROPANE AST VEN STACKS VEN STACKS UNV14 UNV14 VEN STACKS VEN STACK					BOLLARDS	丰		
VENTSTACKS	N			MW-4 MW	3	==		
VENTSTACKS VENTSTACKS BULBOARD BULBOARD UTLIVYPOLE (P 0.0) (P		CONCRETE	SB-4	AST	PROPANE	=		
VEN STACKS		UTILITY POLE	MW-74%	Roo		==		
BILBOARD			and a constant of the	1.		=		
BILLEOARD BILLEOARD BILLEOARD BILLEOARD BILLEOARD BILLEOARD MW-1 MW-24 SB-1		1		TACKS	VENTS	=		
BILIBOARD BILIBOARD			Second Carlot State and	Y	1	=		
BILLBOARD BILLBOARD		1. 1	and a second	D · ·	5	=		
AWX-1 SB-1 JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. IDP 13-80363 (DBA UNITED FUEL) FDEP FAC. IDP 13-80363 (DBA UNITED FUEL) FDEP FAC. IDP 13-80363 (DBA UNITED FUEL) (DBA UNITED FUEL) (DB			AWV-6		LEOARD	BB		
GORA UNITED FUEL) FDEP FAC. IDE 13-650363			FORMER DISPENSED ISLAND	ST	X			
JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. IDE 13-600563		1		~	1	==		
OCTOPY AND A CONTRACT OF A CON			38-2	SB-1	1	==		
ISI					Ĩ	=		
ISI		i ui	TATES		1	=		
ISI		N N	MW-54	L-1		=		
ISI		EL 56			1	TOT		
ISI		ENSER 1 9	D FUEL) DISF		J	TOF		
ISI		S.V	3-0503063		1	191		
			MW-B	i kun		ITAL		
		1			-	===		
CANDEY-1				CANOPY	- Law	丰		
				L_		+		
		96			-			
P Form 62-532.900(2) Incorporated in 62-532.410, F.A.C. Effective Date: October 7, 2010	Page 2		. 2010	32.410, F.A.C. Effective Date	ed in 62-5	Incorporate	32.900(2)	P Form 62-5

SITE NAME: N	lak Servic	e Cente	r alba	United Fi	ré l si		900 SI	N 8th S.	t, mi	xmis FL	
WELL NO:					ID: MW	1			DATE: OZ	-/21/201	8
L					PURG	ING DA	ТА				
WELL		TUBIN	3		L SCREEN I		STATIC D		Th PL	RGE PUMP T	YPE PP
DIAMETER WELL VO	R (inches): 2.	1 WELL VO	TER (inches): LUME = (TO	TAL WELL DEP		et to 19.1 fe		WELL CAPACI		BAILER:	r (*
	t if applicable)		= (^ \		,70	feet) X		gallons/fo	ot = 1.	98 gallons
		URGE: 1 EQI		L. = PUMP VOL			ry x tu	JBING LENGTH)			
(only fill ou	t if applicable)			= ga	allons + (gallo	ns/foot X	feet)	+	gallons	= gallons
	JMP OR TUBIN WELL (feet):	G 8.0	1	MP OR TUBING WELL (feet):	8.0	PURGIN	G DAT: 11:25	PURGING ENDED AT:	12:05	TOTAL VOI	-UME gallons): 5,86
		CUMUL.	1	DEPTH	pН		COND.	DISSOLVED OXYGEN			
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	(standard	TEMP. (°C)	(circle units) µmhos/cm	(circle units)	TURBIDI (NTUs		1
	(gallons)	(gallons)	(gpm)	(feet)	units)	. ,	<u>or</u> μS/cm	mg/L <u>or</u> % saturation			
11:30	0.75	0.75	0.15	6.75	6.30	26,61	529	0.47	6.7		r si pet
11:34		1.25	0.15		6.45	26.83	528	0.66	4,6		
11:40	0,90	2.15	0.15	6.75	6.50	26.92	522	0,44	2.6		r sl pet-
11:45	0.75	3.00	0.15	6.75	6.50	26.84	519	0.41	2.3		
11:50	0.75	3,75	0,15	10.75	10147	26,96	517	0.36	1.7		
12:04	0.75	4,50	0.15	6.75	6.47	26.94	516	0.30	1.3		
12.07	0.75	5,85	0115	0:10	6.50	26.15		0.50	1.1.0		ur si pet
	PACITY (Gallon			1" = 0.04; 0006: 3/16"	1.25" = 0.06	5; 2" = 0.16 1/4" = 0.0020	6; 3" = 0.37; 6; 5/16" = 0.0		5" = 1.02; 006: 1/2	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C		= Bailer;	BP = Bladder F			Submersible Pur		ristaltic Pur		ther (Specify)
						LING DA	ATA				
	BY (PRINT) / A		-	SAMPLER(S)	0 m 1	E(S):		SAMPLING INITIATED AT	12:0		IG AT: 12:15
PUMPOR	Rodne TUBING	SY IN	10	TUBING	7		FIELD	FILTERED: Y	(P)		IZE: μm
	WELL (feet):			MATERIAL CO		PE /S	Filtratio	on Equipment Typ		<u></u>	
	CONTAMINATIO			<u>ن</u>	TUBING		placed)	DUPLICATE:	Y	Ø	
SAMI SAMPLE	PLE CONTAINE	R SPECIFIC		SAMPLE PRESERVAT		TION (includii	ng wet ice) FINAL	INTENDE ANALYSIS AI	ND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	# CONTAINERS	CODE	VOLUME	USED		D IN FIELD (n	nL) pH	METHO		CODE	(mL per minute)
MWI		Au	1 L	H2504		~~~	< z	FL-Pro TI		APP	200
MW	2	AG	250mL	None			6.50	8270C		APP	200
MWI	3	CG	100 mL	HCL			42	8260B		APP	100
REMARKS	:							, , , , , , , , , , , , , , , , , , ,	I		
MATERIAL	CODES:	AG = Amber S = Silicone;		= Clear Glass; O = Other (S		ligh Densitý P	olyethylene;	LDPE = Low De	nsity Polyet	hylene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES:	APP = After (7	Through) Perista se Flow Peristal	Itic Pump;	B = Bailer; SM = Straw	BP = Bladd Method (Tubing			: Submersible I er (Specify)	Pump;
OTTO A		1	(teres - 11 - C	the a lost a way at		d hu Chants		<u>^</u>			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

<u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: V	ak Servic	e Cente	r albei	United Fu	el sit		900 S	SW 8th 8	it, mi	iami, FL	
WELL NO:					D: MW					2/21/2019	8
					PURG	ING DA	TA				
WELL DIAMETER	(inches): Z		TER (inches):	0.25 DEPT	SCREEN I	et to 18,1 fe	et TO WAT	TER (feet): 🕼	71 0	URGE PUMP TY OR BAILER:	PP
(only fill out	t if applicable)		= (18.1	ieet- (11.5	feet))	x WELL CAPAC	gallons/		2 gallons
	NT VOLUME PU t if applicable)	JRGE: 1 EQL	JIPMENT VOL	= PUMP VOLU	IME + (TUB ions + (TY X ns/foot X	TUBING LENGTH		CELL VOLUME	= gallons
	MP OR TUBIN	G g .0		/P OR TUBING WELL (feet):	8 .0	PURGIN		PURGING	14 5		UME ,
DEPTHIN	WELL (feet):			DEPTH	<u>u</u> .u		COND.	DISSOLVED	1		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH (standard units)	TEMP. (^o C)	(circle units) μmhos/cm or μS/cm	OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBII (NTU		
14:35	1.0	1.0	02	6.77	7.20	26.86	471	0.85	13.3		1 none
14:40	1.0	2.0	0.6	0m	6.87	26.85	410	0.30	5.4		
14:50	2.0	4.0	0.2	6.77	6.77	27.10	471	0.26	1.8		
14:55	1.0	5.0	0,2	6.77	6.75	26.92	470	0.25	1.13		
15:00	1.0	6.0	0.2	6:77	6.73	26.90	470	0.24	1.00	r clea	r none
	· · · · ·										
				-			- 0000				
			_								
WELL CAI	PACITY (Gallon	s Per Foot):	0.75" = 0.02;		1.25" = 0.00	5; 2 " = 0.1 1/4 " = 0.002			5" = 1.02;		12" = 5.88 5/8" = 0.016
	ISIDE DÍA. CA			BP = Bladder Pt	= 0.0014; ump; E		Submersible F		Peristaltic P		ther (Specify)
10/(0//0						LING DA				£K.	04
1	BY (PRINT) / A			SAMPLER(S)				SAMPLING		SAMPLIN	
L	Rodne	us /A	TC		R	ort	EIEI	D-FILTERED:			IZE:μm
PUMP OR DEPTH IN	WELL (feet):			MATERIAL CO	DE: HD	PE /S		ation Equipment T			
FIELD DE	CONTAMINATI	ON: PUN	NP Y 🛈		TUBING		eplaced)	DUPLICATE	: Y	Ŕ	
SAM	PLE CONTAINI		ATION			TION (includ		INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN USED		TOTAL VOL D IN FIELD (mL) FINAL	- METH		CODE	(mL per minute)
MW Z	1	AG	1 L	H2504		<u> </u>	Lz.	FL - Pro	TRPH	APP	200
MW Z	2.	AĜ	250mL	None			6.73			APP	200
MW 2	3	CQ	IDOML	HCL			<2	8260 E	5	APP	100
	•							<u> </u>			
REMARKS).										
MATERIA	L CODES:	AG = Amber S = Silicone;	•	= Clear Glass; O = Other (S)		-ligh Density I	Polyethylene;	LDPE = Low D	ensity Poly	vethylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT	CODES:	APP = After (T RFPP = Rever	hrough) Peristal se Flow Peristalt	tic Pump; lic Pump;	B = Bailer SM = Straw		dder Pump; E ng Gravity Drain);		tric Submersible ther (Specify)	Pump;
				the information		d by Chan	or 62-160 E	AC			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.
 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: N	ak Servic	e Center	r alba	United Fu	el sit	E	900 SL	N 8th S.	t, mi	amis FL	
WELL NO:					D: MW	3			DATE: OZ	2/21/201	8
L					PURG	ING DA	ГА	······			
WELL	(inches): Z) FED (inchoo):		SCREEN I		et TO WATE			JRGE PUMP T` R BAILER:	PP
WELL VOL	UME PURGE:	1 WELL VOI	UME = (TOT	AL WELL DEPT	H – STAT	TIC DEPTH T	O WATER) X	WELL CAPACI			
	if applicable)		= (12 1	_{eet-} 6	.69	feet) X	0.16	gallons/fe	pot = 0.	6S gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOLU	IME + (TUBI			JBING LENGTH)			<u>э</u>
					lons + (ns/foot X	feet) PURGING	+	gallons TOTAL VOL	
DEPTH IN	MP OR TUBIN WELL (feet):	8100		IP OR TUBING WELL (feet):	8.0	INITIATE	DAT: 13:50	ENDED AT:	14:11		
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standard units)	TEMP. (^o C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBID (NTUs		
	(gallons)	(gallons)	(gpm)	(feet)			<u>or</u> μS/cm	% saturation			
13:55	1.00	1.00	0.20	6.70		> 6,92	366	0.21	2.16		
14:05	1,00	2.00	0.20			26.47	400	<u>0.30</u> 0.27	1.12		
14:10	1,00	3.00	0.20	6.70	6.69	26.49	-101	01011	1,61	hon	e si per
WELL CAI	PACITY (Gallon ISIDE DIA. CAF	s Per Foot): (PACITY (Gal./	0.75" = 0.02; Ft.); 1/8" = 0.		1.25" = 0.06 = 0.0014;	; 2" = 0.10 1/4" = 0.002			5" = 1.02; .006; 1/	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder Pu	ump; E	SP = Electric	Submersible Pur	mp; PP = Pe	eristaltic Pu	mp; O = O	ther (Specify)
		CCILIATION:	T	SAMPLER(S)				T			
	BY (PRINT) / A Rodne		TC	SAWFLER(S)	- K			SAMPLING	r: 14:1	SAMPLIN ENDED #	
PUMP OR	TUBING	8 ,		TUBING	DE HD	PE /S		-FILTERED: Y	Ø	FILTER S	IZE:μm
	WELL (feet):	ON: PUN	IPYA	MATERIAL CO	TUBING		placed)	DUPLICATE:	γe. Υ	Ø	
	PLE CONTAINE		Y			TION (includi		INTEND		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN		OTAL VOL D IN FIELD (1	FINAL nL) pH	ANALYSIS A METHC		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW B		AG	12	HzSO4		-	<u>رع</u>	FL-Pro	TRPH	APP	200
MW 3	2	AG	250 mL	None			6.69	8270 C		APP	200
MW 3	3	CG	loomL	HCL			42	8260 B		APP	100
REMARKS	:						1		L		L
MATERIA	CODES:	AG = Amber S = Silicone;	Glass; CG = T = Teflon;	= Clear Glass; 0 = Other (Sj		ligh Density F	Polyethylene;	LDPE = Low De	nsity Polye	thylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT	F	RFPP = Revers	hrough) Peristal se Flow Peristalt	ic Pump;		BP = Blado Method (Tubing	Gravity Drain);		ic Submersible er (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

SITE NAME: N	lak Servic	e Center	- alba	United File	と) SIT LO	E CATION:	900 S	w sth S.	t, mia	amis FL	
WELL NO:				SAMPLE I		4			DATE: OZ	-121/201	8
			•		PURG	ING DA	ГА				J
WELL DIAMETER	R (inches): 2,	O DIAMET	ER (inches):	0.25 DEPT	SCREEN II H:9.3 fee	et to 19.3 fe	STATIC I	ER (feet): 6 . 8	2 OF	rge pump t Bailer:	PP PP
	UME PURGE: t if applicable)	1 WELL VOL	UME = (TOT		H – STAT eet– 6 .			WELL CAPACI		$pot = Z_{1}c$	a collopa
		URGE: 1 EQU	= (IPMENT VOL	. = PUMP VOLU	ME + (TUB	NG CAPACIT	feet) X Y X T	UBING LENGTH)			C gallons
(Only III Ou	t if applicable)				ons + (gallo	ns/foot X	feet)	+	gallons	= gallons
	JMP OR TUBIN WELL (feet):	G 8,00		IP OR TUBING WELL (feet):	8:00	PURGIN	з DAT: 12:55		13:26	TOTAL VO PURGED (
TIME	VOLUME PURGED (galions)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBIDI (NTUs)		
13:00	1.07	1.00	6.20	6.85	6.99	27.06	396	1,29	6:2	8 Clea	i none
13:05	1.00	2.00	0.20	10.85	6.85	26.89	400	0.69	3,22		
13:15	2.00	4.00	0.20		6.66	26.81	409	DISD	1.20		
13:25	2.00	6.00	0.20	6.85	6,47	26.46	409	0:43	1,21	o clear	r none
	· · · · · ·										
·											
										(19) (19)	
	ACITY (Gallon					; 2" = 0.16 1/4" = 0.002		•	5" = 1.02; 006: 1/2	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder Pu	/		Submersible Pu		ristaltic Pur		ther (Specify)
						LING DA	TA				
	BY (PRINT) / A Rodne		Te	SAMPLER(S) S		(S):		SAMPLING	13:26	SAMPLIN ENDED A	IG AT: 13:36
PUMP OR	TUBING			TUBING MATERIAL COI		PE /S		-FILTERED: Y	(N)		IZE:μm
	WELL (feet):	ON: PUMI	- Y (N		TUBING	· / /	placed)	on Equipment Typ DUPLICATE:	Y	(M)	
·····	PLE CONTAINE		Ť			TION (includii		INTEND	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE		MATERIAL CODE		PRESERVATIV	E T		FINAL	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW4	l	AG	IL	H2SO4		*-00 ¹	<u>{z</u>	FL Pro TI	2PH	APP	200
MW 4	2	Aa	250 mL	None			6.47	8270 C		APP	200
MW 4	3	CG	LOONL	HCL			42	8260B		APP	100
REMARKS	•										L
INLIMANNO											
MATERIAL	. CODES:	AG = Amber G S = Silicone;	Blass; CG = T = Teflon;	Clear Glass; O = Other (Sp		igh Density P	olyethylene;	LDPE = Low De	nsity Polyet	hylene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES: A	PP = After (T	nrough) Peristalti e Flow Peristalti	c Pump;	B = Bailer; SM = Straw	BP = Blad Method (Tubing	der Pump; ES Gravity Drain);		: Submersible er (Specify)	Pump;
INTES: 1	The above of	do not const	itute all of t	he informatio	n required	d by Chapte	er 62-160, F.A	A.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Jak Servic	Curren	0.0	V	1 10	CATION.		W 8th S.			
WELL NO:	: MW 5			SAMPLE I		5			DATE: OZ	121/2019	3
					PURG	SING DA	ТА				
WELL DIAMETEI	R (inches): 2,		ER (inches):	0.25 DEPT	H: 4.7 fe	INTERVAL et to 14.7 fe	STATIC I eet TO WATI	ER (feet): 6, 4	44 OR I	ge pump ty Bailer:	PP
(aply fill ou	t if applicable)		-					WELL CAPACI O . 16 UBING LENGTH)			2 gallons
	it if applicable)				ons + (ns/foot X	feet)		gallons =	= gallons
	JMP OR TUBIN WELL (feet):	^G 8,5		/P OR TUBING WELL (feet):	8.5	PURGIN	g dat: [2:3]		12:53	TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBIDIT (NTUs)	Y COLOF (describ	
12:37	1.00	0.240			7.03	Z8,03	Z13	0.94	3.59		none
12:42	1,00	2.00	0.26		7.14	28.10	<u>219</u>	0.76	2,88		
12:47	1.00	3.00	0.20		7.18	28.11	217	0.65	2.45		
12:52	1.00	4,00	0.20	6.50	7.22	28,18	218	0.39	12.02	2 Clea	r nork
									,		
TUBING II	PACITY (Gallon NSIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	⁻ t.): 1/8" = 0.	1" = 0.04; 1 0006; 3/16" = BP = Bladder Pu	0.0014;	1/4" = 0.002	6; 3" = 0.37; 6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	/	= 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)
TUBING II PURGING	NSIDE DIA. CAN EQUIPMENT C	PACITY (Gal./I ODES: B	⁻ t.): 1/8" = 0.	0006; 3/16" = BP = Bladder Pu	0.0014; mp; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	.006; 1/2"	= 0.010;	5/8" = 0.016
TUBING II PURGING SAMPLED	NSIDE DIA. CAI	PACITY (Gal./f ODES: B FFILIATION:	=t.): 1/8" = 0. = Bailer;	0006; 3/16" =	0.0014; mp; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu \TA	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A	.006; 1/2" eristaltic Pum r: 12:53	= 0.010; p; O = Ot SAMPLIN ENDED A	5/8" = 0.016 her (Specify) G T: 13:03
TUBING II PURGING SAMPLED Leif PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A [2 od n e TUBING WELL (feet):	PACITY (Gal./I PODES: B FFILIATION:	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL	DE: HD	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ PE / S	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	.006; 1/2" eristaltic Pum T: 12:53 N pe:	sAMPLIN FILTER SI	5/8" = 0.016 her (Specify)
TUBING II PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Colve TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./F ODES: B FFILIATION: SS /A DN: PUM	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL	DE: HD	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ $\frac{\text{PE}}{\text{Y}} = \frac{1}{\text{S}}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced)	.004; 3/8" = 0 Imp; PP = Pe SAMPLING INITIATED A [*] D-FILTERED: Y ion Equipment Ty DUPLICATE:	.006; 1/2" eristaltic Pum T: 1/2 : 53 N pe: Y	sAMPLIN SAMPLIN ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm
TUBING II PURGING SAMPLED Le: C PUMP OR DEPTH IN FIELD DEC SAMPLE	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Odvre TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal./f :ODES: B .FFILIATION: 	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ $\frac{PE}{Y} = \frac{S}{N}$ $\frac{V}{N}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	.006; 1/2" eristattic Pum r: 12 · 53 N pe: Y ED S ND/OR E	sAMPLIN FILTER SI	5/8" = 0.016 her (Specify) G T: 13:03
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A Codre TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	PACITY (Gal./I CODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA	Ft.): 1/8" = 0. = Bailer; T ← IP Y N TION	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ $\frac{\text{PE}}{\text{Y}} = \sqrt{\frac{\text{S}}{\text{S}}}$ $\frac{\text{Y}}{\text{N}} \text{ (re}$ $\frac{\text{TION}}{\text{(includit)}}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A -FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A	1/2" eristaltic Pum r: 1/2 · 53 pe: Y ED ND/OR ED	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Odve TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal./F CODES: B FFILIATION:	-t.): 1/8" = 0. = Bailer; Т IP Y N TION VOLUME	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y = N (re$ $TION (includit)$ $TION (includit)$ $TOTAL VOL$ $D IN FIELD (re)$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) mL FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHC	1/2" eristaltic Pum T: 12:53 N pe: Y ED ND/OR ET DD	SAMPLING QUIPMENT CODE	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 5 YW 5	NSIDE DIA. CAI EQUIPMENT C DBY (PRINT) / A C OUT A TUBING WELL (feet): CONTAINATION PLE CONTAINERS	PACITY (Gal./F CODES: B FFILIATION: FFILIATION: FFILIATION: PUM CODE A CODE A CODE	T T P Y N TION VOLUME	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 \leq O'_1$	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) FINAL pH ¢ 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y Ion Equipment Ty DUPLICATE: ANALYSIS A METHC FL Pro	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI ICP H	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo 0
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW 5	NSIDE DIA. CAI EQUIPMENT C DBY (PRINT) / A C Octore TUBING WELL (feet): CONTAMINATION PLE CONTAINERS CONTAINERS L Z	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← NP Y N NTION VOLUME ÌL 250 ↔L	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 SO_4$ None	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) mL) PH C 2 7,22	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI ICP H	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 5 YW 5	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A [2 odve TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS { CONTAINERS { Z 3	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← NP Y N NTION VOLUME ÌL 250 ↔L	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 SO_4$ None	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) mL) PH C 2 7,22	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI ICP H	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEG SAMPLE ID CODE MW 5 MW 5 MW 5 MW 5 MW 5	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A [2 odve TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS { CONTAINERS { Z 3	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← IP Y N TION VOLUME IL 250 ~L 100 m L Glass; CG =	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED H ₂ SO4 None HCL	HDPE = H	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELL Filtrat splaced) ing wet ice) mL) FINAL pH < 2 7,22 < 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum	SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

