TANK CLOSURE REPORT

for

Nen h 102;

ADRIAN SERVICE STATION UT 0166

6900 S.W. 8 STREET MIAMI, FLORIDA

Submitted to the

DEPARTMENT OF ENVIRONMENTAL RESOURCES MANAGEMENT (DERM)

by

SERVICE STATION AID, ENVIRONMENTAL (SSAE)

Written by

Alejandro Montalvo Project Manager

Reviewed by

Mario Zamora QA/QC Officer

ands of

Rolando R.H. Santos, P.E., D.E.E Director, Environmental Department

AUGUST 7, 1991

2101910

The information and opinions rendered in this report are exclusively for the use by ADRIAN SERVICE STATION. SSA Environmental (SSAE) will not distribute this report without your consent as may be required by law or court order. The information and opinions expressed in this report are in response to our limited assignment. Therefore, should be evaluated and implemented only in light of that assignment. We accept responsibility for competent performance of our duties in executing the assignment and preparing this report in accordance with the normal standards of our profession. However, SSAE disclaims any responsibility for consequential damages.

TABLE OF CONTENTS

F-DER FORMS

5 C 5 11-1-1

Closure Assessment Form

FIGURES

1.00

1.1

(1) Site Sketch

APPENDIX

Appendix A -DERM'S Approval letter -Scope of work

Appendix B -PID readings, from the walls of excavated pit and the stock piled excavated soil

Appendix C -Ground water analytical results

Appendix D -Chain of custody. August 6, 1991

M. Amando Villanueva Department of Environmental Resource Management (DERM) Storage Tank Section 111 N.W.1 Street Suite 1310 Miami, Florida 33128

RE: Tank closure report for the Adrian Service Station facility located at, near, or in the vicinity of 6900 S.W. 8 Street, Miami, Dade County, Florida.

Dear Mr. Villanueva:

SSA Environmental hereby submits this document in accordance with Rule 17-761 requiring a closure assessment at the time of removal of three (3) 550 gallons and two (2) 2,000 gallons Steel Underground Storage Tanks (UST).

Plans for UST removal were submitted by SSA Environmental (SSAE) to the Department of Environmental Resources Management (DERM) on May 21, 1991. The said plans were approved by DERM on May 31, 1991. Approval for re-lining of one (1) existing 2,000 gallons tank was also granted by DERM's Storage Tank Section. Refer to APPENDIX A for copies of the Storage Tank Excavation Permits. A copy of the Scope of Work proposed by SSAE for the legal removal and disposal of the UST's is also included in APPENDIX A.

On July 17, 1991 the UST's and surrounding soil were excavated. The extent of the excavation was determined by screening the excavation pit walls with a Photoionization Detector (PID), until organic vapor readings of less than 500 ppm for Gasoline and 50 ppm for Diesel fuel were detected or structural constraints impeded further excavation. The PID analysis is listed in APPENDIX C. During the excavation, the UST's were disposed of by N & M Trucking and transported to SunMetal at 3200 Cairo Ln., Opa Locka, Florida. Tank removal was done in accordance with FDER 17-761, 17-770, and API 1604.

On July 29, 1991, the ground water samples were analyzed by a state certified laboratory (Engineers-Scientists Laboratory) via EPA methods 602 and 610. The results indicated that the ground water beneath the site is contaminated by members of the Gasoline groups in the vicinity of the underground storage tank. Refer to Appendix D for a copy of the analytical results.

We look forward to hearing from you regarding your response and if further evaluation is warranted on the site.

Should you have any questions or comments, please contact Alejandro Montalvo at (305)573-7420. Thank you.

Sincerely,

10.024

1000

1. 200 30

Sec. 5

SSA ENVIRONMENTAL

Rolando 2H Santos

Rolando R.H. Santos, P.E., D.E.E. Director

RRHS/am 2101910

Enclosures

Floridu Depar ment of Environmental Regulation Non Towers Office Bidg • 2000 Blair Stone R rad • Tailahassee, Florida 22397 2100 Closure Assessment Form
Owners of storage tank systems that are replacing, removing or closing in place storage tanks shall use this form to demonstrate that a storage system closure assessment was performed in accordance with Rule 17 761 or 17 762, Florida Administrative Code. Eligible Early Detection Incentive (EDI) and Reimbursement Program sites do not have to perform a closure assessment.
Please Print or Type Complete All Applicable Blanks
1 DateAUGUST 6, 1991 2 DER Facility ID Number138503663 3. County:DADE_COUNTY 4 Facility Name:ADRIAN_SERVICE_STATION
5. Facility Owner:JORGE AND JULIA UGAN 6. Facility Address6900 S.W. 8 STREET
7 Mailing Address11050 S.W. 143 RD. PL., MIANI, FL. 33186 8. Telephone Number: (_305_)261-8116 9. Facility OperatorJORGE UGAN 10. Are the Storage Tank(s) (Circle one or both) A. Aboveground or B. Underground
Type of Product(s) Stored GASOLINE AND DIESEL FUEL, KEROSENE AND WASTE OIL. 12 Were the Tank(s) (Circle one) A Replaced S. Removed C. Closed in Place D Upgraded (aboveground tanks only) 13. Number of Tanks Closed FIVE (5) TANKS THREE (3) 550 GAL. UST'S. 14. Age of Tanks: UNKNOWN
TWO (2) 2,000 GAL. UST'S. Facility Assessment Information
Yes No Applicable Image: Second S

						DER for 17-751,900(5)
						Form Tay Coours Assessment Form
						Engine Dave December 10, 1990
						DER ADDICA.M NO
$\mathcal{I}_{i}^{(1)}(\mathbf{y},\mathbf{y})$						
		and dispenser locations r	nust accompany this fo	lorm		dings, storm drans, sample locations,
		610 must be performed c	on the ground water sa	amples obtained.	kerosene/diese! stored on site, bo	oth EPA Method 602 and EPA Method
		Amount of soils removed		1	6	
		to the Department within	one working day.			suspected release shall be submitted
1.000	16.	A copy of this form and all gram office under contract	ny allachments must be of with the Department	e submitted to the Depa t within 60 days of com	ertment's disact office in your are pletion of tank removal or filling	a and to the locally administered pro- a tank with an inert material
${\cal H}_{1} = \sum_{i=1}^{N} (i - 1)^{-1} $			- <u>-</u>	>		
		1000 ··································	ODOF 110		•	
		JORGE UGAN	Signature of			
8			Signature of	Owner		Date
		ROLANDO R. H.		(a mat)		
		Si	grature of Person Perf	icming Assessment		Date
		DIRECTOR, SSA	ENVIRONMENTAL	The second se		
					Levels That Affect A	
			Pollutant Sto	orage Tank Syste	m Closure Assessment	t
			State	te ground water target !	evels are as follows:	
	1. F	for gasoline (EPA Method	602):		For kerosene/clesel (EPA Methoc	d 610):
	ā	. Benzene	1 ug/i	3	a. Polynuclear Aromatic Hydroca	
	р	To:al VOA	50 ug/l		(Best achievable detection lim	nit, 10 ug/i maximum)
		 Benzene Toluene 				
[]		 Total Xylenes 				
		Ethylbenzene				
	c.	Methyl Test-Butyl	50 ug/l			
		Einer (MTBE)	-			

. .

.

R

FIGURE

₹.

(1,2,2)

10.00

 $\mathbb{E}^{\frac{1}{2}} \mathbb{E}^{\frac{1}{2}} \mathbb{E}^{\frac{1}{2}} \mathbb{E}^{\frac{1}{2}}$

2.30 2.5

LANK

...

. . .

. . .

APPENDIX A

. .

METROPOLITAN DADE COUNTY F UTION CONTROL DIVISION LRGROUND STORAGE FACILITIES M · . ? 'ED. А 5/3,191 DA 🗐 R SCALE IN FEET ... ÍC 20 I - LET MANALLA 1.1 LEGEND -MONITOR WELL I RUNOFF DRAIN N TANK FILLS DISPENSERS -- PRODUCT LINE (2" DOUBLE WALL FIBERGLASS) (2" SINGLE WALL FIBERGLASS) --- VENT LINE METROPOLITAN DADE COUNTY ---- STAGE II LINE (2" DOUBLE WALL FIBERGLASS) MECHANICAL DEPT. BLDG. & ZONING APPROVED -612-91 DATE. SERVICE STATION AID INC APPROVED BY: SCALE AS SHOWN DRAWN BY 3 DATE: 4/15/91 REVISED 5-21-9 ŋ ADRIAN SERVICE STATION (UGAN) NAY 21 EP MIAMI, FL DRAWING NUMBER PROPOSED SITE SKETCH METRO - PADE COUNTY PULLUTION CUMERUL 1.1

METROPOLITAN DADE COUNTY ENVIRONMENTAL RESOURCES MANAGEMENT STORAGE TANK SECTION Ful + 200= 111 N W 1 St SUITE 1310 MIAMI FL 33128 Reviewed by 5/31/91 375-5531 Date PROJECT NAME ADRIAN Service Station ADDRESS 6900 -5 ml 8 - south UT . 0166 CONTRACTOR 55A Phone 573-7120 P C + 13545 Approval is hereby granted to the underground storage facility(les) as described below as meeting the Pollution Control requirements. However, this approval does not relieve the owner and/or cotractor from their responsibilities of seeking approval from Building and Zoning, Fire Dept. and/or any other department that may be necessary prior to construction. MAT'L OF CONSTRUCTION CATHODIC PROTECTION QUANTITY CAPACITY T 4 N к s **OUANTITY** STATUS C.A.L.D.S м DIAMETER 0 W N Ε L ٤ 0 S R PIPING FIBERGLASS STEEL COPPER OTHER PROTECTION SYSTEM RODUCT \checkmark ~ VENT Re- lising. TANKS : SEC. CONTA-~~**// PIPING: Duble INMENT PUMP SUCTION: SYSTEM SUBMERSIBLE: LINE LEAK DETECTOR: Threed \$ 1550 Fr Approval For 1021. OTHER (c(1) 77 Eyr PROVIDED

- 1.Construction is completed according to approved plans.
- 2.Construction on this project must be commenced within one year of this approval, otherwise plans and specifications must be resubmitted for approval by this department.
- 3 The water supply for this building shall be in accordance with requirements of Dade County Health Department.
- 4 All water lines shall be located a minimum horizontal distance of 10 ft. from all septic tanks, drainfields, sewer lines, etc.
- 5 There may be county,municipal or other local regulations or restrictions to be compiled with by the owner prior to construction of the facilities represented by these plans. We recommend that appropriate local agencies be consulted before starting construction

The plurbing layout sizes and slopes shall be approved by the Plumbing (Department before installation

SE ENVICE STATION ALTO INC Sel alum Equiphment & Environmental Sciences BINE 21ST STREET HAMIL FLORIDA 32137 FRONE (335) 573-7420

SCOPE OF WORK

- Remove and legally dispose of three (3) 550 gallon underground storage tank and two (2) 2000 gallon underground storage tanks and associated piping.
- Tank disposal will be done by N&M Trucking to Sun metal a 3200 Cairo Ln, Opa Locka, Florida. Disposal documents will be provided to the contractor for arther report to DERM.
- 3. Any sludge or liquid pollutants remaining in t tanks hall he legally disposed of by PMI, a duly licensed contract.
- 4. Tank removal will be done in accordance with FDER 17-761, 17-770, and API 1604.
- 5. Contaminated soil from the site can be temporarily tored at the site following pertinent rules and regulations. Soil will be disposed of by a properly licensed contractor.
- 6. Re-line one (1) 2000 gallon underground storage tank. Work to be done by Williams Tank Service.
- 7. Install overfill/overspill protection on 2000 gallon tank.
- 8. Install 2" double wall fiberglass product and vent lines.
- 9. Install underground lines for Stage II vapor recovery system, to be stubbed up underneath dispenser for future use.

STO. TANKS & PIPIN SYSTEM TO BE INSTALLED AN ACCORDANCE WITH N F P.A. 30 EN STALS FORTIONS OF PHILDING SHALL 1 - 1 Y - 1 Y 1 JSIH NG 5 1 IN F-1 .585 Serving South Florida since 1959 .

APPENDIX B

ø

SOIL SAMPLING DATA 81 NE 21st Street SSAT Grvironnentzi Mami, Florida 33137 (205) 573-7420 NUMBER 🚈 2178 / JOB MAUBER LOCATION 2 Street 6900 S.W Horian -rev Station 2.01910 PROJECT NAUNCER INF FIELD PERSONNEL Aler Montalvo Enr Technician nois in RIBMUM DARACS ORLLEA :1/A NA South Gas # $(S) \rightarrow$ (195 18 P.I.D.READINGS FROM FROM P.I.D.READINGS S.E NW Wodburgt Corner 4200 56 6 nom 200 S. 30.8 Northeast NE 5% Middle nna 5 N Southeast SE 12.6 Corner 2.92 E C.C. Soutine SW 4150 South Diesel (S)-> Gas 7 P.I.D.READINGS FROM P.I.D.READINGS FROM S.E. Composite Southeast North N ppm 2200 X Corner S Sarth ppn South South (5) (S) - (Jas 7 -> Gas fl FROM P.I.D.READINGS FROM P.I.D.READINGS ou theast Sichures 2100 × × 8150 Corner Comersite South South (5) - Gas 995 (८) P.I.D.READINGS FROM FROM P.I.D.READINGS Sutherst S.E. Corner Compasite SE orner 3300 \times Pri 156 S Middle 21.4 5N 282 Corner South wall of excavation pit was contaminated Ercavotion ¥. was continued until PIII readings under 500 ppm WORE. oblaines S. South SE-Southeast

APPENDIX C

. а. :

anthears-estantese LARORATIONY

1. Car

8 (N) 8

 $(a_{1}^{2},b_{2}^{2},b_{3}^{2})$

Sec. Sec.

1.00

8-12 e S

e Ver

1.2.2

1.45°4.

1.11.1

11960 S W 144 STREET, MIAMI, FL 33186 (305) 233 1411 # FAX (305) 235-6214

August 2, 1991

Mr. Mario Zamora SSA Environmental 81 N.E. 21 Street Miami, FL 33139

 Ro:
 SSA Project No:
 2101910

 ESL Project No:
 9129TA

 Involce No:
 1803

 P.O. No:
 3095-2101910

 Terms:
 Net 20 Days

Dear Mr. Zamora:

This invoice is submitted for laboratory services as detailed below:

Parameter	Quantity	Unit Cost	Extended Cost
			·····
EPA 602 EPA 610	1 L	\$79.00 \$134.00	\$79.00 \$134.00

TOTAL AMOUNT DUE THIS INVOICE

\$213.00

-

and mars - submitted

1.

1.400

10 C 10

1997 - 19

12244

11960 S W 144 STREET, MIAMI, FL 33186 (305) 233 1411 FAX (305) 235-6214

RESULTS OF LABORATORY ANALYSES

Client:	SSA Environmen	tal		
Client Project No: Client Sample No:	2101910 Exc Pit 1		ESL Project No: ESL Sample No:	9129TA 7434
Sample Date: Sample Location: Collected By: Sample Matrix:	Unknown Adrian Servic Wilfred Chin Water	Station	Date Received: Time Received: Analysis Date(s): Report Date	7/17/91 7/29/91 7/30/91
PARAMETER		RESULTS	UNITS	DETECTION LIMIT
EPA METHOD 602				
Methyl-t-butyl ether Benzene Toluene Ethylbenzene p-Xylene Chlcrobenzene/m-Xyle o-Xylene 1,4-Dichlorobenzene 1,3-Dichlorobenzene 1,2-Dichlorobenzene		1900 550 1600 2500 2400 6100 1600 3DL 660 180	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	400 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a) 100 (a)

Comments:

BDL: Below Detection Limits

* Compounds co-elute at the same retention time

(a) Dilution of 1:100

*

Adwance Pines

Adriana Perez Laboratory Supervisor

Page 1 of 1

auflicars-edinities LARORATONY

1.20

1. 1. E.

1 S. C.

144

1000

-

11960 S W 144 STREET, MIAMI, FL 33186 (305) 233-1411 = FAX (305) 235-6214

RESULTS OF CABORATORY ANALYSES

Client:	SSA Environment	ta).			
Client Project No: Client Sample No:	2101910 Exc Pit 2		ESL Project No: ESL Sample No:	9129TA 7435	Ņ,
Sample Date:	Unknown				
Sample Location:	Adrian Service	Station	Date Received:	7-17-91	
Collected By:	Wilfred Chin		Time Received:		
Sample Matrix:	Water		Analysis Date(s):	7-29-91	
L			Report Date	7-30-91	
				DETECTION	
PARAMETER		RESULTS	UNITS	LIMIT	
EPA METHOD 610 Naphthalene					
2-methylnaphthlene		BDL	ug/l	2	
1-methylnaphthlene		BDL BDL	ug/l	2	
Acenaphthalene		BDL	ug/l	2	
Acenaphthene		BDL	ug/1	2	
Fluorene		BDL	ug/1	2	
Phenanthrene		BDL	ug/l ug/l	2	
Anthracene		BDL	ug/l	2	
Fluoranthene		BDL	ug/l	2 2	
Pyrene		BDL	ug/1	2	
Benzo(a)anthracene		BDL	ug/1	2	
Chrysene		BDL	ug/l	2	
Benzo(b)fluoranthene	•		- 37 -	**	
Benzo(k)fluoranthene	*	BDL	ug/l	4	
Benzo(a)pyrene		BDL	ug/1	2	
Dibenzo(a,h)anthrace				_	
Indeno(1,2,3-cd)pyre		BDL	ug/l	4	
<pre>Benzo(g,h,i)perylene</pre>		BDL	ug/l	2	
	•				

Comments:

4

BDL: Below Detection Limits

* Compounds co-elute at the same retention time

Advance lun

Adriana Perez () Laboratory Supervisor

APPENDIX D

1.2.2.2.

....

A division	itation Aid, Inc	81 N E. 21 S Mismi, Flori In Dade: 57	da 33137		. a	EAIN O	r custody	RECCRD		22 ¹ 7 00	(Sarchair		2010	6	S	SATE	inviron	mental	- <u>1</u> 94549
assessm environm clean-up:	ental	In Broward:					3095	-210	ŁG	10)			N	ŗo	2119	9		
	ct Name or				t Locat					Lab	orat	ory	Anal	ysis	-		$ \rightarrow $		
	1029	10					L ST	ATTON				/ /	/ /	/ /	/ ,	/ /			
	rge U	GAN)	Sar	nple Deso (CHECK	CNE)	on	Munber of		1	, 						/		
Iten: Number	Sample Number		Тіле		Surface Water	Soil	Other (specify)	Con- tainers	\bigvee	10 10	6			/	/		COMMENT	5	
1	EXC	4		V				3	3										
2	Exc PIT 2			\checkmark				1	-	1									
				·															
		1												•					
			1																
			1					-											
 			1				·		<u> </u>										
				+															
							·												
			+																
			<u> </u>			<u> </u>													
			L		<u> </u>	<u> </u>			I]		Ļ							
					Transf Numbe		Item Number	Trans Relingu	ishe	d by			λœ	pte	<u>a p</u>	•	Dat	e Ti	me
Perso	n Responsit		ample		1			1 (Mary	00	<u>[~-</u>		1,0	win		<u></u>	mo	1/1	19/ 1:4	15
Remain					3			0				1/				1			
			•		3														
					4		•												

.

-

Monitor Well No.	Date Sampled	Benzene ug/l	Toluene ug/l	Ethyl Benzene ug/l	Total Xylenes ng/l	Total VOA ug/l	MTBE ug/l	FDB ug/l	Lead mg/l
MW-1	12/17/92	BDL	530 0	1,720 0	9,470.0	11,720.0	BDI	BDL	0 022
MW-2	12/17/92	70	13 0	215 0	661.0	896 0	BDL	BDL	0.008
MW-3	12/17/92	728 U	15.0	91.0	BDI.	834.0	895 0	BDI	0.007
MW-4	12/17/92	BDI.	BDL	BDI.	BDI	BDI	BDI	BDI	BDL
MW-5	12/17/92	17	BDL	11	BDL	2.8	BDI	BDI	BDI
MW-6	12/17/92	BDL	BDL	BDL	BDL	BDI.	BDI	BDI	BDI
MW-7	12/17/92	BDL	3,100 0	1,900 0	10,800 0	15,800 0	BDL	BDI	0.017
MW-8	12/17/92	129 0	6.0	13 0	37 ()	185 0	275.0	BDI	BDL
DW-1	12/17/92	09	28	61	78 1	87 9	215	BDL	BDL

TABLE I

ug/l = Micrograms/Liter

•

.

mg/l = Milligrams/Liter

BDL = Below Detection Limit

TABLE 2

Soil Boring No	Date of Sample	Sample Number	Depth of Sample (ft)	OVA Readings (ppm)
SB-5	12/9/92	1	0' - 2'	0
		2	2' - 4'	ŷ
		3	4' - 6'	ij
SB-6	12/9/92	1	0' - 2'	
	·····	2	2' - 4'	0
		3	4' - 6'	0
SB-7	12/9/92	1	0' - 2'	0
		2	2' - 4'	0
		3	4' - 6'	0
SB-8	12/9/92	1	0' - 2'	0
		2	2' - 4'	0
		3	4' - 6'	0
SB-9	12/9/92	1	0' - 2'	0
		2	2' - 4'	0
		3	4' - 6'	0
SB-10	12/9/92	1	0' - 2'	
		2	2' - 4'	0
		3	4' - 6'	0
SB-11	12/9/92	1	0' - 2'	0
		2	2' - 4'	0
		3	4' - 6'	1

1128/2017 V 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

1. S. A.

1997

S.

MONITORING WELL NO.	DATE OF READING	ELEVATION OF MONITORING WELL	DEPTH TO WATER	DEPTH OF GROUNDWATER
MW-1	12/17/92	10 28	6 15	4 13
MW-2 .	12/17/92	10 52	6 28	4 24
WV1-3	12/17/92	10 13	6 36	3 77
MW-4	12/17/92	8 88	6 02	1 2 86
MW-5	12/17/92	9 90	6 66	3 24
MW-6	12/17/92	10 75	5 86	4 89
MW-7	12/17/92	9 2 1	6 08	3 13
MW-8	12/17/92	9 50		

TABLE 3

.

1999 - C.

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$

. Sec.

Sec.

200

PAGE - 8

APPENDIX C

Location	Depth	Unfiltered OVA Readings
MW 12	2′	<10
	4′	<10
	5′	<10
MW 13	2′	<10
	4′	<10
	5′	<10
MW 14	2′	<10
	4′	<10
	5′	<10

Table 1 SOIL QUALITY ANALYSIS

NOTE: All results are recorded in parts per million.

				Ethyl		Total	Total	Total
Date	MW	Benzene	Toluene	Benzene	Xylenes	VOA	Naph.	Pah
11/02/94	12	BDL	1.10	1.92	8.32	11.37	*BDL	*BDL
11/02/94	13	3.27	5.99	2.35	10.91	22.52		
11/02/94	14	3.57	8.34	3.06	12.51	27.48		
11/02/94	DW1						BDL	BDL
11/02/94	3						240	BDL
05/02/94	DW2	BDL	BDL	4.26	11.7	15.96		
11/21/94	1		aa aa				265	BDL
11/21/94	2						816	BDL
11/21/94	4		aan ma				BDL	BDL
11/21/94	7						62	BDL
11/21/94	8						7	BDL

Table 2 GROUNDWATER QUALITY RESULTS

Notes: All values are expressed in parts per billion.

.....

*	=	Sample Date 11/21/94							
BDL	=	elow detection limits							
Total VOA	=	Volatile organic aromatics (summation of							
		detected BTEX by EPA Method 602).							
Naph.	=	Total Naphthalenes, EPA 610							
PAH	=	Polynuclear aromatic hydrocarbons, EPA 610							
	=	Not analyzied							

TABLE 3 SUMMARY OF GROUNDWATER ELEVATION SURVEY										
MW NO.	SURVEY	MONITORING WELL ELEVATION	GROUNDWATER DEPTH	GROUNDWATER ELEVATION						
MW-1	12/17/92	10.28	6.15	4.13						
MW-2	12/17/92	10.52	6.28	4.24						
MW-3	12/17/92	10.13	6.36	3.77						
MW-4	12/17/92	8.88	6.02	2.86						
MW-5	12/17/92	9.90	6.66	3.24						
MW-6	12/17/92	10.75	5.86	4.89						
MW-7	12/17/92	9.21	6.08	3.13						
MW-8	12/17/92	9.50	N/A	N/A						
MW-1	4/05/94	10.28	6.30	3.98						
MW-2	4/05/94	10.52	6.22	4.30						
MW-3	4/05/94	10.13	6.48	3.65						
MW-4	4/05/94	8.88	6.13	2.75						
MW-5	4/05/94	8.88	6.75	2.13						
MW-6	4/05/94	8.88	5.94	2.94						
MW-7	4/05/94	8.88	6.39	2.49						
MW - 8	4/05/94	9.50	6.36	3.14						

Table 4 Groundwater Level Measurements November 21, 1994

Monitor	Depth to
Well	Water
1	5.00
2	4.89
3	5.12
4	4.87
5	5.52
6	4.71
7	4.94
8	5.06
9	5.31
10	5.09
11	5.13
12	5.32
13	5.27
14	5.31

NOTE: All groundwater measurements are expressed in feet.

APPENDIX D

SOIL BORING LOGS, WELL CONSTRUCTION AND DEVELOPMENT LOGS, AND WELL COMPLETION REPORTS

							BC	DRI	NG LOC	Page 1 of				
Borin	g/Well N	Jumber	•			Permit	Number:				FDEP Facili	ty Iden	tificati	on Number:
		Ś	SB-1						59-14683				85036	
Site N						Boreho	le Start D		06/05/18	Borehole Start		025		AM 🗌 PM
			nter dba	United	Fuel	End Date: 06/05/18 End T				Time: 1040 🗹 AM 🔲 PM Environmental Technician's Name:				
Enviro	onmenta ATC		actor: Service	s I I C		Geologist's Name: Dwight W. Schwendeman				Environmen		hniciar Rodn		
Drillin	ng Comp			J LLO	Paveme	ent Thicl	kness (inc	-	Borehole Dian		Bo		Depth (
			ental Ser	vices			6	-		2				6
Drillin	ng Meth				t Boreho				asured Well DTW		OVA (list m		_	• • •
D'			а. <i>и</i> . – г		oil moistu		,	Drum	ater recharges in		MiniRae 3			
_			Cuttings [Jiuili	Spread	Backfill	Stoc	kpile		Other
	-		multiple i			,								
Boren	ole Con	pletion	n (check c	one):		Well	Gro	out	Bentonite	🔽 Backfi	ill 🗖	Other	(descril	be)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA		12				0.5	1		<u>te, Fill - Limesto</u> nedium to fine o	one grain, Greyish bro	own treding		D	
НА		12					2	to pale	brown			sw	D	
		12				<0.1	2						D	
HA		12				~ 0.1	3							
HA		12					4	Limesto	one, Very light g	rey to white			D	
DP		12				<0.1	5						М	Lab sample
DP		8					6						М	
							0	6 Feet	- End of Boring					
							<u> </u>							
							<u> </u>							

Sample Type Codes: PH = Post Hole; HA = Hand Auger; SS = Split Spoon; ST = Shelby Tube; DP = Direct Push; SC = Sonic Core; DC = Drill CuttingsMoisture Content Codes: D = Dry; M = Moist; W = Wet; S = Saturated

							BC	DRI	NG LOC	Page 1 of				
Borin	g/Well N	Jumber	•			Permit	Number:				FDEP Facili	ty Iden	itificati	on Number:
		Ś	SB-2						59-14683				85036	
Site N						Boreho	le Start D		06/05/18	Borehole Start		010		AM 🗌 PM
			nter dba	United	Fuel	End Date: 06/05/18 End T				Time: 1020 🗹 AM 🔲 PM Environmental Technician's Name:			AM 🗌 PM	
Enviro	onmenta ATC		actor: Service	s I I C		Geologist's Name: I Dwight W. Schwendeman				Environmen		hnician f Rodn		
Drillin	ng Comp			J LLO	Paveme	ent Thicl	kness (inc	-	Borehole Dian		Bo		Depth (
			ental Ser	vices			6	-		2			-	6
Drillin	ng Meth				t Boreho				asured Well DTW		OVA (list m			• • •
		VDP	~		oil moistu				ater recharges in		MiniRae 3			
_			Cuttings [Drum	Spread	🔽 Backfill	Sto	ckpile		Other
	(describe if other or multiple items are checked): Borehole Completion (check one):													
Boreh	ole Con	pletior	n (check c	one):		Well	🔲 Gro	out	Bentonite	e 🔽 Backf	ĭll	Other	(descri	ibe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA		12				<0.1	1		<u>te, Fill - Limesto</u> nedium to fine ç	one grain, Pale browr	treding to		D	
HA		12					2	light gre	әу			sw	D	Lab sample
		12				<0.1	2						D	
HA		12				~ 0.1	3						D	
HA		12					4	Limesto	one, Very light g	rey to white			D	
DP		12				<0.1	5						М	
DP		8					6						М	
								6 Feet ·	- End of Boring					
							<u> </u>							
							<u> </u>							

							BC	NG LOC	Page 1 of					
Boring	g/Well N	Jumber	:			Permit	Number:				FDEP Facili	ty Iden	tificati	on Number:
		:	SB-3						59-14683	I			35036	63
Site N						Boreho	le Start D		06/05/18	Borehole Start		925		AM 🗌 PM
			nter dba	United	Fuel						935		AM 🔽 PM	
Enviro	onmenta		actor:	s II C		Geologist's Name: Dwight W. Schwendeman				Environmen				
Drillir	ng Comp	-		J LLO	Paveme	ent Thic	kness (inc	•	Borehole Dian		Leif Rodney Borehole Depth (feet):			
JAE	EE Envi	ronme	ental Serv	vices			6	,		2			-	6
Drillir	ng Meth	od(s): VDP			t Boreho		`		sured Well DTW		OVA (list m MiniRae 3		nd chec	• • •
D:			<u>с</u> г.		oil moistu			Drum	ater recharges in					
_			Cuttings [e					Jium	Spread	▼ Backfill	Sto	ckpile		Other
	-		multiple i									0.1	<i>(</i> 1)	
Borehole Completion (check one): 🔽 Well 🔽 Grout 🔽 Bentonite 🔽 Backfill 🗍 Other (describe)														
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo ther remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA		12				0.5	1	Concre	te, Fill - Limesto	one mix with P-ro	ock		D	
НА		12											D	Lab sample
		12				<0.1	2	Fill - Lir	nestone				D	
HA		12				~ 0.1	3						D	
HA		12					4						D	
HA		12				<0.1	5	Sand, r	nedium to fine g	grain, grey to ligh	it grey	SW	М	
DP		8					6						М	
								6 Feet ·	End of Boring					
							<u> </u>							
							\vdash							
							<u> </u>							
							┝							