SITE NAME:	ak Servic	e Cente	r dba	United Fi	rél si	TE DCATION:	6900 8	SW 8th 8	St, Mi	iami, FL	
	MW 6				ID: MW	6			DATE: O	2/21/201	8
					PURC	SING DA	TA				
WELL	(inches): 2,		TER (inches):	0.25 DEP	L SCREEN	et to 13.3 f	eet TO WA	DEPTH TER (feet): 5.	81 o	URGE PUMP T' R BAILER:	PP PP
	UME PURGE: t if applicable)	1 WELL VO	LUME = (TOT = (AL WELL DEP	TH – STA feet – 5	TIC DEPTH T	O WATER)	x WELL CAPAC	ITY	foot = 1.2	D gallons
	NT VOLUME PI t if applicable)	JRGE: 1 EQU	JIPMENT VOL	. = PUMP VOL	UME + (TUE	SING CAPACI	TY X	TUBING LENGTH	l) + FLOW (CELL VOLUME	
	MP OR TUBIN	G	FINAL PUN	= ga /P OR TUBING	allons + (ons/foot X	feel	·	gallons TOTAL VOI	
	WELL (feet):	8.00	DEPTH IN	WELL (feet):	B.00		ED AT: 11.4	PURGING ENDED AT:		PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	OVVCEN	TURBIĚ (NTU	STY COLO s) (descrit	
11:52	1.0	1.0	0.2	5,90	7.16	26.83		1.93	2.7		
12:02	2.0	3.0	0.2	5,90	7.04	27.72		1.00	1.5	_	
12:07	1.0	4.0	0.2	5,90	7.61	27,72	324	0.83	1.14	t clea	r home
WELL CAP	ACITY (Gallon	s Per Foot): PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16"		6; 2" = 0.1 1/4" = 0.002			5" = 1.02; 0.006; 1	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F	1 ·		Submersible I	Pump; PP = F	Peristaltic Pu	ump; O = O	ther (Specify)
						LING D				·····1	
	BY (PRINT) / A Rodne		TC	SAMPLER(S)		E(S):		SAMPLING INITIATED A	T: (2:0	8 SAMPLIN ENDED A	IG AT: 12:18
PUMP OR	······	<u>U</u>		TUBING MATERIAL CO	DDE: HC	PE /S		LD-FILTERED: Y ation Equipment T			IZE:μm
FIELD DEC	ONTAMINATIO	ON: PUN	1PY	0	TUBING	Y Ø(r	eplaced)	DUPLICATE	: Y	Ŵ	r
	PLE CONTAINE	R SPECIFIC	ATION			ATION (includ		INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		fotal vol D in Field (mL) FINAL	METH		CODE	(mL per minute)
MW 6	(AĠ	(L	HzSO4			42		RPH	APP	200
mw 6	2	AG	250mL	None			6.50			APP	200
MW 6	3	Ca	100mL	HCL			< 2	8760	B	APP	100
REMARKS		l			<u> </u>			<u>I</u>		<u></u>	I
MATERIAL	CODES:	AG = Amber S = Silicone;	•	= Clear Glass; O = Other (S		High Density I	^D olyethylene;	LDPE = Low D	ensity Poly	ethylene; PP	= Polypropylene;
		F	RFPP = Revers	hrough) Perista se Flow Perista t he informati	tic Pump;		Method (Tubi	ng Gravity Drain);		ric Submersible her (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	: MW 7			SAMPLE ID:		7			DATE: OZ	121/201	8
· · ·					PURG	ING DA					
WELL	n (markan), 7			: 0.25 WELL S	CREEN II	NTERVAL	STATIC	DEPTH		RGE PUMP TY BAILER:	PP
WELL VO	R (inches): 2	1 WELL VC	DLUME = (TO	TAL WELL DEPTH	- STAT	IC DEPTH T	OWATER) X	WELL CAPACI		DAILER.	<u> </u>
										ot = 1	0 (
EQUIPME	NT VOLUME P	URGE: 1 EQ	UIPMENT VO	L. = PUMP VOLUM	E + (TUBI	NG CAPACI	TY X T	UBING LENGTH)	+ FLOW CE		U 6 gallons
(only fill or	ut if applicable)			= gallor	s + (gallo	ns/foot X	feet)	+	gallons	= gallons
INITIAL P	UMP OR TUBIN	IG 🦼	FINAL PU	IMP OR TUBING		DUDCIN	G	PURGING			LIME
DEPTH IN	WELL (feet):	8.50	DEPTH IN	WELL (feet):	8.50		DAT: 10.0		10:26	PURGED (g	allons): 3,29
	VOLUME	CUMUL.	PURGE	DEPTH	pH TEN	TEMP	COND.	DISSOLVED OXYGEN		Y COLO	
TIME	PURGED	VOLUME PURGED		WATER (S	tandard	TEMP. (^o C)	(circle units) μmhos/cm	(circle units)	TURBIDIT (NTUs)		
	(gallons)	(gallons)	(gpm)	(feet)	units)		<u>or</u> μS/cm	mg/L <u>or</u> % saturation			
10:14	1.0	1.0	0.2	6.67 6	.22	2689	490	0.53			r si pet
10:20	1.2	2.2	0.2		.66	27.06	444	0.43	9.00	o Clean	si pet
10:25	1.0	3.2	0.2	6.67 6	1.71	27.02	428	0.37	6.31	clea	5 SIPE
							·····		ļ		
. •		-									
	· ·	•									
						1					1
		1									
MELL CA			0.75% - 0.02	4" = 0.04; 4.2	F" - 0.06	· 2 ⁿ = 0.16	$3^{11} - 0.27$	4 ³ - 0.65:	E ⁿ - 1.02	6" - 1 47:	42" - 5 99
WELL CA TUBING II	PACITY (Gallor	hs Per Foot): P ACI TY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04; 1.2 0.0006; 3/16" = 0	5" = 0.06 .0014;	; 2 " = 0.16 1/4" = 0.0029	6; 3" = 0.37; 6; 5/16" = 0	4" = 0.65; .004; 3/8" = 0			12" = 5.88 5/8" = 0.016
TUBING I	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES	1/4" = 0,0020 SP = Electric 3	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		= 0.010;	
TUBING II PURGING	NSIDE DIA. CA EQUIPMENT (PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL	1/4" = 0.0020 SP = Electric : _ING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0. imp; PP = Pe	.006; 1/2	= 0.010;	5/8" = 0.016
TUBING II PURGING SAMPLEE	NSIDE DÍA. CA EQUIPMENT (BY (PRINT) / A	PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S):	6; 5/16" = 0 Submersible Pu	<u>.004; 3/8" = 0</u> imp; PP = Pe SAMPLING	.006; 1/2 eristaltic Pum	" = 0.010; p; O = Of SAMPLIN	5/8'' = 0.016 ther (Specify) G
TUBING II PURGING SAMPLEE Leif	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / کورکی م	PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S):	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 Imp; PP = Pe SAMPLING INITIATED AT	.006; 1/2 eristaltic Pum F: \0°.2(" = 0.010; p; O = OI , SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) G T: \O:3 8
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / [2 od n d TUBING WELL (feet):	PACITY (Gal. CODES: I AFFILIATION:	/Ft.): 1/8" = 0 B = Bailer; : て	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE	.0014; p; ES SAMPL NATURE ₩ M	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Tyj	.006; 1/2 eristaltic Pum F: いっこえん	" = 0.010; p; 0 = 0 SAMPLIN ENDED A FILTER SI	5/8'' = 0.016 ther (Specify) G
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / کوران مرکز TUBING	PACITY (Gal. CODES: I AFFILIATION:	/Ft.): 1/8" = 0 B = Bailer; : て	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE	0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S	6; 5/16" = 0 Submersible Pu \TA FIELD	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y	.006; 1/2 pristaltic Pum T: ۱۵٬۵۷ pe: ۲	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: \O:3 8
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAM	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / COULT TUBING WELL (feet): CONTAMINATION PLE CONTAIN	PACITY (Gal. CODES: I NFFILIATION: W. / A ON: PUI ER SPECIFIC	/Ft.): 1/8"=0 B=Bailer; 、てこ MP Y (0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR	0014; p; ES SAMPI NATURE :: HD UBING ESERVA	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ TION (including	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice)	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE	.006; 1/2 eristaltic Pum f: 10°.2(pe: Y ED 5	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING	5/8" = 0.016 ther (Specify) G T: <u></u> (Ο ⁻ .3 § ZE:μm
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / A [Codent TUBING WELL (feet): CONTAMINATIO	PACITY (Gal. CODES: I NFFILIATION: WY / A ON: PUI	/Ft.): 1/8"=0 B=Bailer; 、てこ MP Y (0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG TUBING MATERIAL CODE	0014; p; ES AMPI NATURE HD UBING ESERVAT	$\frac{1/4" = 0.0020}{\text{SP} = \text{Electric}:}$ $\frac{\text{ING DA}}{(S):}$ $\frac{\text{PE}}{Y} = \frac{1}{N}$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE:	.006; 1/2 eristaltic Pum f: 10°.2(pe: Y ED S ND/OR E	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	NSIDE DIA. CA EQUIPMENT (BBY (PRINT) / A [Coelve TUBING WELL (feet): CONTAMINATION PLE CONTAINATION #	PACITY (Gal. CODES: I NFFILIATION: SALE A DN: PUI ER SPECIFIC MATERIAL	/Ft.): 1/8" = 0 B = Bailer; ; T ← MP Y (ATION	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG J TUBING MATERIAL CODE N T SAMPLE PR PRESERVATIVE USED	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includie)$ $OTAL VOL$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE ANALYSIS A	.006; 1/2 eristaltic Pum F: 10: ス(pe: Y ED ND/OR D	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING QUIPMENT	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DIA. CA EQUIPMENT (BBY (PRINT) / A [Coelve TUBING WELL (feet): CONTAMINATION PLE CONTAINATION #	PACITY (Gal. CODES: I NFFILIATION:	/Ft.): 1/8" = (B = Bailer; . Т с MP Y (ATION VOLUME	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG TUBING MATERIAL CODE N T SAMPLE PR PRESERVATIVE	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y \text{ (N)} re}$ $TION (includii)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2 eristaltic Pum F: 10: ス(pe: Y ED ND/OR D	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING QUIPMENT CODE	5/8" = 0.016 ther (Specify) G T: ZE:μm ZE:μm SAMPLE PUMF FLOW RATE (mL per minute)
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / [2 colored TUBING WELL (feet): CONTAMINATION PLE CONTAINERS (PACITY (Gal. CODES: I AFFILIATION: CON: PUI ER SPECIFIC MATERIAL CODE AG	/Ft.): 1/8" = 0 B = Bailer; . T < MP Y (ATION VOLUME ↓L	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2504	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includit)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD FI	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2 eristaltic Pum F: 10 ² み(pe: Y ED ND/OR D F(2 P H	T = 0.010; p; O = O SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE ▲ P P	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute 2 τ C)
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 od/ma TUBING WELL (feet): CONTAMINATI PLE CONTAINERS (CONTAINERS (2)	PACITY (Gal. CODES: I AFFILIATION: CODE: PUI ER SPECIFIC MATERIAL CODE AG AG	/Ft.): 1/8" = 0 B = Bailer; . Т с_ MP Y ATION VOLUME IL 150 mL	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG JUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED 1/2504 None	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includin)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL pH C Z C, 7 1	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2 eristaltic Pum F: 10 ² み(pe: Y ED ND/OR D F(2 P H	" = 0.010; p; O = OI p; O = OI sampling FILTER SI Sampling OUIPMENT QUIPMENT CODE APP APP	5/8" = 0.016 ther (Specify) G T: <u></u> ZE:μm SAMPLE PUMF FLOW RATE (mL per minute 2 ε c) 2 ε c)
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / [2 od/n d TUBING WELL (feet): CONTAMINATI PLE CONTAINERS (CONTAINERS (2	PACITY (Gal. CODES: 1 NFFILIATION: WWWWWWWWWWWWWWWWWW ON: PUI ER SPECIFIC ER SPECIFIC ER SPECIFIC MATERIAL CODE NG AG AG HDPE	/Ft.): 1/8" = (B = Bailer; 	0.0006; 3/16" = 0 BP = Bladder Pumm SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLSO4 NONE HNO3 Sodium Thiosul	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includin)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) nL) FINAL pH 4 2 2 6 , 7 1 4 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2 eristaltic Pum f: いこえん pe: Y ED S ND/OR E D rr2PH	" = 0.010; p; 0 = 01 p; 0 = 01 sampling N FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute) 200 200
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. CODES: I AFFILIATION: US: /A DN: PUI ER SPECIFIC MATERIAL CODE AG AG HDPE CG	/Ft.): 1/8" = 0 B = Bailer; : T C MP Y ATION VOLUME IL ISOML 250 mL UO0ML	D.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLS04 None HN03	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD FILD Co Co T Co Co T Co Co T	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2 eristaltic Pum f: いこえん pe: Y ED S ND/OR E D rr2PH	"= 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A Filter SI Sampling QUIPMENT CODE APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O .3 8 ZE:μm SAMPLE PUME FLOW RATE (mL per minute) 200 200 200
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. CODES: I AFFILIATION: US: /A DN: PUI ER SPECIFIC MATERIAL CODE AG AG HDPE CG	/Ft.): 1/8" = 0 B = Bailer; : T C MP Y ATION VOLUME IL ISOML 250 mL UO0ML	0.0006; 3/16" = 0 BP = Bladder Pumm SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLSO4 NONE HNO3 Sodium Thiosul	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD FILD Co Co T Co Co T Co Co T	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2 eristaltic Pum f: いこえん pe: Y ED S ND/OR E D rr2PH	"= 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A Filter SI Sampling QUIPMENT CODE APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUME FLOW RATE (mL per minute 200 200 200 (00
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (D BY (PRINT) / A [2 or long WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS I CONTAINERS I 3 3 3	PACITY (Gal. SODES: I AFFILIATION: LAS / A DN: PUI ER SPECIFIC MATERIAL CODE AG HDPE CG GG	/Ft.): 1/8" = 0 B = Bailer; T MP Y (ATION VOLUME IL 150mL 250mL 250mL 100mL	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG MATERIAL CODE MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2504 None HN03 Sodium Thiosult	LOD14; p; ES CAMPL INATURE	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S Y Nre TION (includii OTAL VOL D IN FIELD (n 	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD C Z C , 7 1 C Z C Z C Z C Z	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO 1FL-Pro %270 %270	.006; 1/2 eristaltic Pum F: \0`.⊋(pe: Y ED ND/OR D r(2PH	" = 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A FILTER SI N Sampling QUIPMENT CODE APP APP APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 § ZE:µm SAMPLE PUMF FLOW RATE (mL per minute 200 200 200 200 100
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. CODES: I AFFILIATION: 223 / A DN: PUI ER SPECIFIC MATERIAL CODE AG HDPE CG GG AG = Amber	/Ft.): 1/8" = 0 B = Bailer; T MP Y (ATION VOLUME IL 150mL 250mL 250mL 100mL	D.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2S04 None HN03 Sodium Thiosuli HC1 = Clear Glass; H	LOD14; p; ES CAMPL INATURE	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD C Z C , 7 1 C Z C Z C Z C Z	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2 eristaltic Pum F: \0`.⊋(pe: Y ED ND/OR D r(2PH	" = 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A FILTER SI N Sampling QUIPMENT CODE APP APP APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUME FLOW RATE (mL per minute 200 200 200 (00

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Å

SITE NAME: N	Jak Service	e Cente	r alba	United Fu	el lo	TE DCATION: (6900 SI	w sth S	t, mi	ami ; FL	-
WELL NO	MW 8			SAMPLE	D: MW	8			DATE: 02	2/21/201	8
					PURC	SING DA	TA	l			
WELL	R (inches): 2.		G TER (inchor)	: 0.25 DEPT		INTERVAL				URGE PUMP T R BAILER:	PP
WELL VO	LUME PURGE:			TAL WELL DEPT				ER (feet): 6.0 WELL CAPACI	TY TY		<u> </u>
(only fill ou	ut if applicable)		= (12.7	feet - (a	. D(0	feet) X	0.16	gallons/f	oot = l	
	NT VOLUME P ut if applicable)	URGE: 1 EQ	JIPMENT VO	<u>ן (, </u>			ΤΥ Χ ΤΙ	JBING LENGTH)	+ FLOW C	ELL VOLUME	ςφ
			W		lons + (∭ gallo	ns/foot X	feet)	+	gallons	= gallons
	UMP OR TUBIN I WELL (feet):	^G	0 FINAL PU DEPTH IN	IMP OR TUBING	8A 8		G DAT: 160	PURGING ENDED AT:	11:26	TOTAL VO PURGED (LUME gallons): 4.60
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP: (^o C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBID (NTUs		
11:05	1.0	1.0	0.2	6.19	6.83	27.64	364	2.53	38.9	7 Clou	dy none
11:10	1-0	2.0	0.2	6.19	7.00	27.62	364	1.62	20.0		7
11:20	2.0	4.0	0.2	6.19	7.02	27.66	366	0.96	11.0-		r none
11-25	10.5	5.04!	5 0.2	6.19	7,02	27.70	360	0.91	7-	28 clea	ar none
	t.	F									
				_							
											·
				1" = 0.04; 0.0006; 3/16" =					5" = 1.02;	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C		= Bailer;	BP = Bladder Pu			Submersible Pu		ristaltic Pu		other (Specify)
						LING DA	TA				
	BY (PRINT) / A			SAMPLER(S) S	~ ~ /	E(S):		SAMPLING	. itst	SAMPLIN	NG AT: 11:36
PUMP OR	Rodne	s /A	10	TURING			FIELD	-FILTERED: Y	<u> </u>		SIZE:μm
DEPTH IN	WELL (feet):			MATERIAL CO			Filtratio	on Equipment Typ	be.		p
	CONTAMINATIO				TUBING	<u> </u>	placed)	DUPLICATE:	Y	Ŵ	
	PLE CONTAINE #			SAMPLE I	YRESERVA	TION (includi	ng wet ice)	INTENDE ANALYSIS AI	ND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (n	nL) pH	METHO	D	CODE	(mL per minute)
MW 8	1	AG	12	HZSOZ	<u>+ </u>		42	FL-Pro T		APP	200
MW 8	2	Aá	250mL	None			6.50	8270 C		APP	206
MW 8	3	CG	100 m L	HCL			42	8260 E	>	APP	100
REMARKS	5:					***************************************	I	· · · · · · · · · · · · · · · · · · ·			L
MATERIAL		AG = Amber S = Silicone;	•	= Clear Glass; O = Other (Sp		ligh Density P	olyethylene;	LDPE = Low De	nsity Polye	ihylene; PP	= Polypropylene;
SAMPLING	GEQUIPMENT			hrough) Peristalti se Flow Peristalti		B = Bailer; SM = Straw I	BP = Bladd Method (Tubing			c Submersible er (Specify)	Pump;
IOTES: 1	The above of	to not cons	titute all of	the informatio	n require						

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: 🔨	lak Servic	e Center	r dba (Inited Fi	rel sr	TE DCATION: (000 S	iw sth s	it, mia	mis FL	
WELL NO:	MW E	3		SAMPLE		B			DATE: OZ	121/201	8
					PURG	SING DA	ТА				
WELL DIAMETER	R (inches): 2.	O TUBING	ER (inches):	3.25 DEP	L SCREEN TH: 4.6 fe	et to 14.6 f	eet TO WAT	ER (feet): 6 i	29 ORI	GE PUMP T' BAILER:	PP
1	LUME PURGE: t if applicable) NT VOLUME PL							< WELL CAPAC < Û₁I∕a	gallons/foo	it = (12	3 gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQU	IPMENT VOL.				TY X 1	FUBING LENGTH) + FLOW CE	LL VOLUME	
INITIAL PL	IMP OR TUBIN			P OR TUBING	allons + (PURGIN	ns/foot X	feet PURGING		TOTAL VOL	UME
DEPTH IN	WELL (feet):	8,5	DEPTH IN V		8.5		DAT: 13:1	7 ENDED AT:	13:44	PURGED (g	allons): 4.1C
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBIDIT (NTUs)	Y COLO (descrit	
13:22	0.50	0.50	0.10	6.92	7.04	27.23	253	1.19	4.00	clear	none
13:27	0,75	1.25	0.15	6.92	7.12	27.44	242	0.77	2:41	Clear	none
13:32	0.75	2,00	0.15	6.92	7,15	27.42	242	0.70	2.61	Clea	r none
13:42	2.00	4.00	0,20	6.92	7.13	27,21	239	0.51	1,72	clea	r none
WELL CAI	PACITY (Gallon SIDE DIA. CAF	s Per Foot): 0 PACITY (Gal./F	1.75" = 0.02; 5t.): 1/8" = 0.0	1" = 0.04;)006; 3/16"	1.25" = 0.00 = 0.0014;	6; 2" = 0.1 1/4" = 0.002	6; 3" = 0.37 6; 5/16" = (6 " = 1.47; ' = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer; E	3P = Bladder F			Submersible P	ump; PP = P	eristaltic Pum	p; O = O	ther (Specify)
			······	SAMPLER(S)		LING DA					
	BY (PRINT) / A Rodne		1	SAWPLER(S)		e (o).			T: 13:44	SAMPLIN T ENDED A	G T: 13:54
PUMP OR DEPTH IN	TUBING WELL (feet):			TUBING A	DDE: HD	PE /S		D-FILTERED: Y			IZE:μm
FIELD DEC	CONTAMINATIO	DN: PUM	ΡΥŰΝ)	TUBING	y Mre	eplaced)	DUPLICATE	: Y	\mathbb{N}	
SAM	PLE CONTAINE	R SPECIFICA	TION	SAMPLE	PRESERVA	TION (includ	ng wet ice)				SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		TOTAL VOL D IN FIELD (FINAL mL) pH	ANALYSIS / METHO		QUIPMENT CODE	FLOW RATE (mL per minute)
MWB	١	AG	1L	1+2504	+		62	FL-Pro T	RPH	APP	200
MWB	2	AG	250mL	None			7.13	5 8276 C		APP	200
MWB	3	CG	100mL	HCL			22	8260 B	<u> </u>	APP	100
REMARKS	3:										
MATERIA		AG = Amber (Clear Glass;		High Density I	Polyethylene;	LDPE = Low D	ensity Polyeth	ylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT		PP = After (Th		Itic Pump;	B = Bailer			SP = Electric		^D ump;
OTES: 1.	The above of		FPP = Revers		• ·		er 62-160, F.	g Gravity Drain); .A.C.	O = Other	(opecity)	