Sample Type Codes: **PH** = Post Hole; **HA** = Hand Auger; **SS** = Split Spoon; **ST** = Shelby Tube; **DP** = Direct Push; **SC** = Sonic Core; **DC** = Drill Cuttings Moisture Content Codes: **D** = Dry; **M** = Moist; **W** = Wet; **S** = Saturated

							BC	NG LOC	Page 1 of					
Boring	g/Well N	Jumber	:			Permit	Number:				FDEP Facili	ty Iden	tificati	on Number:
		ę	SB-4						59-14683				85036	63
Site N	ame:					Boreho	le Start D	ate:	06/05/18	Borehole Start		945		AM 🔽 PM
			nter dba	United	Fuel	End Date: 06/05/18 End T					955		AM PM	
Enviro	onmenta		actor: Service			Geologist's Name: Dwight W. Schwendeman				Environmen	Environmental Technician's Name:			
Drillir	ng Comp	-		S LLO	Paveme	nt Thicl	cness (inc	-	Borehole Dian		Leif Rodney Borehole Depth (feet):			
		-	ental Serv	vices			6	,		2			_	6
Drillir	ng Meth				t Boreho				asured Well DTW		OVA (list m			•••
		VDP			oil moistu				ater recharges in		MiniRae 3			
_			Cuttings [Drum	Spread	🔽 Backfill	Sto	ckpile		Other
			multiple i				_		_	_				
Boreh	ole Con	pletion	n (check o	one):		Well	Gro	out	Bentonite	e 🔽 Backf	ĭll	Other	(descri	ibe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo her remarks)	rs, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
HA		12				<0.1	1		te, Fill - Limesto nedium to fine o	one grain, pale brown			D	
НА		12								, paie 2.e		SW	D	
103							2	Sand r	nedium to fine g	arain grev				
HA		12				<0.1	3	, , ,		,, <u>.</u> ,		SW	D	
HA		12					4						D	
НА		12				0.1	5	Sand, r	nedium to fine g	grain, light reddis	h brown	sw	м	
DP		8					6						М	
								6 Feet ·	End of Boring					
														

							BC	NG LOC	Page 1 of							
Borin	g/Well N	Jumber	•			Permit	Number:				FDEP Facili	ity Iden	ntificati	on Number:		
		3	SB-5						59-14683				85036			
Site N						Boreho	le Start D		06/05/18	Borehole Start	•	100		AM 🗌 PM		
			nter dba	United	Fuel	G 1	End Da		06/05/18	End 7		110		AM 🗌 PM		
Enviro	onmenta		actor: Service	s II C		Geolog	logist's Name: Dwight W. Schwendeman			Environmental Technician's Name: Leif Rodney						
Drillin	ng Comp	-		J LLO	Paveme	ent Thicl	cness (inc	-	Borehole Dian		Bo	rehole				
			ental Serv	vices			2	,		2			- 1	3		
Drilliı	ng Meth				t Boreho				asured Well DTW		OVA (list m		_			
		VDP	~		oil moistu				ater recharges in		MiniRae 3					
_			Cuttings [Drum	Spread	🔽 Backfill	Sto	ckpile		Other		
	-		multiple i				_		_	-	_					
Boreh	ole Con	pletio	n (check o	one):	~	Well	🗖 Gro	out	Bentonite	e 🔽 Backf	ĭll	Other	(descri	ibe)		
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)		de grain size bas and ot	e Description sed on USCS, odo ther remarks)	ors, staining,	USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)		
HA		12				<0.1	1		/Concrete, Fill - ith Limestone fi				D			
НА		12						Sand, n		grain, brown tren	d to light	sw	D			
							2	brown								
HA		12				0.3	3						D			
HA		12					4	Limesto	one, Pale brown	1			D			
DP		8				<0.1	5						м			
DP		8					6						М			
								6 Feet ·	- End of sample	collection		1				
																

WELL CONSTRUCTION AND DEVELOPMENT LOG

WELL CONSTRUCTION DATA										
Well Number:	Site Name:		FDEP Facility I.D. Number:	Well Install Date(s):						
MW-9	Jak Service	e Center dba United Fuel	13/8503663	06/05/2018						
Well Location and Type (check	appropriate boxes):	Well Purpose: 🔲 Perched Mon	itoring W	ell Install Method:						
On-Site	Right-of-Way	Shallow (Wat	er-Table) Monitoring	Direct Push						
Off-Site Private Property		Intermediate	or Deep Monitoring							
Above Grade (AG)	Flush-to-Grade	Remediation	or Other (describe)	urface Casing Install Method:						
If AG, list feet of riser above land s	urface:			NA						
Borehole Depth Well D	Depth Borehole I	Diameter Manhole Diameter	Well Pad Size:							
(feet): 13 (feet):	13.00 (inches):	3.25 (inches): 8	<u>2</u> feet by	/ 2 feet						
Riser Diameter and Material:	Riser/Screen	Flush-Threaded	Riser Length: <u>3</u> feet							
1.5 - SCH 40 PVC	Connections:	Other (describe)	from 0	feet to <u>3</u> feet						
Screen Diameter and Material:		Screen Slot Size:	Screen Length: 10 feet	t						
1.5 - SCH 40	PVC	0.010-inch	from <u>10</u>	feet to <u>13</u> feet						
1 st Surface Casing Material:		1 st Surface Casing I.D. (inches):	1 st Surface Casing Length:	feet						
also check: 🔲 Permanent	Temporary	1	from	feet tofeet						
2 nd Surface Casing Material:		2 nd Surface Casing I.D. (inches):								
also check: 🔲 Permanent	Temporary		from	feet tofeet						
3 rd Surface Casing Material:		3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length:							
also check: 🔲 Permanent	Temporary		from	feet tofeet						
Filter Pack Material and Size:	Prepacked Filter Aro	ound Screen (check one):	from Filter Pack Length:	11 feet						
20/30 silica sand	Ves	No No	from 2	feet to <u>13</u> feet						
Filter Pack Seal Material and		Cand 20/05	Filter Pack Seal Length:	<u> </u>						
Size:		Sand 30/65	from 1	feet to <u>2</u> feet						
Surface Seal Material:	Dort	and Cement Grout	Surface Seal Length:							
	Polua		from 0.5	feet to <u>1</u> feet						

	WELL DEVELOPMENT DATA											
Well Development Date:	Well	Development Method (chec	k one): Surge/	Pum 🔽 Pump 🔲 Compressed Air								
06/06/18		Other (describe)										
Development Pump Type (check):	Centri	fugal 🔽 Peristaltic	Depth to Groundwater (before developing in feet):									
Submersible Other (describe)			6.15									
Pumping Rate (gallons per minute):		Maximum Drawdown of G										
~0.50		Development (feet):	~0.9	Yes Vo								
Pumping Condition (check one): To	tal Dev	elopment Water	Development Duration Development Water Drummed									
Continuous 🔲 Intermittent Re	emoved	(gallons): ~14	(minutes): 27	(check one): Yes No								
Water Appearance (color and odor) At S	Start of I	Development:	Water Appearance (color and odor) At End of Development:									
light browninish	white -	none		none - none								

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Southwest Northwest St. Johns F South Flori Suwannee DEP Delegated	PLEASE, F (*Denote River	COMPLETIO	RI E EIELDS			Date Stamp Official Use Only
.*Permit Number 13-59-14683						
*Number of permitted wells constructed	CUP/WUP Number	*D	ID Number	62-{	524 Delineatio	n No0
Iorges Llass & V	d, repaired, or abandoned	Number	of permitted wells	not constructed	l, repaired, or	abandoned
*Owner's Name Jorges Ugan & W	vouna	4.*Comple	etion Date 6/13/1	8 5. Flori	da Unique ID	
6900 SW 8 St, Miami 331						1.1.1
*Well Location - Address, Road Name						
.*County Dade	*Section	Land Grant		*Towns	ship	*Range
. Latitude	Longitude					
Data Obtained From:GPS D.*Type of Work: <u> </u>	MapSurvey	[Datum:NAE	0 27 N	AD 83	WGS 84
Domestic Bottled Water Supply Public Water Supply (Limited Use/D Public Water Supply (Community or Class I Injection Class V Injection:Recharge (Cemediation:RecoveryAir Sp Other (RecoveryAir Sp	r Non-Community/DEP) Commercial/Industrial Disp	ea Irrigation -	Agricultural Irr Livestock Nursery Irrigat Commercial/Ir Golf Course Ir	tion	HVAC Suppl HVAC Return	ed Geothermal y
Other (Describe)Other (Describe)Other (Describe)OtherO				_		
8.*Measured Static Water Level 9.*Measuring Point (Describe)			IL. AILCI	1100	a o at	
A lotal Well Depth 13ft. Cased E Abandonment:Other (Exp Fromft. Toft. No. of Fromft. Toft. No. of Fromft. Toft. No. of	Depth <u>3</u> ft. *Open H Dain) Bags Seal Mate Bags_ Seal Mate Bags_ Seal Mate	Which isft PVCStainle ole: From 0To erial (Check One): erial (Check One): erial (Check One):	Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement	ow Land Surfa Cased n: From 5 Benton Benton Benton	ce *Flowing: Other	Yes Slot Size .010 er er er
Total Well Depth 13ft. Cased E Abandonment: Other (Exp From ft. To ft. No. of	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate	Which isft PVCStainle ole: From 0To erial (Check One): erial (Check One):	Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er
.* Total Well Depth 13ft. Cased D .* Abandonment: Other (Exp From ft. To ft. No. of Surface Casing Diameter and Depth: Dia in. From ft. To	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (AboveBel ss SteelNot 0ft. *Screen Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er
*Abandonment: Other (Exp From ft. To ft. To ft. ft. Form ft. ft. To ft.	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate ft. No. of Bags	Which isft PVCStainle ole: From 0To erial (Check One): erial (Check One): erial (Check One): erial (Check One): erial (Check One):	AboveBel ss SteelNot 0ft. *Screen Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er er
.* Total Well Depth 13ft. Cased D .* Abandonment: Other (Exp From ft. To ft. No. of Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To ft. To .*Primary Casing Diameter and Depth: Dia in. From ft. To 3	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate ft. No. of Bags ft. No. of Bags ft. No. of Bags	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Material (Above Bel ss SteelNot 0ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One):N Check One):N	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size _010 er er er er Other Other
*Abandonment: Other (Exp From ft. To ft. No. of Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To To Dia Dia <td>Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate ft. No. of Bags ft. No. of Bags ft. No. of Bags 1 ft. No. of Bags</td> <td>Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): erial (Check One): Seal Material (Seal Material (Seal Material (</td> <td>Above Bel ss SteelNot 0ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One):N Check One):N Check One):N</td> <td>ow Land Surfa Cased</td> <td>ce *Flowing: Other</td> <td>Yes Slot Size .010 er er er er Other Other Other Other</td>	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate ft. No. of Bags ft. No. of Bags ft. No. of Bags 1 ft. No. of Bags	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): erial (Check One): Seal Material (Seal Material (Seal Material (Above Bel ss SteelNot 0ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One):N Check One):N Check One):N	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er Other Other Other Other
*Abandonment: Other (Exp Fromft. Toft. No. of *Surface Casing Diameter and Depth: Diain. Fromft. Diain. Fromft. To3	Depth 5 ft. *Open H blain)	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Material (Seal Material (Seal Material (Seal Material (Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Chec	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size _010 er er er er other Other Other Other Other Other Other
*Abandonment; Other (Exp From ft. To ft. No. of Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To 3 3 Dia in. F	Depth 3 ft. *Open H Dain) Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate Bags Seal Mate ft. No. of Bags ft. No. of Bags ft. No. of Bags ft. No. of Bags ft. No. of Bags	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Material (Seal Material (Seal Material (Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Chec	ow Land Surfa Cased n: From 5 Benton Benton Benton Benton leat Cement leat Cement leat Cement leat Cement leat Cement	ce *Flowing: Other	Yes Slot Size .010 er er er er other Other Other Other Other
.* Iotal Well Depth 13ft. Cased E .* Abandonment: Other (Exp From ft. To ft. No. of *Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To 3 Dia in. From ft. To Dia in. From ft. To 3 Dia In. From ft. To Dia in. From ft. To Dia Dia In. From	Depth 3 ft. *Open H blain)	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Ma	Above Bel Ss SteelNot 0ft. *Screee Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One):N	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size _010 er er er er er Other Other Other Other Other Other
*Abandonment: Other (Exp From ft. To ft. No. of *Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To 3 3 in. From ft. To 3 3 3 10 10 3 Dia in. From ft. To 3	Depth 3 ft. *Open H blain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Above Bel Ss SteelNot 0ft. *Screee Neat Cement Check One):N	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size _010 er er er er er other Other Other Other Other Other Other Other Other
*Abandonment: Other (Exp Fromft. Toft. No. of *Fromft. Toft. No. of *Surface Casing Diameter and Depth: Diain. Fromft. Diain. Fromft. To *Primary Casing Diameter and Depth: Diain. Fromft. Diain. Fromft. To	Depth 3 ft. *Open H blain)	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Ma	Above Bel Ss SteelNot 0ft. *Screee Neat Cement Check One):N	ow Land Surfa Cased n: From 5 Benton Benton Benton Benton Leat Cement leat Cement leat Cement leat Cement leat Cement leat Cement leat Cement leat Cement leat Cement leat Cement	ce *Flowing: Other	Yes Slot Size _010 er er er er er er other Other Other Other Other Other Other
* Abandonment: Other (Exp Fromft. To ft. No. of *Surface Casing Diameter and Depth: Dia in. Fromft. Diain. Fromft. To Dia in. Fromft. To Ji. Diain. Fromft. To Ji. Diain. Fromft. To Ji. Diain. Fromft. To Ji. Diain. Fromft. To Ji. *Liner Casing Diameter and Depth: Diain. Fromft. To Diain. Fromft. To Diain. Fromft. To	Depth 3 ft. *Open H Dain)	Which isft PVCStainle ole: From 0To erial (Check One): erial (Check One): erial (Check One): erial (Check One): erial (Check One): erial (Check One): Erial (Check One): Seal Material (Seal Mat	AboveBel	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er er Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other Other
.* Total Well Depth13ft. Cased E .* Abandonment:Other (Exp Fromft. Toft. No. of *Surface Casing Diameter and Depth: Diain. Fromft. To Diain. Fromft. To <td>Depth 3 ft. *Open H Dain) </td> <td>Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Seal Material (</td> <td>AboveBel </td> <td>ow Land Surfa Cased</td> <td>ce *Flowing: Other</td> <td>Yes Slot Size .010 er er er er er other Other</td>	Depth 3 ft. *Open H Dain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (AboveBel	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er er other Other
Abandonment:Other (Exp Fromft, Toft, No. of Fromft, Toft, No. of S*Surface Casing Diameter and Depth: Diain. Fromft, To Diain. Fromft, To 0.*Primary Casing Diameter and Depth: Diain. Fromft, To Diain. Fromft, To Telescope Casing Diameter and Depth Diain. Fromft, To Diain. Fromft, To Diain. Fromft, To	Depth 3 ft. *Open H Dain)	Which isft PVCStainle ole: From 0To prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): prial (Check One): Seal Material (Seal Material (AboveBel ss SteelNot 0ft. *Scree Neat Cement Neat Cement NE NE Check One):N Check One):N Check One):N Check One):N Check One):N	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er other Other Other Other Other Other Other Other Other Other Other Other
From n. 10 n. No. of From ft. To ft. No. of From ft. To ft. No. of S.*Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To Dia in. From ft. To D.*Primary Casing Diameter and Depth: Dia in. From ft. To D.*Primary Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To To Dia Dia in. From ft. To Dia in. From ft. To Dia Dia In. From ft. To Dia Dia In. From ft. To Dia <td>Depth 3 ft. *Open H Dain) </td> <td>Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Seal Material (</td> <td>Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check</td> <td>ow Land Surfa Cased</td> <td>ce *Flowing: Other</td> <td>Yes Slot Size .010 er er er er er er er er er er other Other</td>	Depth 3 ft. *Open H Dain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Above Bel ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er er er er er er er other Other
Abandonment: Other (Exp Fromft. To ft. No. of Surface Casing Diameter and Depth: Diain. Fromft. Diain. Fromft. To Dia	Depth 3 ft. *Open H Dalain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (AboveBel	ow Land Surfa Cased Cased n: From 5 Benton Beat Cement	ce *Flowing: Other	Yes Slot Size .010 er er er er er er er er er er other Other
Abandonment: Other (Exp From ft. To ft. No. of From ft. To ft. To Dia in. From ft. To	Depth 3 ft. *Open H Dalain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Above Bel Ss Steel Not 0 ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check	ow Land Surfa Cased Cased n: From 5 Benton Beat Cement	ce *Flowing: Other	Yes Slot Size .010 er er er er er er er er er er er er er er er other Other
Abandonment: Other (Exp From ft. To ft. No. of Surface Casing Diameter and Depth: Dia in. From Dia in. From ft. To Dia in. From <td>Depth 3 ft. *Open H Dain) </td> <td>Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Seal Material (</td> <td>Above Bel Ss Steel Not O ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check</td> <td>ow Land Surfa Cased Cased n: From 5 Benton Beat Cement Ieat Cement<</td> <td>ce *Flowing: Other</td> <td>Yes Slot Size .010 er er er er er er er er er er other Other</td>	Depth 3 ft. *Open H Dain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Above Bel Ss Steel Not O ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check	ow Land Surfa Cased Cased n: From 5 Benton Beat Cement Ieat Cement<	ce *Flowing: Other	Yes Slot Size .010 er er er er er er er er er er other Other
*Abandonment: Other (Exp *Abandonment: Other (Exp From ft. To ft. No. of *Surface Casing Diameter and Depth: Dia in. From ft. To Dia in. From ft. To 3 3 in. From ft. To 3 </td <td>Depth 3 ft. *Open H Dalain) </td> <td>Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Seal Material (</td> <td>Above Bel Ss Steel Not O ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check</td> <td>ow Land Surfa Cased </td> <td>ce *Flowing: Other</td> <td>Yes Slot Size .010 er er er er er er er er er er er er er er er other Other</td>	Depth 3 ft. *Open H Dalain)	Which isft PVCStainle ole: From 0To prial (Check One): Seal Material (Above Bel Ss Steel Not O ft. *Scree Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Neat Cement Check One): N Check	ow Land Surfa Cased	ce *Flowing: Other	Yes Slot Size .010 er er er er er er er er er er er er er er er other Other

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT 2379 BROAD STREET, BROOKSVILLE, FL 34604-6899 PHONE: (352) 796-7211 or (800) 423-1476 WWW.SWFWMD.STATE.FL.US

ST. JOHNS RIVER WATER MANAGEMENT DISTRICT

4049 REID STREET, PALATKA, FL 32178-1429 PHONE: (386) 329-4500 WWW.SJRWMD.COM

NORTHWEST FLORIDA WATER MANAGEMENT DISTRICT 152 WATER MANAGEMENT DR., HAVANA, FL 32333-4712 (U.S. Highway 90, 10 miles west of Tallahassee) PHONE: (850) 539-5999 WWW.NWFWMD.STATE.FL.US SOUTH FLORIDA WATER MANAGEMENT DISTRICT P.O. BOX 24680 3301 GUN CLUB ROAD WEST PALM BEACH, FL 33416-4680 PHONE: (561) 686-8800 WWW.SFWMD.GOV

SUWANNEE RIVER WATER MANAGEMENT DISTRICT 9225 CR 49 LIVE OAK, FL 32060 PHONE: (386) 362-1001 or (800) 226-1066 (Florida only) WWW.MYSUWANNEERIVER.COM

6

From 0	ft.	To 15	ft.	Color tan	mation changes. Note cavities and d	
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material sand
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F. M. C)	Material
rom	ft.	To	ft.	Color	Grain Size (F, M, C)	Material
rom	ft.	To	ft.	Color	Grain Size (F. M. C)	Material
rom	ft.	То	ft.	Color	Grain Size (F, M, C)	Material
10111	ft.	To	ft.	Color	Grain Size (F. M. C)	Material
rom	ft.	To	ft.	Color	Grain Size (F. M. C)	
rom rom		To To	ft.	Color Color	Grain Size (F, M, C) Grain Size (F, M, C)	Material Material
rom rom	ft.			Color	Grain Size (F, M, C) Grain Size (F, M, C)	Material
rom	ft.			Color	Grain Size (F, M, C)	Material
rom rom	ft.			Color	Grain Size (F, M, C)	Material Material
rom rom	ft.			Color S.W. 8th ST. (1	Grain Size (F, M, C)	Material
rom rom	ft.			Color	Grain Size (F, M, C)	Material Material
rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 Strive of 4)	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T FORMER DISPE	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 S.W. 8th ST. (1 S.W. 8th ST. (1) S.W. 8th	Grain Size (F, M, C)	Material Material
rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T FORMER DISPE	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 FORMER DISPER S(TYP OF 4) AST	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T Structure of a) Ast (R* o	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 FORMER DISPE FORMER DISPE FORMER DISPE FORMER DISPE	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 FORMER DISPER S(TYP OF 4) AST	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 FORMER DISPE FORMER DISPE FORMER DISPE FORMER DISPE FORMER DISPE	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1 FORMER DISPE FORMER DISPE FORMER DISPE FORMER DISPE FORMER DISPE	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1) S.W. 8th S	Grain Size (F, M, C)	Material Material
rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 8th ST. (1) S.W. 8th S	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T STACKS	Grain Size (F, M, C)	Material Material
rom rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T STACKS	Grain Size (F, M, C)	Material Material STORE SIGN CONCRETE UTILITY POLE
rom rom	ft.		ft.	Color S.W. 8th ST. (T S.W. 8th ST. (T STACKS	Grain Size (F, M, C)	Material Material STORE SIGN CONCRETE UTILITY POLE
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 1 S.W.	Grain Size (F, M, C)	Material Material STORE SIGN CONCRETE UTILITY POLE
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 1 S.W.	Grain Size (F, M, C)	Material Material STORE SIGN CONCRETE UTILITY POLE
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 1 S.W.	Grain Size (F, M, C)	
rom rom	ft.		ft.	Color S.W. 8th ST. (1 S.W. 1 S.W.	Grain Size (F, M, C)	Material Material STORE SIGN CONCRETE UTILITY POLE

DEP Form 62-532.900(2) Incorporated in 62-532.410, F.A.C. Effective Date: October 7, 2010

Page 2 of 2

APPENDIX E

LABORATORY ANALYTICAL REPORTS GROUND WATER SAMPLING LOGS

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

03/06/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA51986

Sampling Dates: 02/21/18 - 02/22/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: 74

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 74 FA51986

Table of Contents

N

ယ

4

S

6

7

8

ပ

-1-

*	
Section 1: Sample Summary	
Section 2: Summary of Hits	4
Section 3: Sample Results	6
3.1: FA51986-1: MW 1	7
3.2: FA51986-2: MW 2	10
3.3: FA51986-3: MW 3	13
3.4: FA51986-4: MW 4	16
3.5: FA51986-5: MW 5	19
3.6: FA51986-6: MW 6	22
3.7: FA51986-7: MW 7	25
3.8: FA51986-8: MW 8	31
3.9: FA51986-9: MW B	34
Section 4: Misc. Forms	37
4.1: Chain of Custody	38
Section 5: MS Volatiles - QC Data Summaries	40
5.1: Method Blank Summary	41
5.2: Blank Spike Summary	45
5.3: Matrix Spike/Matrix Spike Duplicate Summary	49
Section 6: MS Semi-volatiles - QC Data Summaries	53
6.1: Method Blank Summary	54
6.2: Blank Spike Summary	55
6.3: Matrix Spike/Matrix Spike Duplicate Summary	56
Section 7: GC Volatiles - QC Data Summaries	57
7.1: Method Blank Summary	58
7.2: Blank Spike Summary	59
7.3: Matrix Spike/Matrix Spike Duplicate Summary	60
Section 8: GC/LC Semi-volatiles - QC Data Summaries	
8.1: Method Blank Summary	62
8.2: Blank Spike Summary	64
8.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 9: Metals Analysis - QC Data Summaries	68
9.1: Prep QC MP33393: Pb	69

FA51986

Sample Summary

ATC Group Services LLC.

Job No: FA51986

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA51986-1	02/21/18	12:05 LR	02/23/18	AQ	Ground Water	MW 1
FA51986-2	02/21/18	15:01 LR	02/23/18	AQ	Ground Water	MW 2
FA51986-3	02/21/18	14:11 LR	02/23/18	AQ	Ground Water	MW 3
FA51986-4	02/21/18	13:26 LR	02/23/18	AQ	Ground Water	MW 4
FA51986-5	02/22/18	12:53 LR	02/23/18	AQ	Ground Water	MW 5
FA51986-6	02/22/18	12:08 LR	02/23/18	AQ	Ground Water	MW 6
FA51986-7	02/22/18	10:26 LR	02/23/18	AQ	Ground Water	MW 7
FA51986-8	02/22/18	11:26 LR	02/23/18	AQ	Ground Water	MW 8
FA51986-9	02/22/18	13:44 LR	02/23/18	AQ	Ground Water	MW B

Summary of Hits

Job Number:	FA51986
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	02/21/18 thru 02/22/18

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	PQL	MDL	Units	Method
FA51986-1	MW 1					
Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		0.39 I 40.2 38.9 0.59 I 1.79	0.80 8.0 8.0 0.80 0.24	0.20 3.2 3.2 0.32 0.14	ug/l ug/l ug/l ug/l mg/l	SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-2	MW 2					
Benzene Acenaphthene Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene Phenanthrene TPH (C8-C40)		0.32 I 0.65 I 0.63 I 9.5 8.2 1.5 0.37 I 2.13	$ \begin{array}{c} 1.0\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.24\\ \end{array} $	0.31 0.32 0.20 0.32 0.32 0.32 0.20 0.14	ug/l ug/l ug/l ug/l ug/l ug/l ug/l mg/l	SW846 8260B SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-3	MW 3					
Benzene Toluene Ethylbenzene Xylene (total) Fluorene 1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		0.58 I 0.32 I 0.50 I 1.3 I 0.43 I 13.4 21.8 13.4 1.63	$ \begin{array}{c} 1.0\\ 1.0\\ 3.0\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.80\\ 0.24 \end{array} $	$\begin{array}{c} 0.31 \\ 0.30 \\ 0.36 \\ 0.72 \\ 0.20 \\ 0.32 \\ 0.32 \\ 0.32 \\ 0.14 \end{array}$	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO
FA51986-4	MW 4					
1-Methylnaphtha 2-Methylnaphtha Naphthalene TPH (C8-C40)		2.5 2.4 0.49 I 0.300	0.80 0.80 0.80 0.24	0.32 0.32 0.32 0.14	ug/l ug/l ug/l mg/l	SW846 8270D BY SIM SW846 8270D BY SIM SW846 8270D BY SIM FLORIDA-PRO

FA51986-5 MW 5

No hits reported in this sample.

FA51986-6 MW 6

No hits reported in this sample.

N

Summary of Hits

Job Number:	FA51986
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	02/21/18 thru 02/22/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method
FA51986-7 MW 7					
Benzene	0.32 I	1.0	0.31	ug/l	SW846 8260B
Ethylbenzene	3.5	1.0	0.36	ug/l	SW846 8260B
Xylene (total)	0.80 I	3.0	0.72	ug/l	SW846 8260B
Fluorene	0.54 I	0.80	0.20	ug/l	SW846 8270D BY SIM
1-Methylnaphthalene	75.1	8.0	3.2	ug/l	SW846 8270D BY SIM
2-Methylnaphthalene	118	8.0	3.2	ug/l	SW846 8270D BY SIM
Naphthalene	84.9	8.0	3.2	ug/l	SW846 8270D BY SIM
Phenanthrene	0.23 I	0.80	0.20	ug/l	SW846 8270D BY SIM
TPH (C8-C40)	3.25	1.3	0.75	mg/l	FLORIDA-PRO
Lead	17.5	5.0	1.1	ug/l	SW846 6010C
				-	

FA51986-8 **MW 8**

No hits reported in this sample.

FA51986-9 MW B

No hits reported in this sample.

N

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

Report	of	Analysis	
--------	----	----------	--

Client Sar Lab Samp Matrix: Method: Project:	ole ID: FA51 AQ - SW84	986-1 Ground Wa 6 8260B	ater er(United Fuel); 690	0 SW 3	Da Pe	ate Received: 02 ercent Solids: n/	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1 ^a	1A10046.D	1	03/01/18 18:26	SP	n/a	n/a	V1A370
Run #2	O50968.D	1	02/26/18 13:35	SP	n/a	n/a	VO1914
	Purge Volum	e					
	5.0 ml						
Run #1							

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U ^b	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	112% 109% 100% 105%	100% 102% 96% 99%	83-1 79-1 85-1 83-1	25% 12%	

(a) Sample vial(s) contained significant headspace; reported results are considered minimum values.(b) Result is from Run# 2

ω

Page 1 of 1

U064542.D

Client Sar Lab Samj Matrix:		MW 1 FA51986-1 AQ - Ground W	ater			e Sampled: e Received:	
Method: Project:			BY SIM SW846 351 er(United Fuel); 690			cent Solids:	n/a
	File ID	DF	Analyzed	By	Prep Date	Prep Batc	h Analytical Batch
Run #1	R475620).D 1	03/02/18 02:09	RV	02/26/18 16:00	OP68917	SR2877

02/26/18 16:00

OP68917

SU2816

03/03/18 01:08 RV

Report of Analysis

	Initial Volume	Final Volume	
Run #1	250 ml	1.0 ml	
Run #2	250 ml	1.0 ml	

10

BN PAH List

Run #2

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.39	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	40.2 a	8.0	3.2	ug/l	
91-57-6	2-Methylnaphthalene	38.9 ^a	8.0	3.2	ug/l	
91-20-3	Naphthalene	0.59	0.80	0.32	ug/l	Ι
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	81%	62%	41-1	29%	
321-60-8	2-Fluorobiphenyl	67%	02 <i>%</i> 93%	41-1		
1718-51-0	Terphenyl-d14	97%	100%	45-1		
1/10-51-0	1 ci pileity i-d1+	11/0	10070	45-1		

(a) Result is from Run# 2

- I = Result > = MDL but < PQL J = Estimated value
- V = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound
 - SGS

8 of 74 FA51986

ω -1

ω

SGS North America Inc.

	Report of Analysis							Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - C FLOR	Fround Wate DA-PRO	r SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2	File ID LR03248.D	DF 1	Analyzed 02/28/18 19:45	By SJL	Prep D 02/27/1	ate .8 10:50	Prep Batch OP68927	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1050 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	1.79	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		95%		41-1	46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

- L = Indicates value exceeds calibration range
- I = Result > = MDL but < PQL J = Estimated value
- V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω -

ω

Lab Samp Matrix: Method: Project:	AQ - SW84	986-2 Ground Wa 6 8260B	ater er(United Fuel); 690	0 SW	Da Pe	te Received: 02 rcent Solids: n/	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A10047.D	1	03/01/18 18:49	SP	n/a	n/a	V1A370
Run #2 ^a	O50969.D	1	02/26/18 13:56	SP	n/a	n/a	VO1914
	Purge Volum	e					
Run #1	5.0 ml						
Run #2	5.0 ml						

Report of Analysis

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.32 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	Ι
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	111% 109% 99% 104%	100% 102% 96% 100%	83-1 79-12 85-1 83-1	25% 12%	

(a) Confirmation run.

3.2 3

Page 1 of 1

10 of 74

Re	port	of	Anal	vsis
		•••	T TITLET	

Method: Project:			Y SIM SW846 351 er(United Fuel); 690			ent Solids: n/	/a
110jeet.					, ,		
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1			Analyzed 03/03/18 01:33	By	, ,	Prep Batch OP68917	Analytical Batch SU2816

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.65	0.80	0.32	ug/l	Ι
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.63	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	9.5	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene	8.2	0.80	0.32	ug/l	
91-20-3	Naphthalene	1.5	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.37	0.80	0.20	ug/l	Ι
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	85%		41-1	29%	
321-60-8	2-Fluorobiphenyl	82%		41-1	18%	
1718-51-0	Terphenyl-d14	85%		45-1	45%	

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

3 2

SGS
			alysis			Page 1 of 1		
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Wate DA-PRO	r SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2 Run #1 Run #2	File ID LR03249.D Initial Volume 1050 ml	DF 1 Final Vol 1.0 ml	Analyzed 02/28/18 20:05 ume	By SJL	Prep D 02/27/1	ate 8 10:50	Prep Batch OP68927	Analytical Batch GLR283
CAS No.	Compound TPH (C8-C40)	1	Result	PQL 0.24	MDL 0.14	Units mg/l	Q	
CAS No. 84-15-1	Surrogate Rec	coveries	Run# 1 99%	Run# 2	Lim 41-1	its 46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

SGS

Itepore of Timerysis	Report	of	Analysis
-----------------------------	--------	----	----------

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW84	MW 3 FA51986-3 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 8th St			Pe	2/21/18 2/23/18 a	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	1A10048.D	1	03/01/18 19:12	SP	n/a	n/a	V1A370
Run #2 ^a	O50970.D	1	02/26/18 14:17	SP	n/a	n/a	VO1914
	Purge Volum	e					
Run #1	5.0 ml						
Run #2	5.0 ml						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.58 0.32 0.50 1.3 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l	I I I I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 104% 100% 107%	100% 102% 97% 101%	83-1 79-1 85-1 83-1	25% 12%	

(a) Confirmation run.

- N = Indicates presumptive evidence of a compound

13 of 74

SGS

ယ ပ

ω

FA51986

Report of A	Analysis
--------------------	----------

	File ID	DF	Analyzed	Bv	Prep Date	Prep Batch	Analytical Batch
Run #1 Run #2	File ID T036651.D	DF 1	Analyzed 03/06/18 14:25	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch ST1357

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

Compound	Result	PQL	MDL	Units	Q
Acenaphthene	0.32 U	0.80	0.32	ug/l	
Acenaphthylene	0.32 U	0.80	0.32	ug/l	
Anthracene	0.20 U	0.80	0.20	ug/l	
Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
Chrysene	0.032 U	0.16	0.032	ug/l	
Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
Fluoranthene	0.20 U	0.80	0.20	ug/l	
Fluorene	0.43	0.80	0.20	ug/l	Ι
Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
1-Methylnaphthalene	13.4	0.80	0.32	ug/l	
2-Methylnaphthalene	21.8	0.80	0.32	ug/l	
Naphthalene	13.4	0.80	0.32	ug/l	
Phenanthrene	0.20 U	0.80	0.20	ug/l	
Pyrene	0.20 U	0.80	0.20	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Nitrobenzene-d5	89%		41-1	29%	
2-Fluorobiphenyl	85%		41-1	18%	
Terphenyl-d14	91%		45-1	45%	
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Acenaphthene0.32 UAcenaphthylene0.32 UAnthracene0.20 UBenzo(a)anthracene0.032 UBenzo(a)pyrene0.032 UBenzo(b)fluoranthene0.032 UBenzo(g, h, i)perylene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UDibenzo(a, h)anthracene0.032 UFluoranthene0.032 UFluoranthene0.032 UFluorene0.43Indeno(1,2,3-cd)pyrene0.032 U1-Methylnaphthalene13.42-Methylnaphthalene13.4Phenanthrene0.20 UPyrene0.20 USurrogate RecoveriesRun# 1Nitrobenzene-d589%2-Fluorobiphenyl85%	Acenaphthene 0.32 U 0.80 Acenaphthylene 0.32 U 0.80 Anthracene 0.20 U 0.80 Benzo(a)anthracene 0.032 U 0.16 Benzo(a)pyrene 0.032 U 0.16 Benzo(b)fluoranthene 0.032 U 0.16 Benzo(g,h,i)perylene 0.032 U 0.16 Benzo(k)fluoranthene 0.032 U 0.16 Benzo(k)fluoranthene 0.032 U 0.16 Dibenzo(a, h)arthracene 0.032 U 0.16 Dibenzo(a, h)anthracene 0.032 U 0.16 Fluoranthene 0.20 U 0.80 Fluorene 0.43 0.80 Indeno(1, 2, 3-cd)pyrene 0.032 U 0.16 1-Methylnaphthalene 21.8 0.80 Naphthalene 13.4 0.80 Phenanthrene 0.20 U 0.80 Surrogate Recoveries Run# 1 Run# 2 Nitrobenzene-d5 89% 85%	Acenaphthene 0.32 U 0.80 0.32 Acenaphthylene 0.32 U 0.80 0.32 Anthracene 0.20 U 0.80 0.20 Benzo(a)anthracene 0.032 U 0.16 0.032 Benzo(a)pyrene 0.032 U 0.16 0.032 Benzo(b)fluoranthene 0.032 U 0.16 0.032 Benzo(g,h,i)perylene 0.032 U 0.16 0.032 Benzo(k)fluoranthene 0.032 U 0.16 0.032 Benzo(k)fluoranthene 0.032 U 0.16 0.032 Chrysene 0.032 U 0.16 0.032 Dibenzo(a,h)anthracene 0.032 U 0.16 0.032 Fluoranthene 0.20 U 0.80 0.20 Fluorene 0.43 0.80 0.20 Indeno(1,2,3-cd)pyrene 0.032 U 0.16 0.032 1-Methylnaphthalene 13.4 0.80 0.32 Naphthalene 13.4 0.80 0.32 Naphthalene 0.20 U 0.80 0.20 Pyrene 0.20 U 0.80 0.20 Surrogate RecoveriesRun#1Run#2LimiNitrobenzene-d5 89% $41-1$ 2-Fluorobiphenyl 85% $41-1$	Acenaphthene 0.32 U 0.80 0.32 ug/l Acenaphthylene 0.32 U 0.80 0.32 ug/l Anthracene 0.20 U 0.80 0.20 ug/l Benzo(a)anthracene 0.032 U 0.16 0.032 ug/l Benzo(a)pyrene 0.032 U 0.16 0.032 ug/l Benzo(b)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(g,h,i)perylene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Fluorene 0.43 0.80 0.20 ug/l Indeno(1,2,3-cd)pyrene 0.032 U 0.16 0.032 ug/l I-Methylnaphthalene 13.4 0.80 0.32 ug/l Naphthalene 13.4 0.80 0.20 ug/l Pyrene 0.20 U 0.80 0.20 ug/l <t< td=""></t<>

- $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$
- $V = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

ω

ယ ပ

FA51986

SGS

14 of 74

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - Q FLOR	986-3 Ground Wate IDA-PRO	r SW846 3510C (United Fuel); 69	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2	File ID LR03250.D	DF 1	Analyzed 02/28/18 20:26	By 5 SJL	Prep D 02/27/1	ate .8 10:50	Prep Batch OP68927	Analytical Batch GLR283
Run #1 Run #2	Initial Volume 1050 ml	Final Vol 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	1.63	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		106%		41-1	46%		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ω ω

Client San Lab Samp Matrix: Method: Project:	AQ - SW84	MW 4 FA51986-4 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 8				Date Sampled: 02/21/18 Date Received: 02/23/18 Percent Solids: n/a 8th St, Miami, FL			
Run #1 Run #2	File ID O50971.D	DF 1	Analyzed 02/26/18 14:37	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914		
Run #1 Run #2	Purge Volum 5.0 ml	e							

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 0.31 ug/l 1.0 0.30 ug/l 1.0 0.36 ug/l 3.0 0.72 ug/l 1.0 0.23 ug/l		ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 101% 96% 97%	83-118% 79-125% 85-112% 83-118%			

SGS

Lab Sam	mple ID: M ple ID: F	AW 4 FA51986-4					Sampled:	02/21/18
Matrix:	A	AQ - Ground	d Water			Date	Received:	02/23/18
Method:	S	SW846 8270	D BY SIM	SW846 351	0C	Perc	ent Solids:	n/a
Project:	J	ak Service (Center(Unite	ed Fuel); 690	0 SW	8th St, Miami, FL		
	File ID	DF	' An	alyzed	By	Prep Date	Prep Batc	h Analytical Batch
Run #1	T036652.	D 1	03/	06/18 14:55	RV	02/26/18 16:00	OP68917	ST1357
Run #2								

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	2.5	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene	2.4	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.49	0.80	0.32	ug/l	Ι
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	84%		41-1	29%	
321-60-8	2-Fluorobiphenyl	101%		41-1	18%	
1718-51-0	Terphenyl-d14	94%		45-1	45%	

- $I=\ Result>=\ MDL\ but<\ PQL\ \ J=\ Estimated\ value$
- $V = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

			Report	of Ana	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - 0 FLOR	986-4 Ground Wate IDA-PRO	er SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received:	02/21/18 02/23/18 n/a
Run #1 Run #2	File ID LR03251.D	DF 1	Analyzed 02/28/18 20:47	By SJL	Prep D 02/27/1	ate 8 10:50	Prep Batch OP68927	Analytical Batch GLR283
Run #1 Run #2	Initial Volum 1050 ml	e Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	0.300	0.24	0.14	mg/l		
CAS No.	Surrogate Re	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		112%		41-1	46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

ယ

L = Indicates value exceeds calibration range

Lab Samp Matrix: Method: Project:	AQ - SW84	FA51986-5 AQ - Ground Water SW846 8260B Jak Service Center(United Fuel); 6900 SW 80				Date Sampled:02/22/18Date Received:02/23/18Percent Solids:n/a8th St, Miami, FL				
Run #1 Run #2	File ID O50972.D	DF 1	Analyzed 02/26/18 14:58	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914			
Run #1 Run #2	Purge Volum 5.0 ml	e								

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	99% 101% 97% 98%		83-1 79-1 85-1 83-1	25% 12%	

ω 5

ω

	Initial Volume	Final V	Jume					
Run #1 Run #2	R475624.D	1	03/02/18 04:16	•	02/26/18 16:00	OP68917	SR2877	
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Method:SW846 8270D BY SIM SW846 3510CPercent Solids:nProject:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL						a		
Matrix:	AQ - G	Ground Water			Date	2/23/18		
Lab Sam	ple ID: FA5198	36-5			Date	Sampled: 02	02/22/18	
Client Sa	mple ID: MW 5							

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	89%		41-1	29%	
321-60-8	2-Fluorobiphenyl	80%		41-1	18%	
1718-51-0	Terphenyl-d14	97%		45-1	45%	

(a) Associated CCV outside of control limits high, sample was ND.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

ω 5

			Report	of An	alysis			Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Wate DA-PRO	er SW846 3510C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perc	Received: (02/22/18 02/23/18 n/a
Run #1 Run #2 Run #1	File ID LR03307.D Initial Volume 1020 ml	DF 1 Final Vol 1.0 ml	Analyzed 03/01/18 15:49 lume	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #2 CAS No.	Compound TPH (C8-C40))		PQL 0.25	MDL 0.15	Units mg/l	Q	
CAS No. 84-15-1			Run# 1 97%	Run# 2	Lim 41-1	its 46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω 5

ω

SGS

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW8	1986-6 Ground Wa 46 8260B	nter er(United Fuel); 690	0 SW	D Pe	ate Received: 02 ercent Solids: n/	
Run #1 Run #2	File ID O50973.D	DF 1	Analyzed 02/26/18 15:19	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914
Run #1 Run #2	Purge Volum 5.0 ml	le					

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	$\begin{array}{cccc} 1.0 & 0.31 \\ 1.0 & 0.30 \\ 1.0 & 0.36 \\ 3.0 & 0.72 \\ 1.0 & 0.23 \end{array}$		ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 101% 97% 98%	83-118% 79-125% 85-112% 83-118%		25% 12%	

22 of 74

FA51986

Page 1 of 1

Report	of	Anal	vsis
--------	----	------	------

	Initial Volume	Final V	olume				
Run #1 Run #2	File ID R475625.D	DF 1	Analyzed 03/02/18 04:47	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877
Lab Samp Matrix: Method: Project:	AQ - G SW846	Fround Wa 8270D B	ater Y SIM SW846 351 er(United Fuel); 690		Date Perc	Sampled: 02 Received: 02 ent Solids: n/	/a
	nple ID: MW 6				-	a	

	Initial volume	Final volum
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

Compound	Result	PQL	MDL	Units	Q
Acenaphthene	0.32 U	0.80	0.32	ug/l	
Acenaphthylene	0.32 U	0.80	0.32	ug/l	
Anthracene	0.20 U	0.80	0.20	ug/l	
Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
Chrysene	0.032 U	0.16	0.032	ug/l	
Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
Fluoranthene	0.20 U	0.80	0.20	ug/l	
Fluorene	0.20 U	0.80	0.20	ug/l	
Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
Naphthalene	0.32 U	0.80	0.32	ug/l	
Phenanthrene	0.20 U	0.80	0.20	ug/l	
Pyrene	0.20 U	0.80	0.20	ug/l	
Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
Nitrobenzene-d5	91%		41-1	29%	
2-Fluorobiphenyl	81%		41-1	18%	
Terphenyl-d14	97%		45-1	45%	
	Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Phenanthrene Pyrene Surrogate Recoveries Nitrobenzene-d5 2-Fluorobiphenyl	Acenaphthene0.32 UAcenaphthylene0.32 UAnthracene0.20 UBenzo(a)anthracene0.032 UBenzo(a)pyrene0.032 UBenzo(b)fluoranthene0.032 UBenzo(g,h,i)perylene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UBenzo(k)fluoranthene0.032 UDibenzo(a,h)anthracene0.032 UFluoranthene0.032 UFluoranthene0.032 UFluorene0.032 UIndeno(1,2,3-cd)pyrene0.032 U1-Methylnaphthalene0.32 U2-Methylnaphthalene0.32 UNaphthalene0.20 UPyrene0.20 USurrogate RecoveriesRun# 1Nitrobenzene-d591%2-Fluorobiphenyl81%	Acenaphthene $0.32 U$ 0.80 Acenaphthylene $0.32 U$ 0.80 Anthracene $0.20 U$ 0.80 Benzo(a)anthracene $0.032 U$ 0.16 Benzo(a)pyrene $0.032 U$ 0.16 Benzo(b)fluoranthene $0.032 U$ 0.16 Benzo(g,h,i)perylene $0.032 U$ 0.16 Benzo(k)fluoranthene $0.032 U$ 0.16 Benzo(k)fluoranthene $0.032 U$ 0.16 Dibenzo(a, h)anthracene $0.032 U$ 0.16 Dibenzo(a, h)anthracene $0.032 U$ 0.16 Fluoranthene $0.20 U$ 0.80 Fluorene $0.20 U$ 0.80 Indeno(1,2,3-cd)pyrene $0.032 U$ 0.16 1-Methylnaphthalene $0.32 U$ 0.80 2-Methylnaphthalene $0.32 U$ 0.80 Naphthalene $0.20 U$ 0.80 Surrogate RecoveriesRun# 1Run# 2Nitrobenzene-d5 91% 2-Fluorobiphenyl 81%	Acenaphthene 0.32 U 0.80 0.32 Acenaphthylene 0.32 U 0.80 0.32 Anthracene 0.20 U 0.80 0.20 Benzo(a)anthracene 0.032 U 0.16 0.032 Benzo(a)pyrene 0.032 U 0.16 0.032 Benzo(b)fluoranthene 0.032 U 0.16 0.032 Benzo(g,h,i)perylene 0.032 U 0.16 0.032 Benzo(g,h,i)perylene 0.032 U 0.16 0.032 Benzo(k)fluoranthene 0.032 U 0.16 0.032 Chrysene 0.032 U 0.16 0.032 Dibenzo(a,h)anthracene 0.032 U 0.16 0.032 Fluoranthene 0.20 U 0.80 0.20 Fluorene 0.20 U 0.80 0.20 Indeno(1, 2, 3-cd)pyrene 0.032 U 0.16 0.032 1-Methylnaphthalene 0.32 U 0.80 0.32 2-Methylnaphthalene 0.32 U 0.80 0.32 Naphthalene 0.20 U 0.80 0.20 Pyrene 0.20 U 0.80 0.20 Surrogate RecoveriesRun#1Run#2LimNitrobenzene-d5 91% $41-1$ 2-Fluorobiphenyl 81% $41-1$	Acenaphthene 0.32 U 0.80 0.32 ug/l Acenaphthylene 0.32 U 0.80 0.32 ug/l Anthracene 0.20 U 0.80 0.20 ug/l Benzo(a)anthracene 0.032 U 0.16 0.032 ug/l Benzo(a)pyrene 0.032 U 0.16 0.032 ug/l Benzo(b)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(g,h,i)perylene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Benzo(k)fluoranthene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Dibenzo(a, h)anthracene 0.032 U 0.16 0.032 ug/l Fluoranthene 0.20 U 0.80 0.20 ug/l Fluorene 0.20 U 0.80 0.20 ug/l Indeno(1,2,3-cd)pyrene 0.032 U 0.16 0.032 ug/l 1-Methylnaphthalene 0.32 U 0.80 0.32 ug/l Naphthalene 0.32 U 0.80 0.20 ug/l

(a) Associated CCV outside of control limits high, sample was ND.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

Report of A								Page 1 of 1
Client Sample ID:MW 6Lab Sample ID:FA51986-6Matrix:AQ - Ground WaterMethod:FLORIDA-PRO SWProject:Jak Service Center(Ur		SW846 3510C	00 SW 8t	h St, Mia	Date Perc	Received: 0	2/22/18 2/23/18 /a	
Run #1 Run #2	File ID LR03308.D	DF 1	Analyzed 03/01/18 16:10	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #1 Run #2	Initial Volum 1000 ml	e Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C4))	0.15 U	0.25	0.15	mg/l		
CAS No.	Surrogate R	ecoveries	Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl		99%		41-1	46%		

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

3.6

SGS

REDUCT OF ADDIVSIS	Report	of	Analysis
--------------------	--------	----	----------

Client Sa Lab Samj Matrix: Method: Project:	ple ID: FA AQ SW	51986-7 - Ground Wa 846 8260B	ater er(United Fuel); 690	00 SW		Date Sampled: Date Received: Percent Solids: FL	
Run #1 Run #2	File ID B125756.D	DF 1	Analyzed 02/28/18 10:37	By AJ	Prep Date n/a	Prep Batc n/a	h Analytical Batch VB5064
Run #1	Purge Volu 5.0 ml	me					

Run #2

VOA 8021 List

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2	Benzene	0.32	1.0	0.31	ug/l	Ι
75-27-4	Bromodichloromethane	0.24 U	1.0	0.24	ug/l	
75-25-2	Bromoform	0.41 U	1.0	0.41	ug/l	
56-23-5	Carbon Tetrachloride	0.36 U	1.0	0.36	ug/l	
108-90-7	Chlorobenzene	0.20 U	1.0	0.20	ug/l	
75-00-3	Chloroethane	0.67 U	2.0	0.67	ug/l	
110-75-8	2-Chloroethyl Vinyl Ether ^a	2.1 U	5.0	2.1	ug/l	
67-66-3	Chloroform	0.30 U	1.0	0.30	ug/l	
124-48-1	Dibromochloromethane	0.28 U	1.0	0.28	ug/l	
75-71-8	Dichlorodifluoromethane	0.50 U	2.0	0.50	ug/l	
95-50-1	1,2-Dichlorobenzene	0.32 U	1.0	0.32	ug/l	
541-73-1	1,3-Dichlorobenzene	0.22 U	1.0	0.22	ug/l	
106-46-7	1,4-Dichlorobenzene	0.26 U	1.0	0.26	ug/l	
75-34-3	1,1-Dichloroethane	0.34 U	1.0	0.34	ug/l	
107-06-2	1,2-Dichloroethane	0.31 U	1.0	0.31	ug/l	
75-35-4	1,1-Dichloroethylene	0.32 U	1.0	0.32	ug/l	
156-59-2	cis-1,2-Dichloroethylene	0.28 U	1.0	0.28	ug/l	
156-60-5	trans-1,2-Dichloroethylene	0.22 U	1.0	0.22	ug/l	
78-87-5	1,2-Dichloropropane	0.43 U	1.0	0.43	ug/l	
10061-01-5	cis-1,3-Dichloropropene	0.29 U	1.0	0.29	ug/l	
10061-02-6	trans-1,3-Dichloropropene	0.21 U	1.0	0.21	ug/l	
100-41-4	Ethylbenzene	3.5	1.0	0.36	ug/l	
74-83-9	Methyl Bromide	0.59 U	2.0	0.59	ug/l	
74-87-3	Methyl Chloride	0.50 U	2.0	0.50	ug/l	
75-09-2	Methylene Chloride	2.0 U	5.0	2.0	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.23 U	1.0	0.23	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	0.30 U	1.0	0.30	ug/l	
127-18-4	Tetrachloroethylene	0.22 U	1.0	0.22	ug/l	
108-88-3	Toluene	0.30 U	1.0	0.30	ug/l	
71-55-6	1,1,1-Trichloroethane	0.25 U	1.0	0.25	ug/l	
79-00-5	1,1,2-Trichloroethane	0.47 U	1.0	0.47	ug/l	
79-01-6	Trichloroethylene	0.35 U	1.0	0.35	ug/l	

U = Not detected MDL = Method Detection Limit

PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$ V = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 2

ယ

460-00-4

17060-07-0 2037-26-5

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

	Iethod:SW846 8260BPercent Solids:						Received:	02/22/18 02/23/18 n/a
VOA 8021	List							
CAS No.	Comp	ound	Result	PQL	MDL	Units	Q	
75-69-4 75-01-4 1330-20-7	Vinyl	orofluoromethane Chloride e (total)	0.50 U 0.41 U 0.80	2.0 1.0 3.0	0.50 0.41 0.72	ug/l ug/l ug/l	Ι	
CAS No.	Surro	gate Recoveries	Run# 1	Run# 2	Lim	its		
1868-53-7	Dibroi	nofluoromethane	100%		83-1	18%		

(a) Result reported from HCl preserved sample and should be used for screening purposes only.

99%

100%

101%

Page 2 of 2

3.7

ω

Report of Analysis

79-125%

85-112%

83-118%

Lab Sam	ple ID: FA519	86-7			Date Sampled: 02/22/18				
Matrix:	AQ - 0	Fround Wa	ater		Date Received: 02/23/18				
Method:	SW846	5 8270D B	Y SIM SW846 351	0C	Percent Solids: n/a				
Project:	Jak Ser	vice Cent	er(United Fuel); 690	0 SW 3	8th St, Miami, FL				
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
Run #1	File ID R475626.D	DF 1	Analyzed 03/02/18 05:18	•	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877		
		DF 1 10	•	RV	1	-	·		
Run #1 Run #2	R475626.D	1 10	03/02/18 05:18 03/03/18 01:57	RV	02/26/18 16:00	OP68917	SR2877		

Report of Analysis

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-70-3	Dibenzo(a, h)anthracene	0.032 U	0.16	0.032	ug/l	
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-73-7	Fluorene	0.54	0.80	0.20	ug/l	Ι
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-12-0	1-Methylnaphthalene	75.1 ^a	8.0	3.2	ug/l	
91-57-6	2-Methylnaphthalene	118 ^a	8.0	3.2	ug/l	
91-20-3	Naphthalene	84.9 ^a	8.0	3.2	ug/l	
85-01-8	Phenanthrene	0.23	0.80	0.20	ug/l	Ι
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	71%	50%	41-1	29%	
321-60-8	2-Fluorobiphenyl	77%	91%	41-1		
1718-51-0	Terphenyl-d14	98%	94%	45-1		

(a) Result is from Run# 2

- $I=\ Result>=\ MDL\ but<\ PQL\quad J=\ Estimated\ value$
- V = Indicates analyte found in associated method blank
- $N= \ Indicates \ presumptive \ evidence \ of \ a \ compound$

FA51986

Page 1 of 1

Run #1
 250 ml 1.0 ml

 Run #2
 250 ml 1.0 ml

			Report	of Ana	alysis			Page 1 of 1			
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - C EPA 5						Date Sampled:02/22/18Date Received:02/23/18Percent Solids:n/aSW 8th St, Miami, FLn/a				
Run #1 Run #2	File ID DD97839.D	DF 1	Analyzed 03/01/18 21:55	By NJ	Prep D 03/01/1	ate 8 12:00	Prep Batch OP68970	Analytical Batch GDD2849			
Run #1 Run #2	Initial Volume 34.8 ml	Final Vo 2.0 ml	olume								
CAS No.	Compound		Result	PQL	MDL	Units	Q				
106-93-4	1,2-Dibromoe	thane	0.010 U	0.020	0.010	ug/l					
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its					
460-00-4	4-Bromofluor	obenzene	111%		63-1	37%					

MDL = Method Detection Limit U = Not detectedPQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value$
- V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	Report of Analysis								
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - G FLORI	round Water DA-PRO S	W846 3510C United Fuel); 690	00 SW 8t	h St, Mia	2/22/18 2/23/18 a			
Run #1 Run #2	File ID LR03309.D	DF 5	Analyzed 03/01/18 16:30	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283	
Run #1 Run #2	Initial Volume 1000 ml	Final Volu 1.0 ml	ume						
CAS No.	Compound		Result	PQL	MDL	Units	Q		
TPH (C8-C40)			3.25	1.3	0.75	mg/l			
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its			
84-15-1	84-15-1 o-Terphenyl				41-1	46%			

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ

				Topor	• • •		5		ruge r or r
Client Sample	ID: MW	7							
Lab Sample II	D: FA51	986-7					Date San	pled: 02/22/18	3
Matrix:	AQ -	Ground W	Vater				Date Rec	3	
	-						Percent S	Solids: n/a	
Project:	Jak S	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Total Metals A	Analysis								
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	17.5	5.0	1.1	ug/l	1	02/27/18	02/27/18 lm	SW846 6010C ¹	SW846 3010A ²

Report of Analysis

(1) Instrument QC Batch: MA14711

(2) Prep QC Batch: MP33393

Page 1 of 1

3.7

ω

Client San Lab Samp Matrix: Method: Project:	ele ID: FA51 AQ - SW84	986-8 Ground Wa 6 8260B	nter er(United Fuel); 690	0 SW	Date Sampled: 02/22/18 Date Received: 02/23/18 Percent Solids: n/a 8th St, Miami, FL			
Run #1 Run #2	File ID O50974.D	DF 1	Analyzed 02/26/18 15:39	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914	
Run #1 Run #2	Purge Volum 5.0 ml	e						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 102% 97% 98%		83-1 79-1 85-1 83-1	25% 12%	

31 of 74

FA51986

Page 1 of 1

ယ .8

ω

	Initial Volume	Final V	olume				
Run #1 Run #2	File ID R475627.D	DF 1	Analyzed 03/02/18 05:50	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877
Lab Samı Matrix: Method: Project:	AQ - G SW846 Jak Ser	round Wa 8270D B vice Cent	Y SIM SW846 351 er(United Fuel); 690	0 SW 3			
	mple ID: MW 8						

Run #1 1.0 ml 250 ml Run #2

BN PAH List

CAS No.	Compound	Result	PQL	MDL	Units	Q	
83-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l		
208-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l		
120-12-7	Anthracene	0.20 U	0.80	0.20	ug/l		
56-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l		
50-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l		
205-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l		
191-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l		
207-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l		
218-01-9	Chrysene	0.032 U	0.16	0.032	ug/l		
53-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l		
206-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l		
86-73-7	Fluorene	0.20 U	0.80	0.20	ug/l		
193-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l		
90-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l		
91-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l		
91-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l		
85-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l		
129-00-0	Pyrene	0.20 U	0.80	0.20	ug/l		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its		
4165-60-0	Nitrobenzene-d5	86%		41-1	29%		
321-60-8	2-Fluorobiphenyl	77%		41-118%			
1718-51-0	Terphenyl-d14	93%		45-145%			
	-						

(a) Associated CCV outside of control limits high, sample was ND.

- I = Result > = MDL but < PQL J = Estimated valueV = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

ω

ω. 8

	Report of Analysis									
Client San Lab Samp Matrix: Method: Project:	le ID: FA519 AQ - Q FLOR	MW 8 FA51986-8 AQ - Ground Water FLORIDA-PRO SW846 3510C Jak Service Center(United Fuel); 6900 SW 8				Date Sampled: 02/22/18 Date Received: 02/23/18 Percent Solids: n/a 8th St, Miami, FL				
Run #1 Run #2	File ID LR03310.D	DF 1	Analyzed 03/01/18 16:51	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283		
Run #1 Run #2	Initial Volume 1000 ml	Final Vo 1.0 ml	lume							
CAS No.	Compound		Result	PQL	MDL	Units	Q			
	TPH (C8-C40)		0.15 U	0.25	0.15	mg/l				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its				
84-15-1	-1 o-Terphenyl		117%		41-1	46%				

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

ယ .