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

				SAMPLE	ID: MW	0			DATE:	1610	7/201	8
	" MW 9					SING DA	ТА			5010	11 4 01	0
WELL	1.0	TUBIN	G é	1.25 WE	LL SCREEN		STATIC E	FPTH	F	PURGE	PUMP TYP	F
DIAMETE	R (inches):	DIAME	TER (inches)	DE	TH: 2.7 fe	et to 12.7 fe	et TO WATE	R (feet):	23 0	OR BAI		PP
WELL VO	UNE PURGE: ut if applicable)	1 WELL VO	LUME = (TO									
			= (12.7	feet -	6.33	feet) X	0.09	gallons	foot	= 0:5	7 gallor
	ut if applicable)	URGE: 1 EQ	UIPMENT VO							GELL		
		0		= g	allons + (gallo PURGIN	0	feet		T	gallons = OTAL VOLU	gallon
	UMP OR TUBIN WELL (feet):	^G 9.30		WELL (feet):	\$,30	INITIATE	DAT: 10:5	ENDED AT:	11:1		URGED (gal	ons): Zil
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) μmhos/cm or μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTU		COLOR (describe)	ODOR (describe
11:01	0.50	0,50	0.10	\$ 6.40	5.94	28.80	197	0.58	105.1	6	clouch	1 none
11:06	1.00	0.50	0.10	6.40	5.11	28.72	198	0.47	52.	9	cloudy	none
11:11	150	0,50	0,10	6,40	4.25	28.87	198	0.47	33.	7	cloud	y non
11:16	2.00	0,50	0.10	6.40	5.34	28.78	198	0.48	21	.3	SI cleud	y non
												0
			_							_		
			-	_		C						-
			-	_					-		-	-
_				-	1	-				_		-
_	-		-						1000			
					1.5			100 million (1990)				
WELL CA	PACITY (Gallon	s Per Foot):	0.75" = 0.02;	1" = 0.04;	1.25" = 0.0	6; 2 " = 0.16	3; 3" = 0.37;	4" = 0.65;	5 " = 1.02;	6" :	= 1.47; 1:	2" = 5.88
TUBING I	PACITY (Gallon NSIDE DIA. CAI	PACITY (Gal.	/Ft.): 1/8" = (0.0006; 3/16'	= 0.0014;	1/4" = 0.0026	6; 5/16" = 0.	004; 3/8" = 0	5 " = 1.02; 0.006;	1/2" = 0	0.010; 5/8	3" = 0.016
TUBING I	NPACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/16' BP = Bladder I	' = 0.0014; Pump; E	1/4" = 0.0026 SP = Electric \$	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0		1/2" = 0	0.010; 5/8	
TUBING I PURGING SAMPLED	NSIDE DIA. CAN E EQUIPMENT C D BY (PRINT) / A	PACITY (Gal.) ODES: E	/Ft.): 1/8" = (BP = Bladder I SAMPLER(S)	' = 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0. Submersible Pu	004; 3/8" = 0 mp; PP = P	0.006;	1/2" = 0 Pump;	0,010; 5/8 O = Othe	3" = 0.016
TUBING I PURGING SAMPLED	NSIDE DIA. CAN EQUIPMENT C	PACITY (Gal.) ODES: E	/Ft.): 1/8" = (BP = Bladder I SAMPLER(S)	^e = 0.0014; ^{Pump;} E SAMP	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	D.006; Veristaltic P	1/2" = 0 Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)
SAMPLED Zeij	NSIDE DIA. CAI BEQUIPMENT C D BY (PRINT) / A 2 /20 dney R TUBING	PACITY (Gal.) ODES: E	/Ft.): 1/8" = (0.0006; 3/16' BP = Bladder I SAMPLER(S)	SAMP	1/4" = 0.0026 SP = Electric S LING DA E(S):	6; 5/16" = 0. Submersible Pur	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A -FILTERED: Y	D.006; Peristaltic P T: 11:	1/2" = 0 Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT O DBY (PRINT) / A Rodney	PACITY (Gal. CODES: E AFFILIATION: JATE	(Ft.): 1/8" = (3 = Bailer;	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	SAMP	1/4" = 0.0026 SP = Electric S LING DA E(S):	6; 5/16" = 0. Submersible Pur TA FIELD Filtratic	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	D.006; eristaltic P T: 11! N ype:	1/2" = 0 Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)
TUBING I PURGING SAMPLED Zeid PUMP OR DEPTH IN FIELD DE	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodney R TUBING N WELL (feet):	PACITY (Gal.) CODES: E AFFILIATION: JATC ON: PUM	/Ft.): 1/8" = (3 = Bailer; ИР Ү (0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C	Contractions of the second sec	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re) (re	6; 5/16" = 0. Submersible Pur TA FIELD Filtratic	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND	D.006; Peristaltic P T: 11: (N) ype: : Y DED	1/2" = 0 Pump; 1%	0.010; 5/8 0 = Othe SAMPLING ENDED AT: FILTER SIZE	3" = 0.016 er (Specify) [] : Δ6 E:μm
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DÍA. CAI BEQUIPMENT C DBY (PRINT) / A ROUBING RUBING WELL (feet): CONTAMINATION IPLE CONTAINE #	PACITY (Gal., CODES: E AFFILIATION: JATC ON: PUM ER SPECIFIC, MATERIAL	/Ft.): 1/8" = (3 = Bailer; ИР Ү (0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT	E PRESERV/	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD Filtratic placed) ng wet ice) FINAL	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE	D.006; Peristaltic P T: 11: (N) ype: : Y DED AND/OR	1/2" = 0 Pump; 1 %	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZE O PLING PMENT	3" = 0.016 pr (Specify) μm SAMPLE PUM FLOW RATE
TUBING I PURGING SAMPLED Zerid PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A R TUBING WELL (feet): CONTAMINATIC IPLE CONTAINE CONTAINERS	ACITY (Gal.) CODES: E AFFILIATION: JATC ON: PUM ER SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME	0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED	E PRESERV/	$\frac{1}{4} = 0.0026$ $\frac{1}{8P} = \text{Electric S}$ $\frac{1}{8} = \frac{1}{8} = \frac{1}{3}$ $\frac{1}{8} $	6; 5/16" = 0. Submersible Pur TA FIELD Filtration placed) ng wet ice) FINAL pH	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO	D.006; Peristaltic P T: 11: (N) ype: : Y DED AND/OR DD	1/2" = 0 Pump; I & SAM EQUI C0	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZE OD IPLING PMENT ODE (3" = 0.016 er (Specify) E:μm EAMPLE PUM FLOW RATE mL per minute
TUBING I PURGING SAMPLED Zecif PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MVV °I	NSIDE DIA. CAI BEQUIPMENT C DBY (PRINT) / A ROUGHING RUBING WELL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal., CODES: E FFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE	/Ft.): 1/8" = (3 = Bailer; 3 = Bailer; 4 P Y (ATION VOLUME 250 ~ L	0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H 100 3	E PRESERV/	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD. Filtratic placed) ng wet ice) FINAL pH <2.	004; 3/8" = (mp; PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO PB	D.006; Peristaltic P T: 11: (N) /pe: : Y DED AND/OR DD	1/2" = 0 Pump; 18 SAM EQUI CO	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZE OD IPLING PMENT ODE (B ^m = 0.016 ar (Specify) II: Δ6 E:μm EAMPLE PUN FLOW RATE mL per minut
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW ^C I MW ^Q	NSIDE DÍA. CAI BEQUIPMENT C DBY (PRINT) / A Contained NUEL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E FFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE AC	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME 250 ~ L 2,50 ~ L	0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON 2	E PRESERV/	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD Filtration placed) ng wet ice) FINAL pH	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Yon Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SQTO F	D.006; Peristaltic P T: 11: (N) /pe: : Y DED ND/OR DD	1/2" = 0 Pump: 18 SAM EQUI CO A1	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE 0 PMENT ODE (PP	3" = 0.016 er (Specify) E:μm EAMPLE PUM FLOW RATE mL per minute
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9	NSIDE DIA. CAI BEQUIPMENT C DBY (PRINT) / A ROUGHING RUBING WELL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E AFFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y ATION VOLUME 250 ~ L 2,50 ~ L 4.0 mL	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON C H CL	E PUMP; E SAMP SIGNATUR SIGNATUR CODE: WP TUBING PRESERV/A IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD Filtratic placed) ng wet ice) FINAL pH 4.2. 5.34	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SATO F \$260 8	D.006; Peristaltic P T: 11: (N) ype: PED AND/OR DD PAHT TX.M	1/2" = 0 Pump; 18 18 SAM EQUI CO A1	0.010; 5/8 0 = Othe SAMPLING ENDED AT: FILTER SIZE D IPLING PMENT ODE (PP PP PP	3" = 0.016 er (Specify)
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 9 MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT C DBY (PRINT) / A Contained NUEL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E FFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE AC	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME 250 ~ L 2,50 ~ L	0.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON 2	E PUMP; E SAMP SIGNATUR SIGNATUR CODE: WP TUBING PRESERV/A IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD. Filtration placed) ng wet ice) nL) FINAL 4.22. 5.34 < 7.	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Yon Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SQTO F	D.006; Peristaltic P T: 11: (N) ype: PED AND/OR DD PAHT TX.M	1/2" = 0 Pump; 18 18 SAM EQUI CO A1	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE DELING PMENT ODE (PP PP PP PP	3" = 0.016 er (Specify)
TUBING I PURGING SAMPLED Zerid PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE	NSIDE DÍA. CAI BEQUIPMENT C DBY (PRINT) / A Contained NUEL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E AFFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y ATION VOLUME 250 ~ L 2,50 ~ L 4.0 mL	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON C H CL	E PUMP; E SAMP SIGNATUR SIGNATUR CODE: WP TUBING PRESERV/A IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD. Filtration placed) ng wet ice) nL) FINAL 4.22. 5.34 < 7.	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SATO F \$260 8	D.006; Peristaltic P T: 11: (N) ype: PED AND/OR DD PAHT TX.M	1/2" = 0 Pump; 18 18 SAM EQUI CO A1	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE DELING PMENT ODE (PP PP PP PP	3" = 0.016 er (Specify)
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT O DBY (PRINT) / A Rodiney RTUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 1 2 3 1	ACITY (Gal.) CODES: E AFFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y ATION VOLUME 250 ~ L 2,50 ~ L 4.0 mL	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON C H CL	E PUMP; E SAMP SIGNATUR SIGNATUR CODE: WP TUBING PRESERV/A IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD. Filtration placed) ng wet ice) nL) FINAL 4.22. 5.34 < 7.	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SATO F \$260 8	D.006; Peristaltic P T: 11: (N) ype: PED AND/OR DD PAHT TX.M	1/2" = 0 Pump; 18 18 SAM EQUI CO A1	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE DELING PMENT ODE (PP PP PP PP	3" = 0.016 er (Specify) II: аб E:µm FLOW RATE mL per minut
TUBING I PURGING SAMPLED Zevij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9 MW 9 MW 9	NSIDE DÍA. CAI SEQUIPMENT O D BY (PRINT) / A Container R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 1 2 3 1 S: L CODES:	AG = Amber	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y //P Y //P Y //ATION VOLUME //ATION VOLUME //ASOwL //ASOwL //AC //L //AC //L Glass; CG	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3 DON C H CL	E PUMPIC E E E E E E E E E E E E E E E E E E E	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (Re ATION (including FOTAL VOL	6; 5/16" = 0. Submersible Pur TA FIELD. Filtration placed) ng wet ice) nL) FINAL 9H 42- 5.34 < 2	004; 3/8" = (mp; PP = P SAMPLING INITIATED A -FILTERED: Y on Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SATO F \$260 8	D.006; Peristaltic P T: 11: (N) /pe: : Y DED AND/OR DD PAHT TX.M	1/2" = 0 Pump; 18 SAM EQUI CC A1	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE D IPLING PMENT ODE PP PP PP PP PP PP PP PP PP	3" = 0.016 er (Specify) II: а.б E:µm FLOW RATE mL per minut
TUBING I PURGING SAMPLED Zerd PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE NAW 9 MW 9 MW 9 MW 9 MW 9 MW 9 MW 9 MW 9 M	NSIDE DÍA. CAI SEQUIPMENT O D BY (PRINT) / A Container R TUBING WELL (feet): CONTAMINATION IPLE CONTAINERS 1 2 3 1 S: L CODES:	AG = Amber S = Silicone;	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y //P Y //ATION VOLUME //ATION VOLUME //ASO //L //ACO //L //ACO //L //Glass; CG T = Teflon; APP = After ('	D.0006; 3/16' BP = Bladder I SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO3 DONC H CL H 2 SO4 = Clear Glass;	E PUMP; E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NP TUBING PRESERV/ IVE ADDE HDPE = H Specify) altic Pump;	1/4" = 0.0026 SP = Electric S LING DA E(S): Y (N) (re NTION (includin TOTAL VOL D IN FIELD (n High Density P B = Bailer;	6; 5/16" = 0. Submersible Pur TA FIELD Filtration placed) ng wet ice) FINAL pH 4.2. 5.34 4.2. 5.34 4.2. 0 0 0 0 0 0 0 0 0 0 0 0 0	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y On Equipment Ty DUPLICATE INTEND ANALYSIS A METHO P8 SQTO FL PR LDPE = Low Do Mer Pump;	D.006; Peristaltic P T: 11: (N) /pe: Y DED AND/OR DD PAH TX.M O ensity Poly SP = Elect	1/2" = C Pump; I % SAM EQUI CC A1 A A A	0.010; 5/8 0 = Othe SAMPLING ENDED AT: FILTER SIZI IPLING P PP PP	B" = 0.016 r (Specify) II: 2.6 E:μm SAMPLE PUK FLOW RATE mL per minut 100 mL Polypropylen

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

		Ponna		FIELD INSTRUMEN				
				56				
			*	2020wc/268				
					INSTR	RUMENT #		
	-	applicable star	-					
		🗌 OVA] OTHER		
				s, Lot #, Bottle # and		•		
				Standar				
				PINE Standar				
				MA PINE Standar				
							•	OPINE Lamothe
				Standar				
Standard K (OVA 100pp	m isobutylene	05/10/20	<u>-166 PU</u> Estandai 521	rd L (ORP :	231 mV @25°C) <u>*</u>	<u> 10120 - 10120 - </u>	33 HANNA
DATE (m/d/y)	TIME (hr:min)	STD (A, B, C, etc.)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INITIAL, POST)	SAMPLER INITIALS
06/07/18	10:34	A	•	30.67	All and a second	NO	Initial	Ll.
1	10:35	C	7.00	7.10	1.43	YES	1	
	10:39	ß	4.00	4.00	0.00	-		
	10:44	D	10-00	10.14	1.40			
	10:48	E	500	518	3.60			
	10:31	5	1.00	1.10	10.0			
	10:33	Н	10.00	8.91	10,9			
	10:55)	100	98.9	1.00			
1	10:51		240	224.4	6.50		_	·
		, 						
			•					
	· ·							
						,		2
						;		
			1					

APPENDIX F

FDEP PURCHASE ORDER B22481 AND CHANGE ORDER 1

Florida Market Place

CHANGED: Order No. B22481

Version Number: 2 Internal Version: false Issued on Mon, 30 Apr, 2018 Created on Mon, 30 Apr, 2018 by Ariba System

Supplier:

ATC Group Services, LLC 5602 Thompson Center Ct, Suite 405 Tampa, FL 33634 United States Phone: 1813-889-8960 Fax: 1813-889-8754 Contact: Kurt Juntunen

Ship To:

DEP-PETROLEUM RESTORATION PROGRAM BMC RM 420 MS 4575 2600 BLAIR STONE RD TALLAHASSEE, FL 32399 United States

Deliver To: Caroline Herman Bill To: DEP-PETROLEUM RESTORATION PROGRAM BMC RM 420 MS 4575 2600 BLAIR STONE RD TALLAHASSEE, FL 32399 United States Entity Description: Department of Environmental Protection Organization Code: 37450404555 Object Code: 00000-131545 Expansion Option: JG Exemption Status: No Exemption Reason?:

Item	Action	Description	Part Number	Unit	Qty	Need By	Unit Price	Extended Amount
1	Modified	Contractor has been selected to perform a Low		Dollar	29,674.45	None	\$1.00000 USD	\$29,674.45000 USD

Contractor has been selected to perform a Low Score Assessment (LSA) at the Jak Service Center Inc DBA United Fuel, 6900 SW 8th St, Miami, Miami-Dade County, Florida, FAC ID 138503663. Attachment A, Scope of Work, attached to the purchase order (PO) describes the work to be completed by the Contractor. All work shall be performed in accordance with the terms of the Agency Term Contract (ATC). The PRP reference number for this project is 844-036A.

Attache

d hereto and made a part of this PO is Attachment B - Schedule of Pay Items and Other Related Documents. Pay Items are at or below the negotiated maximum rates included in the ATC. Contractor must submit the appropriate completed documents from Attachment B to the Site Manager with each deliverable, as instructed. Upon completion and approval of all work under this PO, Contractor shall submit a signed Release of Claims document, along with the final invoice. Contractor must include Subcontractor Utilization Report form, included as a tab on Attachment B, with each invoice.

The Department will retain 5% of the total amount of each payment made. Contractor may submit a request for release of retainage upon completion, and DEP approval of, all work performed under this PO.

The Department will evaluate the Contractor as specified in the Agency Term Contract.

The Contractor agrees to perform the services described in the PO in accordance with the terms of its ATC (as those terms may have been amended) which are in effect on date of issuance of the PO. The applicable ATC terms are available at the following URL: https://facts.fldfs. com/Search/ContractD etail.aspx?AgencyId= 370000&ContractId=GC 844

Distributors?: N Requester: Caroline Herman (Contracts) Ship To Code: DEP305S

State Contract ID: Contract ID: Requester Phone: PR No.: PR10316460-V2 MyGreenFlorida Content: N Method of Procurement:: J - Agency ITN [s 287.057(1) (c), F.S.] Shipping Method: Best Way FOB Code: INC-Dest FOB Code Description: Destination freight paid by vendor and included in price. Title passes upon receipt. Vendor files any claims. Encumber Funds: Yes PO Start Date: Wed, 15 Nov, 2017 PO End Date: Wed, 31 Oct, 2018 Fiscal Year Indicator: 2018 PUI#: 3701 Site Code: 370000-12 Terms and Conditions: http://dms.myflorida.com/mfmp_PO_TC P Card Order?: No

> Total \$29,674.45000 USD

Changes

- Purchase Order TimeCreated changed from Wed, 15 Nov, 2017 to Mon, 30 Apr, 2018
- Purchase Order ContentLength changed from 1385747 to 1386677
- Purchase Order Filename changed from Attachment B Schedule of Pay Items & Other Related Documents 138503663.xlsm to
 Attachment B (Revision 1) Schedule of Pay Items & Other Related Documents 138503663.xlsm
- Purchase Order StoredFilename changed from 10922533 to 11381982
- Purchase Order Date changed from Tue, 14 Nov, 2017 to Mon, 30 Apr, 2018
- Purchase Order Attachments 3 changed from (no value) to [ariba.approvable.core.AttachmentWrapper [Baseld 95432898755 17uaa7yb.d6]]
- Purchase Order Total ordered changed from \$27,041.76000 USD to \$29,674.45000 USD
- Line Item 1, Accounting, Accounting 1, ERPTransactionDate changed from 11152017 to 04302018
- Line Item 1, Accounting, Accounting 1, ERPMessage changed from SUCCESSFUL ENCUMBRANCE 60S to SUCCESSFUL ENCUMBRANCE 6SU
- Line Item 1, Accounting, Accounting 1, CurrentFLAIRAmount changed from 20,626.39 to 23,259.08
- Line Item 1, Accounting, Accounting 1, RoundedAmount changed from \$27,041.76000 USD to \$29,674.45000 USD
- Line Item 1, Quantity changed from 27,041.76 to 29,674.45
- Line Item 1, ERPTransactionDate changed from 11152017 to 04302018
- · Line Item 1, LI Amount Recorder in FLAIR changed from \$27,041.76000 USD to \$29,674.45000 USD
- · Line Item [Baseld 95432898700 17uaa7ws.6c] was deleted

Comments

- Jordan Riedel (Contracts), 11/14/2017: The following attachments are attached hereto and made a part of this Purchase Order. Attachment A – Scope of Work Attachment B, Schedule of Day Items and Other Belated Deguments (Jordan Biodel (Central Attachment B)
- Attachment B Schedule of Pay Items and Other Related Documents (Jordan Riedel (Contracts), Tue, 14 Nov, 2017) • COMMENT by Vicki Chatelain (Contracts) on 11/15/2017
- Note: Attachment B language appearing in upper right-hand corner titled "Less Surcharge" is used by the program to identify the total cost less the 6% handling and MFMP fee on reimbursable items. This information is only used as a check point for PRP staff. The total PO amount for the project is the amount appearing in the "Total Extended Cost" section in the upper right-hand side of the spreadsheet. (Vicki Chatelain (Contracts), Wed, 15 Nov, 2017)
- Jordan Riedel (Contracts), 04/30/2018: Change Order (CO) #1, Tasks #3-4 (referred to as "PO B22481 - CO 1, Tks 3-4 & PO End Date - 138503663," below) is attached hereto and made part of this Purchase Order (PO) to increase the PO amount by \$2,632.69 (new PO total \$29,674.45), and extends the task deliverable due dates & PO End Date as follows:

Task #3 is extended to 06/29/18 Task #4 is extended to 08/29/18 PO End Date is extended to 10/31/18

Attachment B (Revision 1) is attached hereto and made a part of this PO to replace Attachment B in its entirety.

It is understood that should the due date for a deliverable fall on a weekend or State observed holiday, the due date will be recognized as the next State business day.

All other terms and conditions of the PO remain unchanged. (Jordan Riedel (Contracts), Mon, 30 Apr, 2018) COMMENT by Magen Greene (Contracts) on 04/30/2018

Contractor has provided the DEP with quotes for some of the activities for this project. The terms and conditions of the DEP Agency Term Contract (ATC) apply to and control all work performed by Contractor, and DEP does not accept, agree to, or incorporate any other terms and conditions. Any terms and conditions negotiated between Contractor and any subcontractors or suppliers that seek to supplement, or are in conflict with the ATC, are not binding on or apply to the Contractor and DEP's contractual relationship. Contractor bears the risk that additional terms and conditions negotiated between it and subcontractors or suppliers will delay, interfere with or frustrate its performance under the ATC. (Magen Greene (Contracts), Mon, 30 Apr, 2018)

Attachments

- ATTACHMENT by Jordan Riedel (Contracts) on Tuesday, November 14, 2017 at 3:26 PM Attachment A - LSA Scope of Work - 138503663.pdf (124977 bytes)
- ATTACHMENT by Jordan Riedel (Contracts) on Monday, April 30, 2018 at 8:12 AM Attachment B (Revision 1) - Schedule of Pay Items & Other Related Documents - 138503663.xlsm (1386677 bytes)
- ATTACHMENT by Jordan Riedel (Contracts) on Monday, April 30, 2018 at 8:12 AM PO B22481 - CO 1, Tks 3-4 & PO End Date - 138503663.pdf (934972 bytes)

Attachment A **Petroleum Restoration Program** Scope of Work

9-Digit Facility ID Number: 138503663

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SubPhase(s): LSA

Specifications

All work must be performed in accordance with this Scope of Work (SOW) and any attachments, Chapters 62-160, 62-532, 62-777 and 62-780, F.A.C., all applicable FDEP and Water Management District guidance memoranda, standard industry procedures and as described in the Agency Term Contract (ATC).

Copies of all referenced guidelines are available at:

http://www.dep.state.fl.us/waste/categories/pcp/default.htm

Reports must be submitted using the appropriate FDEP forms found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/pg_documents.htm

All work must be conducted in accordance with PRP Standard Specification Details found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/templates.htm

The following tables are included as attachments to this SOW and further represent the details of the scope of work.

✓ Water Sampling Table \checkmark

Soil and Air Sampling Table

Soil Boring (SB) and Well Installation Table

Task 1 Description:	Perform a thorough File Review. Prepare a Health & Saftey Plan. Mobilize to the site to
	perform a site reconnaissance, and perform well gauging of up to thirteen (13) onsite
	monitoring wells, Prepare a modified assessment proposal. Please note that per the DEP site
	access agreement, a separate site access agreement between the owner and the ATC has
	been requested by the property owner or tenant. Submit an email or letter (copying the
	owner or tenant) indicating either that this separate site access agreement has been
	executed or that the owner no longer wants such an agreement with the contractor (the
	owner is content with the current DEP site access agreement). The DEP does not need a
	copy of this agreement.
Task 1 Deliverable:	Health & Saftey Plan. Historical Summary Worksheet. Field notes and photo documentation
	from the site reconnaissance including a summary of the site reconnaissance visit, and a
	proposal for modified site assessment in the next task. Email/letter confirming the
	ATC/Owner site access agreement is executed or that the Owner has retracted its request
	for a separate agreement with the ATC.
Task 1 Deliverable Due Date:	Monday, January 29, 2018
Task 2 Description:	Contingent upon written approval from FDEP. Collect and analyze groundwater samples
	from up to thirteen (13)on site monitoring wells. Prepare an Interim Assessment Report.
Task 2 Deliverable:	Interim Assessment Report including updated tables and figures, field notes, groundwater
	sampling logs, laboratory reports, and recommendations.
Task 2 Deliverable Due Date:	Friday, March 30, 2018
Task 3 Description:	Contingent upon written approval from FDEP. Advance soil borings (screening & sampling),
	collect soil samples. Due to the local limestone lithology, HSA is being used instead of hand
	augering. Prepare an Interim Assessment Report.

Attachment A Petroleum Restoration Program Scope of Work

9-Digit Facility ID Number:	138503663
STCM Facility Name:	JAK SERVICE CENTER INC DBA UNITED FUEL
Task 3 Deliverable:	Interim Assessment Report including updated tables and figures, boring logs, field notes,
	laboratory reports, and recommendations.
Task 3 Deliverable Due Date:	Tuesday, May 29, 2018
Task 4 Description:	Mobilize to the site to dispose of any IDW generated during assessment activities.
	Contingent upon written approval from FDEP. Prepare and submit a General Site
	Assessment Report in the TSAR format, including the Site Screening Information tab of the
	Site Screening Workbook (located at
	http://www.dep.state.fl.us/waste/categories/pcp/pages/screening.htm). Contingent
	funding in this task is only to be used to offset the cost for pay items associated with a Field
	Request for Change for any open task.
Task 4 Deliverable:	General Site Assessment Report and disposal manifests.
Task 4 Deliverable Due Date:	Monday, July 30, 2018
PO End Date:	Monday, October 1, 2018

Schedule of Pay Items (SPI)

All unit rates and extended prices for all line item costs associated with this project are provided in the SPI [Attachment B to this Purchase Order (PO)] and shall not exceed the rates established in the ATC.

Requests for Change (RFC)

All requests for changes to the SOW must be submitted in writing and be approved in writing by the FDEP/LP using the RFC form in accordance with paragraphs 2.A and 26 of the ATC and can be found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/templates.htm

Any change which results in an extension of the due dates, PO end date, or a change in quantities or costs, requires that a PO Change Order be formally issued prior to performance of the revised SOW.

Performance Measures

The FDEP/LP Site Manager will review the submitted documentation to confirm that all work was performed in accordance with the Specifications referenced above. The FDEP/LP Site Manager will notify the Contractor of acceptance or any deficiencies in the work and/or deliverables. The Contractor will be given an opportunity to remedy deficiencies at no additional cost to the FDEP.

The FDEP/LP Site Manager will review the work and/or deliverables within the timeframes established in FDEP guidance documents. The Contractor will respond to any comments to complete the work and/or deliverables within the timeframe established in the comment letter or email correspondence.

Invoicing, Payments and Financial Consequences

The Contractor may submit an invoice for a Task upon written notification of acceptance of the work/deliverables by the FDEP/LP Site Manager. Upon receipt of FDEP/LP written approval of the required documentation for completed portions of each task, the Contractor must submit an invoice. Invoices for completed work may be submitted no more frequently than every thirty (30) days, or upon completion of the individual tasks as specified. Each invoice request must contain all documentation of performance as specified in the ATC, this Purchase Order (PO), and its attachments.

Failure to provide all deliverables, failure to provide deliverables which are satisfactory or failure to meet the specified deliverable timetables, shall result in non-payment, loss of retainage, or other financial consequences, and/or termination of the PO, as specified in the ATC. If the deliverable due day occurs on a weekend, state holiday, or federal holiday the deliverable will be due the following business day.

Attachment A Petroleum Restoration Program Scope of Work

9-Digit Facility ID Number: 138503663

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

Retainage shall be withheld in the amount of 5%, unless otherwise noted in the SPI, from each payment by the FDEP/LP until completion and approval of all Tasks. The Contractor shall submit a Release of Claims and request for retainage payment with the final invoice. Payment of retainage will be reduced by the amount of any assessed financial consequences.

Notice of Field Activities

The Contractor must provide written notification (emails are acceptable) of field activities at least seven (7) calendar days prior to the commencement of work to all applicable parties including the PRP site manager, PRP Inspector (PRP_Inspector@dep.state.fl.us), site operator, site owner, RP and affected off-site property owners.