ယ

Client Sar Lab Samp Matrix: Method: Project:	AQ - SW84	986-9 Ground Wa 46 8260B	nter er(United Fuel); 690	0 SW	Date Sampled:02/22/18Date Received:02/23/18Percent Solids:n/a8th St, Miami, FLn/a			
Run #1 Run #2	File ID O50975.D	DF 1	Analyzed 02/26/18 16:01	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO1914	
Run #1 Run #2	Purge Volum 5.0 ml	e						

Purgeable Aromatics, MTBE

CAS No.	Compound	Result	PQL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7 1634-04-4	Benzene Toluene Ethylbenzene Xylene (total) Methyl Tert Butyl Ether	0.31 U 0.30 U 0.36 U 0.72 U 0.23 U	1.0 1.0 1.0 3.0 1.0	0.31 0.30 0.36 0.72 0.23	ug/l ug/l ug/l ug/l ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 101% 97% 99%		83-1 79-1 85-1 83-1	25% 12%	

34 of 74

FA51986

Page 1 of 1

3.9

ω

Report of	f Anal	vsis
-----------	--------	------

Run #2							
Run #1	File ID R475628.D	DF 1	Analyzed 03/02/18 06:21	By RV	Prep Date 02/26/18 16:00	Prep Batch OP68917	Analytical Batch SR2877
Matrix: Method: Project:	AQ - 0 SW84	Ground Wa 6 8270D B	ater BY SIM SW846 351 er(United Fuel); 690		Date Perc	Received: 02 ent Solids: n/	2/23/18
Client Sar Lab Sam	mple ID: MW B ple ID: FA519				Date	Sampled: 02	2/22/18

	Initial Volume	Final Volume
Run #1	250 ml	1.0 ml
Run #2		

BN PAH List

CA	AS No.	Compound	Result	PQL	MDL	Units	Q
83-	-32-9	Acenaphthene	0.32 U	0.80	0.32	ug/l	
208	8-96-8	Acenaphthylene	0.32 U	0.80	0.32	ug/l	
120	0-12-7	Anthracene	0.20 U	0.80	0.20	ug/l	
56-	-55-3	Benzo(a)anthracene	0.032 U	0.16	0.032	ug/l	
50-	-32-8	Benzo(a)pyrene	0.032 U	0.16	0.032	ug/l	
205	5-99-2	Benzo(b)fluoranthene	0.032 U	0.16	0.032	ug/l	
19	1-24-2	Benzo(g,h,i)perylene	0.032 U	0.16	0.032	ug/l	
207	7-08-9	Benzo(k)fluoranthene	0.032 U	0.16	0.032	ug/l	
218	8-01-9	Chrysene	0.032 U	0.16	0.032	ug/l	
53-	-70-3	Dibenzo(a,h)anthracene	0.032 U	0.16	0.032	ug/l	
206	5-44-0	Fluoranthene	0.20 U	0.80	0.20	ug/l	
86-	-73-7	Fluorene	0.20 U	0.80	0.20	ug/l	
193	3-39-5	Indeno(1,2,3-cd)pyrene	0.032 U	0.16	0.032	ug/l	
90-	-12-0	1-Methylnaphthalene	0.32 U	0.80	0.32	ug/l	
91-	-57-6	2-Methylnaphthalene ^a	0.32 U	0.80	0.32	ug/l	
91-	-20-3	Naphthalene	0.32 U	0.80	0.32	ug/l	
85-	-01-8	Phenanthrene	0.20 U	0.80	0.20	ug/l	
129	9-00-0	Pyrene	0.20 U	0.80	0.20	ug/l	
CA	AS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
416	65-60-0	Nitrobenzene-d5	81%		41-12	29%	
32	1-60-8	2-Fluorobiphenyl	74%		41-11	18%	
17	18-51-0	Terphenyl-d14	91%		45-14	45%	

(a) Associated CCV outside of control limits high, sample was ND.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

ω

			Report	of An	alysis			Page 1 of 1
Client Sample ID:MW BLab Sample ID:FA51986-9Matrix:AQ - Ground WaterMethod:FLORIDA-PRO SW846 3510Project:Jak Service Center(United Fuel				00 SW 8t	h St, Mia	Date Perc	1	2/22/18 2/23/18 /a
Run #1 Run #2 Run #1	File ID LR03313.D Initial Volume 1000 ml	DF 1 Final Vol 1.0 ml	Analyzed 03/01/18 17:54 ume	By SJL	Prep D 02/27/1	ate 8 16:30	Prep Batch OP68936	Analytical Batch GLR283
Run #2 CAS No.	Compound TPH (C8-C40)		PQL 0.25	MDL 0.15	Units mg/l	Q	
CAS No. 84-15-1	Surrogate Re			Run# 2	Lim	C		

U = Not detectedMDL = Method Detection Limit PQL = Practical Quantitation Limit

L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.9

ယ

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

PREM	SGS Acc	cutest Sou	theast	FA5	198	6	
	Chaiı	n of Custo	ody	SGS ACCUTEST	JOB # :	PAGEC	DF
ACCUTEST	TEL. 407-42	Road, Suite C-15 Orlande 25-6700 FAX: 407-425 www.accutest.com		SGS Accutest Q	uote #	SKIFF #	
#4 @ #3 P		roject Informatio	n estatesta			formation	Matrix Codes DW - Drinking
Company Name: ATC Group Services	Project Name:	2 Service Cent	ter aba United 1		77		Water
Address: 9955 NW 166th Way Suite 1	Street 6900	SW 8th S.	treet	12 E NE			GW - Ground Water
City: Miami State: FL Zip: 33178	City Miarni	<u> </u>	State FL	Xot			WW - Water SW - Surface
Project Contact: D. Schwendernan	Project # 710	14 30 60	9	BIEYW 1 Prest	00		Water SO - Soil
Phone #: A	Fax #	11000			24		SL- Sludge
Sampler(s) Name(s) (Printed)	Client Purchase Orde	er#		- 0			OI - Oil LIQ - Other Liquid
Sampler 1: Leif RodneySampler 2:	COLLECTION	CONTAIN	ER INFORMATION	1000101	52		AIR - Air SOL - Other Solid
SGS							
Accutest Sample # Field ID / Point of Collection DATE	SAMPLED TIME BY: M	TOTAL # # #	HCI NaOH HNO3 H2SO4 H2SO4 DI WATER MFOH	22 2 2 2	30		LAB USE ONLY
MW I O3/a/		Giw 6 1					<u>D</u> D COL CHILL
2 MW 2 03/31/11		GW 6 1					
3 MW 3 02/21/19		AW 6 V					
4 MW 4 02/21/19		nW 6 V			·		
5 MW 5 02/22/11	12:53 JR (QW 6 V			1		
6 MW 6 Da/22/19	13:08 LA G	AW 6 V					
7 MW 7 02/22/1		aw 10 1.					
8 MW 8 02/192/19		31W 6 V					
9 MW B 03/03/14	13:44 JA (AW 6 V					
							L
			┼┼┼┼┽┿╋	+			
কিছাল বিষয়ের বি		Data Deliverab	le Information	******		omments / Remarks	144122125555568
10 Day (Business) Approved By: / Date		ERCIAL "A" (RESU		<u> </u>		intento / Remarka	1944 6.2277 784945
7 Day		ERCIAL "B" (RESU					
5 Day		1 (EPA LEVEL 3)					
з Day RUSH <u></u>		ſ1 (EPA LEVEL 4)					
2 Day RUSH	EDD'S	5					
1 Day RUSH							
Other Rush T/A Data Available VIA Email or Lablink						, //	1 aut
Sample Custo		ed below each time s	amples change possession		lelivery. Date Time:	Received av/Affiliation	CHE HE Y TID
Relinguished by Sampler/Affiliation Date Time: Received By/, C2/02/18 16:10 2	Fed	Ex	3 F.p.d	Fre	Date Time:		-02/23/18
Refinquished by/Affiliation Date Time: Received By/		· - /~	Relinquished By/Affiliat	on	Date Time:	Received By/Affiliation	
56			7			8	
Lab Use Only: Cooler Temperature (s) Celsius (corrected): 4.	24.6				1	<u>http://www.sqs.com/en/ten</u> Effective Date 0	

SGS COC Florida new art 5 2 17.xls rev 042417 SI

FA51986: Chain of Custody Page 1 of 2 44

4

SGS Sample Receipt Summary

Job Number: FA5198	6 Client	: ATC	Project: JAK SEF	RVICE CENT	ER			
Date / Time Received: 2/23/20	18 9:45:00 AM	Delivery Method:	FED EX Airbill #'s: 10019	Airbill #'s: 1001910553310003281100789847973210				
Therm ID: IR 1;		Therm CF: 0.4;	# of Co	olers: 2				
Cooler Temps (Raw Measure	ed) °C: Cooler 1: (3.	8); Cooler 2: (4.2);						
Cooler Temps (Correcte	ed) °C: Cooler 1: (4.	2); Cooler 2: (4.6);						
Cooler Information	Y or N		Sample Information	Yo	r N	_N/A_		
1. Custody Seals Present			1. Sample labels present on bottles	\checkmark				
2. Custody Seals Intact			2. Samples preserved properly	\checkmark				
3. Temp criteria achieved			3. Sufficient volume/containers recvd for analys	is: 🗸				
4. Cooler temp verification	IR Gun		4. Condition of sample	Intact				
5. Cooler media	<u>lce (Bag)</u>		5. Sample recvd within HT	\checkmark				
			6. Dates/Times/IDs on COC match Sample Lab	el 🗌	\checkmark			
Frip Blank Information	Y or N	N/A	VOCs have headspace		\checkmark			
1. Trip Blank present / cooler			8. Bottles received for unspecified tests		\checkmark			
2. Trip Blank listed on COC			9. Compositing instructions clear			\checkmark		
	W or S	N/A	10. Voa Soil Kits/Jars received past 48hrs?			\checkmark		
3. Type Of TB Received			11. % Solids Jar received?			\checkmark		
3. Type Of TB Necelved			12. Residual Chlorine Present?					
Misc. Information								
Number of Encores: 25-Grar	n 5-Gram	Num	ber of 5035 Field Kits: Number	of Lab Filtered	Metals:			
Test Strip Lot #s:	pH 0-32303	15 рН	110-12 <u>219813A</u> Other: (\$	Specify)				
Residual Chlorine Test Strip Lo	t #:							

Comments 250ml Amber Bottles received for 8270.1 Amber Bottle received instead of 2 for Extractions. SAMPLE #8 1- 250ML AND 1- 1000ML AMBER ID LABEL READS MW-A.

SM001 Rev. Date 05/24/17

Technician: SHAYLAP Date: 2/23/2018 9:45:00 AM

Reviewer: _____ Date: _____

FA51986: Chain of Custody Page 2 of 2

FA51986

Section 5

MS Volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA51986

Account:	ATCFLM ATC Group Services LLC.							
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Sample	File ID	DF	Analyzed 02/26/18	By	Prep Date	Prep Batch	Analytical Batch	
VO1914-MB	O50963.D	1		SP	n/a	n/a	VO1914	
The QC reported here applies to the following samples:						Method: SW84	6 8260B	

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

Q

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	106%	83-118%
17060-07-0	1,2-Dichloroethane-D4	109%	79-125%
2037-26-5	Toluene-D8	97%	85-112%
460-00-4	4-Bromofluorobenzene	102%	83-118%

5.1.1

G

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC Jak Service Cent			7 8th St,	Miami, FL		
Sample	File ID	DF	Analyzed 02/28/18	By	Prep Date	Prep Batch	Analytical Batch
VB5064-MB	B125755.D	1		AJ	n/a	n/a	VB5064

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	1.0	0.31	ug/l
75-27-4	Bromodichloromethane	ND	1.0	0.24	ug/l
75-25-2	Bromoform	ND	1.0	0.41	ug/l
56-23-5	Carbon Tetrachloride	ND	1.0	0.36	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.20	ug/l
75-00-3	Chloroethane	ND	2.0	0.67	ug/l
110-75-8	2-Chloroethyl Vinyl Ether	ND	5.0	2.1	ug/l
67-66-3	Chloroform	ND	1.0	0.30	ug/l
124-48-1	Dibromochloromethane	ND	1.0	0.28	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	0.50	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.32	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.22	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.26	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	0.34	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethylene	ND	1.0	0.32	ug/l
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	0.28	ug/l
156-60-5	trans-1,2-Dichloroethylene	ND	1.0	0.22	ug/l
78-87-5	1,2-Dichloropropane	ND	1.0	0.43	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.29	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.21	ug/l
100-41-4	Ethylbenzene	ND	1.0	0.36	ug/l
74-83-9	Methyl Bromide	ND	2.0	0.59	ug/l
74-87-3	Methyl Chloride	ND	2.0	0.50	ug/l
75-09-2	Methylene Chloride	ND	5.0	2.0	ug/l
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.23	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.30	ug/l
127-18-4	Tetrachloroethylene	ND	1.0	0.22	ug/l
108-88-3	Toluene	ND	1.0	0.30	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.25	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.47	ug/l
79-01-6	Trichloroethylene	ND	1.0	0.35	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	0.50	ug/l
75-01-4	Vinyl Chloride	ND	1.0	0.41	ug/l
1330-20-7	Xylene (total)	ND	3.0	0.72	ug/l

5.1.2

G

Method Blank SummaryJob Number:FA51986Account:ATCFLM ATC Group Services LLC.

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VB5064-MB	B125755.D	1	02/28/18	AJ	n/a	n/a	VB5064

FA51986-7

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	102%	79-125%
2037-26-5	Toluene-D8	96%	85-112%
460-00-4	4-Bromofluorobenzene	101%	83-118%

Page 2 of 2

5.1.2 G

Method Blank Summary Job Number: FA51986

1634-04-4 Methyl Tert Butyl Ether

Toluene

1330-20-7 Xylene (total)

108-88-3

			7 8th St,	Miami, FL		
File ID 1A10030.D	DF 1	Analyzed 03/01/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch V1A370
ted here applies to) the follo	wing samples:]	Method: SW84	6 8260B
A51986-2, FA5198	6-3					
	Jak Service Cent File ID 1A10030.D ted here applies to	Jak Service Center(United File ID DF 1A10030.D 1	File IDDFAnalyzed1A10030.D103/01/18ted here applies to the following samples:	Jak Service Center(United Fuel); 6900 SW 8th St, File ID DF Analyzed By 1A10030.D 1 03/01/18 SP ted here applies to the following samples:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL File ID DF Analyzed By Prep Date 1A10030.D 1 03/01/18 SP n/a ted here applies to the following samples: Image: Content of the following samples: Image: Content of the following samples: Image: Content of the following samples:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL File ID DF Analyzed By Prep Date Prep Batch 1A10030.D 1 03/01/18 SP n/a n/a ted here applies to the following samples: Method: SW84

1.0

1.0

3.0

Units Q

ug/l

ug/l

ug/l

ug/l

ug/l

0.23

0.30

0.72

 CAS No.
 Compound
 Result
 RL
 MDL

 71-43-2
 Benzene
 ND
 1.0
 0.31

 100-41-4
 Ethylbenzene
 ND
 1.0
 0.36

ND

ND

ND

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	112%	83-118%
17060-07-0	1,2-Dichloroethane-D4	107%	79-125%
2037-26-5	Toluene-D8	99%	85-112%
460-00-4	4-Bromofluorobenzene	108%	83-118%

Page 1 of 1

5.1.3

S

Blank Spike Summary Job Number: FA51986

Project:	Jak Service Cen	ter(United	Fuel), 0900 SW	oui si,	Ivitanii, FL		
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VO1914-BS	O50962.D	1	02/26/18	SP	n/a	n/a	VO1914

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2 100-41-4 1634-04-4 108-88-3	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene	25 25 25 25	27.9 27.4 27.6 27.4	112 110 110 110	81-122 81-121 72-117 80-120
1330-20-7 CAS No.	Xylene (total) Surrogate Recoveries	75 BSP	84.2 L	112	80-126
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane	103% 107% 98% 99%	79 83	3-118% 9-125% 5-112% 3-118%	

Blank Spike Summary Job Number: FA51986

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
VB5064-BS	B125754.D	1	02/28/18	AJ	n/a	n/a	VB5064

FA51986-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	25.3	101	81-122
75-27-4	Bromodichloromethane	25	25.1	100	79-123
75-25-2	Bromoform	25	23.1	92	66-123
56-23-5	Carbon Tetrachloride	25	25.7	103	76-136
108-90-7	Chlorobenzene	25	24.2	97	82-124
75-00-3	Chloroethane	25	28.8	115	62-144
110-75-8	2-Chloroethyl Vinyl Ether	125	148	118	56-122
67-66-3	Chloroform	25	24.6	98	80-124
124-48-1	Dibromochloromethane	25	23.5	94	78-122
75-71-8	Dichlorodifluoromethane	25	29.6	118	42-167
95-50-1	1,2-Dichlorobenzene	25	23.0	92	82-124
541-73-1	1,3-Dichlorobenzene	25	24.0	96	84-125
106-46-7	1,4-Dichlorobenzene	25	23.2	93	78-120
75-34-3	1,1-Dichloroethane	25	26.7	107	81-122
107-06-2	1,2-Dichloroethane	25	25.3	101	75-125
75-35-4	1,1-Dichloroethylene	25	25.3	101	78-137
156-59-2	cis-1,2-Dichloroethylene	25	24.7	99	78-120
156-60-5	trans-1,2-Dichloroethylene	25	26.4	106	76-127
78-87-5	1,2-Dichloropropane	25	25.3	101	76-124
10061-01-5	cis-1,3-Dichloropropene	25	23.5	94	75-118
10061-02-6	trans-1,3-Dichloropropene	25	24.1	96	80-120
100-41-4	Ethylbenzene	25	23.8	95	81-121
74-83-9	Methyl Bromide	25	27.3	109	59-143
74-87-3	Methyl Chloride	25	29.2	117	50-159
75-09-2	Methylene Chloride	25	25.2	101	69-135
1634-04-4	Methyl Tert Butyl Ether	25	23.1	92	72-117
79-34-5	1,1,2,2-Tetrachloroethane	25	24.0	96	72-120
127-18-4	Tetrachloroethylene	25	24.6	98	76-135
108-88-3	Toluene	25	23.5	94	80-120
71-55-6	1,1,1-Trichloroethane	25	24.5	98	75-130
79-00-5	1,1,2-Trichloroethane	25	23.6	94	76-119
79-01-6	Trichloroethylene	25	25.4	102	81-126
75-69-4	Trichlorofluoromethane	25	29.6	118	71-156
75-01-4	Vinyl Chloride	25	29.1	116	69-159
1330-20-7	Xylene (total)	75	71.7	96	80-126

* = Outside of Control Limits.

Page 1 of 2

Blank Spike Summary Job Number: FA51986

Project:	Jak Service Cent			8th St,	Miami, FL				
Sample VB5064-BS	File ID B125754.D	DF 1	Analyzed 02/28/18	By AJ	Prep Date n/a	Prep Batch n/a	Analytical Batch VB5064		
The QC report	rted here applies to	o the follo	owing samples:			Method: SW84	6 8260B		
FA51986-7									

Job Number:FA51986Account:ATCFLM ATC Group Services LLC.Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

FA51980-7

CAS No.	Surrogate Recoveries	BSP	Limits
17060-07-0	Dibromofluoromethane	102%	83-118%
	1,2-Dichloroethane-D4	104%	79-125%
	Toluene-D8	100%	85-112%
	4-Bromofluorobenzene	98%	83-118%

5.2.2

G
Blank Spike Summary Job Number: FA51986

ample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batcl
1A370-BS	1A10031.D	1	03/01/18	SP	n/a	n/a	V1A370
1370 25	11110031.2	1	05/01/10	51	ii) u	11) u	111070

85-112%

83-118%

FA51986-1, FA51986-2, FA51986-3

2037-26-5 Toluene-D8

4-Bromofluorobenzene

460-00-4

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	23.8	95	81-122
100-41-4	Ethylbenzene	25	23.6	94	81-121
1634-04-4	Methyl Tert Butyl Ether	25	19.8	79	72-117
108-88-3	Toluene	25	24.0	96	80-120
1330-20-7	Xylene (total)	75	70.0	93	80-126
CAS No.	Surrogate Recoveries	BSP	Lim	uits	
1868-53-7	Dibromofluoromethane	103%	83-1	18%	
17060-07-0	1,2-Dichloroethane-D4	102%	79-1	25%	

95%

99%

FA

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA51930-1MS	O51001.D	20	02/27/18	SP	n/a	n/a	VO1914
FA51930-1MSD	O51002.D	20	02/27/18	SP	n/a	n/a	VO1914
FA51930-1	O50967.D	1	02/26/18	SP	n/a	n/a	VO1914

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-1, FA51986-4, FA51986-5, FA51986-6, FA51986-8, FA51986-9

CAS No.	Compound	FA51930- ug/l	-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	1.3 619	E E	500 500 500 500 1500	645 1010 580 1550 3390	121 131* 116 186* 148*	500 500 500 500 1500	599 981 539 1540 3310	112 125* 108 184* 143*	7 3 7 1 2	81-122/14 81-121/14 72-117/14 80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS		MSD	F	A51930-1	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	100% 106% 98% 99%		100% 104% 99% 99%	10 10)5%)7%)3%)3%	83-1189 79-1259 85-1129 83-1189	6 6			

* = Outside of Control Limits.

Page 1 of 1

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analvzed	Bv	Prep Date	Prep Batch	Analytical Batch
FA52006-2MS	B125765.D	50	02/28/18	AJ	n/a	n/a	VB5064
FA52006-2MSD	B125766.D	50	02/28/18	AJ		,	VB5064 VB5064
					n/a	n/a	
FA52006-2	B125757.D	50	02/28/18	AJ	n/a	n/a	VB5064

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Compound	FA5200 ug/l	06-2 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	28.9	J	1250	1380	108	1250	1370	107	1	81-122/14
75-27-4	Bromodichloromethane	ND		1250	1340	107	1250	1330	106	1	79-123/19
75-25-2	Bromoform	ND		1250	1100	88	1250	1070	86	3	66-123/21
56-23-5	Carbon Tetrachloride	ND		1250	1330	106	1250	1330	106	0	76-136/23
108-90-7	Chlorobenzene	ND		1250	1230	98	1250	1240	99	1	82-124/14
75-00-3	Chloroethane	791		1250	2550	141	1250	2550	141	0	62-144/20
110-75-8	2-Chloroethyl Vinyl Ether	ND		6250	6020	96	6250	5420	87	10	56-122/23
67-66-3	Chloroform	ND		1250	1360	109	1250	1310	105	4	80-124/15
124-48-1	Dibromochloromethane	ND		1250	1180	94	1250	1170	94	1	78-122/19
75-71-8	Dichlorodifluoromethane	ND		1250	1440	115	1250	1460	117	1	42-167/19
95-50-1	1,2-Dichlorobenzene	ND		1250	1220	98	1250	1200	96	2	82-124/14
541-73-1	1,3-Dichlorobenzene	ND		1250	1240	99	1250	1250	100	1	84-125/14
106-46-7	1,4-Dichlorobenzene	ND		1250	1250	100	1250	1220	98	2	78-120/15
75-34-3	1,1-Dichloroethane	120		1250	1570	116	1250	1570	116	0	81-122/15
107-06-2	1,2-Dichloroethane	ND		1250	1360	109	1250	1330	106	2	75-125/14
75-35-4	1,1-Dichloroethylene	ND		1250	1410	113	1250	1360	109	4	78-137/18
156-59-2	cis-1,2-Dichloroethylene	221		1250	1550	106	1250	1500	102	3	78-120/15
156-60-5	trans-1,2-Dichloroethylene	ND		1250	1460	117	1250	1430	114	2	76-127/17
78-87-5	1,2-Dichloropropane	ND		1250	1360	109	1250	1340	107	1	76-124/14
10061-01-5	cis-1,3-Dichloropropene	ND		1250	1310	105	1250	1260	101	4	75-118/23
10061-02-6	trans-1,3-Dichloropropene	ND		1250	1260	101	1250	1220	98	3	80-120/22
100-41-4	Ethylbenzene	90.0		1250	1360	102	1250	1320	98	3	81-121/14
74-83-9	Methyl Bromide	ND		1250	1480	118	1250	1400	112	6	59-143/19
74-87-3	Methyl Chloride	ND		1250	1560	125	1250	1500	120	4	50-159/19
75-09-2	Methylene Chloride	ND		1250	1410	113	1250	1390	111	1	69-135/16
1634-04-4	Methyl Tert Butyl Ether	ND		1250	1240	99	1250	1210	97	2	72-117/14
79-34-5	1,1,2,2-Tetrachloroethane	ND		1250	1310	105	1250	1280	102	2	72-120/14
127-18-4	Tetrachloroethylene	ND		1250	1260	101	1250	1210	97	4	76-135/16
108-88-3	Toluene	1620		1250	3000	110	1250	2930	105	2	80-120/14
71-55-6	1,1,1-Trichloroethane	ND		1250	1310	105	1250	1290	103	2	75-130/16
79-00-5	1,1,2-Trichloroethane	ND		1250	1250	100	1250	1210	97	3	76-119/14
79-01-6	Trichloroethylene	ND		1250	1350	108	1250	1320	106	2	81-126/15
75-69-4	Trichlorofluoromethane	ND		1250	1480	118	1250	1480	118	0	71-156/21
75-01-4	Vinyl Chloride	75.9		1250	1560	119	1250	1590	121	2	69-159/18
1330-20-7	Xylene (total)	453		3750	4370	104	3750	4310	103	1	80-126/15

* = Outside of Control Limits.

5.3.2

FA51986

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
B125765.D	50	02/28/18	AJ	n/a	n/a	VB5064
B125766.D	50	02/28/18	AJ	n/a	n/a	VB5064
B125757.D	50	02/28/18	AJ	n/a	n/a	VB5064
	B125765.D B125766.D	B125765.D 50 B125766.D 50	B125765.D 50 02/28/18 B125766.D 50 02/28/18	B125765.D 50 02/28/18 AJ B125766.D 50 02/28/18 AJ	B125765.D 50 02/28/18 AJ n/a B125766.D 50 02/28/18 AJ n/a	B125765.D 50 02/28/18 AJ n/a n/a B125766.D 50 02/28/18 AJ n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-7

CAS No.	Surrogate Recoveries	MS	MSD	FA52006-2	Limits
1868-53-7	Dibromofluoromethane	100%	102%	98%	83-118%
17060-07-0	1,2-Dichloroethane-D4	106%	107%	105%	79-125%
2037-26-5	Toluene-D8	99%	100%	101%	85-112%
460-00-4	4-Bromofluorobenzene	102%	102%	104%	83-118%

51 of 74

FA51986

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA51998-5MS	1A10051.D	20	03/01/18	SP	n/a	n/a	V1A370
FA51998-5MSD	1A10052.D	20	03/01/18	SP	n/a	n/a	V1A370
FA51998-5	1A10044.D	20	03/01/18	SP	n/a	n/a	V1A370

The QC reported here applies to the following samples:

Method: SW846 8260B

FA51986-1, FA51986-2, FA51986-3

CAS No.	Compound	FA51998-5 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	ND ND ND ND ND	500 500 500 500 1500	499 497 391 487 1450	100 99 78 97 97	500 500 500 500 1500	506 497 406 491 1470	101 99 81 98 98	1 0 4 1 1	81-122/14 81-121/14 72-117/14 80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS	MSD	FA	51998-5	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 99% 91% 102%	102% 99% 90% 102%	112 108 989 107	3% %	83-1189 79-1259 85-1129 83-1189	6 6			

Section 6

MS Semi-volatiles

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary Job Number: FA51986

Account: Project:		<pre>FCFLM ATC Group Services LLC.</pre> K Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample OP68917-MB	File ID R475611.D	DF 1	Analyzed 03/01/18	By RV	Prep Date 02/26/18	Prep Batch OP68917	Analytical Batch SR2877			
The QC reported here applies to the following samples: Method: SW846 8270D BY S										

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.80	0.32	ug/l
208-96-8	Acenaphthylene	ND	0.80	0.32	ug/l
120-12-7	Anthracene	ND	0.80	0.20	ug/l
56-55-3	Benzo(a)anthracene	ND	0.16	0.032	ug/l
50-32-8	Benzo(a)pyrene	ND	0.16	0.032	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.16	0.032	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.16	0.032	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.16	0.032	ug/l
218-01-9	Chrysene	ND	0.16	0.032	ug/l
53-70-3	Dibenzo(a,h)anthracene	ND	0.16	0.032	ug/l
206-44-0	Fluoranthene	ND	0.80	0.20	ug/l
86-73-7	Fluorene	ND	0.80	0.20	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.16	0.032	ug/l
90-12-0	1-Methylnaphthalene	ND	0.80	0.32	ug/l
91-57-6	2-Methylnaphthalene	ND	0.80	0.32	ug/l
91-20-3	Naphthalene	ND	0.80	0.32	ug/l
85-01-8	Phenanthrene	ND	0.80	0.20	ug/l
129-00-0	Pyrene	ND	0.80	0.20	ug/l

CAS No.	Surrogate Recoveries		Limits
321-60-8	Nitrobenzene-d5	86%	41-129%
	2-Fluorobiphenyl	75%	41-118%
	Terphenyl-d14	93%	45-145%

Blank Spike Summary Job Number: FA51986

Account: Project:	ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample OP68917-BS	File ID R475610.D	DF 1	Analyzed 03/01/18	By RV	Prep Date 02/26/18	Prep Batch OP68917	Analytical Batch SR2877		
The QC reported here applies to the following samples: Method: SW846 8270D BY SIM									

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
83-32-9	Acenaphthene	8	8.1	101	54-128
208-96-8	Acenaphthylene	8	8.1	101	55-128
120-12-7	Anthracene	4	3.7	93	57-129
56-55-3	Benzo(a)anthracene	4	4.5	113	60-134
50-32-8	Benzo(a)pyrene	4	4.1	103	58-131
205-99-2	Benzo(b)fluoranthene	4	4.3	108	62-139
191-24-2	Benzo(g,h,i)perylene	4	4.7	118	48-136
207-08-9	Benzo(k)fluoranthene	4	3.9	98	60-139
218-01-9	Chrysene	4	4.5	113	64-136
53-70-3	Dibenzo(a,h)anthracene	4	5.0	125	46-131
206-44-0	Fluoranthene	8	8.4	105	59-140
86-73-7	Fluorene	8	9.7	121	55-129
193-39-5	Indeno(1,2,3-cd)pyrene	4	3.8	95	46-139
90-12-0	1-Methylnaphthalene	8	7.5	94	52-128
91-57-6	2-Methylnaphthalene	8	8.6	108	50-117
91-20-3	Naphthalene	8	7.9	99	52-124
85-01-8	Phenanthrene	8	8.7	109	60-130
129-00-0	Pyrene	8	7.9	99	53-134

CAS No.	Surrogate Recoveries	BSP	Limits
4165-60-0	Nitrobenzene-d5	93%	41-129%
321-60-8	2-Fluorobiphenyl	83%	41-118%
1718-51-0	Terphenyl-d14	101%	45-145%

55 of 74

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP68917-MS ^a	U064540.D	20	03/03/18	RV	02/26/18	OP68917	SU2816
OP68917-MSD a	U064541.D	20	03/03/18	RV	02/26/18	OP68917	SU2816
FA51975-3 ^a	U064539.D	20	03/02/18	RV	02/26/18	OP68917	SU2816

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA51986-1, FA51986-2, FA51986-3, FA51986-4, FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	FA51975-3 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
83-32-9	Acenaphthene	16 U	16	16.7	104	16	15.5	97	7	54-128/23
208-96-8	Acenaphthylene	16 U	16	15.1	94	16	14.1	88	7	55-128/23
120-12-7	Anthracene	16 U	8	ND	0*	8	ND	0*	nc	57-129/22
56-55-3	Benzo(a)anthracene	3.2 U	8	7.5	94	8	7.0	88	7	60-134/18
50-32-8	Benzo(a)pyrene	3.2 U	8	6.2	78	8	5.7	71	8	58-131/20
205-99-2	Benzo(b)fluoranthene	3.2 U	8	6.4	80	8	5.9	74	8	62-139/21
191-24-2	Benzo(g,h,i)perylene	3.2 U	8	6.2	78	8	5.8	73	7	48-136/23
207-08-9	Benzo(k)fluoranthene	3.2 U	8	7.1	89	8	6.8	85	4	60-139/19
218-01-9	Chrysene	3.2 U	8	8.8	110	8	8.2	103	7	64-136/19
53-70-3	Dibenzo(a, h)anthracene	3.2 U	8	5.7	71	8	4.9	61	15	46-131/25
206-44-0	Fluoranthene	16 U	16	16.7	104	16	15.8	99	6	59-140/18
86-73-7	Fluorene	16 U	16	16.9	106	16	16.5	103	2	55-129/23
193-39-5	Indeno(1,2,3-cd)pyrene	3.2 U	8	5.9	74	8	5.4	68	9	46-139/24
90-12-0	1-Methylnaphthalene	26.7	16	42.5	99	16	33.3	41*	24*	52-128/22
91-57-6	2-Methylnaphthalene	39.9	16	53.1	83	16	41.7	11* ^b	24*	50-117/23
91-20-3	Naphthalene	163	16	174	69	16	131	-200* b	28*	52-124/23
85-01-8	Phenanthrene	16 U	16	17.2	108	16	16.5	103	4	60-130/22
129-00-0	Pyrene	16 U	16	17.4	109	16	16.1	101	8	53-134/18
CAS No.	Surrogate Recoveries	MS	MSD	E A	51975-3	Limits				
CAS NO.	Surrogate Recoveries	N15	MSD	F <i>P</i>	131973-3	Linnts				
4165-60-0	Nitrobenzene-d5	0% * c	0% * c	0%	;* c	41-1299	%			
321-60-8	2-Fluorobiphenyl	0% * c	0% * c	0%	;*с	41-1189				
1718-51-0	Terphenyl-d14	0% * c	0% * c	0%	5 * C	45-1459				

(a) Dilution required due to matrix interference (internal standard failure).

(b) Outside control limits due to high level in sample relative to spike amount.

(c) Outside control limits due to dilution.

GC Volatiles

Orlando, **FL**

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA51986

Account: Project:	ATCFLM ATC C Jak Service Cente	-			st, Miami	, FL		
Sample OP68970-N	File ID 4B DD97836.D	DF 1	Analyz 03/01/1	· ·		p Date 01/18	Prep Batch OP68970	Analytical Batch GDD2849
The QC re FA51986-7	ported here applies to	the followi	ng samp	les:			Method: EPA 5	04.1
CAS No.	Compound	R	lesult	RL	MDL	Units	Q	
106-93-4	1,2-Dibromoethane	N	D	0.020	0.010	ug/l		
CAS No.	Surrogate Recoveries	5		Limits				
460-00-4	4-Bromofluorobenzen	e 8	8%	63-137	%			

Blank Spike Summary Job Number: FA51986

Account: Project:	1							
Sample OP68970-I			•	By NJ	Prep Date 03/01/18	Prep Batch OP68970	Analytical Batch GDD2849	
The QC re FA51986-7	ported here applies to	the foll	lowing sar	mples:			Method: EPA 5	504.1
CAS No.	Compound		Spike ug/l	BSP ug/l	BSP %	Limits		
106-93-4	1,2-Dibromoethane		0.25	0.24	96	70-130		
CAS No.	Surrogate Recoverie	S	BSP	L	imits			
460-00-4	4-Bromofluorobenzen	e	89%	63	3-137%			

7.2.1 7

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

	Sample OP68970-MS OP68970-MSD FA51986-7	File ID DD97840.1 DD97841.1 DD97839.1	D 1	Anal 03/01 03/01 03/01	/18 /18	By NJ NJ NJ	Prep Date 03/01/18 03/01/18 03/01/18	OP OP	e p Batch 68970 68970 68970 68970	GDI GDI	lytical Batch D2849 D2849 D2849 D2849
	The QC reported	The QC reported here applies to the following samples: Method: EPA 504.1									
	FA51986-7										
CAS No.	Compound		FA51986-7 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
106-93-4	1,2-Dibromoethar	ne	0.020 U	0.244	0.27	110	0.25	0.27	108	0	70-130/25
CAS No.	Surrogate Recov	eries	MS	MSD]	FA51986-7	/ Limits				
460-00-4	4-Bromofluorober	nzene	120%	114%		111%	63-137%				

GC/LC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA51986

Job Number Account: Project:	 FA51986 ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL 									
Sample OP68927-M	File ID B LR03237.D	DF 1	Analyz 02/28/1	•		e p Date 27/18	Prep Batch OP68927	Analytical Batch GLR283		
	orted here applies to FA51986-2, FA5198			les:			Method: FLOR	IDA-PRO		
CAS No.	Compound		Result	RL	MDL	Units	Q			
	TPH (C8-C40)		ND	0.25	0.15	mg/l				
CAS No.	Surrogate Recoverie	es		Limits						
84-15-1	o-Terphenyl		100%	41-146%						

8.1.1 8

Method Blank Summary Job Number: FA51986

Job Numbe Account: Project:	ATCFLM ATC Group Services LLC.							
Sample OP68936-M	File ID IB LR03302.D	DF 1	Analyz 03/01/1	-		ep Date 27/18	Prep Batch OP68936	Analytical Batch GLR283
	ported here applies to FA51986-6, FA51986		· ·				Method: FLOR	IDA-PRO
CAS No.	Compound		Result	RL	MDL	Units	Q	
	TPH (C8-C40)		ND	0.25	0.15	mg/l		
CAS No.	Surrogate Recoverie	s		Limits				
84-15-1	o-Terphenyl		114%	41-146%				

Page 1 of 1

Blank Spike Summary Job Number: FA51986

o-Terphenyl

84-15-1

Account: Project:	ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Sample OP68927-E	File ID 3S LR03236.D	DF 1	Ana 02/2	lyzed 8/18	By SJL	Prep Date 02/27/18	Prep Batch OP68927	Analytical Batch GLR283
-	ported here applies to , FA51986-2, FA5198		U	nples:]	Method: FLOR	IDA-PRO
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	Limits		
	TPH (C8-C40)		0.85	0.950	112	51-121		
CAS No.	Surrogate Recoverie	s	BSP	Li	mits			

41-146%

131%

8.2.1

œ

Blank Spike Summary Job Number: FA51986

Account: Project:		ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL							
Sample OP68936-BS	File ID LR03301.D		llyzed)1/18	By SJL	Prep Date 02/27/18	Prep Batch OP68936	Analytical Batch GLR283		
	orted here applies to FA51986-6, FA5198		-	-9		Method: FLOR	IDA-PRO		
CAS No.	Compound	Spike mg/l	BSP mg/l	BSP %	Limits				
	TPH (C8-C40)	0.85	0.801	94	51-121				

CAS No.	Surrogate Recoveries	BSP	Limits
84-15-1	o-Terphenyl	122%	41-146%

Page 1 of 1

65 of 74

FA51986

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP68927-MS	LR03241.D	1	02/28/18	SJL	02/27/18	OP68927	GLR283
OP68927-MSD	LR03242.D	1	02/28/18	SJL	02/27/18	OP68927	GLR283
FA51939-3	LR03291.D	2	03/01/18	SJL	02/27/18	OP68927	GLR283

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

FA51986-1, FA51986-2, FA51986-3, FA51986-4

CAS No.	Compound	FA51939-3 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD	8.3.1
	TPH (C8-C40)	3.82	1.63	5.31	91	1.63	6.68	175* ^a	23 ^b	51-121/29	00
CAS No.	Surrogate Recoveries	MS	MSD	FA	51939-3	Limits					
84-15-1	o-Terphenyl	126%	135%	116	i%	41-146%	<i></i> ́0				

(a) Outside control limits due to high level in sample relative to spike amount.

(b) Outside control limits.

SGS

Job Number:	FA51986
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
LR03315.D	1	03/01/18	SJL	02/27/18	OP68936	GLR283
LR03316.D	1	03/01/18	SJL	02/27/18	OP68936	GLR283
LR03332.D	4	03/02/18	SJL	02/27/18	OP68936	GLR284
EROSSSE	·	03/02/10	50L	02/27/10	01 00/20	GLIQUI
	LR03315.D LR03316.D	LR03315.D 1 LR03316.D 1	LR03315.D 1 03/01/18 LR03316.D 1 03/01/18	LR03315.D 1 03/01/18 SJL LR03316.D 1 03/01/18 SJL	LR03315.D 1 03/01/18 SJL 02/27/18 LR03316.D 1 03/01/18 SJL 02/27/18	LR03315.D 1 03/01/18 SJL 02/27/18 OP68936 LR03316.D 1 03/01/18 SJL 02/27/18 OP68936

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

FA51986-5, FA51986-6, FA51986-7, FA51986-8, FA51986-9

CAS No.	Compound	FA52032-3 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD	8.3.2
	TPH (C8-C40)	4.59	1.7	4.51	-5* a	1.7	4.79	12* a	6	51-121/29	0
CAS No.	Surrogate Recoveries	MS	MSD	FA	52032-3	Limits					
84-15-1	o-Terphenyl	101%	110%	769	6	41-1469	6				

(a) Outside control limits due to high level in sample relative to spike amount.

Section 9

Metals Analysis

Orlando, FL

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:					02/27/18
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1		
Arsenic	10	1.3	1.3		
Barium	200	1	1		
Beryllium	4.0	.2	. 2		
Cadmium	5.0	.2	.2		
Calcium	1000	50	50		
Chromium	10	1	1		
Cobalt	50	.2	.2		
Copper	25	1	1		
Iron	300	17	17		
Lead	5.0	1	1.1	-0.10	<5.0
Magnesium	5000	35	35		
Manganese	15	.5	1		
Molybdenum	50	.3	.3		
Nickel	40	.4	.4		
Potassium	10000	200	200		
Selenium	10	2.4	2.9		
Silver	10	.7	.7		
Sodium	10000	500	500		
Strontium	10	.5	.5		
Thallium	10	1.1	1.4		
Tin	50	.9	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4		
Associated sa	amples MP3	3393: FA	451986-7		

Associated samples MP33393: FA51986-7

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: 1 Matrix Type: 2					Methods: SW8 Units: ug/		
Prep Date:		02/27/18	3			02/27/1	8
Metal	FA51986-7 Original DUP	RPD	QC Limits	FA51986-7 Original MS	Spike SMPFLI	lot CP2 % Rec	QC Limits
Aluminum							
Antimony							
Arsenic	anr						
Barium							
Beryllium							
Cadmium	anr						
Calcium							
Chromium	anr						
Cobalt							
Copper	anr						
Iron	anr						
Lead	17.5 18.1	3.4	0-20	17.5 51	LO 500	98.5	80-120
Magnesium							
langanese	anr						
Molybdenum	anr						
Nickel	anr						
Potassium							
Selenium							
Silver	anr						
Sodium							
Strontium							
Fhallium							
ſin							
Fitanium							
Janadium							
linc	anr						
Associated sam	mples MP33393: FA5	1986-7					

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

9.1.2

9

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:			02/27/1	8
Metal	FA51986-7 Original MSD	Spikelot MPFLICP2 % Rec	MSD RPD	QC Limit
Aluminum				
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper	anr			
Iron	anr			
Lead	17.5 509	500 98.3	0.2	20
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Associated sa	mples MP33393: FA	151986-7		
(*) Outside o (N) Matrix Sp		o for calculation of QC limits	purposes	

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID:	MP33393
Matrix Type:	AQUEOUS

Methods: SW846 6010C Units: ug/l

Metal	BSP Result	Spikelot MPFLICP2		QC Limits
Aluminum				
Antimony				
Arsenic	anr			
Barium				
Beryllium				
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt				
Copper	anr			
Iron	anr			
Lead	493	500	98.6	80-120
Magnesium				
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc	anr			
Associated sa	mples MP3	3393: FA51	986-7	

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:		02/27/18	
Metal	FA51986-7 Original SDL 1:5	%DIF	QC Limits
Aluminum			
Antimony			
Arsenic	anr		
Barium			
Beryllium			
Cadmium	anr		
Calcium			
Chromium	anr		
Cobalt			
Copper	anr		
Iron	anr		
ead	17.5 21.1	20.6 (a)	0-10
lagnesium			
langanese	anr		
lolybdenum	anr		
ickel	anr		
otassium			
elenium			
ilver	anr		
odium			
trontium			
hallium			
'in			
itanium			
anadium			
linc	anr		
ssociated sa	mples MP33393: FA5	1986-7	
(*) Outside o	not requested		lation purposes

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

POST DIGESTATE SPIKE SUMMARY

Login Number: FA51986 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33393 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Matrix Type:	AQUEOUS					Unit	cs: ug/l			
Prep Date:									02/27/1	8
Metal	Sample ml	Final ml	FA51986- Raw	7 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	17.5	17.15	63.7	0.2	2.5	50	93.1	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3393: FA5	1986-7							
Results < IDI (*) Outside c (**) Corr.s (anr) Analyte	of QC limit ample rest	ts ult = Raw				olume)				

9.1.5 **9**

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

06/13/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA54762

Sampling Date: 06/05/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: 55

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 55 FA54762

Table of Contents

N ယ 4 S 6

7

∞

-1-	
Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	
3.1: FA54762-1: SB 3	
3.2: FA54762-2: SB 4	10
3.3: FA54762-3: SB 2	14
3.4: FA54762-4: SB 1	
3.5: FA54762-5: SB 5	22
Section 4: Misc. Forms	27
4.1: Chain of Custody	28
Section 5: MS Volatiles - QC Data Summaries	30
5.1: Method Blank Summary	
5.2: Blank Spike Summary	33
5.3: Matrix Spike/Matrix Spike Duplicate Summary	35
Section 6: MS Semi-volatiles - QC Data Summaries	37
6.1: Method Blank Summary	
6.2: Blank Spike Summary	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	43
Section 7: GC/LC Semi-volatiles - QC Data Summaries	45
7.1: Method Blank Summary	46
7.2: Blank Spike Summary	47
7.3: Matrix Spike/Matrix Spike Duplicate Summary	48
Section 8: Metals Analysis - QC Data Summaries	49
8.1: Prep QC MP33856: Pb	50

Sample Summary

ATC Group Services LLC.

Job No: FA54762

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
i (unito ei	Dute	Thire D _j	Heeenveu	couc	Type	
FA54762-1	06/05/18	09:25 LR	06/06/18	SO	Soil	SB 3
FA54762-2	06/05/18	09:55 LR	06/06/18	SO	Soil	SB 4
FA54762-3	06/05/18	10:20 LR	06/06/18	SO	Soil	SB 2
	00/00/20	10110 210	00,00,20	20	2011	
EA 5 4709 4	00/05/10	10.40 T D	00/00/10	50	C.:I	CD 1
FA54762-4	00/03/18	10:40 LR	06/06/18	50	Soil	SB 1
FA54762-5	06/05/18	11:05 LR	06/06/18	SO	Soil	SB 5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

3 of 55

FA54762

Summary of Hits

Job Number:	FA54762
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	06/05/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method			
FA54762-1 SB 3	C							
Benzo(a)pyrene Equivalents ^a	0.060			mg/kg	SW846 8270D BY SIM			
Benzo(a)anthracene	52.5	14	3.5	ug/kg	SW846 8270D BY SIM			
Benzo(a)pyrene	44.7	14	3.5	ug/kg	SW846 8270D BY SIM			
Benzo(b)fluoranthene	44.4	14	3.5	ug/kg	SW846 8270D BY SIM			
Benzo(g,h,i)perylene	38.3	14	3.5	ug/kg	SW846 8270D BY SIM			
Benzo(k)fluoranthene	43.8	14	3.5	ug/kg	SW846 8270D BY SIM			
Chrysene	65.3	14	3.5	ug/kg	SW846 8270D BY SIM			
Fluoranthene	116	70	17	ug/kg	SW846 8270D BY SIM			
Indeno(1,2,3-cd)pyrene	36.1	14	3.5	ug/kg	SW846 8270D BY SIM			
Phenanthrene	29.5 I	70	17	ug/kg	SW846 8270D BY SIM			
Pyrene	90.8	70	17	ug/kg	SW846 8270D BY SIM			
TPH (C8-C40)	9.07	8.9	5.3	mg/kg	FLORIDA-PRO			
FA54762-2 SB 4								
Xylene (total)	1.2 I	8.5	1.2	ug/kg	SW846 8260B			
ТРН (С8-С40)	9.12 I	9.3	5.6	mg/kg	FLORIDA-PRO			
FA54762-3 SB 2								
No hits reported in this sample.								
FA54762-4 SB 1								
No hits reported in this sample.	No hits reported in this sample.							
FA54762-5 SB 5								
Lead ^b	4.0 I	4.9	0.25	mg/kg	SW846 6010C			

(a) Total Benzo(a)pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07] (b) Sample dilution required due to difficult matrix.

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

108-88-3

100-41-4

1330-20-7

1634-04-4

CAS No.

1868-53-7

2037-26-5

460-00-4

17060-07-0

Toluene

Ethylbenzene

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1.2-Dichloroethane-D4

4-Bromofluorobenzene

Report of Analysis Client Sample ID: SB 3 Lab Sample ID: FA54762-1 06/05/18 Date Sampled: Matrix: SO - Soil Date Received: 06/06/18 Method: SW846 8260B Percent Solids: 93.5 Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL **Project:** File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** V2B333 Run #1 2B8811.D 1 06/07/18 16:27 SP n/a n/a Run #2 **Final Volume Initial Weight** Run #1 5.0 ml 4.81 g Run #2 **Purgeable Aromatics, MTBE** Compound CAS No. Result PQL MDL Units 0 71-43-2 Benzene 1.4 U 5.6 ug/kg 1.4

5.6

5.6

17

5.6

Run# 2

1.1

1.1

2.3

1.1

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

ug/kg

ug/kg

1.1 U

1.1 U

2.3 U

1.1 U

Run#1

53% a

118%

103%

99%

(a) Outside control limits due to matrix interference (high pH).

<u>ω</u>

ω

Page 1 of 1

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	SO - So SW846	il 8270D BY	SIM SW846 354 (United Fuel); 690		Date Sampled: 06/05/18 Date Received: 06/06/18 Percent Solids: 93.5 7 8th St, Miami, FL			
Run #1 Run #2	File ID 8H03229.D	DF 1	Analyzed 06/11/18 14:53	By FS	Prep Date 06/11/18 08:38	Prep Batch OP70433	Analytical Batch S8H126	
Run #1 Run #2	Initial Weight 15.3 g	Final Vo 1.0 ml	lume					

CAS No.	Compound	Result	PQL	MDL	Units	Q
83-32-9	Acenaphthene	28 U	70	28	ug/kg	
208-96-8	Acenaphthylene	28 U	70	28	ug/kg	
120-12-7	Anthracene	17 U	70	17	ug/kg	
56-55-3	Benzo(a)anthracene	52.5	14	3.5	ug/kg	
50-32-8	Benzo(a)pyrene	44.7	14	3.5	ug/kg	
205-99-2	Benzo(b)fluoranthene	44.4	14	3.5	ug/kg	
191-24-2	Benzo(g,h,i)perylene	38.3	14	3.5	ug/kg	
207-08-9	Benzo(k)fluoranthene	43.8	14	3.5	ug/kg	
218-01-9	Chrysene	65.3	14	3.5	ug/kg	
53-70-3	Dibenzo(a, h)anthracene	3.5 U	14	3.5	ug/kg	
206-44-0	Fluoranthene	116	70	17	ug/kg	
86-73-7	Fluorene	28 U	70	28	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	36.1	14	3.5	ug/kg	
90-12-0	1-Methylnaphthalene	28 U	70	28	ug/kg	
91-57-6	2-Methylnaphthalene	28 U	70	28	ug/kg	
91-20-3	Naphthalene	28 U	70	28	ug/kg	
85-01-8	Phenanthrene	29.5	70	17	ug/kg	Ι
129-00-0	Pyrene	90.8	70	17	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
4165-60-0	Nitrobenzene-d5	81 %		40-1	05%	
321-60-8	2-Fluorobiphenyl	82%		43-1	07%	
1718-51-0	Terphenyl-d14	94%		45-119%		

- $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$
- N = Indicates presumptive evidence of a compound

<u>ω</u>

ω

SGS

7 of 55

FA54762

Report of Analysis								
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 3 FA54762-1 SO - Soil SW846 8270D BY Jak Service Center(00 SW 8	8th St, Miam	Date Perc	I	6/05/18 6/06/18 3.5
Run #1 Run #2	File ID	DF 1	Analyzed 06/11/18 14:53	By FS	Prep Dat n/a	e	Prep Batch n/a	Analytical Batch R45799
CAS No.	Comp	ound	Result	PQL	Units	Q		
	Benzo	(a)pyrene Equivalent	s ^a 0.060		mg/kg			

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

<u>ω</u>

	Report	oort of Analysis				Page 1 of 1		
Client Sample ID:SB 3Lab Sample ID:FA54762-1Date SamplMatrix:SO - SoilDate ReceivMethod:FLORIDA-PRO SW846 3550CPercent SoliProject:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL						Received: 06	3/05/18 3/06/18 3.5	
Run #1 Run #2	File ID YR18456.D	DF 1	Analyzed 06/11/18 18:39	By SJL	Prep D 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.1 g	Final Vo 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	9.07	8.9	5.3	mg/kg		
CAS No.	Surrogate Recoveries		Run# 1	Run# 2	Lim	its		
84-15-1	o-Terphenyl	103%		52-1	33%			

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

<u>ω</u>

ယ

9 of 55 FA54762

SGS
1330-20-7

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

			1		v			8
Client Sam Lab Sampl Matrix: Method: Project:	le ID: FA5476 SO - So SW846	vil 8260B	(United Fuel); 69(00 SW 8	8th St, Mia	Date Perc	Received: 06	6/05/18 6/06/18 9.7
Run #1 Run #2	File ID 2B8812.D	DF 1	Analyzed 06/07/18 16:51	By SP	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V2B333
Run #1 Run #2	Initial Weight 9.82 g	Final Vo 5.0 ml	lume					
Purgeable	Aromatics, MTE	BE						
CAS No.	Compound		Result	PQL	MDL	Units	Q	
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene		0.69 U 0.57 U 0.57 U	2.8 2.8 2.8	0.69 0.57 0.57	ug/kg ug/kg ug/kg		

8.5

2.8

Run# 2

1.2

0.57

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

I

1.2

0.57 U

Run#1

103%

113%

108%

115%

Report of Analysis

10 of 55

FA54762

Page 1 of 1

Report of Analysis

Client San	nple ID: SB 4							
Lab Samp	le ID: FA5476	62-2				Date	Sampled: 06	6/05/18
Matrix:	SO - So	il				Date	Received: 06	5/06/18
Method:	SW846	8270D B	Y SIM SW846 354	6		Perc	ent Solids: 89).7
Project:	Jak Serv	vice Cente	er(United Fuel); 690	0 SW	8th St, Mia	ımi, FL		
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1 Run #2	8H03181.D	1	06/07/18 21:17	FS	06/07/1	8 09:00	OP70388	S8H124
	Initial Weight	Final V	olume					
Run #1 Run #2	15.4 g	1.0 ml						
BN PAH I	List							
CAS No.	Compound		Result	PQL	MDL	Units	Q	

CAS No.	Compound	Result	PQL	MDL	Units
83-32-9	Acenaphthene	29 U	72	29	ug/kg
208-96-8	Acenaphthylene	29 U	72	29	ug/kg
	Anthracene				
120-12-7		18 U	72	18	ug/kg
56-55-3	Benzo(a)anthracene	3.6 U	14	3.6	ug/kg
50-32-8	Benzo(a)pyrene	3.6 U	14	3.6	ug/kg
205-99-2	Benzo(b)fluoranthene	3.6 U	14	3.6	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	3.6 U	14	3.6	ug/kg
207-08-9	Benzo(k)fluoranthene ^b	3.6 U	14	3.6	ug/kg
218-01-9	Chrysene ^a	3.6 U	14	3.6	ug/kg
53-70-3	Dibenzo(a, h)anthracene ^a	3.6 U	14	3.6	ug/kg
206-44-0	Fluoranthene	18 U	72	18	ug/kg
86-73-7	Fluorene	29 U	72	29	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	3.6 U	14	3.6	ug/kg
90-12-0	1-Methylnaphthalene	29 U	72	29	ug/kg
91-57-6	2-Methylnaphthalene	29 U	72	29	ug/kg
91-20-3	Naphthalene	29 U	72	29	ug/kg
85-01-8	Phenanthrene	18 U	72	18	ug/kg
129-00-0	Pyrene	18 U	72	18	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4165-60-0	Nitrobenzene-d5	94%		40-1	05%
321-60-8	2-Fluorobiphenyl	101%		43-1	07%
1718-51-0	Terphenyl-d14	109%		45-1	19%

(a) Associated BS outside control limits high. Sample was ND.

(b) Associated BS recovery outside control limits.

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value \\ V = Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

FA54762

Page 1 of 1

				Report	of Aı	nalysis				Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 4 FA5476 SO - Soi SW846 8 Jak Serv	l 8270D B	Y SIM er(United Fuel); 69(00 SW 8	8th St, Mia		Date Sampled Date Receive Percent Solid i, FL	d: 0	6/05/18 6/06/18 9.7
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 21:17	By FS	Prep Da n/a	ate	e Prep B n/a	atch	Analytical Batch R45783
CAS No.	Comp	ound		Result	PQL	Units	Q	2		
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg				

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

			Report	of An	alysis			Page 1 of 1			
Client Sample ID: SB 4 Lab Sample ID: FA54762-2 Matrix: SO - Soil Method: FLORIDA-PRO SW846 3550C Percent Solids: Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL File ID DF Analyzed By Prep Date Prep Batch Analytical Bate											
Run #1 Run #2	File ID YR18457.D	DF 1	Analyzed 06/11/18 18:54	e	-	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414			
Run #1 Run #2	Initial Weight 30.1 g	Final Vol 1.0 ml	lume								
CAS No.	Compound		Result	PQL	MDL	Units	Q				
	TPH (C8-C40))	9.12	9.3	5.6	mg/kg	Ι				
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its					
84-15-1	o-Terphenyl		109%		52-1	33%					

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.2

ω

108-88-3

100-41-4

1330-20-7

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Toluene

Ethylbenzene

Xylene (total)

Toluene-D8

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

			1					8
Client San Lab Samp Matrix: Method: Project:	le ID: FA5476 SO - So SW846	il 8260B	er(United Fuel); 690	00 SW 8	8th St, Mia	Date Perc	I I	3/05/18 3/06/18 5.6
Run #1 Run #2	File ID 3C1154.D	DF 1	Analyzed 06/07/18 19:16	By SP	Prep D n/a	ate	Prep Batch n/a	Analytical Batch V3C48
Run #1 Run #2	Initial Weight 6.60 g	Final V 5.0 ml	<i>T</i> olume					
Purgeable	Aromatics, MTE	BE						
CAS No.	Compound		Result	PQL	MDL	Units	Q	
71-43-2	Benzene		1.1 U	4.4	1.1	ug/kg		

4.4

4.4

13

4.4

Run# 2

0.89

0.89

1.9

0.89

Limits

75-124%

72-135%

75-126%

71-133%

ug/kg

ug/kg

ug/kg

ug/kg

0.89 U

0.89 U

1.9 U

0.89 U

Run#1

101%

116%

107%

96%

Report of Analysis

14 of 55

FA54762

Page 1 of 1

ယ ယ

120-12-7

56-55-3

50-32-8

205-99-2

191-24-2

207-08-9

218-01-9

53-70-3

206-44-0

86-73-7

193-39-5

90-12-0

91-57-6

91-20-3

85-01-8

129-00-0

CAS No.

4165-60-0

321-60-8

1718-51-0

Anthracene

Chrysene ^a

Fluoranthene

Naphthalene

Phenanthrene

Pyrene

Fluorene

Benzo(a)anthracene

Benzo(b)fluoranthene

Benzo(g,h,i)perylene ^a

Benzo(k)fluoranthene a

Dibenzo(a,h)anthracene a

Indeno(1,2,3-cd)pyrene ^a

1-Methylnaphthalene

2-Methylnaphthalene

Surrogate Recoveries

Nitrobenzene-d5

2-Fluorobiphenyl

Terphenyl-d14

Benzo(a)pyrene

Report of Analysis

Client Sam	ple ID: SB 2									
Lab Sampl	e ID: FA5476	2-3			Date Sampled: 06/05/18					
Matrix:	SO - Soi	1				Date	Received: 06	/06/18		
Method:	SW846 8	8270D BY	SIM SW846 354	6	Percent Solids: 85.6					
Project:	Jak Serv	ice Center(United Fuel); 690	0 SW 8	8th St, Mia	ami, FL				
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch		
Run #1	8H03182.D	1	06/07/18 21:40	FS	06/07/1	8 09:00	OP70388	S8H124		
Run #2										
	Initial Weight	Final Vol	ume							
Run #1	15.1 g	1.0 ml								
Run #2	0									
BN PAH L	ist									
CAS No.	Compound		Result	PQL	MDL	Units	Q			
83-32-9	Acenaphthene		31 U	77	31	ug/kg				
208-96-8	Acenaphthylene			77	31	ug/kg				

77

15

15

15

15

15

15

15

77

77

15

77

77

77

77

77

Run# 2

19

3.9

3.9

3.9

3.9

3.9

3.9

3.9

19

31

3.9

31

31

31

19

19

Limits

40-105%

43-107%

45-119%

ug/kg

ug/kg

ug/kg

ug/kg ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

ug/kg

19 U

3.9 U

19 U

31 U

3.9 U

31 U

31 U

31 U

19 U

19 U

88%

92%

104%

Run#1

(a) Associated BS outside control limits high. Sample was ND.