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

	SAMPLING TABLE																			
Task #	Well #(s) or Water Sample Location		Expedited Turnaround (TA)	Water Level/FP Gauging Only (8-7.)		(9-27.) BTEX + MTBE	(9-30.) PAHs		(9-25.) GAG/KE G - Table C	(9-41.) Lead, Total										
1	Gauge Existing Monitoring Wells			13																
2	Existing Monitoring Wells				13	12	12	12	1											
3	TCLP Leachate					1				1										
3	SPLP Leachate					5	5													
		-	Task 1 Subtotal	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	Task 2 Subtotal	0	13	12	12	12	1	0	0	0	0	0	0	0	0	0	0	0
			Task 3 Subtotal	0	0	6	5	0	0	1	0	0	0	0	0	0	0	0	0	0
	GRANE	TOTALS		13	13	18	17	12	1	1	0	0	0	0	0	0	0	0	0	0

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SOIL and	AIR SAMPLING TA	BLE																	
Task #	Soil /Air Sample Locations	Frequency (if applicable)		Depth Interval (if applicable)	(9-2.) BTEX + MTBE	(9-5.) PAHs	(9-8.) TRPH (FL-PRO)	(9-8.a.) TRPH Fraction ation	(9-11.) Arsenic	(9-12.) Cadmiu m	(9-13.) Chromiu m	(9-14.) Lead	(9-15.) TCLP- Extractio n Only	(9-16.) SPLP- Extractio n Only					(8-14.) Encore Sampler
3	Soil Samples (TBD)			Highest OVA or the 2' interval directly above the water table	5	5	5	5						10					5
3	Waste Characterization TCLP				1				1	1	1	1	2						
			Т	ask 2 Subtotal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GRAND TOTAL	.S		6	5	5	5	1	1	1	1	2	10	0	0	0	0	5

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SOIL BO	ORING (SB) an	d WELL INST	ALLATION	TABLE													
	SOIL BORING DETAILS Screening/Split Spoon Interv					n Intervals	WELL INSTALLATION DETAILS										
TASK #	Installation Method	Quantity	Depth (ft bls)	Total Boring Footage (ft)	Screening Depth Interval 1 & Spacing	Screening Depth Interval 2 & Spacing	Screening Depth Interval 3 & Spacing	Quantity	Well Type	Well Diameter (in)	Depth (ft bls)	Screen Interval (ft bls)	Total Well Footage (ft)	Surface Casing Diameter (in)	Surface Casing Depth (ft)	Total Casing Footage (ft)	Well Completion Type
3	HSA/MR	5	6	30	0-6'@2'								0			0	
	TO	TALS		30									0			0	

Petroleum Contamination Site Response Action Services SCHEDULE OF PAY ITEMS INVOICE RATE SHEET

	Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL		Contractor:	ATC	GROUP SE	RVICES, LLC						
7.	Digit Facility ID #: 8503663	-	CID #:		00787			Retainage %:	5%	Purchase Order:	B22481	
	County: 13	-	Contract #:		GC844	-	FDE	P Cost Share %:	100.00%	Download Date:	10/30/17 11:	37
	Region: South	-	SPI ID #:		10895	-	Tota	I Extended Cost:	\$ 29,674.45	Assginment Type:	CSF	
Si	te Manager Name: CAROLINE HERMAN	•				•	Witho	ut Handling Fee:	\$ 29,641.67			
	e Manager Phone: (305)372-6856	-	Transiti	ion A	greement:	🔿 Yes	ا ۱	No				
Si	te Manager Email: caroline.herman@miamidade.gov											
					PO Rate S	heet		Previously Invoiced	This	Invoice	Balance	
PAY ITEM	DESCRIPTION	UNIT OF MEASURE	UNITS		GOTIATED Em price	TOTAL EXTEN PRICE	DED	UNITS	UNITS	EXTENDED PRICE	UNITS	
Task	1											
1-1.	File Review	Per Review	1	\$	350.00	\$ 35	50.00	1	0	\$-	0	
1-2.	Site Health & Safety Plan	Per Site	1	\$	200.00	\$ 20	00.00	1	0	\$-	0	
2-1.	Site Reconnaissance/Field Measurement Visit	Per Visit	1	\$	600.00	•	00.00	1	0	\$-	0	
3-1.	Mobilization, Light Duty Vehicle (car or $1/2$ ton truck) - \leq 100 miles each way	Per Round Trip	1	\$	374.50		74.50	1	0	\$ -	0	
8-7.	Water Level or Free Product Gauging	Per Well	13	\$	15.00	\$ 19	95.00	10	0	\$-	3	
		RETAINAGE				\$ 8	35.98	\$ 83.73		\$-	\$2	.25
		SUBTOTAL				\$ 1,7	19.50	\$ 1,674.50		\$-	\$ 45	.00
Task				-		-						
3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - \leq 100 miles each way	Per Round Trip	1	\$	374.50	\$ 3	74.50	1	0	\$-	0	
8-1.	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	13	\$	165.00		45.00	9	0	\$-	4	
8-11.	Electronic Data Deliverables (EDD)	Per Sampling Event	1	\$	125.00	\$ 12	25.00	1	0	\$-	0	
	Water, Gasoline/Kerosene Analytical Group-Table C of Ch. 62-780, F.A.C. (multiple methods)	Per Sample	1	\$	240.75		40.75	1	0	\$-	0	
9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	12	\$	34.00	\$ 40	08.00	8	0	\$-	4	
9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1-methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	12	\$	80.25	\$ 96	53.00	8	0	\$-	4	
9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	12	\$	67.41	\$ 80	08.92	8	0	\$-	4	
19-27.	Interim Assessment Report	Per Report	1	\$	1,400.00	\$ 1,40	00.00	1	0	\$-	0	
		RETAINAGE				\$ 32	23.26	\$ 253.93		\$-	\$ 69	.33
		SUBTOTAL				\$ 6,40	65.17	\$ 5,078.53		\$-	\$ 1,386	.64
Task	3											
1-4.	Permit Fees (actual fee only, cost to obtain permit is included in applicable pay items)	Reimbursable*	90	\$	1.00	\$	90.00	0	0	\$-	90	
1-7.	6% Handling Fee for Cost Reimbursable Items	% Surcharge	546.3	\$	0.06	•	32.78	0	456.3	\$ 27.38	90	
	Mobilization, Light Duty Vehicle (car or $1/2$ ton truck) - \leq 100 miles each way	Per Round Trip	2	\$	374.50		19.00	0	2	\$ 749.00	0	
	DPT Rig and Support Vehicles Mobilization - \leq 100 miles each way	Per Round Trip	1	\$	625.00	•	25.00	0	1	\$ 625.00	0	
	Direct Push Technology (DPT) Rig and Equipment	Full Day	1	\$	2,999.00		99.00	0	1	\$ 2,999.00	0	
	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	1	\$	165.00		65.00	0	1	\$ 165.00	0	
	Soil/Sediment Sample Collection	Per Sample	6	\$	50.00		00.00	0	5	\$ 250.00	1	
	Electronic Data Deliverables (EDD)	Per Sampling Event	1	\$	125.00	\$ 12	25.00	0	1	\$ 125.00	0	
8-14.	Encore (25 gram) for SPLP Soil Sample Collection: [Per Encore]. The cost will include the 25 gram Encore samples submitted to the laboratory for SPLP testing and the 25 gram Encore samples collected in the field but not submitted to the laboratory for testing (discarded).	Per Sample	5	\$	18.00	¢ (90.00	0	5	\$ 90.00	0	
	Soil, BTEX + MTBE (EPA 8021 or EPA 8260)	Per Sample	5 6	ֆ \$	35.31		11.86	0	5 5	\$ 90.00 \$ 176.55	0	_
		Per Sample Per Sample	5	э \$	74.90		74.50	0	5 5	\$ 176.55 \$ 374.50	0	
	Soil, Polycyclic Aromatic Hydrocarbons (EPA 8270 or EPA 8310) Soil, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	-	5	ծ \$	67.41		74.50 37.05	0	5	\$ 374.50 \$ 337.05	0	_
	Soil, Total Recoverable Petroleum Hydrocarbons (PL-PRO) Soil, TRPH Fractionation (MADEP-EPH/VPH Method or TPHCWG Direct Method)	Per Sample Per Sample	5 5	э \$	265.00		25.00	0	5 0	\$ <u>337.05</u> \$ -	5	_
J-0.d.	oui, TREDETALIUNIAIUN (MADEE-EED/VED MELIUU UT TENGWG DITECT MELIUU)	rei Sampie	5	φ	205.00	φ 1,3/	20.00	U	U	φ -	5	

Petroleum Contamination Site Response Action Services SCHEDULE OF PAY ITEMS INVOICE RATE SHEET

				Р	O Rate S	heet	Previously Invoiced	Thi	is Invoice	Balance
PAY ITEM	DESCRIPTION	UNIT OF MEASURE	UNITS		DTIATED PRICE	TOTAL EXTENDED PRICE	UNITS	UNITS	EXTENDED PRICE	UNITS
9-11.	Soil, Arsenic (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-12.	Soil, Cadmium (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-13.	Soil, Chromium (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-14.	Soil, Lead (EPA 6010 or EPA 6020)	Per Sample	2	\$	12.00	\$ 24.00	0	1	\$ 12.0	0 1
9-15.	Soil, Toxicity Characteristic Leaching Procedure-Extraction Only (EPA 1311)	Per Sample	2	\$	60.99	\$ 121.98	0	0	\$-	2
9-16.	Soil, Synthetic Precipitation Leaching Procedure-Extraction Only (EPA1312)	Per Sample	10	\$	60.99	\$ 609.90	0	0	\$ -	10
9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	7	\$	34.00	\$ 238.00	0	1	\$ 34.0	D 6
9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1-methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	6	\$	80.25	1	0	1	\$ 80.2	5 5
9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	1	\$	67.41	\$ 67.41	0	1	\$ 67.4	1 0
9-41.	Water, Lead, Total (EPA 200.7, EPA 200.8, EPA 6010 or EPA 6020)	Per Sample	2	\$	10.50	\$ 21.00	0	1	\$ 10.5	0 1
19-27.	Interim Assessment Report	Per Report	1	\$	1,400.00	\$ 1,400.00	0	1	\$ 1,400.0	0 0
22-1.	Well Installation 1.5 Inch Diameter (vertical) by Direct Push	Reimbursable*	456.3	\$	1.00	\$ 456.30	0	456.3	\$ 456.3	0 0
		RETAINAGE				\$ 544.01	\$-		\$ 398.9	5 \$ 145.07
		SUBTOTAL				\$ 10,880.28	\$-		\$ 7,978.9	4 \$ 2,901.34
Task	1									
3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - ≤ 100 miles each way	Per Round Trip	1	\$	374.50	\$ 374.50	0	0	\$-	1
12-6.	Transport and Disposal of Petroleum Impacted Soil (includes drum)	Per Drum	3	\$	200.00	\$ 600.00	0	0	\$-	3
12-13.	Transport and Disposal of Petroleum Contact Water (includes drum)	Per Drum	1	\$	185.00	\$ 185.00	0	0	\$ -	1
19-3.	General Site Assessment Report	Per Report	1	\$	1,950.00	\$ 1,950.00	1	0	\$-	0
21-15.	P.G. or Qualified P.E. Review, Evaluation and Certification of a General Site Assessment Report	Per Report	1	\$	500.00	\$ 500.00	1	0	\$ -	0
23-1.	Contingent Funding - Allowance only to be used as offset for field change orders	NOT BILLABLE	7000	\$	1.00	\$ 7,000.00	n/a	n/a	n/a	7000
		RETAINAGE				\$ 530.48	\$ 122.50		\$-	\$ 407.98
		SUBTOTAL				\$ 10,609.50	\$ 2,450.00		\$-	\$ 8,159.50
		TOTAL COST				\$ 29,674.45	\$ 9,203.03		\$ 7,978.9	4 \$ 12,492.48
Version:	10.0	·	Ov	vner Co	st Share:	\$ -	\$-	l	\$ -	\$ -
			FI	DEP Co	st Share:	\$ 29,674.45	\$ 9,203.03	1	\$ 7,978.9	4 \$ 12,492.48
				R	etainage:	\$ 1,483.72	\$ 460.15	1	\$ 398.9	5 \$ 624.62
			FDEP	Less R	etainage:	\$ 28,190.73	\$ 8,742.88	1	\$ 7,579.9	9 \$ 11,867.86

Site Manager Approval:

Print Name

Signature

Date of Review Letter

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program

Request for Change - Authorization for Change in Scope of Work

9-Digit Facility ID #: 138503663	Ref #: 844-036A	PO #: B22481
Facility Name: FUEL Jak Service Center INC DBA United Fuel	FDEP Cost Share %: 100.00%	CO #: 1
Site Manager Name: CAROLINE HERMAN	Contract #: GC844	CO Type: Regular
Site Manager Phone: (305)372-6856	Contractor: ATC GROUP SERVICES, LLC	
Site Manager Email: caroline.herman@miamidade.gov	Contractor Phone: (305) 882-8200	

This is an authorization for the costs associated with the change in quantities of services being provided and/or deliverable due dates. In order for these costs to be paid, these changes must be processed through a change order to the purchase requisition and a revised Purchase Order issued by MFMP prior to initiating work.

Description of Change and Justification: Include complete description of who, what, where, when, how and why.

Per the RER/DERM Interim Assessment Report review transmittal email (in Oculus), the following items will be required in addition to those items currently specified in the Task 3 scope of work: analysis of the soil sample collected from proposed soil boring SB-5 for lead analysis; monitoring well installation – 1.5 inch diameter (vertical), as detailed on the attached Soil Boring and Monitoring Well Installation table; and collection of a groundwater sample from the "new" well for BTEX, MTBE, PAHs, TRPH and lead. Copies of permits, laboratory results, updated tables, groundwater sampling logs, and well construction logs will be included in the Task 3 deliverable, Interim Assessment Report. Request a 30-day extension of time for all remaining deliverables. The use of a direct push rig is specified since the mast on a rotary drill rig is to tall to fit beneath the canopy to advance three of the four soil borings. A 1.5-inch diameter well is specified in lieu of a 2-inch diameter well because the direct push rig will be used to install the well and 1.5-inch diameter prepack is the largest that the DP rig can install. A quote for installation of a 1.5-inch x 13 feet deep monitoring well including 8-inch manhole and concrete pad prepared by the direct push contractor is attached.

TASK	PAY ITEM	DESCRIPTION	UNIT OF MEASURE	PAY ITEM PRICE	QUANTITY	E	XTENDED PRICE
3	1-7.	6% Handling Fee for Cost Reimbursable Items	% Surcharge	\$0.06	546.3	\$	32.78
3	9-14.	Soil, Lead (EPA 6010 or EPA 6020)	Per Sample	\$12.00	1	\$	12.00
3	3-7.a.	DPT Rig and Support Vehicles Mobilization - ≤ 100 miles each way	Per Round Trip	\$625.00	1	\$	625.00
3	5-3.a.	Direct Push Technology (DPT) Rig and Equipment	Full Day	\$2,999.00	1	\$	2,999.00
3	22-1.	Well Installation 1.5 Inch Diameter (vertical) by Direct Push	Reimbursable*	\$1.00	456.3	\$	456.30

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program. **Request for Change -** Authorization for Change in Scope of Work

9-0	Facility Name	#: 138503663 Ref # E: FUEL C4 Jak Service Center INC DBA United Fuel FDEP Cost Share %	: 844-036A : 100.00%			#: <u>B2248</u> #: 1	1
3	3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - ≤ 100 miles each way	Per Round Trip	\$374.50	1	\$.374,50
3	8-1.	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	\$165.00	1	\$	165.00
3	9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	\$34.00	1	\$	34.00
3	9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1- methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	\$80.25	1	\$	80.25
3	9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	\$67,41	1	s	67.4
3	9-41.	Water, Lead, Total (EPA 200.7, EPA 200.8, EPA 6010 or EPA 6020)	Per Sample	\$10.50	1	\$	10.5
3	1-4.	Permit Fees (actual fee only, cost to obtain permit is included in applicable pay items)	Reimbursable*	\$1.00	90	\$	90.00
3	3-9.a.	Drill Rig and Support Vehicles Mobilization (hollow stem auger, mud rotary or sonic) - ≤ 100 miles each way	Per Round Trip	\$1,050.00	-1	\$	(1,050.00
3	5-1.a.1.	Split Spoon Sampling – 2 foot (during boring) < 50 feet	Per Spoon	\$34.75	-15	\$	(521.2
3	5-6.	HSA or MR Boring, ≤ 6 inch diameter, < 50 foot total depth	Per Foot	\$24.76	-30	\$	(742.80

"For reimbursable pay items the cost listed is a "not to exceed" amount. Fees will be reimbursed for the pay item based on the actual invoice. Please note, the unit of measure for these items will be displayed as dollars for invoicing purposes. Please refer to the Scope of Work for additional description of these items.

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program Request for Change - Authorization for Change in Scope of Work

9-1	Facility ID #: 1385 Facility Name: FUE		Ref #: 844-036A P Cost Share %: 100.00%	PO	#: B22481 #: 1
Task	Deliverable Name		Previous Due Date	New Due Date	Change Order Subtotals
3	Interim Assessme	nt Report	5/29/2018	6/29/2018	\$ 2,632.69
4	General Site Asse	essment report and disposal manifests	7/30/2019	8/29/2008 2018	\$ -
	0.	Period of Servic	e: 10/1/2018	10/31/2018	\$ 2,632.65
FD	r Representative: EP Site Manager: trative Reviewer:	Dwight W. Schwendernan (Print Name) CAROLINE HERMAN (Print Name) James Fletcher (Print Name)	Previous End Date	New End Date	Total Authorized Cost (FDEP Share: 100%) 4/25/2018 (Date) 4/25/2018 (Date) 4/26/2018 (Date)
Technical /	Approval (optional):	412618	-		
st Center	Approval (optional):				

STCM Facility Name: JAK SERVICE CENTER DBA UNITED FUEL

SOIL BORING DETAILS		Screening/Split Spoon Intervals			WELL INSTALLATION DETAILS												
TASK #	Installation Method	Quantity	Depth (ft bis)	Total Boring Footage (ft)	Screening Depth Interval 1 & Spacing	Screening Depth Interval 2 & Spacing	Screening Depth Interval 3 & Spacing	Quantity	Well Type	Well Diameter (in)	Depth (ft bls)	Screen Interval (ft bis)	Total Well Footage (ft)	Surface Casing Diameter (in)	Surface Casing Depth (ft)	Total Casing Footage (ft)	Well Completion Type
3	DPT			0				. 1	MW	CH 21/2	13	3-13	13	1 mar 1		Q	8" MH
	TO	TALS		0	1								13			0	1.0

Direct Push Technology Quote Form JAEE@bellsouth.net (954) 476-8333 (Office) (954) 476-8347 (Fax)

Contact: Dw	vight S	chwender	nan
F	0	Date: 4257	16
e × 1			1 .
Jewicos to	i instra	i me pl	ipulled
A11111	1 0	1 1	1
3 td 10'scle	h, finta	()	
	10		
	*		
UNIT	RATE	NUMBER OF UNITS	EXTENDED PRICE
whole day			\$
half day			\$
per foot			\$
each fait	35.10	13	\$ 416.30
each			\$
each	-		\$
per well		1	\$
roundtrip		5	\$
per night/crew		1	\$
each	1	0û	\$
each	1		\$
			\$
			\$
			\$
	Тс	otal Quote Price	456.30
			1
-			
	LINIT Whole day half day per foot each per well roundtrip per night/crew each	LINIT RATE Whole day half day per foot each per well roundtrip per night/crew each each each	Sewices to institut one pl 3 td 10's cleh, fundel UNIT RATE NUMBER OF UNIT RATE NUMBER OF UNITS whole day half day per foot each per well roundtrip per night/crew each

Contract Company Address:

JAEE Environmental Services, Inc. 3101 Peachtree Cir. Davie, FL 33328

Signature of Person Submitting Quote:

Quote:

APPENDIX G

FIELD NOTES

FDEP ID No. 13/872463 FDEP PO NO B2481 which is Used DERMComplete 99 LOCATION 6900 SW Sty Priani Date 01/18/18 objective, Conduct site Inpediou - Notify owner Julia Ugon ou-site - Review HASP, JSAS 3\$ 50W " entres Sunny eb-650F N/2-15 1993 CAR & DERM Compliand Needslap Remarks Respect to New Site Wells from CAR Site Well & DTW TTR R. not clearly ATE TECH Patriot Acha Hint 35 with Presect / Climit Jak / Unit tel - FDEP Mapt 313 ロモ 19.3 12.0 1199.4 I devititied P. 49 Plan 455WE: 1132 6.96 1117 D119 Grið · Walk site A-mul Milu-3. MW-6 IMW.S. THINK MU--H-MW 3-19W 0-0M h-my K-MW L-MW 2-MM 5-MW 2 AMB.

-	V			_	and the second	_		_	1			1	
19				1									J.F
													her a la
		-											3
						-							重
				-	-						-		-
8						_		_	-	-	_		
Date													
													R
		_	_		-		-	-		-	-		-
								-					- 1
												-	
							_	_					
							-						
								-		-			
ent		_	-	-	++	-		-			-		-
Froject / Cient									_				-
acetion.													
290													8
													1
1 (AN)													
100 Mit 1	haan laan jaraa in												
		-		-	-	-	-	-	-	-	-	-	-
		-		-	1	-	-		-	-	-	-	-
de					1							-	-
de			p								-		Note-
. de	24		rted									-	1000
	Lap Cap		yted			- BA					74		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n de	do Cap	u	fly leparted								*		1000
n de	warks eeds log eeds lag	ц т 1	iefly, departed				N.				72	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n de	Needs Cap	n n	sociefly								14		120
TOEP - FDEP	Requerke Needs Cop Weeds Cop	а н а	boietly, ud departed								11		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TOEP - FDEP	Revinancia Needs Cap Weeds Cap	n n	3								74		the second
The Pierce of 10/15 8	Remarks Weeds Cop Weeds Lap	а н а	but 44								*		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The Pierce of 10/15 8	6 Needs Cap	с п <u>г</u>	but 44								*		
The price of 10/15 8	170 Remarks 1,6 Needs Cap	tr6 11 -	but 44										
TOEP - FDEP	DTB Remarks 14,6 Needs Cop 13,0 Weeds Cop	14.6 11	but 44										
TOEP - FDEP	7 14,6 Remarks	3 14,6 11 1 12.7 u	us pochon Ugan au										
The Pierce of 10/15 8	10 DTD Reventie 19914,6 Needs Cop 63 13,0 Weeds Cop	33 1416 11	us pochon Ugan au										
TOEP - FDEP	DTW DTB Remarks 6,89 14.6 Needs Cap 6,63 13.0 Weeds Cap	C.33 1416 11 1	T. Ugan an										
TOEP - FDEP	7 6,63 19,0 Needs Cap	8 7,13 12.7 11 1	T. Ugan an										
TOEP - FDEP	12-9 6,89 14,6 Needs Cop 10-7 6,63 13,0 Weeds Cop	0.8 6.33 1416 11 1	T. Ugan an	¥									
TOEP - FDEP	1 DTW DTB Remarks 9 MW2-9 6,89 14, 6 Needs Cap MW-7 6,63 13,0 Weeds Cap	MW.A C.33 1416 11 1	T. Ugan an	X									
FDEP I DI: 13/9503663 DWS DWS	Well DTW DTB Reveative Adril Mus-9,6,89, 14,6 Weeds Cap WW-7 6,63 13,0 Weeds Cap	WWWA C133 1416 11 1	T. Ugan an	XIC									
TOEP - FDEP	Well DTW DTB Remarks Burl Mus-9,6,89, 14,6 Needs Cap MN-7,6,63 13,0 Weeds Cap	WWWA C133 1416 11 1	ed inspection T. Ugan an	XIC									

Location Jak/United Fuel Date 02/21/13 J Project/Client 6900 SW 8th Street Miami FL FDEP ID No. 13/8503663 FDEP PO No. 322491 Purght W. Schwende man - ATZ Jeep Patriot Leik Rodney - ATC Dodge Rain 1500Ph depart: LE arrive: 1015 weather: M-Surry & 82-850F ESE 15+ objective: Conduct GW sampling pe Task, 2 of PO 322481 2 DERM e-mail update - Review MASP, JSAS \$ 800 -Notify owner Rop (Jose) ou-site equipment - Caliborate Glus · Gauge DT W/ Survey Well Tols BR Remarks well DIW 1 6,70 4,61 \$ ReplacedCap 2 Replaced Cap 4,61 ± 3 Need Low Pro Cap 6.69 4.63 Replaced Cap 4 6:81 4.49 1 Replaced Lay 5 6.43 5.87 5.50 Replaced Car 5.83 6 4.96 Replaced Cap 6.37 7 8 Replaced Cap 5.28 6.05 ReplacedCap MW-B 6.80 4.44

Location 6900 SW Sth St, Miami Date 02/21/2015 Project/Client Jak Service Center / United Fuel 2101430699 Leif Rodney ATC Doglge RAM 1500 Arrive: 1033 Depart: 15:13 Weather: SI cloudy T: ~ 750 F Objective: Ground water sampling event (2 Day) - Called owner upon arrival - Reviewed HASP, USA ESOW - walked site with map for well identificat noi Sampling / Pepth to water - MW/, MWZ, MW3, MW4 * Assistd D. Schwendeman w/ Survey monitoring well top-of-casting elevations for wells. - MWI, MWZ, MWB, MWG, MWG, MWG, MWT, MW8, MWB

6 Location 6900 SW 8th St, Miami Date 02/22/2018 Project / Client Jak Service Center / United Fuel - FDEP 2101430699 Leif Rodney / ATC Dodge RAM Arrive 09:25 Depart: 14:00 Weather: 770 E Cloudy objective: Groundwater Sampling MW5/6/9/A/B - Owner informed yesterday assignment was for two days - HASP, JSA Sow Reviewed yesterday - Walked Site for well location retrester Sampling / Depth to Water - MW7, MW8, MW6, MWS, MWB

Project / Client Jell Street Wilder, 129 Project / Client Jell Service Center day Wuifel Fiel FDEP No. 13/ PUP. PO NO.	28-2 Lither for the part of th	0 -
		*
Le Mizuni Leurer Aber Lunted Fue PONO,		brown whof 20,1 realizing 20,1 Pet oder 0,1
128 Location <u>6900 540 3411 Street</u> Wirdun, Project/Client Jek Service Cember Aba tunked Fue FDER Noy 13/ PO No, PO No,	- ATC sunny favoury rig eviced any une	Pale Philip
128 Location 69 Project / Client FUER No	arrive: 0850 weather: A- orige clive: - - Noticy T - Noticy T - Conduct A - Set up 3P - Sould cl 2-4 tup 3P 2-4 tup 3P 2-4 tup 3P 2-4 tup 3P 2-4 tup 3P 2-4 tup 3P	0945 0-1 (29" Sault of 64" Saul

Project / Client vial / privice / ender/					
99	Project / Client	Z	Jak Service Center o.13/8503663	FDEP PO No. B22481	<u>8</u>
Leir Rochney/ATC	Seil Boning	bring	Time	AVD	
Dedge RANK	583	6-9	04:95	0.5	
Temp: 83° cloud: Partly Cloedy wind: up 10 mph		, b-C	08:50	'R	
SO.		4.6'	09:35	Q	
Objective: Sail Sampling / Well Michel	584	0-9,	64:40	R	
- Arrived on-site to 2 chillers		3-4	04:50	X	
- Conducted hearth & safety		9-61	04:56	0.1	
-Started diviling P 09:60	Sea	0-3 '	10110	x	
)@		- A-6	10:15	0	
Left site and drove back to office to		4-6'	02:01	Q	-
Drep Samples	581	10-0	10:25	ja l	
* Informed property manager that		-40	4	Ø	
I would be leaving a come		4-19,	10:40	Ø	
beside to concrete pade to collect	585	0-21	11:00	Q	
upon arrival on thursday		2-4	11:05	0.3	
nples to		4-10,	(1:10	Ø	
	: Lmni	6.15			
	FULLY	6.41	Pre-Development	ment (a Wad	0
		6.90 6	@ start of	development w= 48	0.4
		2	0 11:6S		
		23.07	a, n:00		
		221	1 .	4	0.0

Location 6	900 SW 8	st, mi	ami	Date O	6/07/2018
Project / Clie	nt Jak Serv	ice Centel	Dea Um	tal Fuel	
FOEP 10 # :	13/8503663	POH	: B224	81	
Leif Rodne					
Dodge RAM	0				-
Temp: 85°		= Partly (lou	dy win	d: sw	6 mph
Arrived: 10:	20	Departe	d: 11:55	5	
Objective: Gu	oundivoter	Sompling	Event		
	sampling a			to amive	4
on site					-
- Texted	Jose Ugan	(store ow	ner) to	inform	him of
	F work prev				
					-
		-			
				~	24
					-

Florida Department of Environmental Protection- - Petroleum Restoration Program

	ASSESSMENT REPORT gnature Page]	II VV
DATE:	08/29/2018	08/29/2018
PO#/TA#/WO#:	B22481	DERM ENVIRONMENTAL MONITORING RESTORATION DIVISION
Site FDEP Facility ID #	13/8503663 Score: 10)
Site Name:	Jak Service Center Inc DBA United F	uel
Address:	6900 SW 8th Street	
City:	Miami	
County:	Miami-Dade County	
Consultant Company:	ATC Group Services LLC	
Address:	9955 NW 116th Way, Suite 1	
City, State, Zip	Miami, Florida 33178	
Consultant Rep.:	Dwight W. Schwendeman	
Phone #:	(305) 882 8200	
Responsible Party Name:	Jorges & Julia Ugan	
Address:	11050 SW 143 Road Place	
City, State, Zip:	Miami, Florida 33186	
Responsible Party Rep .:	Jorges & Julia Ugan	
Phone #:	(305) 904-5975	

CERTIFICATION:

Qualified Registered Professional Engineer or Registered Professional Geologist Certification. I hereby certify that I have supervised the field work (as summarized in the "Recent Site Assessment Activities" section) and preparation of this report, in accordance with Florida Rules and Regulations. As a registered professional geologist and/or professional engineer, as authorized by Chapters 492 or 471, Florida Statutes, I certify that I am a qualified groundwater professional, with knowledge and experience in groundwater contamination assessment and cleanup. To the best of my knowledge, the information and laboratory data summarized in the "Recent Site Assessment Activities" section (including the applicable attachments) are true, accurate, complete, and in accordance with applicable State Rules and Regulations. *Include a hard (paper) copy of this cover page, signed and sealed, when submitting the report electronically.*

Consultant Name: Fritz Danivel	PE or PG License #: 1126
Signature:	Date: 5777 FLORIDA Stamp or Seal
	TO FLORIDA

Site Name:
Facility ID #:
_

Jak Service Center dba United Fuel
13/8503663

08/29/2018

Date:

TABLE OF CONTENTS

SECTIONS INCLUDED IN REPORT:			
X List of Attachments			
X SECTION I - Facility and Discharg	e Inform	ation/Init	ial Abatement
Fill out this section for each site in the cluster.	C	Cluster Site Inde	ex (if applicable)
A) Site Description	Part one	FDEP ID #	Site Name
B) Petroleum System/Tank History	Part two		
C) Release Information	Part three Part four		
D) Initial Abatement/Source Removal	Part five		
	Part six		•
X SECTION II - Background Site Ass	sessment	Informat	ion
A) Receptor Investigation			
B) Previous Non-Closure Assessment			
C) Previous Remediation			
X SECTION III - Recent Site Assess	nent Act	ivities	
A) Soil Investigation			
B) Groundwater Investigation			
C) Free Product Investigation			
D) Comments			
X SECTION IV - Impacted Media			
A) Lithologic Summary			
B) Hydrologic Summary			
C) Risk Evaluation			
X SECTION V - Post Assessment Sur	nmarv &	z Recomn	nendations
<i>Fill out this section <u>after</u> site assessment has been been been been been been been bee</i>	•		
A) Site Assessment Summary	1		
B) Recommendations			
C) Comments			
SECTION VI - Program Issues (for	state fui	nded clear	nun sites)
	State Iul		ind sines
A) Work Plan and Cost Summary			

Appendices

(Appendix ID)	(Contents)
А	Tables
В	Figures
С	Pertinent Information
D	Soil Boring Logs, Well Construction and Development Logs and
	Well Completion Reports
Е	Laboratory Analytical Reports and Groundwater Sampling Logs
F	FDEP Purchase Order AFE318 and Change Orders 1 through 4
G	Field Notes

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

LIST of ATTACHMENTS

(Formats for Tables and Figures are provided in FDEP Petroleum Cleanup Preapproval Program Standard Operating Procedures (SOP) Manual, 5th Edition, April 2005 and subsequent updates, SOP PCS-004, SOP PCS-005, SOP PCS-006 and the October 1998 Assessment Report Preparation guidance). Updated Table formats can be found at the Petroleum Cleanup website.