I = Result > = MDL but < PQL J = Estimated valueV = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω ω

				Report	of Aı	nalysis					Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	-	011010	il 8270D B	Y SIM er(United Fuel); 69(00 SW 8	8th St, Mia		Dat Per	cent Solids:	06/	/05/18 /06/18 6
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 21:40	By FS	Prep Da n/a	ate		Prep Batcl n/a	h	Analytical Batch R45784
CAS No.	Comp	ound		Result	PQL	Units	Q)			
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg					

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ ယ

			Report	of An	alysis			Page 1 of 1		
Client Sample ID: SB 2 Lab Sample ID: FA54762-3 Matrix: SO - Soil Method: FLORIDA-PRO SW846 3550C Percent Solids: By Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL File ID DF Analyzed By Prep Date Prep Batch Analytical I										
Run #1 Run #2	File ID YR18458.D	DF 1	Analyzed 06/11/18 19:10	•	-	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414		
Run #1 Run #2	Initial Weight 30.5 g	Final Vol 1.0 ml	ume							
CAS No.	Compound		Result	PQL	MDL	Units	Q			
	TPH (C8-C40))	5.7 U	9.6	5.7	mg/kg				
CAS No.	Surrogate Rec	coveries	Run# 1	Run# 2	Lim	its				
84-15-1	-15-1 o-Terphenyl				52-1	33%				

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ သ

ယ

			Report	of A	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA547 SO - S SW84		06/05/18 06/06/18 80.1				
Run #1 Run #2	File ID 2B8814.D	DF 1	Analyzed 06/07/18 17:38	By SP	Prep Date n/a	e Prep Bate n/a	ch Analytical Batch V2B333
Run #1 Run #2	Initial Weight 4.11 g	Final Vo 5.0 ml	lume				
Purgeable CAS No.	Aromatics, MT Compound	BE	Result	PQL	MDL U	Units Q	

CAS NO.	Compound	Kesuit	IQL	MDL	Units	•
71-43-2	Benzene	1.9 U	7.6	1.9	ug/kg	
108-88-3	Toluene	1.5 U	7.6	1.5	ug/kg	
100-41-4	Ethylbenzene	1.5 U	7.6	1.5	ug/kg	
1330-20-7	Xylene (total)	3.2 U	23	3.2	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	1.5 U	7.6	1.5	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	104%		75-1	24%	
17060-07-0	1,2-Dichloroethane-D4	113%		72-1	35%	
2037-26-5	Toluene-D8	105%		75-1	26%	
460-00-4	4-Bromofluorobenzene	97 %		71-1	33%	

18 of 55

FA54762

3.4

ω

Report of Analysis

Client Sample ID:SB 1Lab Sample ID:FA54762-4Date Sampled:06/05/18Matrix:SO - SoilDate Received:06/06/18Method:SW846 8270D BY SIM SW846 3546Percent Solids:80.1Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Run #1 Run #2	File ID 8H03183.D	DF 1	Analyzed 06/07/18 22:03	By FS	Prep D 06/07/1	ate 8 09:00	Prep Batch OP70388	Analytical Batch S8H124
Run #1 Run #2	Initial Weight 15.4 g	Final Vo 1.0 ml	blume					
BN PAH I	List							
CAS No.	Compound		Result	PQL	MDL	Units	Q	
83-32-9 208-96-8	Acenaphthene Acenaphthylen	e		81 81	32 32	ug/kg ug/kg		
120-12-7 56-55-3	Anthracene Benzo(a)anthra			81 16	20 4.1	ug/kg ug/kg		

00 00 0	Denzo(u)ununucene		10	1.1	46/16
50-32-8	Benzo(a)pyrene	4.1 U	16	4.1	ug/kg
205-99-2	Benzo(b)fluoranthene	4.1 U	16	4.1	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	4.1 U	16	4.1	ug/kg
207-08-9	Benzo(k)fluoranthene ^a	4.1 U	16	4.1	ug/kg
218-01-9	Chrysene ^a	4.1 U	16	4.1	ug/kg
53-70-3	Dibenzo(a, h)anthracene ^a	4.1 U	16	4.1	ug/kg
206-44-0	Fluoranthene	20 U	81	20	ug/kg
86-73-7	Fluorene	32 U	81	32	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	4.1 U	16	4.1	ug/kg
90-12-0	1-Methylnaphthalene	32 U	81	32	ug/kg
91-57-6	2-Methylnaphthalene	32 U	81	32	ug/kg
91-20-3	Naphthalene	32 U	81	32	ug/kg
85-01-8	Phenanthrene	20 U	81	20	ug/kg
129-00-0	Pyrene	20 U	81	20	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lin	nits
4165-60-0	Nitrobenzene-d5	92 %		40_	105%
321-60-8	2-Fluorobiphenyl	96%			107%
1718-51-0	Terphenyl-d14	111%		45-	119%

(a) Associated BS outside control limits high. Sample was ND.

I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4 Page 1 of 1

SGS

				Report	of Ar	nalysis				Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:		SB 1 FA5476 SO - Soi SW846 Jak Serv	l 8270D B	Y SIM er(United Fuel); 69()0 SW 8	8th St. Mia	ımi.	Date Sampled Date Received Percent Solids . FL	l: 06	6/05/18 6/06/18 0.1
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 22:03	By	Prep Da n/a	-	-	tch	Analytical Batch R45785
CAS No.	Comp	ound		Result	PQL	Units	Q	2		
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg				

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

3.4

			Report		Page 1 of 1			
Client Sam Lab Sampl Matrix: Method: Project:	le ID: FA547 SO - So FLOR	oil DA-PRO S	SW846 3550C (United Fuel); 690	00 SW 8t	h St, Mia	Date Perce	Received: 06	5/05/18 5/06/18).1
Run #1 Run #2	File ID YR18459.D	DF 1	Analyzed 06/11/18 19:26	By SJL	Prep Da 06/07/1		Prep Batch OP70393	Analytical Batch GYR414
Run #1 Run #2	Initial Weight 30.1 g	Final Vol 1.0 ml	lume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40))	6.2 U	10	6.2	mg/kg		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Limi	its		
84-15-1	o-Terphenyl		97 %		52-1	33%		

 $I = Result > = MDL \ but < \ PQL \ \ J = \ Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ယ

			Report	of A	nalysis		Page 1 of 1
Client San Lab Samp Matrix: Method: Project:	le ID: FA547(SO - So SW846	il 8260B	(United Fuel); 690	00 SW	8th St, Miam	Date Sampled: Date Received: Percent Solids: i, FL	
Run #1 Run #2	File ID 2B8815.D	DF 1	Analyzed 06/07/18 18:02	By SP	Prep Date n/a	e Prep Bate n/a	ch Analytical Batch V2B333
Run #1 Run #2	Initial Weight 8.21 g	Final Vo 5.0 ml	lume				
Purgeable	Aromatics, MTE	BE					
CAS No.	Compound		Result	PQL	MDL U	U nits Q	

	compound	Rebuit	1 22		emus	
71-43-2	Benzene	0.82 U	3.4	0.82	ug/kg	
108-88-3	Toluene	0.67 U	3.4	0.67	ug/kg	
100-41-4	Ethylbenzene	0.67 U	3.4	0.67	ug/kg	
1330-20-7	Xylene (total)	1.4 U	10	1.4	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	0.67 U	3.4	0.67	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	105%		75-1	24%	
17060-07-0	1,2-Dichloroethane-D4	119%		72-1	35%	
2037-26-5	Toluene-D8	103%		75-1	26%	
460-00-4	4-Bromofluorobenzene	98 %		71-1	33%	

22 of 55

FA54762

Page 1 of 1

ω 5

ω

Report of Analysis

Client San Lab Samp Matrix: Method: Project:	le ID: FA5476 SO - Soi SW846 8	l 8270D BY	SIM SW846 354 (United Fuel); 690		Date Sampled: 06/05/18 Date Received: 06/06/18 Percent Solids: 90.6 7 8th St, Miami, FL								
Run #1 Run #2	File ID 8H03184.D	DF 1	Analyzed 06/07/18 22:27	By FS	Prep D 06/07/1	ate .8 09:00	Prep Batch OP70388	Analytical Batch S8H124					
Run #1 Run #2	Initial Weight 15.5 g	Final Vo 1.0 ml	lume										
BN PAH I	list												
CAS No.	Compound		Result	PQL	MDL	Units	Q						
83-32-9 208-96-8 120-12-7	Acenaphthene Acenaphthylene Anthracene			71 71 71	28 28 18	ug/kg ug/kg ug/kg							

Page 1 of 1

ω

ω 5

CAS No.	Compound	Result	PQL	MDL	Units
83-32-9	Acenaphthene	28 U	71	28	ug/kg
208-96-8	Acenaphthylene	28 U	71	28	ug/kg
120-12-7	Anthracene	18 U	71	18	ug/kg
56-55-3	Benzo(a)anthracene	3.6 U	14	3.6	ug/kg
50-32-8	Benzo(a)pyrene	3.6 U	14	3.6	ug/kg
205-99-2	Benzo(b)fluoranthene	3.6 U	14	3.6	ug/kg
191-24-2	Benzo(g,h,i)perylene ^a	3.6 U	14	3.6	ug/kg
207-08-9	Benzo(k)fluoranthene ^a	3.6 U	14	3.6	ug/kg
218-01-9	Chrysene ^a	3.6 U	14	3.6	ug/kg
53-70-3	Dibenzo(a,h)anthracene ^a	3.6 U	14	3.6	ug/kg
206-44-0	Fluoranthene	18 U	71	18	ug/kg
86-73-7	Fluorene	28 U	71	28	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene ^a	3.6 U	14	3.6	ug/kg
90-12-0	1-Methylnaphthalene	28 U	71	28	ug/kg
91-57-6	2-Methylnaphthalene	28 U	71	28	ug/kg
91-20-3	Naphthalene	28 U	71	28	ug/kg
85-01-8	Phenanthrene	18 U	71	18	ug/kg
129-00-0	Pyrene	18 U	71	18	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its
4105 00 0		050/		40.1	050/
4165-60-0	Nitrobenzene-d5	95%			05%
321-60-8	2-Fluorobiphenyl	100%			07%
1718-51-0	Terphenyl-d14	115%		45-1	19%

(a) Associated BS outside control limits high. Sample was ND.

- I = Result > = MDL but < PQL J = Estimated value V = Indicates analyte found in associated method blank
- N = Indicates presumptive evidence of a compound

				Report	of Aı	nalysis			Page 1 of 1
Client Sam Lab Sampl Matrix: Method: Project:	-	SB 5 FA5476 SO - Soi SW846 Jak Serv	l 8270D B	Y SIM er(United Fuel); 69(00 SW 8	8th St, Miar]	Date Sampled: Date Received: Percent Solids: FL	6/18
Run #1 Run #2	File ID		DF 1	Analyzed 06/07/18 22:27	By FS	Prep Da n/a	te	Prep Batc n/a	Analytical Batch R45782
CAS No.	Comp	ound		Result	PQL	Units	Q		
	Benzo	(a)pyrene	Equival	ents ^a NC		mg/kg			

(a) Total Benzo(a) pyrene Equivalents calculated as per FDEP Conversion Table [Revised 11-26-07]

U = Not detected **PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

a 1 of 1

ω 5

			Report		Page 1 of 1				
Client Sam Lab Sampl Matrix: Method: Project:	e ID: FA547 SO - S FLOR	oil IDA-PRO	SW846 3550C (United Fuel); 69(00 SW 81	h St, Mia	Date Perce	Received: 06	5/05/18 5/06/18).6	
Run #1 Run #2	File ID YR18460.D	DF 1	Analyzed 06/11/18 19:41	By SJL	Prep D 06/07/1	ate 8 11:50	Prep Batch OP70393	Analytical Batch GYR414	
Run #1 Run #2	Initial Weight 30.3 g	Final Vo 1.0 ml	lume						
CAS No.	Compound		Result	PQL	MDL	Units	Q		
	ТРН (С8-С40)	5.5 U	9.1	5.5	mg/kg			
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Lim	its			
84-15-1	o-Terphenyl		101%		52-1	33%			

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ω

ω 5

				Repor	t of	Analysi	S		Page 1 of 1
Client Sample I Lab Sample ID:		762-5					Date Sam	1) 10 10 10 10 10 10 10 10 10 10 10 10 10	3
Matrix:	SO - S	Soil					Date Rec Percent S		3
Project:	Jak Se	ervice Cer	nter(United	d Fuel); 6	900 S	W 8th St, N	liami, FL		
Metals Analysis									
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead ^a	4.0 I	4.9	0.25	mg/kg	5	06/08/18	06/08/18 LM	SW846 6010C ¹	SW846 3050B ²
(1) Instrument Q	C Batch: M	/IA14960							

(2) Prep QC Batch: MP33856

(a) Sample dilution required due to difficult matrix.

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

(C/	26	REM				Cha	in c	of C	ust	tod	y			5	SGS	- OR	LAN	DO J	ЮВ	#:		PAG	ЭЕ	_OF
q			tan karana a			44	05 Vinelan TEL, 407	-425-67	Suite C-1 00 FAX vw.sgs.co	: 407-4	ndo, FI : 25-070	32811 7			5	sgs	- OR	LAN	DO	Quot	e #	SK	IFF #		
		ient / Reporting	Information	171175			「市場」		ct Info		ion	「お茶茶		100	2 4 6			10.00	and the second	Anal	ytical	Inforr	natior	1 24 12 4	Matrix Codes
mpany N	ame.					Project Na	1000 C	J.	Sen	200	(ien+	ex				ļ	+	ONLY	2					Water
ddress:		ATC Guroup	<u> </u>		-1	Street	1.00	SI		th f								\sim	0	두					GW - Ground Water
(195	5 <u>NW 116</u> State:			-	City	6900	- 27			<u>.</u>	State	° 171		-	7	\neg	<u>[</u>]	Ŕ	50					WW - Water SW - Surface
ty: Ma	ami_		<u>ffL</u> ^{Zip:} Email:		-	Project #	Ninni									BEEKE	£	2	raction	Frictionalte	_				Water SO - Soil
wight	Sch	vendeman @	alcos com	_		Fax #										μ	PA	Ĩ	Ľ,	أتك	5				SL- Sludge
none#:	882	-8300							_	_						Ċ,	2	\sim	Tx	0-	ą				OI - Oil ILIQ - Other Liquid
ampleris) Namei	s) (Printed)	- 21			Client Pu	chase O	rder #								3	J	6úg	Ψł	Ŧ	-4				AIR - Air
Sampler 1	: heil	Rochneysample	<u> </u>			COLLECTION			1	CONT	ASNER IN	FORMA	TION	T Š L		32601	92700	د	2	20	2				SOL - Other Solid
SGS						-	SAMPLED		TOTAL	# HE	E CONE	4aOH	1N03	NAOH+ZNA DI WATER	EOH	õ	3	ũ	0	<u>م</u> ا	ê				LAD USE ONLY
Orlando Sampie-#-		Field ID /-Poin	t of Collection		JE	TIME	BY:	MATRIX		sĖ	δų μ	P.	ž ř	<u>ă</u> ā	, ^y	V	-9-	Y	-	1	_			+	LAB USE ONLY
<u>513 3</u>	L			Oid	cs/is		· LK	80	$\downarrow \varphi$			+			4/	×	4	27		4				+	
<u>5B4</u>	2					09:55		\vdash			-+-	+		╎╫	╢╢	ŕ	8	X			-	-		+ +	
SB2	3_				_	10:20	+		++			+	-		╢┦	×	×	¥	+		-			++	
<u>SR I</u>	4					10:40		H	1	+		+ +			H	Ý	2 V	$\overline{\mathbf{v}}$			X				
<u> 585</u>	5		·		-	11:05			-	+		+	- -	<u> </u>			_~	1-	- 1			- -	1		
									-	-							_	-							
				-+-	_							+		+ +-											
									-				-												
										T															
													_							-8.2.F	P				rks
		Turnaround Time	e (Business day	s)		248546			ata De		_			<u>n 88</u>				÷						_	
	10 Da	y (Business)	Аррі	oved By: /	Date:				CIAL "A CIAL "E										1,	Ara	٠ĥ٨	et.	, EA	din	g Results
	7 Day											3 FLU	3 40)											``	1
	5 Day							•	EPA LE																
	•	r RUSH r RUSH	·						•		-	17	- [-	>				—							
		RUSH					17			∖╂−	- Л	1E	15					L					_		
	Othe									ľ	0		V.												1
2 Mar 18 19 121		Rush T/A Data Av	ailable VIA Email o	Sample C	ustor	ly must be	docume	nted b	elow ea	ich tim	ie san	ples	chang	posse	ssior	ı, incl	luding	l cour	ier de	liver	<i>I</i>	1ì	344	<u> 1111</u>	1 901
		y Sampler/Affiliation		Received	i By/A	filiation					F	telinq	uished	By/Aff	iliatio	n,	E١			Date	Time:	R	celved	By/Aff(li	Collab 11
1 L	1 14		06/05/18 5	2			Fed	Ľ	~ <u>Y_</u>		3		uisher	By/Aff	- ec		<u>F)</u>	<i>k</i>		Date	Time:	4	eceivec	ByAffili	iation
			Date Time:	Dessiver	I Built	filiation					1	(e)IIIQ	0,21190	- БулАП	mano	••			- 1	2000		- PA		1	

ORLD-SMT-0001-03-FORM-COC (1) Rev 031318

FA54762: Chain of Custody Page 1 of 2

28 of 55 FA54762

44

4

SGS Sample Receipt Summary

Job Number: FA5476	2	Client:	ATC		Project: 6900 SW 8	TH ST.					
Date / Time Received: 6/6/2018	3 9:00:00 AM		Delivery Method: FED EX		Airbill #'s: 100191051076000328110078128218462						
Therm ID: IR 1;			Therm CF: 0.4;		# of Coole	rs: 1					
Cooler Temps (Raw Measure	ed) °C: Coole	er 1: (1.2);								
Cooler Temps (Correcte	ed) °C: Coole	er 1: (1.6);								
Cooler Information	Y or	N		Sample Information		Yc	or N	N/A			
1. Custody Seals Present	\checkmark			1. Sample labels presen	t on bottles	✓					
2. Custody Seals Intact	\checkmark			2. Samples preserved pr	operly	✓					
3. Temp criteria achieved	\checkmark			3. Sufficient volume/cont	ainers recvd for analysis:						
4. Cooler temp verification	IR Gun			4. Condition of sample		Intact					
5. Cooler media	Ice (Bag)			5. Sample recvd within H	IT	\checkmark					
				6. Dates/Times/IDs on C	OC match Sample Label	\checkmark					
rip Blank Information	<u>Y</u> or	<u>N</u>	N/A	7. VOCs have headspac	e			\checkmark			
1. Trip Blank present / cooler				8. Bottles received for ur	nspecified tests		v				
2. Trip Blank listed on COC				9. Compositing instruction	ons clear			\checkmark			
		_		10. Voa Soil Kits/Jars re	ceived past 48hrs?	Π					
	<u>W or</u>	<u>s</u> .	N/A	11. % Solids Jar receive	d?						
3. Type Of TB Received			\checkmark	12. Residual Chlorine Pr	resent?						
Misc. Information			•								
Number of Encores: 25-Gran	n 5	5-Gram	Num	nber of 5035 Field Kits: 5	Number of L	ab Filtered	Metals:				
Test Strip Lot #s:	pH 0-3	23031	 fq	H 10-12 219813A							
Residual Chlorine Test Strip Lo	-										
Comments											
SM001 Technicia	n: SHAYLAP		Date: 6/6/2018 9	9:00:00 AM	Reviewer: BR		Date:	6/6/2018			
Rev. Date 05/24/17											

FA54762: Chain of Custody Page 2 of 2

FA54762

4.1 **4**

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

G

Method Blank Summary Job Number: FA54762

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2B333-MB	2B8804.D	1	06/07/18	SP	n/a	n/a	V2B333
The OC repor	ted here applies t	o the follo	wing samples.			Method: SW84	6 8260B

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	5.0	1.2	ug/kg
100-41-4	Ethylbenzene	ND	5.0	1.0	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	5.0	1.0	ug/kg
108-88-3	Toluene	ND	5.0	1.0	ug/kg
1330-20-7	Xylene (total)	ND	15	2.1	ug/kg
CAS No.	Surrogate Recoveries		Limits	5	
1868-53-7	Dibromofluoromethane	100%	75-124	1 %	
17060-07-0	1,2-Dichloroethane-D4	107%	72-13	5%	
2037-26-5	Toluene-D8	101%	75-120	6%	
460-00-4	4-Bromofluorobenzene	99 %	71-133	3 %	

5.1.1 5

Page 1 of 1

Method Blank Summary Job Number: FA54762

Job Number: Account: Project:	FA54762 ATCFLM ATC Gr Jak Service Center(St, Miami	, FL		
Sample V3C48-MB		DF Analy 1 06/07	•	Pro n/a	ep Date	Prep Batch n/a	Analytical Batch V3C48
The QC repo FA54762-3	rted here applies to t	he following sam	ples:			Method: SW84	6 8260B
CAS No. C	Compound	Result	RL	MDL	Units	Q	
100-41-4 E 1634-04-4 M 108-88-3 T	enzene thylbenzene fethyl Tert Butyl Ethe oluene (ylene (total)	ND ND r ND 1.1 ND	5.0 5.0 5.0 5.0 15	1.2 1.0 1.0 1.0 2.1	ug/kg ug/kg ug/kg ug/kg ug/kg	J	

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	102%	75-124%
17060-07-0	1,2-Dichloroethane-D4	106%	72-135%
2037-26-5	Toluene-D8	104%	75-126 %
460-00-4	4-Bromofluorobenzene	104%	71-133%

Page 1 of 1

5.1.2

G

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V2B333-BS	2B8805.D	1	06/07/18	SP	n/a	n/a	V2B333

ATCFLM ATC Group Services LLC. Account:

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	50 50 50 50 150	53.3 55.9 48.9 51.6 171	107 112 98 103 114	76-126 77-123 77-120 76-124 80-129
CAS No. 1868-53-7 17060-07-0 2037-26-5 460-00-4	Surrogate Recoveries Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	BSP 100% 101% 100% 97%	72-1 75-1	nits 124% 135% 126% 133%	

FA54762

Account: Project:	ATCFLM ATC Group Jak Service Center(Uni			8th St, M	liami, FL		
Sample V3C48-BS	File ID DF 3C1142.D 1		lyzed)7/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch V3C48
The QC re FA54762-3	ported here applies to the f	ollowing sa	nples:			Method: SW84	6 8260B
CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits		
71-43-2	Benzene	50	49.3	99	76-126		
100-41-4	Ethylbenzene	50	51.2	102	77-123		
1634-04-4	Methyl Tert Butyl Ether	50	50.1	100	77-120		
108-88-3	Toluene	50	47.4	95	76-124		

150

BSP

102%

100%

99%

155

103

Limits

75-124%

72-135%

75-126%

71-133%

80-129

CAS No. **Surrogate Recoveries** 1868-53-7 Dibromofluoromethane 103%

4-Bromofluorobenzene

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

Xylene (total)

1330-20-7

460-00-4

Page 1 of 1

5.2.2

S

Matrix	Spike/Matrix	Spike	Duplicate	Summary
T 1 N7 1	TIA # 4900			

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
~ .	

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA54803-3MS	3C1150.D	1	06/07/18	SP	n/a	n/a	V3C48
FA54803-3MSD	3C1151.D	1	06/07/18	SP	n/a	n/a	V3C48
FA54803-3	3C1149.D	1	06/07/18	SP	n/a	n/a	V3C48

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54762-3

CAS No.	Compound	FA54803-3 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	ND ND ND ND ND	41.1 41.1 41.1 41.1 123	33.3 35.7 32.3 33.3 112	81 87 79 81 91	40.1 40.1 40.1 40.1 120	31.9 34.5 32.3 34.4 107	80 86 81 86 89	4 3 0 3 5	76-126/26 77-123/31 77-120/24 76-124/30 80-129/30
CAS No.	Surrogate Recoveries	MS	MSD	FA	54803-3	Limits				
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	69%* ^b 109% 102% 98%	65%* ^b 102% 104% 96%	49% 109 105 98%	5%	75-1249 72-1359 75-1269 71-1339	6 6			

(a) Outside control limits due to matrix interference (alkaline pH). Confirmed by MS/MSD.(b) Outside control limits due to matrix interference (high pH).

٦

Page 1 of 1

SGS

Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54762-1, FA54762-2, FA54762-4, FA54762-5

CAS No.	Compound	FA54835-1 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	6.1 U	63.1	56.7	90	59.9	54.7	91	4	76-126/26
100-41-4	Ethylbenzene	6.1 U	63.1	57.3	91	59.9	54.5	91	5	77-123/31
1634-04-4	Methyl Tert Butyl Ether	6.1 U	63.1	61.9	98	59.9	59.5	99	4	77-120/24
108-88-3	Toluene	6.1 U	63.1	55.1	87	59.9	54.8	92	1	76-124/30
1330-20-7	Xylene (total)	18 U	189	176	93	180	168	94	5	80-129/30
CAS No.	Surrogate Recoveries	MS	MSD	FA	54835-1	Limits				
1868-53-7	Dibromofluoromethane	101%	102%	102	%	75-124%	, D			
17060-07-0	1,2-Dichloroethane-D4	101%	100%	104	%	72-135%	, D			
2037-26-5	Toluene-D8	101%	101%	105	%	75-126%	ź			
460-00-4	4-Bromofluorobenzene	106%	104%	110	%	71-133%	, D			

(a) Confirmation run.

Orlando, FL

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

Method Blank Summary Job Number: FA54762

Account: Project:		ATCFLM ATC Group Services LLC. Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL									
Sample OP70388-MB	File ID 8H03165.D	DF 1	Analyzed 06/07/18	By FS	Prep Date 06/07/18	Prep Batch OP70388	Analytical Batch S8H124				
The QC report	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM				

FA54762-2, FA54762-3, FA54762-4, FA54762-5

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	67	27	ug/kg
208-96-8	Acenaphthylene	ND	67	27	ug/kg
120-12-7	Anthracene	ND	67	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	13	3.3	ug/kg
50-32-8	Benzo(a)pyrene	ND	13	3.3	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	13	3.3	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	13	3.3	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	13	3.3	ug/kg
218-01-9	Chrysene	ND	13	3.3	ug/kg
53-70-3	Dibenzo(a, h)anthracene	ND	13	3.3	ug/kg
206-44-0	Fluoranthene	ND	67	17	ug/kg
86-73-7	Fluorene	ND	67	27	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13	3.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	67	27	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	27	ug/kg
91-20-3	Naphthalene	ND	67	27	ug/kg
85-01-8	Phenanthrene	ND	67	17	ug/kg
129-00-0	Pyrene	ND	67	17	ug/kg
	-				

CAS No.	Surrogate Recoveries		Limits
321-60-8	Nitrobenzene-d5	92%	40-105%
	2-Fluorobiphenyl	90%	43-107%
	Terphenyl-d14	117%	45-119%

Method Blank Summary Job Number: FA54762

Account:	ATCFLM ATC Group Services LLC.								
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
OP70433-MB	8H03226.D	1	06/11/18	FS	06/11/18	OP70433	S8H126		
The QC repor	ted here applies to	o the follo	owing samples:			Method: SW84	6 8270D BY SIM		

FA54762-1

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	67	27	ug/kg
208-96-8	Acenaphthylene	ND	67	27	ug/kg
120-12-7	Anthracene	ND	67	17	ug/kg
56-55-3	Benzo(a)anthracene	ND	13	3.3	ug/kg
50-32-8	Benzo(a)pyrene	ND	13	3.3	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	13	3.3	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	13	3.3	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	13	3.3	ug/kg
218-01-9	Chrysene	ND	13	3.3	ug/kg
53-70-3	Dibenzo(a, h)anthracene	ND	13	3.3	ug/kg
206-44-0	Fluoranthene	ND	67	17	ug/kg
86-73-7	Fluorene	ND	67	27	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	13	3.3	ug/kg
90-12-0	1-Methylnaphthalene	ND	67	27	ug/kg
91-57-6	2-Methylnaphthalene	ND	67	27	ug/kg
91-20-3	Naphthalene	ND	67	27	ug/kg
85-01-8	Phenanthrene	ND	67	17	ug/kg
129-00-0	Pyrene	ND	67	17	ug/kg
	-				2 0

CAS No.	Surrogate Recoveries		Limits
321-60-8	Nitrobenzene-d5	91%	40-105%
	2-Fluorobiphenyl	91%	43-107%
	Terphenyl-d14	101%	45-119%

Account:	ATCFLM ATC Group Services LLC.								
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
OP70388-BS	8H03166.D	1	06/07/18	FS	06/07/18	OP70388	S8H124		
The QC repor	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM		

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	643	96	53-100
208-96-8	Acenaphthylene	667	601	90	51-100
120-12-7	Anthracene	333	323	97	60-102
56-55-3	Benzo(a)anthracene	333	308	92	60-10 ²
50-32-8	Benzo(a)pyrene	333	323	97	58-105
205-99-2	Benzo(b)fluoranthene	333	327	98	59-112
191-24-2	Benzo(g,h,i)perylene	333	378	113*	56-109
207-08-9	Benzo(k)fluoranthene	333	386	116*	58-109
218-01-9	Chrysene	333	359	108*	62-104
53-70-3	Dibenzo(a, h)anthracene	333	371	111*	55-110
206-44-0	Fluoranthene	667	617	93	59-109
86-73-7	Fluorene	667	654	98	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	370	111*	54-110
90-12-0	1-Methylnaphthalene	667	577	87	50-101
91-57-6	2-Methylnaphthalene	667	550	82	49-100
91-20-3	Naphthalene	667	622	93	49-101
85-01-8	Phenanthrene	667	652	98	57-104
129-00-0	Pyrene	667	663	99	58-106
120 00 0	I yrene	001	000	00	00 100
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
	_				
4165-60-0	Nitrobenzene-d5	87 %	40-	105%	
321-60-8	2-Fluorobiphenyl	98 %	43-	107%	
1718-51-0	Terphenyl-d14	110%	45-	119%	

6.2.1 6

* = Outside of Control Limits.