TABLES

ATTACHED TA	ABLE #	APPENDIX
Assessment Tables		
SOIL SCREENING RESULTS	1	A
SOIL ANALYTICAL RESULTS	2A-B	A
GROUNDWATER ANALYTICAL RESULTS (monitoring wells)	3A-B	A
GROUNDWATER ELEVATION DATA	4	A
MONITORING WELL CONSTRUCTION DETAILS	5	A
SUPPLY WELL CONSTRUCTION DATA (includes		A
well owner name and address information) SITE ASSESSMENT SUMMARY FORM	6	A

Jak Service Center dba United Fuel

Site Name:	Jak Service Center dba United Ft
Facility ID #:	13/8503663
Date:	08/29/2018

FIGURES

ATTACHED	FIGURE #	APPENDIX
SITE PLAN - including current and/or former tank locations, piping/utilities, and extent of soil excavations (if applicable)	1	<u> </u>
SITE VICINITY AREA USE MAP - including all potential off-site sources of contamination and water wells located within 500 feet	2	<u> </u>
POTABLE WELL LOCATION MAP - A USGS quadrangle map illustrating all municipal/public and private supply wells located within 1/2 and 1/4 mile, respectively (respective radii illustrated)	3	<u> </u>
SOIL SAMPLING OVA RESULTS - including data collected during monitoring well installation	4	<u> </u>
SOIL SAMPLE ANALYTICAL RESULTS - including data colle from monitoring well installations. <u>This map can include recommended so</u> boring locations		В
GROUNDWATER ANALYTICAL RESULTS MAP - Benzene, BTEX, MTBE & Naphthalene concentrations plotted at each sampling point. <u>This map can include recommended well locations</u>	6	<u> </u>
GROUNDWATER ELEVATION CONTOUR MAP - with flow interpretation for each impacted zone. <u>Note, previous flow</u> <u>interpretations should be submitted when they are not consistent with</u> <u>the current flow interpretation(s)</u>	<u>10</u> thru	<u> </u>
GROUNDWATER PLUME INTERPRETATION(S) - with contaminant isoconcentration contours plotted for each significant contaminant of concern (or total BTEX)	7 thru 9	В
ESTIMATED FREE PRODUCT PLUME AREA - including thickness measured	NA	
GEOLOGIC/HYDROLOGIC CROSS-SECTION - including lithologic, well screen and depth to water fluctuation information	NA	
PROPOSED SOIL BORING AND MONITORING WELL LOCATIONS (if not illustrated in another figure)	NA	

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

FIGURES (continued)

ATTACI Remediation		GURE #	APPENDIX
	REMEDIAL SYSTEM SITE LAYOUT - showing remedial system layout and locations of major system components (e.g., monitoring and recovery wells, system housing, effluent discharge, etc.)	NA	
	REMEDIATION SYSTEM SCHEMATIC - showing treatment influent/effluent discharge, etc.	NA	
<u>MISC.</u>	ATTACHMENTS		
ATTACI	HED		APPENDIX
X	LABORATORY ANALYTICAL REPORTS - including COCs required for all sampling		<u> </u>
X	GROUNDWATER SAMPLING LOGS – form FD 9000-24 is required for all groundwater sampling		E
<u> </u>	FIELD INSTRUMENT CALIBRATION RECORDS- form FD 900 is required for all groundwater sampling	0-8	E
<u> </u>	WELL CONSTRUCTION & DEVELOPMENT LOGS recommend using Petroleum Cleanup Program forms		D
X	BORING LOGS recommend using Petroleum Cleanup Program forms		D
	CONTAMINATED SOIL AND/OR GW VOLUME AND CONTAMINANT MASS CALCULATIONS		
	COPIES OF OFF-SITE ACCESS AGREEMENTS		
X	COPY OF APPLICABLE WORK ORDER, PURCHASE ORDE ASSIGNMENT	R, OR TASK	F
X	COPY OF APPLICABLE CHANGE ORDERS		F
	COPY OF DISPOSAL MANIFESTS - to document IDW soil and/or groundwater disposal		
	AQUIFER TEST CALCULATIONS		
	CHRONOLOGY OF FIELD WORK PERFORMED - a list of what was performed and when performed		

TEMPLAT	TE SITE ASSESSMENT REPORT	
Site Name:	Jak Service Center dba United Fuel	
Facility ID #	#: 13/8503663	
Date:	08/29/2018	
	COPY OF PREVIOUS REMEDIAL ACTION PL APPROVAL ORDER	AN
	COPY OF PREVIOUS SITE (OR CONTAMINAT	ΓΙΟΝ)
	ASSESSMENT REPORT APPROVAL LETTER	,
	OTHER:	
	OTHER:	
	ORIGINAL SIGNED AND SEALED PROFESSI	ONAL LAND SURVEY
	_ ELECTRONIC COPY OF PROFESSIONAL LAN	JD SURVEY
X	ELECTRONIC COPY OF TEMPLATE SITE AS	SESSMENT REPORT

TEMPLATE SITE ASSESSMENT REPORT				
Site Name:	Jak Service Center dba United Fuel			
Facility ID #:	13/8503663			
Date:	08/29/2018			

SECTION I - Facility & Discharge Information/Initial Abatement Site Name

Cluster Site

Part

Facility FDEP#

Site Name:

I-A) Site Description

Please provide a brief description of the site and a summary of site history and operations. What type of business or businesses (if any), non-petroleum as well as petroleum, operated at the former/present site? If petroleum, describe where all former and current fuel tanks, lines and dispensers were/are located (indicating how this information was obtained). Describe any access constraints (utility conduits, canopies, land cover, etc.) which also might influence the placement of monitoring wells and/or the installation of soil borings. Indicate whether there are any owner issues or traffic concerns which might effect when the work can be performed? <u>Please indicate when the requested information is best illustrated on the site map.</u>

The site is located at the southwest corner of the of the intersection of Southwest 8th Street and Southwest 69th Avenue, in Miami, Florida as depicted on Figure 1, Appendix A. The site is currently operated as a vehicular fuel service station and convenience store by United Fuel. The current underground storage tank (UST) system consists of two 10,000-gallon capacity USTs used to store regular and premium unleaded gasoline, and one 10,000-gallon capacity UST used to store diesel fuel. The USTs are of double-wall fiberglass construction and fitted with secondary containment sumps at each submersible turbine pump location. Double-wall fiberglass product transfer piping supplies fuel to four gasoline dispensers located in the northeast portion of the site and a single diesel fuel dispenser located on the east side of the site. The dispensers are fitted with secondary containment sumps. The system is fitted with a Veederoot automatic tank gauging system. The UST system was installed in September 1995. The current layout of the site including the UST system and monitoring well network is depicted on Figure 1, Appendix B.

Site map (Figure

1) illustrating all current & former tanks, lines and dispensers (including utilities, canopies, etc.) is included in Appendix B

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

I-B) Petroleum System/Tank History

List current and former UST's and/or AST's operated at site. Systems (PAST AND PRESENT) must be illustrated on Site Plan. This information should be a summary of the Department's STCM database, all tank closure reports (if applicable) and site owner & operator information.

<u>ID#</u>	<u>AST or</u> <u>UST</u>	<u>Size</u> (gallons)	<u>Installation</u> <u>Date</u>	Contents (unleaded gasoline/ diesel/etc.)	<u>Status</u> (active, removed or abandoned [in place])	Date Removed or Abandoned (if applicable)
1	UST	3,000	<08/01/1984	Gasoline	Removed	1995
2	UST	3,000	<08/01/1984	Gasoline	Removed	1991
3	UST	3,000	<08/01/1984	Gasoline	Removed	1991
4	UST	550	Unknown	Waste Oil	Removed	Unknown
5	UST	550	Unknown	Waste Oil	Removed	Unknown
6	UST	550	Unknown	Waste Oil	Removed	Unknown
7	UST	10,000	09/01/1995	Unleaded Gasoline	Active	NA
8	UST	10,000	09/01/1995	Unleaded Gasoline	Active	NA
9	UST	10,000	09/01/1995	Vehicular Diesel	Active	NA

-If above information is different than the Department's STCM database, please indicate source of updated information:

Based on a 1984 Dade County tank registration form dated April 1984 obtained from the RER/DERM Online Environmental Records database, UST Nos. 1 through 3 were installed prior to 1984. Additionally, multiple records reference UST Nos. 1 through 3 as 4,000-gallon capacity versus the 3,000-gallon capacity referenced in the FDEP STCM database.

Active Site? If yes, please indicate method, date and extent of latest tank and line tightness test (include copy of tightness test results). If tank tightness test results are not available, please explain why they are not necessary or indicate when next tightness test will be performed.

Tank and line tightness testing was most recently conducted on ???. Tank and line tightness test results are provided in Appendix C.

Copy of tightness test results included in Appendix

YES

Х

NO

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

I-B) Petroleum System/Tank History (continued)

YES	_
X	

VDO

NO

Petroleum System Closure? If yes, briefly describe type of petroleum system (AST, UST, distribution lines, etc.) and closure activities conducted. <u>Description not</u> <u>needed if copy of system tank closure report included.</u>

Note: Section I-C should be used to document soil, groundwater or product removal performed during closures.

A partial removal/upgrade of the vehicular fuel UST system was conducted in July 1991. Two of three 3,000 gallon steel USTs were removed and one 3,000-gallon steel UST was lined and restored to service. Note the three steel USTs are sometimes referenced as 4,000 USTs. Two dispenser islands and associated steel product piping were removed. A single dispenser/island was installed and with double-wall fiberglass piping. A TCAR for the removal of the two 3,000-gallon USTs prepared by Service Station Aid Environmental and dated August 7, 1991. The TCAR references the removal of three 550-gallon and two 2,000-gallon capacity USTs. Note, discussion of the three 550-gallon waste oil tanks is not included in this TSAR as no contamination was recorded at for these tanks and the site PCPP eligibility is specific to the vehicular fuel USTs. The TCAR references the removal of soil with organic vapor analyzer (OVA) readings greater than 500 parts per million (ppm). Groundwater samples were collected from the UST excavation pit for analysis by EPA Methods 602 and 610 for BTEX compounds, MTBE and PAHs. The report references the groundwater is "contaminated by members of the Gasoline groups in the vicinity of the underground storage tank". Groundwater analytical results were above the 1991 state standards and current GCTLs. A copy of the 1991 TCAR is provided in Appendix C. The remaining 3,000-gallon steel UST piping and dispenser was removed from the subsurface and replaced with a new UST system in September 1995. The new UST system consisted of: three 10,000-gallon capacity double-wall fiberglass UST (two unleaded gas and one diesel fuel); double walled fiberglass piping; four gasoline dispensers north of the building and one diesel fuel dispenser east of the building. A TCAR for the removal of the 3,000-gallon UST was not located during the file review. A DERM tank Inspection Form dated September 12, 1995 indicates a strong petroleum odor was noted and references discussion with the contractor regarding elevated soil sample OVA readings. A copy of the As-Built drawing for the UST system installed in 1995 (current system) are provided in Appendix C.

Description of system closure activities included in attached tank closure report.

Copy of tank or system closure report (if applicable) included in Appendix C

I-C) <u>Release Information</u>

	Discovery Date(s)	<u>Program Type(s)</u> : ATRP, EDI, PCPP, PLRIP or Non-program (please indicate if a non-program discharge has been combined with an eligible discharge)
1 st	07/15/1991	PCPP
2 nd		
3 rd		
4 th		
5 th		
6 th		

-Source description and release history that includes date(s) of release(s), cause(s) of release(s), where they occurred, type(s) of product released and volume(s) of release(s) [please explain how estimates were derived].

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

Information regarding any discharge was not available in the FDEP OCULUS database. Information available on the RER/DERM Online Environmental Records database regarding the July 1991 discharge is limited to a DERM Site Inspection Form dated July 15, 2018 which references free floating product was observed on the surface of the groundwater exposed during the partial removal/upgrade of the vehicular fuel UST system in 1991 and the 1991 TCAR which references elevated PID readings for soil. A copy of the form is provided in Appendix C.

- Suspected type(s) of product released:

X	Leaded Gasoline	Diesel/Kerosene	Χ	Unleaded Gasoline
	Used Oil	Unknown		Other:

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

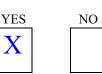
I-D) Initial Abatement/Source Removal

(Soil/Groundwater/Free Product removal during tank closures):

Was soil contamination detected during petroleum system closure? If yes, please briefly describe extent of petroleum impacts and

method(s) used to identify soil contamination.

The 1991 TCAR references the removal of contaminated soil as follows: "On July 17, 1991 the UST's and surrounding soil were excavated. The extent of the excavation was determined by screening the excavation pit walls with a Photoionization Detector (PID), until organic vapor readings of less than 500 ppm for Gasoline and 50 ppm for Diesel fuel were detected or structural constraints impeded further excavation." There is a date discrepancy with respect to the July 15, 1991 DERM Inspection Form. Reference to excavated and stockpiled soil is referenced in the DERM Site Inspection Form dated July 15, 1991.


Based on review of the DERM tank Inspection Form dated September 12, 1995, contaminated soil was detected during the 1995 removal of the remaining 3,000-gallon capacity UST. A strong petroleum odor was observed at the UST excavation pit. Reportedly, elevated OVA readings were obtained from soil samples collected by the consultant, Miller Engineering. "Contaminated" soil was observed staged on-site which a construction representative indicated was slated for thermal treatment at Rinker. The volume of soil removed and final disposition are unknown. A TCAR for the 1995 UST removal was not located during the review of OCULUS or RER/DERM Online Environmental Records database.

Site map (Figure NA) illustrating soil sampling locations is included in Appendix
Tabular summary of soil sampling results (Table NA) is included in Appendix
YES NO N/A
Was contaminated soil removed? If yes, please describe the X
horizontal and vertical extents of the soil removal and indicate where
Contaminated soil was removed during the 1991 UST removal as referenced above. The 1993
Contamination Assessment Report references the removal of approximately 80 cubic yards of contaminated soil and disposal by a "properly licensed contractor" on page 1 of the report in the Initial Remedial Action section.
Contaminated soil was removed during the 1995 UST removal as referenced above. The volume and disposition is unknown.
Approximate depth to water at time of excavation (if known) ~ 6 feet blsApproximate amount removedUnknowntons yds^3 Date:1991

D

Disposal method:

tion (if k <u>nown</u>)		~6	feet
yds ³	~80	Date:	1
nknown			

N/A	

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

I-D) Initial Abatement/Source Removal (continued)

	YES	NO	N/A
Was groundwater contamination detected during	X		
petroleum system closure? If yes, please indicate whether wells were			
installed (including their construction details if possible) and indicate the maximu	m		
levels for petroleum contaminants of concern that were detected.	1	1 1 10	0.1
Yes, as referenced in Section I-B, concentrations of BTEX compound			
standards and current GCTLs in a sample collected from the groundy	vater ex	posed in the	UST
excavation pit.			
Site map (Figure <u>NA</u>) illustrating groundwater sampling locations is inc	luded in A	Appendix	
	YES	NO	N/A
Was contaminated water removed? If yes, please identify removal		X	

location(s) and describe method of removal.

Removal of contaminated water is not referenced in the 1991 TCAR or 1991 DERM inspection form. Removal of contaminated water is not referenced the DERM tank Inspection Form dated September 12, 1995.

Approximate volume removed: gallons Date(s):

Disposal method:

Page 12 of 44

TEMPLATE	SITE ASSESSMENT REPORT	
	Jal Samiaa Contar dha Unita	J D

Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

I-D) Initial Abatement/Source Removal (continued)

	YES	NO	N/A
Was free product detected during petroleum system	X		
closure? If yes, please describe location(s) where product was observed	Λ		
and thickness observed.			
Yes, as referenced in Section I-C, free product was observed floating in the former UST excavation pit by the DERM inspector (refer to I Report Form in Appendix C).			
Free product is not referenced in the DERM Tank Inspection Form	dated Septer	mber 12, 19	95.
Site map (Figure NA) illustrating locations where free product was observabular summary of product thickness (Table NA) is included	erved is includ in Appendix	ed in Appendi	X
	YES	NO	N/A
Was free product removed? If yes, please identify removal location(s) and describe method of removal.			
Recovery of free product via absorbent pads is referenced on the 199 however there is no reference of an estimated volume recovered or the Free product recovery is not referenced in the 1991 TCAR. The 199 Report references the use of 14 absorbent pads and the "legal dispose the report in the Initial Remedial Action section.	the dispositi 93 Contamin	on of the pa nation Asses	ds. ssment

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

SECTION II - Background Site Assessment Information

II-A) <u>Receptor Investigation</u>

Are large (>100,000 gallons per day) public supply potable wells located within 1/2 mile? If yes, please indicate

distance(s) and direction(s) from site, if they are located downgradient and if the well(s) are screened deeper than contamination. If unknown, please explain.

YES

NO

Х

 Potable well survey map (Figure 3) is included in Appendix B

 Potable well construction summary (Table NA) is included in Appendix YES NA

Are water wells, including irrigation, industrial and all potable wells (<100,000 gallons per day), located

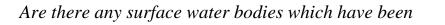
within 1/4 mile? If yes, please identify the type(s) of wells, their distances and directions from the site, if they are located downgradient and if the well(s) are screened deeper than the contamination. If unknown, please explain.

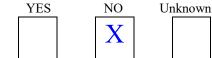
Water well survey map (Figure) is included in Appendix
Water well construction summary (Table) is included in Appendix

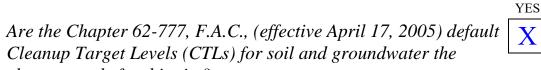
TEMPLATE SITE ASSESSMENT REPORT			
Site Name:	Jak Service Center dba United Fuel		
Facility ID #:	13/8503663		
Date:	08/29/2018		

II-A) Receptor Investigation (continued)

Was an area use survey performed? If yes, please identify all water wells within the survey area (as identified in the database searches and walk through




survey), all surface waters, any basements or other subsurface structures and any other receptors which might be impacted. Please indicate predominant property use in area and if there are any potential off-site contamination sources located within at least a one block radius of the contaminant plume.


Area use survey map (Figure) is inclu Are there any potable wells that have been impacted_by	ded in Appendi YES	NO	Unknown
<i>contamination?</i> If yes, please describe what was done to provide users of the contaminated potable well(s) an alternative drinking water supply.	If unknown, ple	X ease explain.	

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

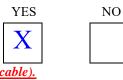
II-A) Receptor Investigation (continued)

cleanup goals for this site?

If no, please indicate if the cleanup goals are from the 1999 version of Chapter 62-770, F.A.C., or pre-1999, apply to this site (providing the reason why) or if alternative cleanup target levels have been or might be established for this site (outlining all engineering and/or institutional controls which already exist or will need to be implemented in the future).

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

II-B) Previous Site Assessment


Information not described in Section I ("release information" or "initial abatement/source removal")

Was site d	assessment	work per	formed?	If yes, p	lease indicate	e who
performed it ((with reason pe	rformed) and	dates perfo	rmed (se	e table below	·)

List of all reports where site assessment information was originally submitted to the FDEP (oldest to most recent):

Date of report	<u>Title of report</u>	Company that prepared report
02/02/1993	Contamination Assessment Report	Petro-Hydro, Inc.
05/27/1994	Contamination Assessment Addendum Report	Petro-Hydro, Inc.
12/05/1994	Contamination Assessment Report Addendum II	Petro-Hydro, Inc.

Was soil assessment performed? If yes, please briefly describe work performed and discuss results. <u>A description of the sampling results can be omitted</u> if the data are included with current tabular summaries and soil plume maps (if applicable).

Soil samples were collected from the 0-2, 2-4 and 4- 6 foot depth intervals from during the advancement of 15 soil borings including monitoring well boreholes. Soil sample headspace screening was conducted with an OVA. "Based on the OVA results obtained during the preparation of the CAR, CARA and CARA II, no excessively contaminated soil was identified at the site". Laboratory analysis was not conducted on any soil samples during the 1992/1994 contamination assessment.

Results included in current soil OVA screening and soil analytical summary tables.

TEMPLATE SITE ASSESSMENT REPORT			
Site Name:	Jak Service Center dba United Fuel		
Facility ID #:	13/8503663		
Date:	08/29/2018		

II-B) Previous Site Assessment (continued)

Any monitoring wells installed? If yes, briefly identify where the wells were	X		
installed and describe their construction. Please indicate if the wells are still	1		
on-site. The well descriptions and can be omitted if the information is included in a curre	nt tabu	lar summ	aries.

10 shallow water table monitoring wells MW-5 through MW-14 and two deep monitoring wells DMW-1 and DMW-2 were installed during the 1992/1994 contamination assessment. The wells were installed in the vicinity of the former UST area and former dispenser to define dissolved phase hydrocarbons. The shallow water table monitoring wells were installed using hollow stem auger technology and constructed with two-inch diameter Schedule 40 PVC with either 9 or 10 feet of 0.010 or 0.015-inch slotted screen and five feet of solid riser. The borehole annular space was backfilled with either 20/30 or 6/20 grade silica sand. The wells were developed by the over pumping method. The wells were finished below grade in steel manholes..

Site map (Figure 1) illustrating well lo	cations is	included in Appendix C	
Tabular summary of well constr	uction details (Table	5) is included in Appendix	A
			VES	NO
			1 LD	110

Has direct push (geoprobe) groundwater grab-sampling been performed? If yes, briefly identify the locations and depths where the samples were collected. A description of the sample locations and results can be omitted if the information is included in current site maps and tabular summaries

Site map (Figure) illustrating the groundwater sampling results is included in Appendix Tabular summary of groundwater sampling results (Table) is included in Appendix

YES

NO

TEMPLATE SITE ASSESSMENT REPORT			
Site Name:	Jak Service Center dba United Fuel		
Facility ID #:	13/8503663		
Date:	08/29/2018		

II-B) Previous Site Assessment (continued)

	YES	NO
Was groundwater sampling performed? If yes, briefly describe what sampling	X	
was performed and summarize results. <u>A description of the sampling results can be omitted</u>	Λ	
if the data are included with the current tabular summaries and groundwater plume maps (if	applica	<u>ble).</u>
Groundwater sampling during the 1992 1992/1994 contamination assessment in collection of groundwater samples from four compliance wells MW-1 through N shallow water table monitoring wells (MW-5 through MW-14), and two deep m DMW-1 and DMW-2). Groundwater samples were analyzed for benzene, tolue and total xylenes (BTEX compounds), methyl tert butyl ether (MTBE) polycycl: hydrocarbons (PAHs), volatile organic halocarbons (VOHs), ethylene dibromide (Pb). BTEX compounds and PAHs were detected above the GCTLs and NADC monitoring wells. The highest concentrations of dissolved phase BTEX compounds were detected in monitoring wells MW-1, MW-2 and MW-3, located in close particular former UST area and former dispenser islands.	MW-4) nonitor ne, eth ic aron e (EDE Cs in se unds an), 10 ing wells ylbenzene natic 3) and lead everal nd PAHs,
Results included in current groundwater analytical summary table. Site map (Figuremulti) illustrating sampling locations is included in Appendix Tabular summary of groundwater results (Table1&2) is included in Appendix	(<u>c</u>
	YES	NO
Has free product been observed in wells or excavations (not including tank and/or system closures)? If yes, please describe. <u>A description</u> of the thickness measured can be omitted if the previous data are included with the current ta	bular si	ummaries
and illustrated on current free product plume maps (if applicable).		
Site map (Figure) illustrating locations where free product was observed is included	in Appe	endix
Tabular summary of free product thickness (Table) is included in Appendix		

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

II-B) Previous Site Assessment (continued)

Has the previous site assessment been approved by the FDEP (was a CAR or SAR approval letter issued?) YES NO Date site assessment (or contamination assessment) was approved: 12/30/1994 12/30/1994
II-C) Previous Remediation
YES NO Has a Remedial Action Plan been prepared? If yes, please briefly X describe the remedial strategy. The description of the remedial strategy can be X omitted if the RAP was implemented (this item will be addressed in the active remediation section that follows). X
Date of RAP: Prepared by:
Remedial Action Plan approved by FDEP. Date of RAP approval order
YES NO
Was soil excavation (not associated with a system closure)
performed? If yes, please briefly describe work performed and discuss results
Approximate depth to water at time of excavation (if known) feet Site map (Figure) illustrating sampling locations and extent of excavation(s) is included in Appendix
Tabular summary of soil sampling results (Table) is included in Appendix

TEMPLATE SITE .	ASSESSMENT REPORT
Site Name:	Jak Service Center dba United Fuel

 Facility ID #:
 13/8503663

 Date:
 08/29/2018

II-C) Previous Remediation (continued)

Has active remediation been performed? If yes, please indicate dates performed (each applicable technology), evaluate previous system effectiveness and indicate if any previous equipment is still available for cleanup.

YES

Identify type(s) of active remediation previously performed:

Air Sparging & Vapor Extraction	Groundwater Recovery (pump & treat)	Multiphase Extraction (w/dual phase)
Limited scope well over-development	Excavation	hanced Bio-Remediation (ORC, etc.)
Free Product Recovery	Other:	

Site Name:	Jak Service Center dba United Fue
Facility ID #:	13/8503663
Date:	08/29/2018

SECTION III - Recent Site Assessment Activities

III-A) Soil Investigation

[soil sampling]

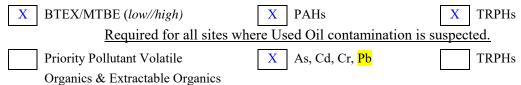
Was soil (vadose zone and smear zone) investigated? If yes, please provide a brief discussion of soil sampling methodology, including the method(s) used to collect the laboratory samples. If no, please explain.

Soil assessment tasks were conducted on June 5, 2018 using a hand tools and a GeoProbe direct push rig operated by JAEE Environmental Services. Five soil borings (SB-1 through SB-5) were advanced at the approximate locations identified on the site map provided by the RER/DERM in the scope of work email dated April 12, 2018. The GeoProbe soil sampling core tool was advanced to eight feet below grade to ensure recovery through the six foot depth interval. Soil samples were collected at two-foot intervals to six feet below grade per the scope of work. Soil sample headspace analysis was conducted in the field utilizing a Mini RAE 3000 photoionization detector. Soil samples ranged from below the OVA detection limit of 0.1 ppm (multiple boring locations/depths) to 0.5 ppm for the soil sample collected from the 0 to 2 foot depth interval at SB-3. The lithology encountered during soil boring advancement consisted primarily of mixed fill (former UST area), a medium to fine grain sand, and very light grey to white oolitic limestone. The water table was encountered at approximately 6.1 feet below grade. Per discussion with the RER/DERM case manager, grey stained soil with a petroleum odor was observed in the samples recovered from just below six feet to at least approximately eight feet below grade at soil borings SB-3, SB-4 and SB-5. The soil samples recovered from the six to eight foot depth interval were not screened with an OVA or sampled for laboratory analysis as per the FDEP PO and RFC No. 1.

Soil samples were collected for laboratory analysis directly from the hand auger bucket or direct push acetate sleeve using a soil syringe, encore sampler or stainless steel spoon as appreciate for the required analysis.

 Date of last soil screening event (OVA data) with or without laboratory sampling: 06/05/2018

 Site map (Figure 1) illustrating sampling locations is included in Appendix B
 06/05/2018


 Tabular summary of soil screening results (Table 1) is included in Appendix A
 06/05/2018

 Tabular summary of laboratory soil sampling results (Table 2AB) is included in Appendix B
 06/05/2018

 Soil sampling logs (for laboratory samples) are included in Appendix D
 06/05/2018

Soil samples (previous sampling events included) have been collected and analyzed for:

Required for all suspected GAG & KAG contaminated sites.

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-A) Soil Investigation (continued)

	YES	NO	N/A
Was soil Investigative Derived Waste (IDW) generated?		X	
If yes, please describe method used for identifying soil needing disposal:			
Volume of contaminated soil disposed of: Disposal method:	drums	cu. yds	.
soil results]			
-	YES	NO	N/A
Was soil contamination above applicable Cleanup Targ	et	X	
Levels identified above the water table? If yes, identify where			
oncentrations above CTLs were detected, depths encountered and correspond			
ndicate whether laboratory results agree with OVA readings (if they do not ag DVA screening data and/or reliability of laboratory results). If "N/A", please o		liscuss significar	ice of
All vadose zone soil sample OVA results were less than one ppm.	-	f five soil sam	ples
vere collected during the soil assessment program as per the RER			-
and RFC No. 1. Soil samples were collected from soil boring SB-	No. 1		
B-3 (0 - 2 feet) B-4 (4 - 6 feet) and B-5 (2 - 4 feet). The soil			
or analysis in accordance with EPA Test Methods 8260B for ben	· · · · · · · · · · · · · · · · · · ·		
otal xylenes (BTEX compounds) and methyl tert butyl ether (MT romatic hydrocarbons (PAHs), and the FL-Pro Method for total r	1		cyclic
hydrocarbons (TRPH). Additionally, the soil sample collected at			PA Tes
Method 6010 for lead. Target petroleum hydrocarbon compounds			
Soil Cleanup Target Levels (SCTLs) in any of the five soil sample			
he SCTLs in the soil sample collected from SB-5.			
Approximate volume of vadose zone soil contamination: <u>NA</u>	си. у		
Site map (Figure <u>NA</u>) illustrating extent of soil contamination is Soil concentration summary (Table <u>2AB</u>) is include			

Soil sampling logs (for laboratory samples) are included in Appendix D

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	

Date:

III-A) Soil Investigation	(continued)
---------------------------	-------------

08/29/2018

Was vadose zone soil contamination delineated? If no, please describe where additional borings should be located (indicating proposed depths of investigations). If "N/A", please explain.	YES	NO	N/A X
Site map (Figure) illustrating proposed sampling locations is inc			NI/A
Has a smear zone been identified? Definition: The "smear zone" is the soil contamination located within the zone of water table fluctuation (it has been described as a "secondary source" of contamination). If yes, please discontaminant mass distribution in the smear zone. If no, please describe what act borings, well data, etc.). If "N/A", please explain.			
As previously mentioned, grey stained soil with a petroleum odor w recovered from just below six feet to at least approximately eight for SB-3, SB-4 and SB-5. The soil samples recovered from the six to not screened with an OVA or sampled for laboratory analysis as pe 1.	eet below greight foot d	rade at soil [*] epth interva	borings I were
Site map (Figure <u>NA</u>) illustrating proposed sampling locations is inc	luded in Appe	ndix	

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-B) Groundwater Investigation

[monitoring wells/direct push]

YES NO Were monitoring wells installed (or abandoned)? If yes, briefly identify X which wells were installed/abandoned and describe their construction. The well locations and construction details can be omitted if the information is included in current site maps and tabular summaries Monitoring well installation was conducted on June 5, 2018 as direct by the RER/DERM through the approval of RFC No. 1. Monitoring well MW-9 was installed by JAEE Environmental Services (license No. 11313) under the supervision of ATC personnel at the location. Monitoring well MW-9 was installed to a depth of approximately 13 feet below grade by the direct push method using a GeoProbe rig. The well was constructed of 1.5-inch diameter Schedule 40 PVC, with 10 feet of stainless steel, wire mesh-wrapped pre-packed screen and approximately three feet of solid riser. The well was finished at the surface within a traffic bearing road box and fitted with an expandable collar, water tight, lockable cap. The well was developed by the over pumping method.) illustrating the well locations is included in Appendix Site map (Figure 1 В Tabular summary of well construction details (Table 5) is included in Appendix Α Monitoring well completion reports are included in Appendix D YES NO *Was direct push (geoprobe) groundwater grab-sampling* N performed? If yes, briefly identify the locations and depths where the samples were collected. A description of the sample locations and results can be omitted if the information is included in current site maps and tabular summaries) illustrating the groundwater sampling results is included in Appendix Site map (Figure NA Tabular summary of groundwater sampling results (Table) is included in Appendix

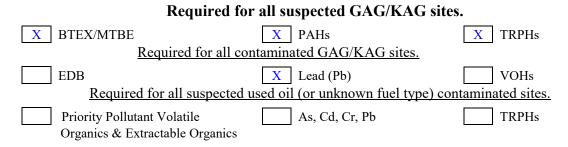
Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-B) Groundwater Investigation (continued)

[groundwater sampling]

Was groundwater sampling performed? If yes, please provide a brief discussion of groundwater purging and sampling methodology and identify the wells

that were sampled. If no, please explain. <u>A description of the sampling results can be omitted if the information</u> <u>is illustrated in current contaminant plume maps and tabular summaries</u> Groundwater samples were collected from monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8 and MW-B on February 21 and 22, 2018as per PO No. B22481. The groundwater sampling was performed in accordance with FDEP SOP FS 2200 "Groundwater Sampling". Depth-to-groundwater and depth-to-bottom measurements were utilized to calculate the well volumes for the six wells. Well purging was conducted using a peristaltic pump fitted with disposable polyethylene tubing. The wells were purged at a flow rate between 0.1 and 0.2


gallons per minute (gpm) while temperature, pH, turbidity, conductivity and dissolved oxygen readings were measured and recorded. Groundwater samples were collected and placed in the appropriate containers as designated by SGS. The sample containers were placed on ice and shipped by Federal Express to SGS for analysis in accordance with EPA Test Methods 8260B for BTEX compounds and MTBE and 8270D for PAHs, and the FL-Pro Method for TRPH. Additionally, the groundwater sample collected from MW-7 was submitted for analysis in accordance with EPA Test Methods 8260B for ethylene dibromide and 6010C for lead. A groundwater sample was collected from MW-9 (new well) on June 7, 2018 for analysis in accordance with EPA Test Methods 8260B for BTEX compounds and MTBE, 8270D for PAHs, 6010 for lead, and the FL-Pro Method for TRPH.

If groundwater sampling not performed, indicate date of last sampling event (if applicable): Indicate wells sampled on that date (if applicable):

 Site map (Figure _____6 ____) illustrating the groundwater sampling results is included in Appendix _____B
 B

 Tabular summary of groundwater sampling results (Table _____3AB _____) is included in Appendix _____A
 Croundwater field sampling logs are included in Appendix ______B

Groundwater samples (previous sampling events included) have been collected and analyzed for:

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

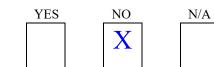
III-B) Groundwater Investigation (continued)

	YES	NO	N/A
Was groundwater IDW generated? If yes, please explain why disposal on-site was not possible.		X	
Volume of contaminated groundwater disposed of:	drums		gallons
Was groundwater contamination identified above the applicable Cleanup Target Levels? If yes, indicate locations	YES	NO	N/A
where highest concentrations detected with depths encountered. If "N/A", ple	ase explain.		

The analytical results for the groundwater samples collected from monitoring wells MW-1 through MW-7, MW-B and MW-9 were below the Groundwater Cleanup Target Levels (GCTLs) for BTEX compounds, MTBE and TRPH. PAHs were not detected above the GCTLs in the groundwater samples collected from MW-2 through MW-6, MW-B and MW-9. Polycyclic aromatic hydrocarbons (PAHs) were detected above the GCTLs in the groundwater samples collected from monitoring wells MW-1 and MW-7 as follows:

- Concentrations of 1-methylnaphthalene (40.2 μg/l) and 2-methylnaphthalene (38.9 μg/l) were above the GCTL of 28 μg/l and below the Natural Attenuation Default Concentration (NADC) of 280 μg/l in the groundwater sample collect from MW-1.
- The concentration of naphthalene (84.9 μ g/l) was above the GCTL of 14 μ g/l and below the Natural Attenuation Default Concentration (NADC) of 140 μ g/l in the groundwater sample collect from MW-7.
- Concentrations of 1-methylnaphthalene (75.1 μg/l) and 2-methylnaphthalene (118 μg/l) were above the GCTL of 28 μg/l and below the Natural Attenuation Default Concentration (NADC) of 280 μg/l in the groundwater sample collected from MW-7.

Ethylene dibromide, VOCs and lead were not detected above the GCTLs in the groundwater sample collected from MW-7. Lead was not detected above the GCTL in the groundwater sample collected from MW-9.


 Approximate volume of contaminated groundwater:
 Unknown
 gallons

 Plume maps [Figure(s)
 7-9
] illustrating extent of groundwater contamination is/are included in Appendix
 B

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-B) Groundwater Investigation (continued)

Has horizontal delineation been completed in the

surficial aquifer? If no, please describe where additional sampling

is required (indicating wells and needed analyses) and/or additional monitoring wells should be installed (indicating proposed screened intervals for each). If "N/A", please explain.

An additional monitoring well is required to provide horizontal definition of dissolved phase PAHs west of MW-1.

Site map (Figure 8-9) illustrating proposed monitoring well locations is included in Appendix

Has vertical delineation been completed in the <u>plume</u>

ES	NO	N/A
	X	

Y

В

area? If no, please describe where additional sampling is required

(indicating needed analyses) and/or identify locations where vertical extent well(s) should be installed (indicating proposed screened intervals, single or double cased and length of surface casings). If "N/A", please explain.

Deep monitoring wells are required adjacent to MW-1 and MW-7 to provide vertical delineation of PAHs.

Site map (Figure

) illustrating proposed vertical extent well locations is included in Appendix

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

III-B) Groundwater Investigation (continued)

	YES	NO	Unknowr
<i>Is the lower aquifer(s) contaminated?</i> If yes, please describe location and estimated depth of contamination. If unknown, please explain.			X
As indicated previously, deep monitoring wells are required adjacent provide vertical delineation of PAHs.	to MW-1	and MW	7-7 to
Cross section (Figure) illustrating vortical optant of contamination is	included in	Annandiy	
Cross-section (Figure) illustrating vertical extent of contamination is		Appendix	
Were natural attenuation parameters data collected? If yes, please specify which parameters were collected (and where collected) and provide interpretation of results.	YES		NO
Site man (Figure NA) illustrating natural attenuation parameter data is			

 Site map (Figure NA) illustrating natural attenuation parameter data is included in Appendix

 Tabular summary of parameter sampling results (Table) is included in Appendix

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-B) Groundwater Investigation (continued)

[impacted receptors]

Have any supply wells or surface waters been impacted? If yes, please indicate concentration(s) of water sample(s) taken and the wells/surface water body/bodies impacted. If unknown, please explain.	YES	NO	Unknown
	YES	NO	Unknown
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater	analytical r	esults and s	
sampling results should be summarized with the soil analytical results.] If unknow	n, please exp	olain.	
Site map (Figure) illustrating sampling locations is included in	Appendix		
Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain.	YES	NO	Unknown

Site map (Figure) illustrating potable well locations is included in Appendix

Site Name:	TE ASSESSMENT REPORT Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018
• •	<i>duct present?</i> If yes, please indicate where product has been ts thickness, describe the product (color, odor, etc.) and estimate th f the product.
Site map (I	gure) illustrating free product thickness at well locations

NO
X

YES

type and age of the product.
Site map (Figure) illustrating free product thickness at well locations is included in Appendix
Tabular summary of free product thickness (Table) is included in Appendix
YES NO N/A
ILS NO N/A
Has the extent of free product been delineated? If no, please
describe where additional wells or piezometers should be located.
describe where dualional wens of prezonerers should be located.
Site map (Figure) illustrating locations of proposed piezometers or wells is included in Appendix
YES NO N/A
Is free product recovery ongoing? If yes, please indicate the method
and frequency of removal and summarize recovery efforts to date.

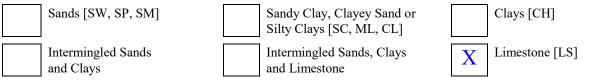
If free product recovery is not ongoing, are free product recovery efforts recommended? If yes, please indicate the proposed method and frequency of removal. If no, please explain why product removal is not recommended.

Site map (Figure ______) illustrating locations of proposed additional piezometers and/or wells for free product recovery is included in Appendix ______

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

III-D) <u>Comments</u>

Any issues or concerns not addressed in previous questions which might help better describe the degree and extent of the contamination at this site.


Evaluation of petroleum pact to soil in the saturated zone is recommended to evaluate long term effects on groundwater from petroleum stained soil observed as discussed in Section III A.

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

SECTION IV - Impacted Media

IV-A) Lithologic Summary

The impacted aquifer(s) can be best characterized by the following description (<u>predominantly</u>): <u>Select One</u>

Please describe a typical soil column and all defined aquifers (perched/upper/lower). This should include a brief description of the site lithology (using the Unified Soil Classification System), and all other geologic and/or hydrogeologic characteristics of the area which might influence migration or transport of the contamination.

The lithology encountered during soil boring advancement consisted primarily of mix (former UST area), a medium to fine grain sand (SW), and very light grey to white or limestone. The water table was encountered at approximately 6.1 feet below grade.	
Lithologic cross-section (Figure <u>NA</u>) is included in Appendix <u>YES</u>	NO

Is the lithologic information obtained to date sufficient to characterize the impacted media? If no, please explain [indicating

X NO

area(s) where additional lithologic data are needed]. <u>A map illustrating where the additional borings/wells need to</u> <u>be located can be omitted if those locations have been identified in the soil and/or groundwater sections.</u>

Site map illustrating proposed lithologic boring locations (Figure ______) is included in Appendix ______

	ASSESSMENT REPORT Jak Service Center dba United Fuel		
Site Name: Facility ID #:	13/8503663		
Date:	08/29/2018		
IV-B) <u>Hydrol</u>	logic Summary		
TT 11.1	· · · · · · · · · · · · · · · · · · ·	• 1 19	YES NO
If no, please descr survey does not ha	monitoring well tops-of-ca ibe why this information has not been we to be performed by a Professional to the survey, then the TOCs should i	obtained. [Note, the TOC Land Surveyor. However, if th	
date of survey, wh performed it. Also	sional land survey perform ether it was saved on disk (indicating o indicate which monitoring wells (if a p must be based on the professional la	type of program), and who my) were included in the survey	YES NO X
	Is original signed and	sealed professional land survey	v included?
Is copy of electro	onic version of land survey (labeled w	-	yes no
			YES NO
in the upper	o groundwater and ground zone aquifer been determin vater and fluctuation range (low/high	ned? If yes, please indicate	the site. If no please explain
Depth-to-groun February 21, 20 auto-level to th temporary bence groundwater m Appendix A. O wells MW-1 th groundwater of	advater measurements were gau 018. The monitoring well top-o e nearest 0.01 foot on February chmark with an arbitrary elevati- easurements and resultant water on February 21, 2018, depth-to- rough MW-8 and MW-B range 6.49 feet. The apparent ground theast with a hydraulic gradient	iged in MW-1 through MV if-casing (TOC) elevations 21, 2018. The TOCs were on of +20.00 feet. Casing r table elevation data are p groundwater measurement d between 6.05 and 6.86 w dwater flow direction on F	W-8 and MW-B on were determined with an e referenced to a elevations, depth-to- resented in Table 4 ts within monitoring with an average depth-to- ebruary 21, 2018 was
Site map(s)		ting upper zone water table elev	vations and interpretation(s)

of groundwater flow direction(s) is/are included in Appendix <u>B</u> Tabular summary of all groundwater elevation data (Table <u>4</u>) is included in Appendix

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

IV-B) Hydrologic Summary (continued)

	YES	NO
Have depth to groundwater and groundwater flow direction(s) in lower and/or intermediate aquifer(s) been determined? If yes, please indicate average depth to water and fluctuation range in vertical extent well		Ν
(low/high stand). If no, please explain.	\$	
Site map [Figure(s)] illustrating lower/intermediate zone water table elevations of groundwater flow direction(s) is/are included in Appendix	and interpret	tation(s)
	YES	NO
Are perched aquifer conditions suspected? If yes, please indicate estimated depth and thickness of perched zone and whether perched zone extends across entire site.		Ν

Site map (Figure _____) illustrating estimated lateral extent of perched zone (when it does not extend across entire site), water level elevations and interpretation(s) of groundwater flow direction(s) is/are included in Appendix

Is the site tidally influenced? If yes, please indicate tidal fluctuation range and whether groundwater flow direction might change during tidal cycle.

YES	NO	Ur

JI	ıknown
	Χ

If unknown, please indicate whether this issue is important at this site (outlining data collection plan if needed). The site is located approximately 3,100 feet southeast of a canal connected to the Miami river. Due to the distance to the nearest potentially tidally influenced water body, it is not likely that the groundwater beneath the site is tidally influenced.

Site map(s) [Figure(s)_____

] illustrating changes in flow direction is/are included in Appendix

TEMPLATE SITE	E ASSESSMENT REPORT			
Site Name: Facility ID #:	Jak Service Center dba United Fuel 13/8503663			
Date:	08/29/2018			
-				
IV-B) Hydr	ologic Summary (continue	ed)		
<i>influenced l</i> If yes, please exp	ater flow in the impacted ac by pumping from nearby wo plain how this was determined and ind indicate whether this issue is importa	iter supply wells? icate which water well(s) a		dwater flow. If
Site map(s) [H	<u> </u>	hanges in flow direction du ncluded in Appendix	ie to pumping from r	nearly water
	supply wents is/are i		YES NO	D N/A
Has the ave	rage hydraulic gradient (ft	/ft) been	Χ	
	? If yes, please indicate range of value			
	t is uniform across the site. Is there en	· · ·	· · · ·	-
	groundwater flow direction on I dient of 0.00003 ft./ft. calculated	-		icast with a
	Hydraulic gradier	nt data and calculations incl	uded in Appendix	
			YES	NO
If yes, please des used, date perfor	quifer tests been performed scribe test method (slug test, pumping rmed and summarize test results [trans ater flow, pumping rates (gpm), etc.]	test, etc.), which wells were	2	Ν

Aquifer test data and calculations included in Appendix

TEMPLATE SIT	E ASSESSMENT REPORT
Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

IV-B) Hydrologic Summary (continued)

Depth to groundwater in upper zone water-table wells (ft):	5.5	to	7.5	Average (ft): 6.5	
Depth to groundwater in lower zone vertical extent wells (ft):		to		Average (ft):	
Observed maximum range of upper zone fluctuation (ft):	2	Tidally	, influenc	eed? Yes No X	

IV-C) Risk Evaluation

Is human health, safety, or welfare affected by exposure to the contamination or will the contamination substantially affect, or migrate to and substantially affect a known public or private source of potable water? If yes, please describe in detail.

X

<u>SECTION V</u> - Post Assessment Summary & Recommendations Filled out AFTER site assessment has been completed

V-A) Site Assessment Summary

The Site Assessment Summary table shall be completed and submitted as an attachment to this TSAR. The summary is a separate Excel worksheet. Site Assessment Summary completed and included as Table_____ in Appendix A.

Are all the documents submitted to date adequate to meet the site assessment requirements of Rule 62-780.600, Florida Administrative Code (F.A.C.)?

V-B) Recommendations

Is No Further Action (NFA) without conditions recommended? If yes, please provide reasons NFA is appropriate.

Is No Further Action (NFA) with conditions recommended? If yes, please provide reasons conditional NFA is appropriate and describe the conditions [the needed institutional or engineering controls] *pursuant to Rule 62-770.680(2), F.A.C.*

Horizontal and vertical definition of dissolved phase PAHs above the GCTLs is required before a closure option can be selected.

NO
Χ

YES

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

V-B) Recommendations (continued)

Monitoring Wells:

If the groundwater plume is shrinking or stable is there any reason that Remediation by Natural Attenuation (RNA)

YES

cannot be the selected remedial strategy?

If no, outline the proposed monitoring plan including monitoring wells, sampling parameters and sampling frequency. If yes, specify why natural attenuation is not appropriate.

Horizontal and vertical definition of dissolved phase PAHs above the GCTLs is required before a remedial strategy is selected.

Contaminants:	Frequency:	Duration:	
l.	or free product) recommended. Ind extent of source removal (is dewatering	YES ? If yes,	NO
inceded.)			

Site map (Figure

) illustrating proposed extent of excavation is included in Appendix

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

V-B) Recommendations (continued)

Is a Limited Scope Remedial Action Plan (LSRAP) needed? If yes, please provide reasons for performing limited remediation and briefly outline YES

NO X

plan for remediation.

Site map (Figure _____) illustrating locations of any proposed recovery wells (if applicable) is included in Appendix

If RAP already approved for site...