Account:	ATCFLM ATC Group Services LLC.								
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL								
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch		
OP70388-BS	8H03228.D	1	06/11/18	FS	06/07/18	OP70388	S8H126		
The QC report	ted here applies to	o the follo	wing samples:			Method: SW84	6 8270D BY SIM		

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	520	78	53-100
208-96-8	Acenaphthylene	667	489	73	51-100
200-30-3 120-12-7	Anthracene	333	405 249	75	60-102
56-55-3	Benzo(a)anthracene	333	249 256	77	60-102 60-106
50-55-5 50-32-8		333	256 256	77	58-105
	Benzo(a)pyrene				
205-99-2	Benzo(b)fluoranthene	333	268	80	59-112
191-24-2	Benzo(g,h,i)perylene	333	291	87	56-109
207-08-9	Benzo(k)fluoranthene	333	277	83	58-109
218-01-9	Chrysene	333	281	84	62-104
53-70-3	Dibenzo(a,h)anthracene	333	307	92	55-110
206-44-0	Fluoranthene	667	485	73	59-109
86-73-7	Fluorene	667	520	78	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	291	87	54-110
90-12-0	1-Methylnaphthalene	667	458	69	50-101
91-57-6	2-Methylnaphthalene	667	466	70	49-100
91-20-3	Naphthalene	667	504	76	49-101
85-01-8	Phenanthrene	667	525	79	57-104
129-00-0	Pyrene	667	525	79	58-106
	5				
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
4165-60-0	Nitrobenzene-d5	76%	40-	105%	
321-60-8	2-Fluorobiphenyl	81%		107%	
1718-51-0	Terphenyl-d14	87%		119%	
1/10-31-0	rerpnenyi-ur4	0170	43-	113/0	

Page 1 of 1

Account:	ATCFLM ATC Group Services LLC.										
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch				
OP70433-BS	8H03227.D	1	06/11/18	FS	06/11/18	OP70433	S8H126				
The QC report	ted here applies to	o the follo		Method: SW84	6 8270D BY SIM						

FA54762-1

		Spike	BSP	BSP	
CAS No.	Compound	ug/kg	ug/kg	%	Limits
83-32-9	Acenaphthene	667	585	88	53-100
208-96-8	Acenaphthylene	667	556	83	51-100
120-12-7	Anthracene	333	292	88	60-102
56-55-3	Benzo(a)anthracene	333	301	90	60-106
50-32-8	Benzo(a)pyrene	333	303	91	58-105
205-99-2	Benzo(b)fluoranthene	333	306	92	59-112
191-24-2	Benzo(g,h,i)perylene	333	338	101	56-109
207-08-9	Benzo(k)fluoranthene	333	322	97	58-109
218-01-9	Chrysene	333	331	99	62-104
53-70-3	Dibenzo(a,h)anthracene	333	359	108	55-110
206-44-0	Fluoranthene	667	573	86	59-109
86-73-7	Fluorene	667	593	89	56-104
193-39-5	Indeno(1,2,3-cd)pyrene	333	343	103	54-110
90-12-0	1-Methylnaphthalene	667	505	76	50-101
91-57-6	2-Methylnaphthalene	667	522	78	49-100
91-20-3	Naphthalene	667	552	83	49-101
85-01-8	Phenanthrene	667	614	92	57-104
129-00-0	Pyrene	667	609	91	58-106
	5				
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
4165-60-0	Nitrobenzene-d5	83%	40-	105%	
321-60-8	2-Fluorobiphenyl	91%	43-	107%	
1718-51-0	Terphenyl-d14	103%	45-	119%	

42 of 55

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample OP70388-MS OP70388-MSD FA54784-2	File ID 8H03187.D 8H03188.D 8H03186.D	DF 1 1 1	Analyzed 06/07/18 06/08/18 06/07/18	By FS FS FS	Prep Date 06/07/18 06/07/18 06/07/18	Prep Batch OP70388 OP70388 OP70388	Analytical Batch S8H124 S8H124 S8H124 S8H124
--	--	-------------------	--	----------------------	---	---	--

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA54762-2, FA54762-3, FA54762-4, FA54762-5

		FA54784-2	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/kg Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
00 00 0	A	70.11	700	710	100*	001	500	0.0	10	50 100/00
83-32-9	Acenaphthene	70 U	700	719	103*	691	593	86	19	53-100/28
208-96-8	Acenaphthylene	70 U	700	689	98	691	565	82	20	51-100/25
120-12-7	Anthracene	70 U	350	360	103*	345	294	85	20	60-102/29
56-55-3	Benzo(a)anthracene	14 U	350	363	104	345	295	85	21	60-106/30
50-32-8	Benzo(a)pyrene	14 U	350	376	107*	345	304	88	21	58-105/30
205-99-2	Benzo(b)fluoranthene	14 U	350	401	115*	345	324	94	21	59-112/33
191-24-2	Benzo(g,h,i)perylene	14 U	350	229	65	345	182	53*	23	56-109/31
207-08-9	Benzo(k)fluoranthene	14 U	350	418	119*	345	341	99	20	58-109/33
218-01-9	Chrysene	14 U	350	395	113*	345	328	95	19	62-104/30
53-70-3	Dibenzo(a,h)anthracene	14 U	350	313	89	345	242	70	26	55-110/31
206-44-0	Fluoranthene	70 U	700	711	102	691	582	84	20	59-109/29
86-73-7	Fluorene	70 U	700	741	106*	691	615	89	19	56-104/27
193-39-5	Indeno(1,2,3-cd)pyrene	14 U	350	274	78	345	214	62	25	54-110/32
90-12-0	1-Methylnaphthalene	70 U	700	628	90	691	513	74	20	50-101/30
91-57-6	2-Methylnaphthalene	70 U	700	632	90	691	518	75	20	49-100/26
91-20-3	Naphthalene	70 U	700	684	98	691	564	82	19	49-101/28
85-01-8	Phenanthrene	70 U	700	744	106*	691	615	89	19	57-104/27
129-00-0	Pyrene	70 U	700	725	104	691	591	86	20	58-106/29
	5									
CAS No.	Surrogate Recoveries	MS	MSD	FA	54784-2	Limits				
4165-60-0	Nitrobenzene-d5	92 %	74%	85 %		40-105%				
321-60-8	2-Fluorobiphenyl	103%	84 %	95 %		43-1079				
1718-51-0	Terphenyl-d14	111%	89 %	111	.%	45-1199	%			

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54762
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

OP70433-MS 8H03237.D 1 06 OP70433-MSD 8H03238.D 1 06	nalyzed By 6/11/18 FS 6/11/18 FS 6/11/18 FS 6/11/18 FS	Prep Date 06/11/18 06/11/18 06/11/18	Prep Batch OP70433 OP70433 OP70433	Analytical Batch S8H126 S8H126 S8H126 S8H126
---	--	---	---	--

The QC reported here applies to the following samples:

Method: SW846 8270D BY SIM

FA54762-1

~ . ~	~ .	FA54843-1	Spike	MS	MS	Spike	MSD	MSD		Limits
CAS No.	Compound	ug/kg Q	ug/kg	ug/kg	%	ug/kg	ug/kg	%	RPD	Rec/RPD
83-32-9	Acenaphthene	83 U	821	796	97	821	719	88	10	53-100/28
208-96-8	Acenaphthylene	83 U	821	764	93	821	683	83	11	51-100/25
120-12-7	Anthracene	83 U	410	380	93	410	337	82	12	60-102/29
56-55-3	Benzo(a)anthracene	17 U	410	386	94	410	342	83	12	60-106/30
50-32-8	Benzo(a)pyrene	17 U	410	383	93	410	340	83	12	58-105/30
205-99-2	Benzo(b)fluoranthene	17 U	410	400	97	410	356	87	12	59-112/33
191-24-2	Benzo(g,h,i)perylene	17 U	410	279	68	410	246	60	13	56-109/31
207-08-9	Benzo(k)fluoranthene	17 U	410	406	99	410	361	88	12	58-109/33
218-01-9	Chrysene	17 U	410	426	104	410	371	90	14	62-104/30
53-70-3	Dibenzo(a, h)anthracene	17 U	410	366	89	410	321	78	13	55-110/31
206-44-0	Fluoranthene	83 U	821	720	88	821	645	79	11	59-109/29
86-73-7	Fluorene	83 U	821	793	97	821	710	86	11	56-104/27
193-39-5	Indeno(1,2,3-cd)pyrene	17 U	410	323	79	410	289	70	11	54-110/32
90-12-0	1-Methylnaphthalene	83 U	821	695	85	821	614	75	12	50-101/30
91-57-6	2-Methylnaphthalene	83 U	821	730	89	821	652	79	11	49-100/26
91-20-3	Naphthalene	83 U	821	775	94	821	695	85	11	49-101/28
85-01-8	Phenanthrene	83 U	821	805	98	821	719	88	11	57-104/27
129-00-0	Pyrene	83 U	821	771	94	821	687	84	12	58-106/29
CAS No.	Surrogate Recoveries	MS	MSD	FA	54843-1	Limits				
4165-60-0	Nitrobenzene-d5	99 %	86 %	95 %	6	40-1059	Vo			
321-60-8	2-Fluorobiphenyl	104%	92 %	98%		43-107				
1718-51-0	Terphenyl-d14	107%	94%	99%		45-1199				
1/10-31-0	rerphenyr-ur4	107/0	JH /0	33/	0	45-115	0			

GC/LC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary Job Number: FA54762

Job Number: FA54762 Account: ATCFLM ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample OP70393-MB	File ID YR18455.D	DF 1	Analyz 06/11/2	•		ep Date /07/18	Prep Batch OP70393	Analytical Batch GYR414		
	orted here applies to FA54762-2, FA5476		· ·				Method: FLOR	IDA-PRO		
CAS No. (Compound		Result	RL	MDL	Units	Q			
1	ГРН (С8-С40)		ND	8.3	5.0	mg/kg				
CAS No. S	Surrogate Recoverie	s		Limit	s					
84-15-1 o	o-Terphenyl 100% 52-133%									

Blank Spike Summary Job Number: FA54762

o-Terphenyl

84-15-1

Job Number:FA54762Account:ATCFLM ATC Group Services LLC.Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL											
Sample OP70393-BS	File ID S YR18454.D	DF 1	Anal 06/1	·	By SJL	Prep Date 06/07/18	Prep Batch OP70393	Analytical Batch GYR414			
	oorted here applies to FA54762-2, FA5476		0	-	5		Method: FLOR	IDA-PRO			
CAS No.	Compound		Spike ng/kg	BSP mg/kg	BSP %	Limits					
	ТРН (С8-С40)	2	28.3	25.1	89	53-120					
CAS No.	Surrogate Recoverie	s I	BSP	Lir	nits						

52-133%

100%

7.2.1 7

Matrix Spi	Iatrix Spike/Matrix Spike Duplicate Summary bb Number: FA54762											
Account: ATCFLM ATC Group Services LLC.												
Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL												
Sample	File ID	DF	Analy	zed B	By	Prep Date	Pre	p Batch	Anal	ytical Batch		
OP70393-MS	YR18462.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414		
OP70393-MSD	YR18463.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414		
FA54784-1	YR18461.D) 1	06/11/	/18 S	JL	06/07/18	OP	70393	GYR	414		
The QC reporte FA54762-1, FA				•	i		Metho	d: FLO	RIDA-PI	RO		
Compound		FA54784-1	Spike	MS mg/kg	MS %	Spike mg/kg	MSD	MSD %	RPD	Limits Rec/RPD		
•		mg/kg Q 9.1 U	mg/kg 30.9	ш <u>д</u> /к <u>д</u> 27.8	⁷⁰ 90	31.2	mg/kg 25.4	⁷⁰ 81	9 9	53-120/34		
TPH (C8-C40)	:	9.1 U	30.9	21.0	90	31.2	23.4	01	9	33-120/34		

105%

52-133%

CAS No.	Compound	mg/kg	Q	mg/kg	mg/kg	%	mg/kg	m
	TPH (C8-C40)	9.1 U		30.9	27.8	90	31.2	25
CAS No.	Surrogate Recoveries	MS		MSD	FA5	54784-1	Limits	

92%

105%

o-Terphenyl

84-15-1

7.3.1 7

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:	ep Date:					
Metal	RL	IDL	MDL	MB raw	final	
Aluminum	10	.7	1.8			
Antimony	1.0	.05	.065			
Arsenic	0.50	.065	.1			
Barium	10	.05	.05			
Beryllium	0.25	.01	.025			
Cadmium	0.20	.01	.025			
Calcium	250	2.5	2.5			
Chromium	0.50	.05	.05			
Cobalt	2.5	.01	.025			
Copper	1.3	.05	.05			
Iron	15	.85	.85			
Lead	1.0	.05	.05	0.050	<1.0	
Magnesium	250	1.8	1.8			
Manganese	0.75	.025	.025			
Molybdenum	2.5	.015	.025			
Nickel	2.0	.02	.025			
Potassium	500	10	10			
Selenium	1.0	.12	.12			
Silver	0.50	.035	.041			
Sodium	500	25	25			
Strontium	0.50	.025	.025			
Thallium	0.50	.055	.055			
Tin	2.5	.045	.045			
Titanium	0.50	.025	.025			
Vanadium	2.5	.025	.025			
Zinc	1.0	.15	.15			
Associated sa	mples MP3	33856: FA	54762-5			

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

œ

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:				Met] Ui	6010C		
Prep Date:		06/08/1	8			06/08/1	8
Metal	FA54762-5 Original DUP	RPD	QC Limits	FA54762-5 Original MS	Spikelot MPFLICP2		QC Limits
Aluminum							
Antimony	anr						
Arsenic	anr						
Barium	anr						
Beryllium	anr						
Cadmium	anr						
Calcium							
Chromium	anr						
Cobalt	anr						
Copper	anr						
Iron							
Lead	4.0 3.8 (a)	5.1	0-20	4.0 29.5	(a) 25.8	98.9	80-120
Magnesium							
Manganese							
Molybdenum	anr						
Nickel	anr						
Potassium							
Selenium	anr						
Silver	anr						
Sodium							
Strontium							
Thallium	anr						
Tin							
Titanium							
Vanadium	anr						
Zinc	anr						
Associated sa	mples MP33856: FA5	4762-5					

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits
(anr) Analyte not requested
(a) Sample dilution required due to difficult matrix.</pre>

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:				06/08/18	
Metal	FA54762-5 Original MSD	Spikelot MPFLICP2		MSD RPD	QC Limit
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron					
Lead	4.0 21.4 (a	a) 18.2	95.8	31.8 (b)	20
Magnesium					
Manganese					
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	anr				
Associated sa	mples MP33856: FA	54762-5			
<pre>(*) Outside o (N) Matrix Sp (anr) Analyte (a) Sample di</pre>	are shown as zero f QC limits ike Rec. outside of not requested lution required do due to possible so	of QC limit ue to diffi	s cult matr	rix.	

52 of 55

FA54762

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: mg/kg

Prep Date:			06/08/18		
Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits	
Aluminum					
Antimony	anr				
Arsenic	anr				
Barium	anr				
Beryllium	anr				
Cadmium	anr				
Calcium					
Chromium	anr				
Cobalt	anr				
Copper	anr				
Iron					
Lead	23.8	25	95.2	80-120	
Magnesium					
Manganese					
Molybdenum	anr				
Nickel	anr				
Potassium					
Selenium	anr				
Silver	anr				
Sodium					
Strontium					
Thallium	anr				
Tin					
Titanium					
Vanadium	anr				
Zinc	anr				
Associated sam	ples MP3	3856: FA54'	762-5		
Results < IDL (*) Outside of			for calcu	lation purp	Ę

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

Metal	FA54762- Original		%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium	anr			
Beryllium	anr			
Cadmium	anr			
Calcium				
Chromium	anr			
Cobalt	anr			
Copper	anr			
Iron				
Lead	81.4	83.0	2.0	0-10
Magnesium				
Manganese				
Molybdenum	anr			
Nickel	anr			
Potassium				
Selenium	anr			
Silver	anr			
Sodium				
Strontium				
Thallium	anr			
Tin				
Titanium				
Vanadium	anr			
Zinc	anr			

(*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: FA54762 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33856 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

Prep Date:									06/08/1	8
Metal	Sample ml	Final ml	FA54762 Raw	-5 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	81.4	79.772	121.9	0.2	2.5	50	84.3	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3856: FA5	4762-5							
Results < IDL (*) Outside o (**) Corr.s (anr) Analyte	f QC limi ample res	ts ult = Raw				olume)				

55 of 55 FA54762

Orlando, FL

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0 Automated Report

06/18/18

Technical Report for

ATC Group Services LLC.

Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Z101430699

SGS Job Number: FA54891

Sampling Date: 06/07/18

Report to:

ATC Group Services LLC. 9955 NW 116th Way Suite 1 Miami, FL 33178 dwight.schwendeman@atcassociates.com

ATTN: Dwight Schwendeman

Total number of pages in report: **31**

attinkin

Caitlin Brice, M.S. General Manager

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Muna Mohammed 407-425-6700

Certifications: FL(E83510), LA(03051), KS(E-10327), IL(200063), NC(573), NJ(FL002), NY(12022), SC(96038001) DoD ELAP(ANAB L2229), AZ(AZ0806), CA(2937), TX(T104704404), PA(68-03573), VA(460177), AK, AR, IA, KY, MA, MS, ND, NH, NV, OK, OR, UT, WA, WV This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 4405 Vineland Road • Suite C-15 • Orlando, FL 32811 • tel: 407-425-6700 • fax: 407-425-0707

Please share your ideas about how we can serve you better at: EHS.US.CustomerCare@sgs.com

1 of 31 FA54891

Table of Contents

N

ယ

4

S

6

7

∞

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
3.1: FA54891-1: MW 9	
Section 4: Misc. Forms	10
4.1: Chain of Custody	11
Section 5: MS Volatiles - QC Data Summaries	
5.1: Method Blank Summary	14
5.2: Blank Spike Summary	15
5.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 6: MS Semi-volatiles - QC Data Summaries	
6.1: Method Blank Summary	18
6.2: Blank Spike Summary	
6.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 7: GC/LC Semi-volatiles - QC Data Summaries	
7.1: Method Blank Summary	22
7.2: Blank Spike Summary	
7.3: Matrix Spike/Matrix Spike Duplicate Summary	
Section 8: Metals Analysis - QC Data Summaries	
8.1: Prep QC MP33873: Pb	

SGS

Sample Summary

ATC Group Services LLC.

Job No: FA54891 Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL Project No: Z101430699

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
FA54891-1	06/07/18	00:00 LR	06/09/18	AQ	Ground Water	MW 9

Summary of Hits

Г

Job Number:	FA54891
Account:	ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL
Collected:	06/07/18

Lab Sample ID Client Sample ID Analyte	Result/ Qual	PQL	MDL	Units	Method
FA54891-1 MW 9					
2-Methylnaphthalene TPH (C8-C40) Lead	0.72 I 0.665 5.4	0.80 0.24 5.0	0.32 0.14 1.1	ug/l mg/l ug/l	SW846 8270D BY SIM FLORIDA-PRO SW846 6010C

N

Orlando, FL

ω Section 3

Sample Results

Report of Analysis

1634-04-4

CAS No.

1868-53-7

17060-07-0

2037-26-5

460-00-4

Methyl Tert Butyl Ether

Surrogate Recoveries

Dibromofluoromethane

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

Report of Analysis

			1		v			0
Client Sam	T S S	W 9						
Lab Sampl		454891-1						6/07/18
Matrix:		Q - Ground Wa	ater					6/09/18
Method:		V846 8260B					ent Solids: n/	a
Project:	Ja	k Service Cent	er(United Fuel); 690	0 SW 8	8th St, Mia	ami, FL		
	File ID	DF	Analyzed	By	Prep D	ate	Prep Batch	Analytical Batch
Run #1	O54087.D	1	06/14/18 10:16	SP	n/a		n/a	VO2040
Run #2								
	Purge Vol	ume						
Run #1 Run #2	5.0 ml							
Purgeable	Aromatics,	MTBE						
CAS No.	Compour	nd	Result	PQL	MDL	Units	Q	
71-43-2	Benzene		0.31 U	1.0	0.31	ug/l		
108-88-3	Toluene		0.30 U	1.0	0.30	ug/l		
100-41-4	Ethylbenz	ene	0.36 U	1.0	0.36	ug/l		
1330-20-7	Xylene (t		0.72 U	3.0	0.72	ug/l		
						5		

1.0

Run# 2

0.23

Limits

83-118%

79-125%

85-112%

83-118%

 $I = Result > = MDL \ but < PQL \ J = Estimated \ value$

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ug/l

0.23 U

Run#1

104%

101%

99%

102%

3.4

ω

Page 1 of 1

6 of 31 FA54891

SGS

Report of Analysis

					-			
Client San Lab Samp Matrix: Method: Project:	le ID: FA548 AQ - G SW846	Fround Wate 88270D BY	er SIM SW846 35 (United Fuel); 69(8th St, Mi	Date Perc	T	5/07/18 5/09/18 'a
Run #1 Run #2	File ID T038518.D	DF 1	Analyzed 06/13/18 05:42	By RV	Prep D 06/11/1	0ate 18 17:00	Prep Batch OP70444	Analytical Batch ST1407
Run #1 Run #2	Initial Volume 250 ml	Final Vo 1.0 ml	lume					
BN PAH L	List							
CAS No.	Compound		Result	PQL	MDL	Units	Q	
83-32-9	Acenaphthene		0.32 U	0.80	0.32	ug/l		
208-96-8	Acenaphthyler	ie	0.32 U	0.80	0.32	ug/l		
120-12-7	Anthracene		0.20 U	0.80	0.20	ug/l		
56-55-3	Benzo(a)anthra		0.032 U	0.16	0.032	ug/l		
50-32-8	Benzo(a)pyren		0.032 U	0.16	0.032	ug/l		
205-99-2	Benzo(b)fluora		0.032 U	0.16	0.032	ug/l		
191-24-2	Benzo(g,h,i)pe		0.032 U	0.16	0.032	ug/l		
207-08-9	Benzo(k)fluora	anthene	0.032 U	0.16	0.032	ug/l		
218-01-9	Chrysene	_	0.032 U	0.16	0.032	ug/l		
53-70-3	Dibenzo(a,h)a	nthracene	0.032 U	0.16	0.032	ug/l		
206-44-0	Fluoranthene		0.20 U	0.80	0.20	ug/l		
86-73-7	Fluorene	D	0.20 U	0.80	0.20	ug/l		
193-39-5	Indeno(1,2,3-c		0.032 U	0.16	0.032	ug/l		
90-12-0	1-Methylnapht		0.32 U	0.80	0.32	ug/l		
91-57-6	2-Methylnapht	inalene	0.72	0.80	0.32	ug/l	Ι	
91-20-3	Naphthalene Phenanthrene		0.32 U	0.80	0.32	ug/l		
85-01-8 129-00-0	Phenanthrene Pyrene		0.20 U 0.20 U	0.80 0.80	0.20 0.20	ug/l ug/l		
CACN			D #1	D #/		•.		

CAS No. **Surrogate Recoveries** Run#1 **Run# 2** Limits 4165-60-0 Nitrobenzene-d5 55% 41-129% 321-60-8 2-Fluorobiphenyl **70%** 41-118% 1718-51-0 **Terphenyl-d14** 81% 45-145%

ω

ω -

N = Indicates presumptive evidence of a compound

			Report	of An	alysis			Page 1 of 1
Client Sam Lab Samp Matrix: Method: Project:	le ID: FA548 AQ - (FLOR	891-1 Ground Water IDA-PRO S	W846 3510C United Fuel); 69	00 SW 8t	h St, Mia	Date Perc	I I I I I I I I I I I I I I I I I I I	/07/18 /09/18 a
Run #1 Run #2	File ID YR18575.D	DF 1	Analyzed 06/13/18 18:33	By SJL	Prep Da 06/11/1		Prep Batch OP70443	Analytical Batch GYR416
Run #1 Run #2	Initial Volume 1050 ml	Final Volu 1.0 ml	ume					
CAS No.	Compound		Result	PQL	MDL	Units	Q	
	TPH (C8-C40)	0.665	0.24	0.14	mg/l		
CAS No.	Surrogate Re	coveries	Run# 1	Run# 2	Limi	its		
84-15-1	o-Terphenyl		87 %		41-1	46%		

U = Not detected**MDL** = **Method Detection Limit PQL = Practical Quantitation Limit** L = Indicates value exceeds calibration range

I = Result > = MDL but < PQL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

SGS

				Repor	rt of	Analysi	S		Page 1 of 1
Client Sample Lab Sample II Matrix:	D: FA54	9 1891-1 Ground V	Vater				Date San Date Rec Percent S	1	-
Project: Total Metals A		ervice Cei	nter(Unite	d Fuel); (6900 S	W 8th St, N			
Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	5.4	5.0	1.1	ug/l	1	06/13/18	06/13/18 LM	SW846 6010C ¹	SW846 3010A ²
(1) Instrument	QC Batch:]	MA14972							

(2) Prep QC Batch: MP33873

<u>ω</u>

ω

Orlando, FL

Section 4

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	REM	SG	S No	rth A	١me	erica	Ir	ıc	- ()r	lan	Ido		-	4	5	Ч	X	34				
CCC '	0 8.0 9 W 8			Cha	in o	of C	ust	od	v				SG	s - 0	RLA	NDC	JOB	#:		P	AGE	1	of
200	chalantered a		4	405 Vinelar	d Road, S		Orland	do, Fi	32811				SG	s - 0	RLA	NDO	Quo	te #		SKIFF	#		
Client / Reportin	a Information	12121		4.6.2		w.sgs.com		on	694	112	****	198.66		2.946		112	Δna	lytics	al Info	rmat	ion 🖄	1 4 40 - 10 A	Matrix Codes
Company Name:	<u> </u>	<u>1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u>	Project N	lame:					-		2222.2	1999.94	8182)	2 24.4%	***	815		ynot		T			DW - Drinking
Addrose	sp Services		Street	k Sex					Dbo	7			-						1				Water GW - Ground
<u>9955 NW</u>	116th Way S		690	<u>0 Su</u>	<u>v</u> &	4h S	+		Sta	to			_										Water WW - Water
City: Micmi State	FL UD	78	mia							۴ آ	ÈL							1					SW - Surface
Project Contact: Dwig n+ Jehrwenden	Email:		Project #	τv	01	430	160	79					٤		ĺ								Water SO - Soil
Phone #: (305)852 -			Fax #			_ در یه د		<u></u>					× 1	A A									SL- Sludge OI - Oil
Sampler(s) Name(s) (Printed) Sampler 1: Lei & Rochespame			Client Pu	rchase O	rder #								_ @	0		0							LIQ - Other Liquid AIR - Air
			COLLECTION	<u> </u>		r— (ONTAI	NER IN	FORM	ATION		ET T	13	2		ad							SOL - Other Solid
SGS Orlando				SAMPLED		TOTAL # OF	٤.		I.	8	8	DI WATER	5 0	60	68	百							
Septimie # Field ID / Po	bint of Collection	DATE	TIME	BY:		BOTTLES	OTHER			HN03	H2SO4				-								LAB USE ONLY
(1) MW	<u>}</u>	06/07	18	RK	Giw	<i>\$</i> 61	[·	1	1	-	1		1	~		/							
								\perp	\square	_		+ +		ļ	<u> </u>								
								_			_												L
· · · · · · · · · · · · · · · · · · ·																							
									ŀ														
									\square	-	1											+-	
								1						-									
Turnaround Tim	ie (Business days)	11111	1227113		Da	ta Deliv	verak	ole li	nfor	mat	ion	· 均均增少1 (均均分)	10807 1689 - 179		#14 第1世	通辞 売程			Com	ment	s / Re	marks	1100
10 Day (Business)	Approved	By: / Date:			IMERCI	IAL "A"	RESI	JLTS	ONL	.Y)		_											
7 Day				CON	IMERCI	IAL "B"	RESU	JLTS	PLU	s Q	2)												
5 Day				RED	T1 (EP	A LEVE	L 3)																
3 Day RUSH				FUL	LT1 (EP	PA LEVE	L4)																
2 Day RUSH					'S																		
1 Day RUSH																		-					
Other																						,	<u>a</u>
Rush T/A Data A	vailable VIA Email or Labli	nk ple Custod	ly must be	documen	ted bei	ow each	time	samr	oles c	han	ge po	ssessi	on, inc	luding	couri	er de	liverv		Г	1	1.13		945
Relinquished by San pler/Affiliation	Date Time: Q Rec	eived By/A		M 1								Affiliat	ion		-		Date 1		R	ecelve		fiation	
1 7 Kerthy / ATC	04/08/18 22		-	ted	Ľ	\times		3				Ŧ÷		b	<u>×</u>				4	ЖĽ	-1		- 06[04]18
Relinquished by/Affil ation	Date Time: Rec	eived By/A	filiation					Re 7	linqu	iishe	ed By/	Affiliati	ion				Date 1	'ime:	₿ o	eceive		ffiliatio	
Lab Use Only : Cooler Temperat	ure (s) Celsius (corrected)	. 3.0)	_																://www	.sas.co	m/en/ter	ms-and-conditions

ORLD-SMT-0001-03-FORM-COC (1) Rev 031318

FA54891: Chain of Custody Page 1 of 2

4.1 4

c-Orlando FAEUQQI CCC North A . т.

	2
--	---

SGS Sample Receipt Summary

Job Number: FA54891		Client: A	с	Project: JAK SERVICE CENTER DBA						
Date / Time Received: 6/9/2018 9	9:45:00 AM	D	livery Method: FED EX	Airbill #'s: 10018933	11210	003281	1007	81333940218		
Therm ID: IR 1;		Th	erm CF: 0.4;	# of Cooler	's: 1					
Cooler Temps (Raw Measured)) ° C : Coole	er 1: (2.6);								
Cooler Temps (Corrected) ° C : Coole	er 1: (3.0):								
	Y or		Sample Information		Y	or	N	N/A		
1. Custody Seals Present			1. Sample labels presen	t on bottles	•		\square			
2. Custody Seals Intact	\checkmark		2. Samples preserved pr							
3. Temp criteria achieved	✓			tainers recvd for analysis:						
4. Cooler temp verification	IR Gun		4. Condition of sample		Intac					
5. Cooler media	Ice (Bag)		5. Sample recvd within H	ΗT	\checkmark					
			6. Dates/Times/IDs on C	COC match Sample Label	\checkmark					
Trip Blank Information	<u>Y or</u>	<u>N N/A</u>	_ 7. VOCs have headspace	ce			✓			
1. Trip Blank present / cooler		✓	8. Bottles received for un	nspecified tests			✓			
2. Trip Blank listed on COC		✓	9. Compositing instruction	ons clear				\checkmark		
	W or	S N/	10. Voa Soil Kits/Jars re	ceived past 48hrs?				\checkmark		
			11. % Solids Jar receive	d?				\checkmark		
3. Type Of TB Received			12. Residual Chlorine Pr	resent?				\checkmark		
Misc. Information										
Number of Encores: 25-Gram		5-Gram	Number of 5035 Field Kits:	Number of La	ab Filte	red Met	als:			
Test Strip Lot #s: p	H 0-3	230315					-			
Residual Chlorine Test Strip Lot #	t:									
Comments 1 Amber Bottle receive	d instead of 2	2 for Extraction	ns.250ml Amber Bottles received for 8270.							
SM001 Taskaisian										
Rev. Date 05/24/17 Technician:	SHAYLAP		Date: 6/9/2018 9:45:00 AM	Reviewer: SP		П	ato.	6/9/2018		

FA54891: Chain of Custody Page 2 of 2

4.1 **4**

MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

G

Method Blank Summary Job Number: FA54891

108-88-3

CAS No.

460-00-4

Toluene

1868-53-7 Dibromofluoromethane

17060-07-0 1,2-Dichloroethane-D4

Surrogate Recoveries

4-Bromofluorobenzene

1330-20-7 Xylene (total)

2037-26-5 Toluene-D8

Account: Project:	ATCFLM ATC Jak Service Cent	-		W 8th S	t, Miami, I	FL		
Sample VO2040-MI	File ID B O54084.D	DF 1	Analyzed 06/14/18	By SP	Prep n/a	Date	Prep Batch n/a	Analytical Batch VO2040
The QC rep FA54891-1	ported here applies to	o the follow	ing samples	:			Method: SW84	6 8260B
CAS No.	Compound	1	Result	RL	MDL	Units	Q	
71-43-2 100-41-4 1634-04-4	Benzene Ethylbenzene Methyl Tert Butyl Et	I	ND	1.0 1.0 1.0	0.36	ug/l ug/l ug/l		

1.0

3.0

Limits

83-118%

79-125%

85-112%

83-118%

ND

ND

104%

106%

108%

98%

ug/l

ug/l

0.30

0.72

Page 1 of 1

Blank Spike Summary Job Number: FA54891

CAS No.