Is a Remedial Action Modification Plan (RAMP) needed? If yes, please provide reasons for continuing approved RA at the site and indicate proposed modifications. YES

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

V-B) Recommendations (continued)

Is a Remedial Action Plan (RAP) needed? If yes, please provide

reasons for performing in-situ remediation at the site and indicate which remediation technology or combination of technologies is recommended or should be evaluated (with reasons for recommendation).

YES

YES NO

remedial technology and outline specifics of proposed pilot test. Details include area of site where test is planned, recovery/air sparging well construction details, which wells will be used to

Is a Pilot Test recommended? If yes, please indicate recommended

evaluate test, proposed recovery and/or pumping and/or blowing rates and plan for IDW disposal (if applicable). *The FDEP should be consulted before preparing a pilot test outline.*

Site map (Figure

) illustrating pilot test layout is included in Appendix

Site Name:	Jak Service Center dba United Fuel
Facility ID #:	13/8503663
Date:	08/29/2018

V-C) <u>Comments</u>

Any issues or concerns not addressed in previous questions which might influence remediation decisions at this site.

Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

<u>SECTION VI</u> - Program Issues (for state funded cleanup sites)

List of all consultant company personnel (not subcontractor employees) that participated in the field work or helped to prepare the report:

Name	Duties	Dates On-Site (if applicable)	
Dwight W. Schwendeman	Project management/field work supervision	01/18/2018	thru 06/07/2018
Leif Rodney	Field work/data management	02/21/2018	thru 06/07/2018
Fritz Damveld	Profession geologist oversight and review		thru
			thru

VI-A) Work Plan and Cost Summary

Briefly summarize initial work plan.

Site inspection, collection/analysis of groundwater samples from selected existing monitoring wells, soil assessment, monitoring well installation and groundwater sampling. Preparation of two Interim Assessment Reports and this TSAR.

Copy of original work order or task assignment is included in ap	pendix F	
Was any extra work authorized? If yes, please summarize extra work planned for site.	YES	NO
Only change in drilling method.		
Copies of all authorization forms are included in Ap	pendix F	

TEMPLATE SITE ASSESSMENT REPORT		
Site Name:	Jak Service Center dba United Fuel	
Facility ID #:	13/8503663	
Date:	08/29/2018	

VI-A) Work Plan and Cost Summary (continued)

	YES	NO
Was any planned work <u>not</u> performed? If yes, please describe work not performed with reasons why not performed.		X
	YES	NO
Are there any changes in cost from original work order,	X	
<i>purchase order, or task assignment?</i> If yes, please describe the change, and cost adjustments that will be required for invoicing.	s	
ana cost adjusiments that will be required for involcing.		
Change in drilling costs from hollow stem auger to direct push due to ov constraints.	verhead clea	rance
constraints.		
Copies of all needed subcontractor and/or materials invoices and draft chang	e order cost te	emplate

opies of all needed subcontractor and/or materials invoices and draft change order cost template included in Appendix

APPENDIX A

TABLES

TABLE 1: SOIL SCREENING RESULTS

Facility Name: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

FAC ID#: 13/8503663

ft-bls = Feet Below Land Surface ppm = parts per million - = No Reading Taken NR = No Recovery NA = Not Applicable Readings taken with Mini RAE 3000 PID

	SAMPLE		OVA SC	REENING R	ESULTS	
SAMPLE NO.	DATE COLLECTED	SAMPLE INTERVAL (ft-bls)	TOTAL READING (ppm)	CARBON FILTERED (ppm)	NET READING (ppm)	COMMENTS
SB-1	6/5/2018	0 - 2			<0.1	
		2 - 4			<0.1	
		4 - 6			<0.1	4 - 6' Lab Sample
SB-2	6/5/2018	0 - 2			<0.1	0 - 2' Lab Sample
		2 - 4			<0.1	
		4 - 6			<0.1	
SB-3	6/5/2018	0 - 2			0.5	0 - 2' Lab Sample
		2 - 4			<0.1	
		4 - 6			<0.1	
SB-4	6/5/2018	0 - 2			<0.1	
		2 - 4			<0.1	
		4 - 6			0.1	4 - 6' Lab Sample
SB-5	6/5/2018	0 - 2			<1	
		2 - 4			0.3	2 - 4' Lab Sample
		4 - 6			<1	

TABLE 2A: SOIL ANALYCAL RESULTS - VOAs and TRPH

Facility ID#:

13/8503663 F

Facility Name:

Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

						0300 011	,				
	Sample)		OVA			Labor	atory Analy	ses		
Soil Sample ID	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	Benzene	Ethyl- benzene	Toluene	Total Xylenes	МТВЕ	TRPHs	Lead
	ooncolea	(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1	6/5/2018	~5.0	4 - 6	<0.1	0.0019 U	0.0015 U	0.0015 U	0.0032 U	0.0015 U	6.2 U	N/A
SB-2	6/5/2018	~5.0	0 - 2	<0.1	0.0011 U	0.00089 U	0.00089 U	0.0019 U	0.00089 U	5.7 U	N/A
SB-3	6/5/2018	~5.0	0 - 2	0.5	0.0014 U	0.0011 U	0.0011 U	0.0023 U	0.0011 U	9.07	N/A
SB-4	6/5/2018	~5.0	4 - 6	0.1	0.00069 U	0.00057 U	0.00057 U	0.0012 i	0.00057 U	9.12	N/A
SB-5	6/5/2018	~5.0	2 - 4	0.3	0.00082 U	0.00067 U	0.00067 U	0.0014 U	0.00067 U	5.5 U	4.0 i
Leachability Base	d on Ground	water Criteri	a (mg/kg)		0.007	0.6	0.5	0.2	0.09	340	
Direct Exposure R	Residential (m	ig/kg)			1.2	1,500	7,500	130	4,400	460	

Notes:

N/A = Not Analyzed for this parameter

NS = Not Sampled. Bolded Text indicates value exceeds GCTL.

i = The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

J = The value is outside laboratory established criteria.

***Leachability values may be derived using the SPLP Test to calculate site-specific SCTLs or may be determined using TCLP in the event oily wastes are present.

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems

TABLE 2B: SOIL ANALYTICAL SUMMARY - PAHs

Facility ID#:

13/8503663 Facility Name:

: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

	Sample			OVA					Lab	oratory Ana	lyses				
Soil Sample ID	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene
		(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1	6/5/2018	~5.0	4 - 6	0	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.020 U	0.0041 U	0.020 U	0.032 U	0.020 U	0.020 U
SB-2	6/5/2018	~5.0	4 - 6	0	0.031 U	0.031 U	0.031 U	0.031 U	0.031 U	0.019 U	0.0039 U	0.019 U	0.031 U	0.019 U	0.019 U
SB-3	6/5/2018	~5.0	0 - 2	0.5	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.017 U	0.0383	0.116	0.028 U	0.0295 i	0.0908
SB-4	6/5/2018	~5.0	4 - 6	0.1	0.029 U	0.029 U	0.029 U	0.029 U	0.029 U	0.018 U	0.0036 U	0.018 U	0.029 U	0.018 U	0.018 U
SB-5	6/5/2018	~5.0	2 - 4	0.3	0.028 U	0.028 U	0.028 U	0.028 U	0.028 U	0.018 U	0.0036 U	18 U	0.028 U	0.018 U	0.018 U
Leachability Based	nability Based on Groundwater Criteria (mg/kg)				1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880
Direct Exposure Re	sidential (mg	/kg)			55	200	210	2,400	1,800	21,000	2,500	3,200	2,600	2,200	2,400

	Sample			OVA				Laborator	y Analyses			
Soil Sample ID	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	(a)	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene	*Benzo (a) pyrene equivalent
		(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1	6/5/2018	~5.0	4 - 6	0	0.0041 U	0.0041 U	0.0041 U	0.0041 U	0.0041 U	0.0041 U	0.0041 U	NC
SB-2	6/5/2018	~5.0	0 - 2	0	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	0.0039 U	NC
SB-3	6/5/2018	~5.0	0 - 2	0.5	0.0447	0.0525	0.0444	0.0438	0.0653	3.5 U	0.0361	0.060
SB-4	6/5/2018	~5.0	4 - 6	0.1	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	NC
SB-5	6/5/2018	~5.0	2 - 4	0.3	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	0.0036 U	NC
Leachability Based	hability Based on Groundwater Criteria (mg/kg)					0.8	2.4	24	77	0.7	6.6	**
Direct Exposure Re	sidential (mg	/kg)			0.1	#	#	#	#	#	#	0.1

NC - Not calculated <0.1 mg/kg

Notes:

NA = Not Analyzed for this parameter

N/A = Not Applicable, composite soil sample collected from stockpiled soils

*Calculations provided in Appendix C

NS = Not Sampled.

= Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

** = Leachability value not applicable.

^a - Soil sample SB-3 was collected within one foot of the water table and is considered a "wet" sample and therefore the Benzo(a)pyrene equivalent is not considered an exceedance of the SCTL.

TABLE 3A: GROUNDWATER ANALYTICAL SUMMARY - VOCs, Lead and TRPH

Facility ID#: 13/85036 Facility Name: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	1,2- Dichloroethane	Ethylene Dibromide	Lead	TRPH
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)
MW-1	2/21/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	1.79
MW-2	2/21/2018	0.32 i	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	2.13
MW-3	2/21/2018	0.58 i	0.32 i	0.50 i	1.3 i	0.23 U	N/A	N/A	N/A	1.63
MW-4	2/21/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	0.30
MW-5	2/22/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	0.15 U
MW-6	2/22/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	0.15 U
MW-7	2/22/2018	0.32 i	0.30 U	3.5	0.80	0.23 U	0.31 U	0.010 U	18	3.25

TABLE 3A: GROUNDWATER ANALYTICAL SUMMARY - VOCs, Lead and TRPH

Facility ID#: 13/85036 Facility Name: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

Sam	ple	Benzene	Toluene	Ethyl- benzene	Total Xylenes	МТВЕ	1,2- Dichloroethane	Ethylene Dibromide	Lead	TRPH
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)
MW-8	2/22/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	0.15 U
MW-B	2/22/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	N/A	0.15 U
MW-9	6/7/2018	0.31 U	0.30 U	0.36 U	0.72 U	0.23 U	N/A	N/A	5.4	0.665
GCT	Ls	1**	40**	30**	20**	20	3	0.02	15	5
NAD	Cs	100	400	300	200	200	30	2	150	50

Notes:

NA = Not Analyzed for this parameter.

NS = Not Sampled.

Bolded Text indicates value exceeds GCTL.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

i = Laboratory result between MDL and PQL U - Not Detected (ND)

TABLE 3B: GROUNDWATER ANALYTICAL SUMMARY - PAHs

Facility ID#: 13/8503663

Facility Name: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

							•												
Sa	ample	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
ID	13/8503663	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-1	2/21/2018	0.59 i	40.2 a	38.9 a	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.39 i	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
MW-2	2/21/2018	1.5	9.5	8.2	0.65 i	0.32 U	0.20 U	0.032 U	0.20 U	0.63 i	0.37 i	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
MW-3	2/21/2018	13.4	13.4	21.8	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.43 i	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
		-		-															
MW-4	2/21/2018	0.49 i	2.5	2.4	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
										-								-	
MW-5	2/22/2018	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
	2/22/2010	0.02 0	0.02.0	0.02 0	0.02.0	0.02 0	0.20 0	0.002 0	0.20 0	0.20 0	0.20 0	0.20 0	0.002 0	0.002.0	0.002 0	0.002 0	0.002 0	0.002 0	0.002 0
MW-6	2/21/2018	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
10100-0	2/2 1/2010	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.20 0	0.002 0	0.20 0	0.20 0	0.20 0	0.20 0	0.002 0	0.002 0	0.002 0	0.002 0	0.002 0	0.002 0	0.002 0
MW-7	2/22/2018	84.9 a	75.1 a	118 a	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.54 i	0.23 i	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
10100-7	212212010	04.J a	75.1 a	110 a	0.32 0	0.02 0	0.20 0	0.002 0	0.20 0	0.041	0.201	0.20 0	0.052 0	0.002 0	0.002 0	0.002 0	0.032 0	0.002 0	0.002 0

TABLE 3B: GROUNDWATER ANALYTICAL SUMMARY - PAHs

Facility ID#: 13/8503663

Facility Name: Jak Service Center dba United Fuel

6900 SW 8th Street, Miami

s	ample	Naph- thalene	1-Methyl- naph- thalene	2-Methyl- naph- thalene	Acen- aph- thene	Acen- aph- thylene	Anthra- cene	Benzo (g,h,i) pery- lene	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	Benzo (a) pyrene	Benzo (a) anthra- cene	Benzo (b) fluoran- thene	Benzo (k) fluoran- thene	Chry- sene	Dibenz (a,h) anthra- cene	Indeno (1,2,3-cd) pyrene
ID	13/8503663	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-8	2/22/2018	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
MW-B	2/22/2018	0.32 U	0.32 U	0.32 U	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
MW-9	6/7/2018	0.32 U	0.32 U	0.72 i	0.32 U	0.32 U	0.20 U	0.032 U	0.20 U	0.20 U	0.20 U	0.20 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U	0.032 U
	ICTLS	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
1	NADC	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5

NA = Not Analyzed for this parameter.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

NS = Not Sampled.

** = As provided in Chapter 62-550, F.A.C.

i = Laboratory result between MDL and PQL

U - Not Detected (ND) Bolded Text indicates value exceeds GCTL.

a - Results from Run 2

TABLE 4: GROUNDWATER ELEVATION SUMMARY

Facility Name: Jak Service Center dba United Fuel 6900 SW 8th Street, Miami FAC ID#: 13/8503663

NM = Not Measured Blank = No Data

Well No.		MW-1						MW-3			MW-4	
Diameter (in)		2			2			2			2	
Well Depth (ft)		19.1			18.1			12.0			19.3	
Screen Interval (ft)		4.1-19.1			3.1-18.1			2-12			4.3-19.3	j
TOC Elevation (ft)		15.39			15.39			15.37			15.51	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
2/21/2018	8.69	6.70		8.68	6.71		8.68	6.69		8.70	6.81	
6/5/2018												
Well No.		MW-5			MW-6			MW-7			MW-8	
Diameter (in)		2			2			2			2	
Well Depth (ft)		14.7			13.3			13.0			12.7	
Screen Interval (ft)		4.7-14.7	,		3.3-13.3			3-13			2.7-12.7	
TOC Elevation (ft)		15.13			14.50			15.04			14.72	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
2/21/2018	8.70	6.43		8.67	5.83		8.67	6.37		8.67	6.05	
6/5/2018												
Well No		MW-B		MW-9			1					

Well No.		MW-B			MW-9	
Diameter (in)		2			1.5	
Well Depth (ft)		14.6			13.0	
Screen Interval (ft)		4.6-14.6	;		3-13	
TOC Elevation (ft)		15.56			15.87	
		10.00			10.07	
DATE	ELEV	DTW	FP	ELEV	DTW	FP
	ELEV 8.70		FP	ELEV		FP
DATE		DTW	FP	ELEV 9.54		FP

TABLE 5 : MONITORING WELL CONSTRUCTION DETAILS

Facility Name: Jak Service Center dba United Fuel 6900 SW 8th Street, Miami FAC ID#: 13/8503663 HSA = Hollow Stem Auger DP = Direct Push NA = Not Applicable * estimated NM = Not Measured DC = Driven Casing

Well ID	Date of Installation	Installation Method	Top of Casing Elevation*	A/G Riser Length	Total Well Depth	Screened Interval	Well Diameter (inches)	Remarks
				1992 / 199	94 Contami	nation Asses	sment	
MW-1	Unknown	HSA	NA	No	14 feet	4 - 14 feet	2	Destroyed during 1995 UST replacement
MW-2	Unknown	HSA	15.04	No	13 feet	3 - 13 feet	2	Appears to be current MW-7
MW-3	Unknown	HSA	NA	No	13 feet	3 - 13 feet	2	Destroyed during 1995 UST replacement
MW-4	Unknown	HSA	NA	No	14 feet	4 - 14 feet	2	Destroyed during 1995 UST replacement
MW-5	12/9/92	HSA	15.56	No	13 feet	3 - 13 feet	2	Appears to be current MW-B
MW-6	12/9/92	HSA	14.72	No	12 feet	2 - 12 feet	2	Appears to be Ccurrent MW-8
MW-7	12/9/92	HSA	NA	No	12 feet	2 - 12 feet	2	Destroyed during 1995 UST replacement
MW-8	12/9/92	HSA	NA	No	12 feet	2 - 12 feet	2	Destroyed during 1995 UST replacement
MW-9	4/28/94	HSA	NA	No	15 feet	5 - 15 feet	2	Destroyed during 1995 UST replacement
MW-10	4/28/94	HSA	NA	No	15 feet	5 - 15 feet	2	Destroyed during 1995 UST replacement
MW-11	4/28/94	HSA	NA	No	15 feet	5 - 15 feet	2	Destroyed during 1995 UST replacement
MW-12	10/28/94	HSA	15.13	No	14 feet	4 - 14 feet	2	Appears to be current MW-5
MW-13	10/28/94	HSA	NA	No	14 feet	4 - 14 feet	2	Destroyed during 1995 UST replacement
MW-14	10/28/94	HSA	NA	No	14 feet	4 - 14 feet	2	Destroyed during 1995 UST replacement
DMW-1	12/9/92	HAS/DC	NA	No	35 feet	25-35 feet	2	Destroyed during 1995 UST replacement
DMW-2	4/28/94	HAS/DC	NA	No	45 feet	40-45 feet	2	Destroyed during 1995 UST replacement

TABLE 5 : MONITORING WELL CONSTRUCTION DETAILS

Facility Name: Jak Service Center dba United Fuel 6900 SW 8th Street, Miami FAC ID#: 13/8503663 HSA = Hollow Stem Auger DP = Direct Push NA = Not Applicable * estimated NM = Not Measured

				Cu	rrent Comp	liance wells		
Well ID	Date of Installation	Installation Method	Top of Casing Elevation*	A/G Riser Length	Total Well Depth	Screened Interval*	Well Diameter (inches)	Remarks
MW-1	9/1/95	Unknown	15.39	No	19 feet	5 - 19 feet	2	
MW-2	9/1/95	Unknown	15.39	No	18 feet	5 - 18 feet	2	
MW-3	9/1/95	Unknown	15.37	No	12 feet	2 - 12 feet	2	
MW-4	9/1/95	Unknown	15.51	No	19 feet	5 - 19 feet	2	
				2018	Limited Sit	e Assessme	nt	
MW-9	6/5/18	DP	15.87	No	13 feet	3 - 13 feet	1.5	

TABLE 6

Site Assessment Summary Worksheet

FDEP FAC ID #: 13/8503663			Site Name: Jak Service Center Inc. dba United Fuel				
Does Site Qualify for LTNAM:	Yes						
Dominant Lithology Vadose Zone			GW Contaminants one per constituent	≤ GCTLs	≤ NADC	> NADC	Not Analyzed
First Lithology (USCS): Mixed sand	and limestone fi	ragment fill	Benzene	х			
Second Lithology (USCS):	Limestone	-	Ethylbenzene	Х			
Dominant Lithology Saturated Zone			Toluene	Х			
First Lithology (USCS):	Limestone		Total Xylenes	Х			
Second Lithology (USCS):	Limestone		MTBE	Х			
			Naphthalene		Х		
Average Depth to Water: 5' - 10'			1-Methylnaphthalene		Х		
Groundwater Flow Direction: N	Northeast		2-Methylnaphthalene		Х		
-			TRPHs	Х			
Recommended Technology for SRCO:	Natural Att	enuation	EDB	Х			
Combined Technology:		As				Х	
-			Pb	Х			
Consultant SRCO Cost Estimate:	\$25,001 -	\$50,000	Other	Х			
Consultant NFAC Cost Estimate:	\$25,001 -	\$50,000					
			Soil Contaminants (select one unless Leachability & Direct Exposure CTLs exceeded)	No Soil Exceedences*	Exceeds Leachability	Exceeds Direct Exposure	Not Analyzed
			Benzene	Х			
			Ethylbenzene	Х			
Plume Characteristics	Groundwater	Soil	Toluene	Х			
Shrinking or Stable	Yes		Total Xylenes	Х			
On-site only	Unknown	N/A	МТВЕ	Х			
Plume <1/4 acre	Unknown	N/A	Naphthalene	Х			
Exclusion Zone Only	No	N/A	1-Methylnaphthalene	Х			
In FDOT ROW only	No	N/A	2-Methylnaphthalene	Х			

TRPHs

As

Pb

Other

Х

Х

* Below direct exposure and leachability (or alternative SCTLS established through SPLP or fractionation)

Х

Х

DE = Direct Exposure CTLS ; HB = Health Based

Organoleptic Exceedence only (< HB CTLs)

DE Soil Exceedences above 2'

DE Soil Exceedences below 10'

Free Product

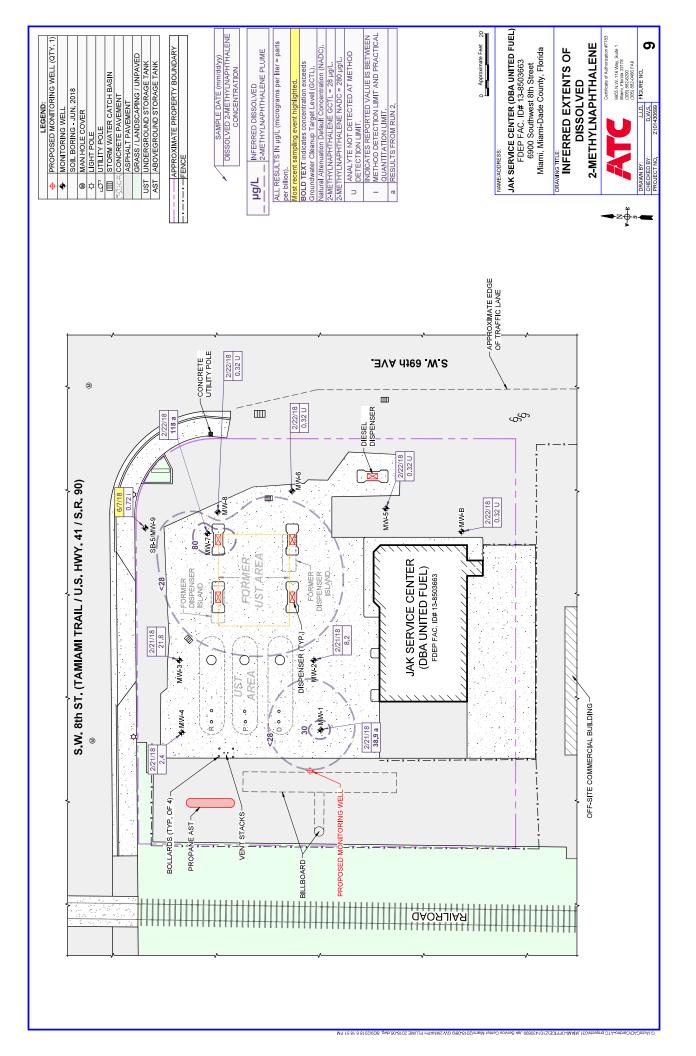
DE Soil Exceedences from 2' to 10'

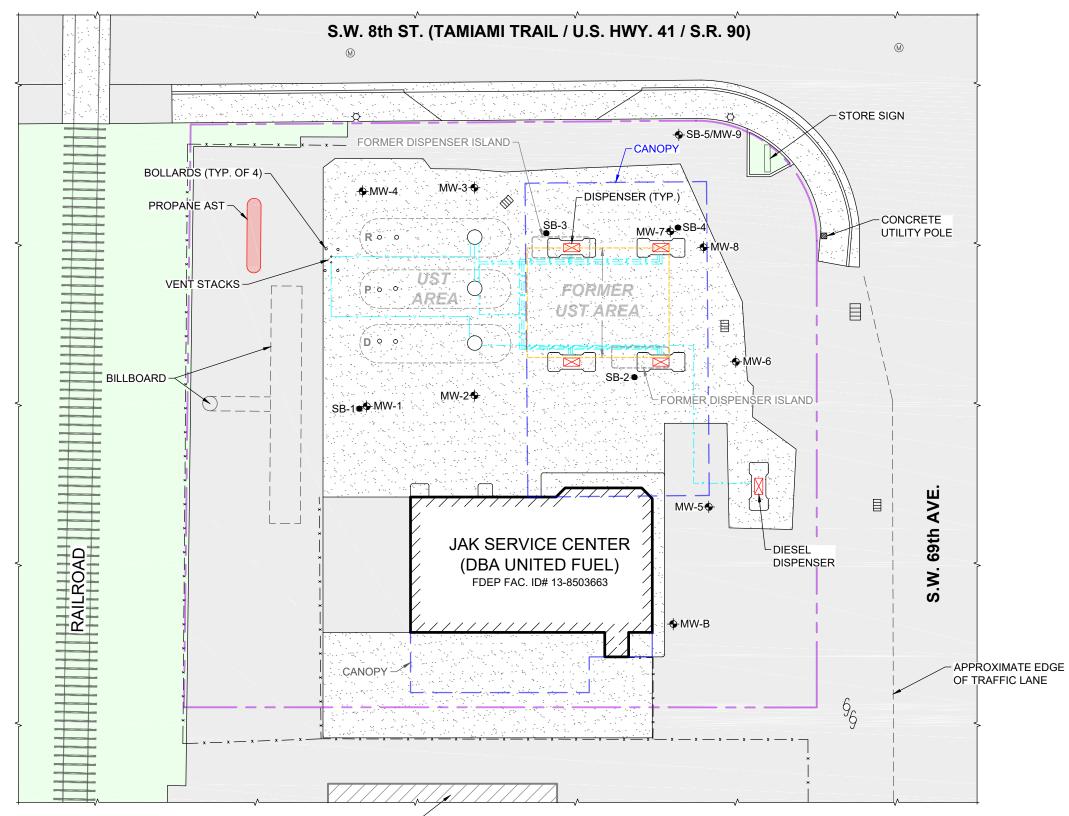
Site Qualifies for LSSI NFA (any score)

No

No

Unknown


No


Unknown

Unknown

APPENDIX B

FIGURES

OFF-SITE COMMERCIAL BUILDING

LEGEND:				
+	MONITORING WELL			
٠	SOIL BORING - JUN. 2018			
M	MAN HOLE COVER			
- Å	🔅 LIGHT POLE			
G	UTILITY POLE			
	STORM WATER CATCH BASIN			
	CONCRETE PAVEMENT			
	ASPHALT PAVEMENT			
(*************************************	GRASS / LANDSCAPING / UNPAVED			
UST	UNDERGROUND STORAGE TANK			
AST	ABOVEGROUND STORAGE TANK			

	APPROXIMATE PROPERTY BOUNDARY
x x x	FENCE
	UNDERGROUND PRODUCT/FUEL PIPE
v v	UNDERGROUND VAPOR/VENT PIPE

0 Approximate Feet 20

NAME/ADDRESS:

JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. ID# 13-8503663 6900 Southwest 8th Street Miami, Miami-Dade County, Florida

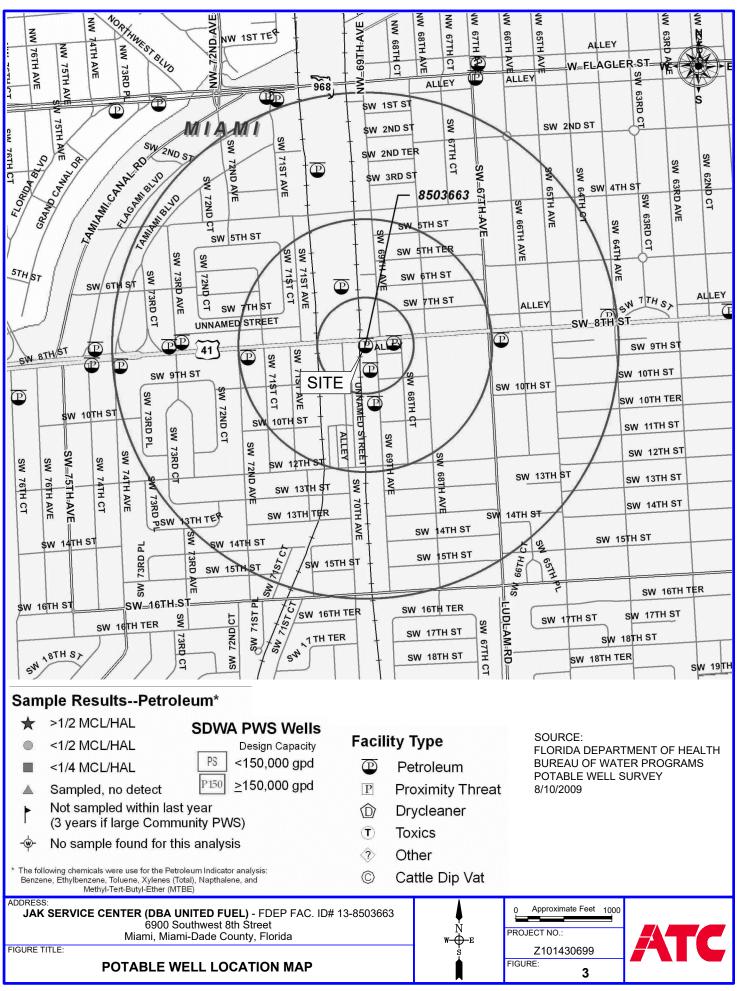
DRAWING TITLE:

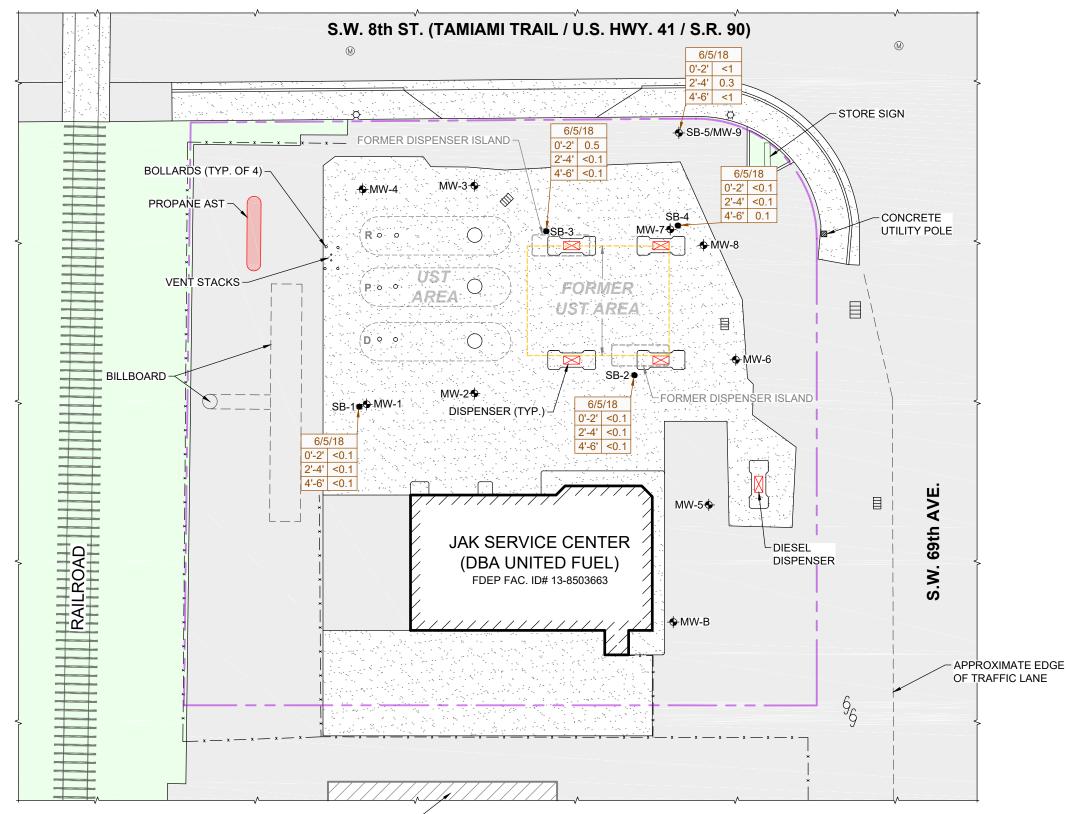
₩-Ф-е

SITE PLAN

1

9955 N.W. 116 Way, Suite 1 Miami, Florida 33178 (305) 882-8200 (305) 882-0466 FAX


 DRAWN BY:
 J.J.D.


 CHECKED BY:
 D.W.S.

 PROJECT NO.
 Z101430699

J.J.D. FIGURE NO.

OFF-SITE COMMERCIAL BUILDING

LEGEND:				
+	MONITORING WELL			
۲	SOIL BORING - JUN. 2018			
M	MAN HOLE COVER			
- Å	LIGHT POLE			
J	UTILITY POLE			
	STORM WATER CATCH BASIN			
	CONCRETE PAVEMENT			
	ASPHALT PAVEMENT			
1999 - August - Augus	GRASS / LANDSCAPING / UNPAVED			
UST	UNDERGROUND STORAGE TANK			
AST	ABOVEGROUND STORAGE TANK			

	APPROXIMATE PROPERTY BOUNDARY
x x x	FENCE

DATE SAMPLED (mm/dd/yy)			
DEPTH SAMPLED (FEET BLS)	OVA/PID RESULT		

	OVA RESULTS IN PPM (parts per million).		
	BELOW LAND SURFACE.		
	ORGANIC VAPOR ANALYZER.		
PID	PHOTOIONIZATION DETECTOR.		

Approximate Feet 20

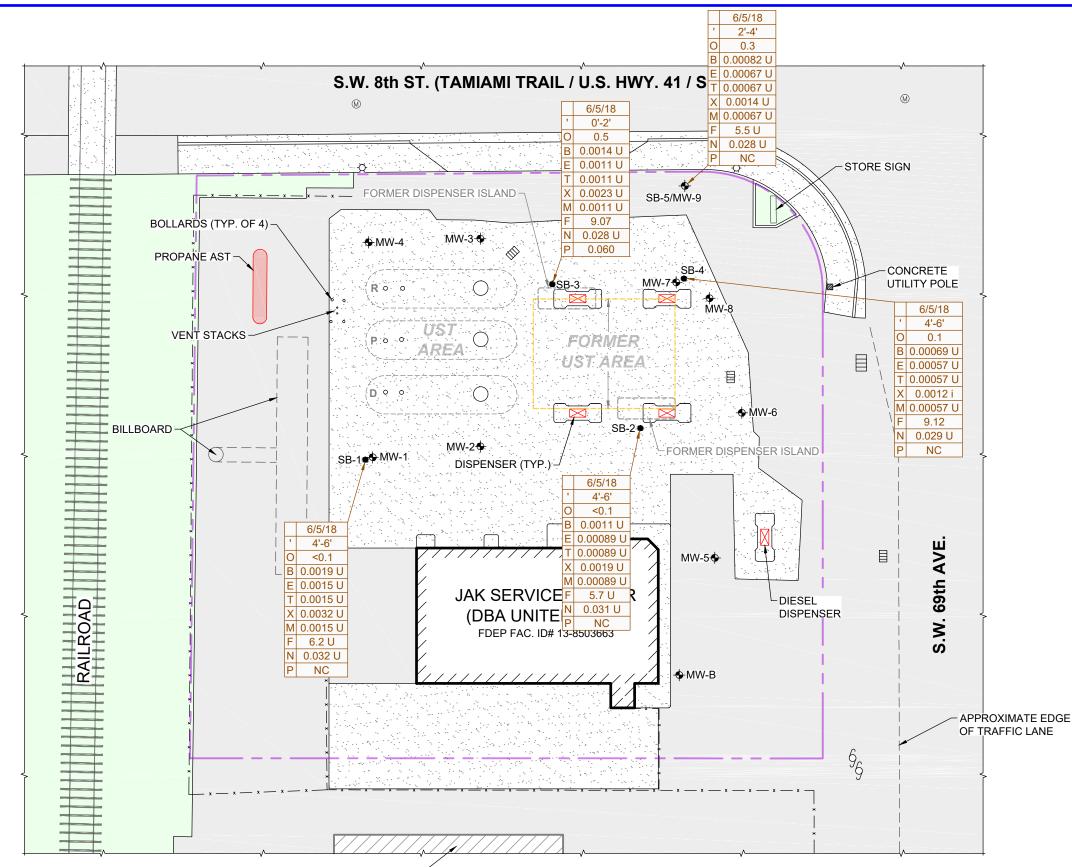
NAME/ADDRESS:

JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. ID# 13-8503663 6900 Southwest 8th Street Miami, Miami-Dade County, Florida

DRAWING TITLE:

PROJECT NO.

SOIL SAMPLE ORGANIC VAPOR ANALYZER RESULTS



J.J.D. FIGURE NO. D.W.S. Z101430699

Certificate of Authorization #7783

4

9955 N.W. 116 Way, Suite 1 Miami, Florida 33178 (305) 882-8200 (305) 882-0466 FAX

OFF-SITE COMMERCIAL BUILDING

	LEGEND:		
+	MONITORING WELL		
۲	SOIL BORING - JUN. 2018		
M	MAN HOLE COVER		
Þ	LIGHT POLE		
G	UTILITY POLE		
	STORM WATER CATCH BASIN		
	CONCRETE PAVEMENT		
	ASPHALT PAVEMENT		
· · · · · · · · · · · · · · · · · · ·	GRASS / LANDSCAPING / UNPAVED		
UST	UNDERGROUND STORAGE TANK		
AST	ABOVEGROUND STORAGE TANK		

	APPROXIMATE PROPERTY BOUNDARY
x x x	FENCE

		DATE SAMPLED (mm/dd/yy)		
	1	DEPTH SAMPLED (FEET BLS)		
	0	NET OVA READING		
	В	BENZENE		
	Е	ETHYLBENZENE		
	Т	TOLUENE		
	Х	TOTAL XYLENES		
	Μ	METHYL TERT-BUTYL ETHER (MTBE)		
	F	TOTAL RECOVERABLE PETROLEUM		
	Г	HYDROCARBONS (TRPH) BY FL-PRO		
	Ν	NAPHTHALENE		
	Ρ	BENZO(A)PYRENE EQUIVALENT		
ALL R	ES	ULTS IN mg/kg (milligrams per kilogram ≈		
parts (ber	million); OVA RESULTS IN PPM (parts per		
		million)		

BOLD TEXT indicates value exceeds Soil Cleanup

Target Level (SCTL) based on Groundwater Leachability. Most recent sampling event is highlighted. BLS BELOW LAND SURFACE. OVA ORGANIC VAPOR ANALYZER. INDICATES REPORTED VALUE IS

	BETWEEN METHOD DETECTION LIMIT
	AND PRACTICAL QUANTITATION LIMIT
U	ANALYTE NOT DETECTED AT METHOD
0	DETECTION LIMIT.

NC NOT CALCULATED.

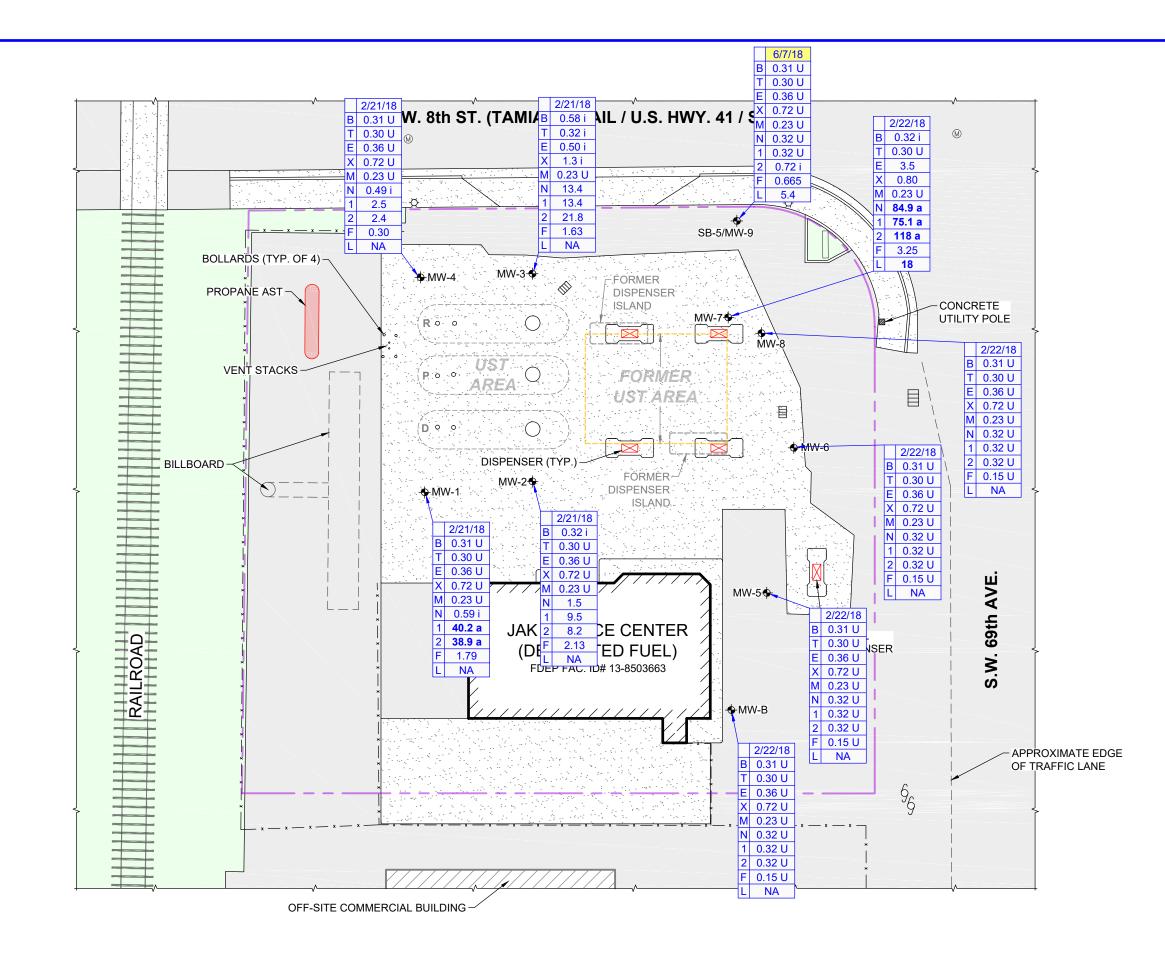
Approximate Feet 20

NAME/ADDRESS:

JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. ID# 13-8503663 6900 Southwest 8th Street Miami, Miami-Dade County, Florida

DRAWING TITLE:

SOIL SAMPLE **ANALYTICAL RESULTS**


9955 N.W. 116 Way, Suite 1 Miami, Florida 33178 (305) 882-8200 (305) 882-0466 FAX

DRAWN BY: CHECKED BY: D.W.S. PROJECT NO. Z101430699

J.J.D. FIGURE NO.

5

	LEGEND:		
+	MONITORING WELL		
	SOIL BORING - JUN. 2018		
M	MAN HOLE COVER		
- Å	LIGHT POLE		
J	UTILITY POLE		
	STORM WATER CATCH BASIN		
	CONCRETE PAVEMENT		
· · · · · · · · · · · · · · · · · · ·	ASPHALT PAVEMENT		
· · · · · · · · · · · · · · · · · · ·	GRASS / LANDSCAPING / UNPAVED		
UST	UNDERGROUND STORAGE TANK		
AST	ABOVEGROUND STORAGE TANK		

	APPROXIMATE PROPERTY BOUNDARY
x x x	FENCE

_	
1	SAMPLE DATE (M/D/Y)
В	BENZENE
Т	TOLUENE
Е	ETHYLBENZENE
X	TOTAL XYLENES
М	METHYL TERT-BUTYL ETHER (MTBE)
Ν	NAPHTHALENE
1	1-METHYLNAPHTHALENE
2	2-METHYLNAPHTHALENE
_	TOTAL RECOVERABLE PETROLEUM
	HYDROCARBONS (TRPH) BY FL-PRO
L	LEAD

ALL RESULTS IN µg/L (micrograms per liter ≈ parts per			
billion) EXCEPT TRPH IN mg/L (milligrams per liter ≈			
parts	per million).		
BOL	D TEXT indicates concentration exceeds		
Grou	Indwater Cleanup Target Level (GCTL).		
MOS	T RECENT SAMPLING EVENT HIGHLIGHTED.		
	INDICATES REPORTED VALUE IS BETWEEN		
1	METHOD DETECTION LIMIT AND PRACTICAL		
	QUANTITATION LIMIT.		
u	ANALYTE NOT DETECTED AT METHOD		
0	DETECTION LIMIT.		
а	RESULTS FROM RUN 2.		
NS	NOT SAMPLED FOR THIS PARAMETER.		

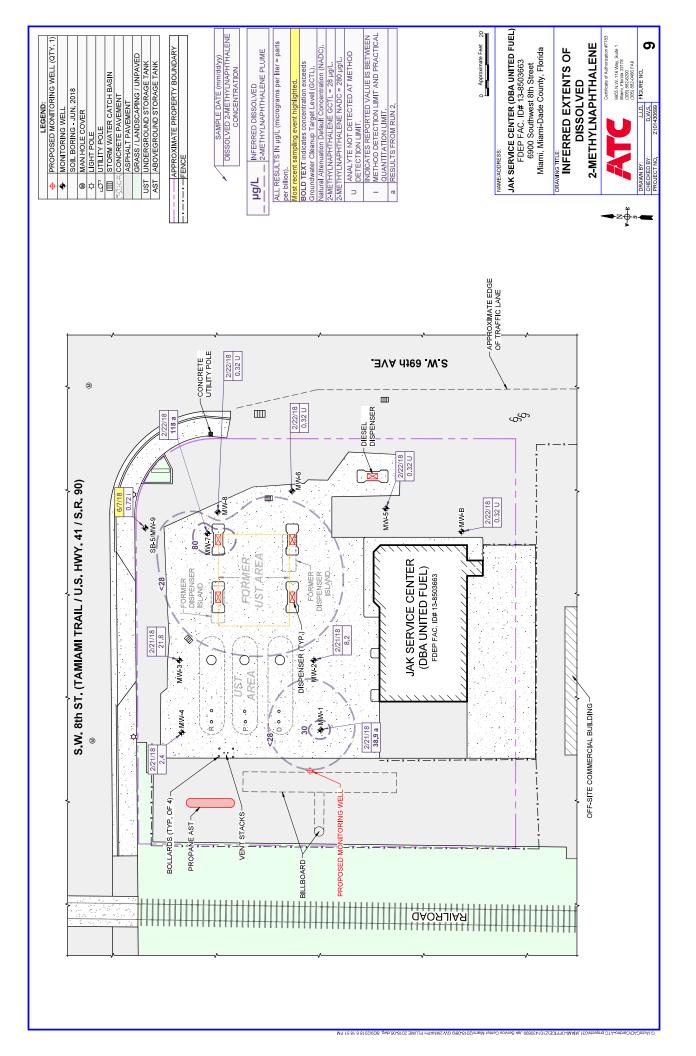
0 Approximate Feet 20

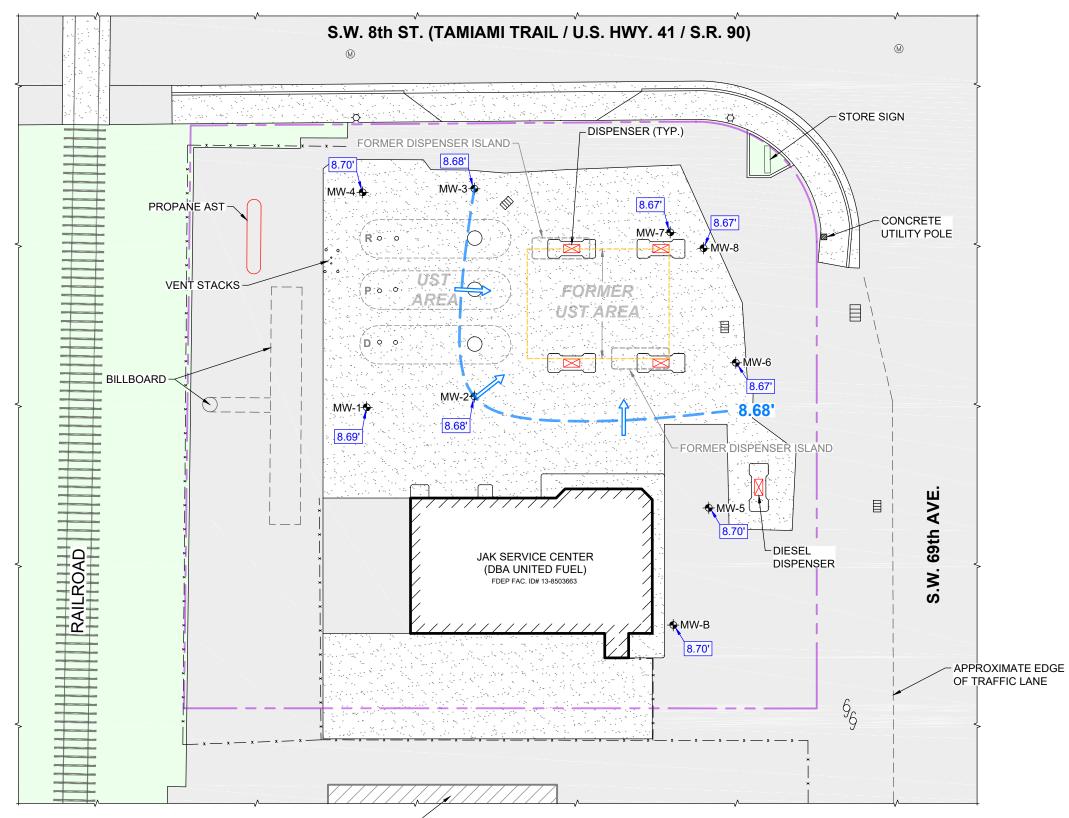
NAME/ADDRESS:

JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. ID# 13-8503663 6900 Southwest 8th Street Miami, Miami-Dade County, Florida

DRAWING TITLE:

GROUNDWATER ANALYTICAL RESULTS MAP

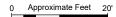



Certificate of Authorization #7783

6

9955 N.W. 116 Way, Suite 1 Miami, Florida 33178 (305) 882-8200 (305) 882-0466 FAX

J.J.D. FIGURE NO.



OFF-SITE COMMERCIAL BUILDING -

LEGEND:		
•	MONITORING WELL	
M	MAN HOLE COVER	
¢	LIGHT POLE	
g	UTILITY POLE	
	STORM WATER CATCH BASIN	
	CONCRETE PAVEMENT	
/	ASPHALT PAVEMENT	
	GRASS / LANDSCAPING / UNPAVED	
UST	UNDERGROUND STORAGE TANK	
AST	ABOVEGROUND STORAGE TANK	

	APPROXIMATE PROPERTY BOUNDARY
x x x	FENCE

F <u>EE</u> T	EQUIPOTENTIAL LINE
	GROUNDWATER FLOW DIRECTION
FEET	WATER TABLE ELEVATION

NAME/ADDRESS:

JAK SERVICE CENTER (DBA UNITED FUEL) FDEP FAC. ID# 13-8503663 6900 Southwest 8th Street Miami, Miami-Dade County, Florida

DRAWING TITLE: **GROUNDWATER ELEVATION CONTOUR MAP** 2/21/2018

₩-Ф-е

9955 N.W. 116 Way, Suite 1 Miami, Florida 33178 (305) 882-8200 (305) 882-0466 FAX

Certificate of Authorization #7783

J.J.D. FIGURE NO.

10