460-00-4

Surrogate Recoveries

4-Bromofluorobenzene

1868-53-7 Dibromofluoromethane

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

BSP

105%

106%

100%

87%

Account: Project:	ATCFLM ATC Grouj Jak Service Center(Ur	•		8th St, M	liami, FL		
Sample VO2040-BS	File ID DF S O54083.D 1		lyzed 4/18	By SP	Prep Date n/a	Prep Batch n/a	Analytical Batch VO2040
The QC re FA54891-1	ported here applies to the	following sa	mples:			Method: SW84	6 8260B
CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits		
71-43-2 100-41-4 1634-04-4 108-88-3 1330-20-7	Benzene Ethylbenzene Methyl Tert Butyl Ether Toluene Xylene (total)	25 25 25 25 75	28.0 27.2 26.9 28.0 79.0	112 109 108 112 105	81-122 81-121 72-117 80-120 80-126		

Limits

83-118%

79-125%

85-112%

83-118%

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54891
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
FA54810-1MS	O54106.D	5	06/14/18	SP	n/a	n/a	VO2040
FA54810-1MSD	O54107.D	5	06/14/18	SP	n/a	n/a	VO2040
FA54810-1	O54091.D	1	06/14/18	SP	n/a	n/a	VO2040

The QC reported here applies to the following samples:

Method: SW846 8260B

FA54891-1

CAS No.	Compound	FA54810-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4	Benzene Ethylbenzene	1.0 U 1.0 U	125 125	127 121	102 97	125 125	138 131	110 105	8 8	81-122/14 81-121/14
1634-04-4	Methyl Tert Butyl Ether	1.0 U	125	120	96	125	138	110	14	72-117/14
108-88-3 1330-20-7	Toluene Xylene (total)	1.0 U 3.0 U	125 375	123 342	98 91	125 375	133 376	106 100	8 9	80-120/14 80-126/15
CAS No.	Surrogate Recoveries	MS	MSD	FA	54810-1	Limits				
1868-53-7	Dibromofluoromethane	106%	108%	105	%	83-1189	6			
17060-07-0	1,2-Dichloroethane-D4	112%	110%	102	%	79-125 %	6			
2037-26-5	Toluene-D8	99%	99%	108	%	85-112 %	6			
460-00-4	4-Bromofluorobenzene	87 %	88 %	99 %	6	83-118 %	6			

Orlando, FL

Section 6

MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

೧

FA54891

Method Blank Summary Job Number: FA54891

Account:	ATCFLM ATC Group Services LLC.										
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch				
OP70444-MB	T038501.D	1	06/12/18	RV	06/11/18	OP70444	ST1407				
The QC repor	The QC reported here applies to the following samples: Method: SW846 8270D BY SIM										

FA54891-1

CAS No.	Compound	Result	RL	MDL	Units Q
83-32-9	Acenaphthene	ND	0.80	0.32	ug/l
208-96-8	Acenaphthylene	ND	0.80	0.32	ug/l
120-12-7	Anthracene	ND	0.80	0.20	ug/l
56-55-3	Benzo(a)anthracene	ND	0.16	0.032	ug/l
50-32-8	Benzo(a)pyrene	ND	0.16	0.032	ug/l
205-99-2	Benzo(b)fluoranthene	ND	0.16	0.032	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	0.16	0.032	ug/l
207-08-9	Benzo(k)fluoranthene	ND	0.16	0.032	ug/l
218-01-9	Chrysene	ND	0.16	0.032	ug/l
53-70-3	Dibenzo(a, h)anthracene	ND	0.16	0.032	ug/l
206-44-0	Fluoranthene	ND	0.80	0.20	ug/l
86-73-7	Fluorene	ND	0.80	0.20	ug/l
193-39-5	Indeno(1,2,3-cd)pyrene	ND	0.16	0.032	ug/l
90-12-0	1-Methylnaphthalene	ND	0.80	0.32	ug/l
91-57-6	2-Methylnaphthalene	ND	0.80	0.32	ug/l
91-20-3	Naphthalene	ND	0.80	0.32	ug/l
85-01-8	Phenanthrene	ND	0.80	0.20	ug/l
129-00-0	Pyrene	ND	0.80	0.20	ug/l
CAS No.	Surrogate Recoveries		Limit	S	

	0		
321-60-8	Nitrobenzene-d5	62%	41-129%
	2-Fluorobiphenyl	83%	41-118%
	Terphenyl-d14	86%	45-145%

6.1.1 6

Blank Spike Summary Job Number: FA54891 Account: ATCFLM ATC Group Services LLC.

Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample OP70444-BS	File ID T038500.D	DF 1	Analyzed 06/12/18	By RV	Prep Date 06/11/18	Prep Batch OP70444	Analytical Batch ST1407			
The QC repor	ted here applies to]	Method: SW84	6 8270D BY SIM						

FA54891-1

		Spike	BSP	BSP	
CAS No.	Compound	ug/l	ug/l	%	Limits
83-32-9	Acenaphthene	8	8.0	100	54-128
208-96-8	Acenaphthylene	8	7.6	95	55-128
120-12-7	Anthracene	4	3.5	88	57-129
56-55-3	Benzo(a)anthracene	4	3.7	93	60-134
50-32-8	Benzo(a)pyrene	4	3.6	90	58-131
205-99-2	Benzo(b)fluoranthene	4	4.0	100	62-139
191-24-2	Benzo(g,h,i)perylene	4	3.9	98	48-136
207-08-9	Benzo(k)fluoranthene	4	3.9	98	60-139
218-01-9	Chrysene	4	4.0	100	64-136
53-70-3	Dibenzo(a, h)anthracene	4	4.0	100	46-131
206-44-0	Fluoranthene	8	7.5	94	59-140
86-73-7	Fluorene	8	6.4	80	55-129
193-39-5	Indeno(1,2,3-cd)pyrene	4	4.0	100	46-139
90-12-0	1-Methylnaphthalene	8	6.3	79	52-128
91-57-6	2-Methylnaphthalene	8	6.7	84	50-117
91-20-3	Naphthalene	8	6.9	86	52-124
85-01-8	Phenanthrene	8	7.9	99	60-130
129-00-0	Pyrene	8	8.1	101	53-134
	5				
CAS No.	Surrogate Recoveries	BSP	Li	mits	
4165-60-0	Nitrobenzene-d5	72%	41	-129%	
321-60-8	2-Fluorobiphenyl	96%	41	-118%	
1718-51-0	Terphenyl-d14	91%	45	-145%	
	· · · · · · · · · · · · · · · · · · ·				

Page 1 of 1

Method: SW846 8270D BY SIM

Matrix Spike/Matrix Spike Duplicate Summary

Job Number:	FA54891
Account:	ATCFLM ATC Group Services LLC.
Project:	Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

OP70444-MS TO OP70444-MSD TO	le ID 138509.D 138510.D 138508.D 138508	1 1	06/13/18 06/13/18	RV RV	06/11/18 06/11/18	OP70444 OP70444	Analytical Batch ST1407 ST1407 ST1407
---------------------------------	--	--------	----------------------	----------	----------------------	--------------------	--

The QC reported here applies to the following samples:

FA54891-1

MS FA54906-7 Spike MS Spike MSD MSD Limits CAS No. Compound ug/l Q ug/l % ug/l ug/l % RPD **Rec/RPD** ug/l 83-32-9 0.80 U 16.7 82 16.7 10 54-128/23 Acenaphthene 13.7 15.1 91 208-96-8 Acenaphthylene 16.7 13.3 80 16.7 0.80 U 14.6 88 9 55-128/23 120-12-7 Anthracene 0.80 U 8.33 6.2 74 8.33 6.9 83 11 57-129/22 56-55-3 Benzo(a)anthracene 8.33 6.9 83 8.33 7.5 90 8 0.16 U 60-134/18 8.33 78 10 50-32-8 Benzo(a)pyrene 0.16 U 6.5 8.33 7.2 86 58-131/20 Benzo(b)fluoranthene 8.33 7.4 89 8.33 97 205-99-2 0.16 U 8.1 9 62-139/21 Benzo(g,h,i)perylene 8.33 7.0 8.33 92 10 48-136/23 191-24-2 0.16 U 84 7.7 207-08-9 Benzo(k)fluoranthene 0.16 U 8.33 6.7 80 8.33 7.5 90 11 60-139/19 218-01-9 Chrysene 0.16 U 8.33 7.3 88 8.33 7.9 95 8 64-136/19 53-70-3 Dibenzo(a,h)anthracene 8.33 7.1 85 8.33 7.9 95 0.16 U 11 46-131/25 206-44-0 Fluoranthene 0.80 U 83 16.7 89 16.7 13.8 14.8 7 59-140/18 86-73-7 Fluorene 65 74 14 0.80 U 16.7 10.8 16.7 12.4 55-129/23 193-39-5 Indeno(1,2,3-cd)pyrene 0.16 U 8.33 7.1 85 8.33 7.9 95 11 46-139/24 1-Methylnaphthalene 90-12-0 0.80 U 16.7 10.8 65 16.7 11.7 70 8 52-128/22 91-57-6 2-Methylnaphthalene 0.80 U 16.7 11.4 68 16.7 12.6 76 10 50-117/23 Naphthalene 70 12.9 91-20-3 0.80 U 16.7 11.7 16.7 77 10 52-124/23 85-01-8 Phenanthrene 0.80 U 16.7 14.2 85 16.7 15.7 94 10 60-130/22 16.7 16.4 129-00-0 **Pyrene** 0.80 U 14.9 89 16.7 98 10 53-134/18 CAS No. **Surrogate Recoveries** MS MSD FA54906-7 Limits 4165-60-0 Nitrobenzene-d5 58% 63% 60% 41-129% 321-60-8 2-Fluorobiphenyl 75% 83% 80% 41-118% 1718-51-0 **Terphenyl-d14** 76% 84% 82% 45-145%

GC/LC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: FA54891 Account: ATCFLM ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample OP70443-MI	File ID 3 YR18547.D			zed By 18 SJ		ep Date 11/18	Prep Batch OP70443	n Analytical Batch GYR416		
The QC repo FA54891-1	orted here applies to	o the foll	owing samp	les:			Method: FLOR	IDA-PRO		
	Compound ГРН (C8-C40)		Result ND	RL 0.25	MDL 0.15	Units mg/l	Q			
CAS No.	Surrogate Recoverie	es		Limit	8					
84-15-1	o-Terphenyl 94% 41-146%									

Blank Spike Summary Job Number: FA54891

Job Number: FA54891 Account: ATCFLM ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL										
Sample OP70443-BS	File ID YR18548.D	DF 1		lyzed 3/18	By SJL	Prep Date 06/11/18	Prep Batch OP70443	Analytical Batch GYR416		
The QC rep FA54891-1	orted here applies to	the follo	owing sai	nples:			Method: FLOR	IDA-PRO		
CAS No.	Compound		Spike mg/l	BSP mg/l	BSP %	Limits				
	ТРН (С8-С40)		0.85	0.771	91	51-121				
CAS No.	Surrogate Recoverie	s	BSP	Li	mits					
84-15-1	o-Terphenyl		101%	41	-146%					

	Matrix Spike/Matrix Spike Duplicate SummaryPage 1 of 1Job Number:FA54891Account:ATCFLM ATC Group Services LLC.Project:Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL											
	Sample File ID DF Analyzed By Prep Date Prep Ba OP70443-MS YR18566.D 1 06/13/18 SJL 06/11/18 OP7044 OP70443-MSD YR18567.D 1 06/13/18 SJL 06/11/18 OP7044 FA54884-4 YR18565.D 1 06/13/18 SJL 06/11/18 OP7044									h Analytical Batch GYR416 GYR416 GYR416 GYR416		
	The QC reported here applies to the following samples: Method: FLORIDA-PRO FA54891-1 FA54891-1											
CAS No.	Compound		FA54884-4 mg/l Q	Spike mg/l	MS mg/l	MS %	Spike mg/l	MSD mg/l	MSD %	RPD	Limits Rec/RPD	
	TPH (C8-C40)		0.24 U	1.63	1.72	105	1.63	1.60	98	7	51-121/29	
CAS No.	Surrogate Reco	veries	MS	MSD	F	FA54884-4	Limits					

107%

41-146%

84-15-1

o-Terphenyl

120%

113%

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:					06/13/18
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	14	14		
Antimony	6.0	1	1		
Arsenic	10	1.3	1.3		
Barium	200	1	1		
Beryllium	4.0	.2	.2		
Cadmium	5.0	.2	.2		
Calcium	1000	50	50		
Chromium	10	1	1		
Cobalt	50	. 2	.2		
Copper	25	1	1		
Iron	300	17	17		
Lead	5.0	1	1.1	0.80	<5.0
Magnesium	5000	35	35		
Manganese	15	.5	1		
Molybdenum	50	.3	.3		
Nickel	40	.4	. 4		
Potassium	10000	200	200		
Selenium	10	2.4	2.9		
Silver	10	.7	.7		
Sodium	10000	500	500		
Strontium	10	.5	.5		
Thallium	10	1.1	1.4		
Tin	50	.9	1		
Titanium	10	.5	1		
Vanadium	50	.5	.6		
Zinc	20	3	4.4		
Associated samples MP33873: FA54891-1					

Associated samples MP33873: FA54891-1

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

œ

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:							s: SW846 s: ug/l	6010C	
Prep Date:			06/13/18					06/13/18	
Metal	FA54763- Original		RPD	QC Limits	FA54763- Original		Spikelot MPFLICP2		QC Limits
Aluminum									
Antimony									
Arsenic									
Barium									
Beryllium									
Cadmium									
Calcium	anr								
Chromium	anr								
Cobalt									
Copper									
Iron	anr								
Lead	1.5	2.5	50.0 (a)	0-20	1.5	516	500	102.9	80-120
Magnesium									
Manganese	anr								
Molybdenum									
Nickel									
Potassium									
Selenium									
Silver									
Sodium	anr								
Strontium									
Thallium									
Tin									
Titanium									
Vanadium									
Zinc									
Associated sa	amples MP33	873: FA54	891-1						
Results < IDI (*) Outside ((N) Matrix Sp (anr) Analyte (a) RPD acces	of QC limit pike Rec. c e not reque	s outside of sted	QC limit	S		ations			

(a) RPD acceptable due to low duplicate and sample concentrations.

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: Matrix Type:						Methods: SW846 6010C Units: ug/l
Prep Date:					06/13/1	8
Metal	FA5476: Origina		Spikelc MPFLICF	t 2 % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Cadmium						
Calcium	anr					
Chromium	anr					
Cobalt						
Copper						
Iron	anr					
Lead	1.5	505	500	100.7	2.2	20
Magnesium						
Manganese	anr					
Molybdenum						
Nickel						
Potassium						
Selenium						
Silver						
Sodium	anr					
Strontium						
Thallium						
Tin						
Titanium						
Vanadium						
Zinc						
Associated sa	amples MP:	33873: FA	54891-1			
Results < IDI (*) Outside ((N) Matrix Sp (anr) Analyte	of QC lim: pike Rec.	its outside			urposes	

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:			06/13/18	
Metal	BSP Result	Spikelot MPFLICP2	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Cadmium				
Calcium	anr			
Chromium	anr			
Cobalt				
Copper				
Iron	anr			
Lead	512	500	102.4	80-120
Magnesium				
Manganese	anr			
Molybdenum				
Nickel				
Potassium				
Selenium				
Silver				
Sodium	anr			
Strontium				
Thallium				
Tin				
Titanium				
Vanadium				
Zinc				
Associated sam	nples MP33	873: FA54	891-1	
Results < IDL (*) Outside of (anr) Analyte	QC limit	s	for calcu	lation purposes

29 of 31

FA54891

SERIAL DILUTION RESULTS SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:		06/13/18	
Metal	FA54763-40 Original SDL 1:5	%DIF	QC Limits
Aluminum			
Antimony			
Arsenic			
Barium			
Beryllium			
Cadmium			
Calcium	anr		
Chromium	anr		
Cobalt			
Copper			
Iron	anr		
Lead	1.50 0.00	100.0(a)	0-10
Magnesium			
Manganese	anr		
Molybdenum			
Nickel			
Potassium			
Selenium			
Silver			
Sodium	anr		
Strontium			
Thallium			
Tin			
Titanium			
Vanadium			
Zinc			
Associated sa	mples MP33873: FA54	1891-1	
(*) Outside o (anr) Analyte	not requested		lation purposes low initial sample concentration (< 50 times IDL).

30 of 31

FA54891

POST DIGESTATE SPIKE SUMMARY

Login Number: FA54891 Account: ATCFLM - ATC Group Services LLC. Project: Jak Service Center(United Fuel); 6900 SW 8th St, Miami, FL

QC Batch ID: MP33873 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Matrix Type:	AQUEOUS					Uni	ts: ug/l			
Prep Date:									06/13/1	.8
Metal	Sample ml	Final ml	FA54763 Raw	8-40 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Iron										
Lead	9.8	10	1.5	1.47	48.4	0.2	2.5	50	93.9	80-120
Magnesium										
Manganese										
Molybdenum										
Nickel										
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Vanadium										
Zinc										
Associated sa	mples MP3	3873: FA5	4891-1							

Results < IDL are shown as zero for calculation purposes
(*) Outside of QC limits
(**) Corr. sample result = Raw * (sample volume / final volume)
(anr) Analyte not requested</pre>

8.1.5

SITE NAME: N	lak Servic	e Cente	r alba	United Fi	ré l si		900 SI	N 8th S.	t, mi	xmis FL	
WELL NO:					ID: MW	1			DATE: OZ	-/21/201	8
L					PURG	ING DA	ТА				
WELL		TUBIN	3		L SCREEN I		STATIC D		Th PL	RGE PUMP T	YPE PP
DIAMETER WELL VO	R (inches): 2.	1 WELL VO	TER (inches): LUME = (TO	TAL WELL DEP		et to 19.1 fe		WELL CAPACI		BAILER:	r (*
	t if applicable)		= (^ \		,70	feet) X		gallons/fo	ot = 1.	98 gallons
		URGE: 1 EQI		L. = PUMP VOL			ry x tu	JBING LENGTH)			
(only fill ou	t if applicable)			= ga	allons + (gallo	ns/foot X	feet)	+	gallons	= gallons
	JMP OR TUBIN WELL (feet):	G 8.0	1	MP OR TUBING WELL (feet):	8.0	PURGIN	G DAT: 11:25	PURGING ENDED AT:	12:05	TOTAL VOI PURGED (g	JUME gallons): 5,86
		CUMUL.	1	DEPTH	pН		COND.	DISSOLVED OXYGEN			
TIME	VOLUME PURGED	VOLUME PURGED	PURGE RATE	TO WATER	(standard	TEMP. (°C)	(circle units) µmhos/cm	(circle units)	TURBIDI (NTUs		1
	(gallons)	(gallons)	(gpm)	(feet)	units)	. ,	<u>or</u> μS/cm	mg/L <u>or</u> % saturation			
11:30	0.75	0.75	0.15	6.75	6.30	26,61	529	0.47	6.7		r si pet
11:34		1.25	0.15		6.45	26.83	528	0.66	4,6		
11:40	0,90	2.15	0.15	6.75	6.50	26.92	522	0,44	2.6		r sl pet-
11:45	0.75	3.00	0.15	6.75	6.50	26.84	519	0.41	2.3		
11:50	0.75	3,75	0,15	10.75	10147	26,96	517	0.36	1.7		
12:04	0.75	4,50	0.15	6.75	6.47	26.94	516	0.30	1.3		
12.07	0,75	5,85	0115	0:10	6.50	26.15		0.50	1.1.0		ur si pet
	PACITY (Gallon			1" = 0.04; 0006: 3/16"	1.25" = 0.06	5; 2" = 0.16 1/4" = 0.0020	6; 3" = 0.37; 6; 5/16" = 0.0		5" = 1.02; 006: 1/2	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C		= Bailer;	BP = Bladder F			Submersible Pur		ristaltic Pur		ther (Specify)
						LING DA	ATA				
	BY (PRINT) / A		-	SAMPLER(S)	0 m 1	E(S):		SAMPLING INITIATED AT	12:0		IG AT: 12:15
PUMPOR	Rodne TUBING	SY IN	10	TUBING	7		FIELD	FILTERED: Y	(P)		IZE: μm
	WELL (feet):			MATERIAL CO		PE /S	Filtratio	on Equipment Typ		<u></u>	
	CONTAMINATIO			<u>ن</u>	TUBING		placed)	DUPLICATE:	Y	Ø	
SAMI SAMPLE	PLE CONTAINE	R SPECIFIC		SAMPLE PRESERVAT		TION (includii	ng wet ice) FINAL	INTENDE ANALYSIS AI	ND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	# CONTAINERS	CODE	VOLUME	USED		D IN FIELD (n	nL) pH	METHO		CODE	(mL per minute)
MWI		Au	1 L	H2504		~~~	< z	FL-Pro TI		APP	200
MW	2	AG	250mL	None			6.50	8270C		APP	200
MWI	3	CG	100 mL	HCL			42	8260B		APP	100
REMARKS	:							, , , , , , , , , , , , , , , , , , ,	I		
MATERIAL	CODES:	AG = Amber S = Silicone;		= Clear Glass; O = Other (S		ligh Densitý P	olyethylene;	LDPE = Low De	nsity Polyet	hylene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES:	APP = After (7	Through) Perista se Flow Peristal	Itic Pump;	B = Bailer; SM = Straw	BP = Bladd Method (Tubing			: Submersible I er (Specify)	Pump;
OTTO A		1	(teres - 11 - C	the a lost a way at		d hu Chants		<u>^</u>			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

<u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: V	ak Servic	e Cente	r albei	United Fu	el sit		900 S	SW 8th 8	it, mi	iami, FL	
WELL NO:					D: MW					2/21/2019	8
					PURG	ING DA	TA				
WELL DIAMETER	(inches): Z		TER (inches):	0.25 DEPT	SCREEN I	et to 18,1 fe	et TO WAT	TER (feet): 🕼	71 0	URGE PUMP TY OR BAILER:	PP
(only fill out	t if applicable)		= (18.1	ieet- (11.5	feet))	x WELL CAPAC	gallons/		2 gallons
	NT VOLUME PU t if applicable)	JRGE: 1 EQL	JIPMENT VOL	= PUMP VOLU	IME + (TUB ions + (TY X ns/foot X	TUBING LENGTH		CELL VOLUME	= gallons
	MP OR TUBIN	G g .0		/P OR TUBING WELL (feet):	8 .0	PURGIN		PURGING	14 5		UME ,
DEPTHIN	WELL (feet):			DEPTH	<u>u</u> .u		COND.	DISSOLVED	1		
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)		pH (standard units)	TEMP. (^o C)	(circle units) μmhos/cm or μS/cm	OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBII (NTU		
14:35	1.0	1.0	02	6.77	7.20	26.86	471	0.85	13.3		1 none
14:40	1.0	2.0	0.6	0m	6.87	26.85	410	0.30	5.4		
14:50	2.0	4.0	0.2	6.77	6.77	27.10	471	0.26	1.8		
14:55	1.0	5.0	0,2	6.77	6.75	26.92	470	0.25	1.13		
15:00	1.0	6.0	0.2	6:77	6.73	26.90	470	0.24	1.00	r clea	r none
	· · · · ·										
				-			- 0000				
			_								
WELL CAI	PACITY (Gallon	s Per Foot):	0.75" = 0.02;		1.25" = 0.00	5; 2" = 0.1 1/4" = 0.002			5" = 1.02;		12" = 5.88 5/8" = 0.016
	ISIDE DÍA. CA			BP = Bladder Pt	= 0.0014; ump; E		Submersible F		Peristaltic P		ther (Specify)
10/(0//0						LING DA				£K.	04
1	BY (PRINT) / A			SAMPLER(S)				SAMPLING		SAMPLIN	
L	Rodne	us /A	TC		R	ort	EIEI	D-FILTERED:			IZE:μm
PUMP OR DEPTH IN	WELL (feet):			MATERIAL CO	DE: HD	PE /S		ation Equipment T			
FIELD DE	CONTAMINATI	ON: PUN	NP Y 🛈		TUBING		eplaced)	DUPLICATE	: Y	Ŕ	
SAM	PLE CONTAINI		ATION			TION (includ		INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN USED		TOTAL VOL D IN FIELD (mL) FINAL	- METH		CODE	(mL per minute)
MW Z	1	AG	1 L	H2504		<u> </u>	Lz.	FL - Pro	TRPH	APP	200
MW Z	2.	AĜ	250mL	None			6.73			APP	200
MW 2	3	CQ	IDOML	HCL			<2	8260 E	5	APP	100
	•							<u> </u>			
REMARKS).										
MATERIA	L CODES:	AG = Amber S = Silicone;	•	= Clear Glass; O = Other (S)		-ligh Density I	Polyethylene;	LDPE = Low D	ensity Poly	vethylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT	CODES:	APP = After (T RFPP = Rever	hrough) Peristal se Flow Peristalt	tic Pump; lic Pump;	B = Bailer SM = Straw		dder Pump; E ng Gravity Drain);		tric Submersible ther (Specify)	Pump;
				the informatio		d by Chan	or 62-160 E	AC			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.
 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>
 pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: N	ak Servic	e Center	r alba	United Fu	el sit	E	900 SL	N 8th S.	t, mi	amis FL	
WELL NO:					D: MW	3			DATE: OZ	2/21/201	8
L					PURG	ING DA	ТА	······			
WELL	(inches): Z) FED (inchoo):		SCREEN I		et TO WATE			JRGE PUMP T` R BAILER:	PP
WELL VOL	UME PURGE:	1 WELL VOI	UME = (TOT	AL WELL DEPT	H – STAT	TIC DEPTH T	O WATER) X	WELL CAPACI			
	if applicable)		= (12 1	_{eet-} 6	.69	feet) X	0.16	gallons/fe	pot = 0.	6S gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQU	IPMENT VOL	. = PUMP VOLU	IME + (TUBI			JBING LENGTH)			<u>э</u>
					lons + (ns/foot X	feet) PURGING	+	gallons TOTAL VOL	
DEPTH IN	MP OR TUBIN WELL (feet):	8100		IP OR TUBING WELL (feet):	8.0	INITIATE	DAT: 13:50	ENDED AT:	14:11		
TIME	VOLUME PURGED	CUMUL. VOLUME PURGED	PURGE RATE	DEPTH TO WATER	pH (standard units)	TEMP. (^o C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) mg/L or	TURBID (NTUs		
	(gallons)	(gallons)	(gpm)	(feet)			<u>or</u> μS/cm	% saturation			
13:55	1.00	1.00	0.20	6.70		> 6,92	366	0.21	2.16		
14:05	1,00	2.00	0.20			26.47	400	<u>0.30</u> 0.27	1.12		
14:10	1,00	3.00	0.20	6.70	6.69	26.49	-101	01011	1,61	hon	e si per
WELL CAI	PACITY (Gallon ISIDE DIA. CAF	s Per Foot): (PACITY (Gal./	0.75" = 0.02; Ft.); 1/8" = 0.		1.25" = 0.06 = 0.0014;	; 2" = 0.10 1/4" = 0.002			5" = 1.02; .006; 1/	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder Pu	ump; E	SP = Electric	Submersible Pur	mp; PP = Pe	eristaltic Pu	mp; O = O	ther (Specify)
		CCILIATION:	T	SAMPLER(S)				T			
	BY (PRINT) / A Rodne		TC	SAWFLER(S)				SAMPLING	r: 14:1	SAMPLIN ENDED #	
PUMP OR	TUBING	8 ,		TUBING	DE HD	PE /S		-FILTERED: Y	Ø	FILTER S	IZE:μm
	WELL (feet):	ON: PUN	IPYA	MATERIAL CO	TUBING		placed)	DUPLICATE:	γe. Υ	Ø	
	PLE CONTAINE		Y			TION (includi		INTEND		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN		OTAL VOL D IN FIELD (1	FINAL nL) pH	ANALYSIS A METHC		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW B		AG	12	HzSO4		-	(2.	FL-Pro	TRPH	APP	200
MW 3	2	AG	250 mL	None			6.69	8270 C		APP	200
MW 3	3	CG	loomL	HCL			42	8260 B		APP	100
REMARKS	:						1		L		L
MATERIA	CODES:	AG = Amber S = Silicone;	Glass; CG = T = Teflon;	= Clear Glass; 0 = Other (Sl		ligh Density F	Polyethylene;	LDPE = Low De	nsity Polye	thylene; PP	= Polypropylene;
SAMPLIN	G EQUIPMENT	F	RFPP = Revers	hrough) Peristal se Flow Peristalt	ic Pump;		BP = Blado Method (Tubing	Gravity Drain);		ic Submersible er (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

SITE NAME: N	lak Servic	e Center	- alba	United File	と) SIT LO	E CATION:	900 S	w sth S.	t, mic	amis FL	
WELL NO:				SAMPLE I		4			DATE: OZ	-121/201	8
			•		PURG	ING DA	ГА				J
WELL DIAMETER	R (inches): 2,	O DIAMET	ER (inches):	0.25 DEPT	SCREEN II H:9.3 fee	et to 19.3 fe	STATIC I	ER (feet): 6 . 8	2 OF	RGE PUMP T BAILER:	PP PP
	UME PURGE: t if applicable)	1 WELL VOL	UME = (TOT		H – STAT eet– 6 .			WELL CAPACI		$pot = Z_{1}c$	a goliona
		URGE: 1 EQU	= (IPMENT VOL	. = PUMP VOLU	ME + (TUBI	NG CAPACIT	feet) X Y X T	UBING LENGTH)			C gallons
(Only III Ou	t if applicable)				ons + (gallo	ns/foot X	feet)	+	gallons	= gallons
	JMP OR TUBIN WELL (feet):	G 8,00		IP OR TUBING WELL (feet):	8:00	PURGIN	з DAT: 12:55		13:26	TOTAL VO PURGED (
TIME	VOLUME PURGED (galions)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBIDI (NTUs)		
13:00	1.07	1.00	6.20	6.85	6.99	27.06	396	1,29	6:2	8 Clea	i none
13:05	1.00	2.00	0.20	10.85	6.85	26.89	400	0.69	3,22		
13:15	2.00	4.00	0.20		6.66	26.81	409	DISD	1.20		
13:25	2.00	6.00	0.20	6.85	6,47	26.46	409	0:43	1,21	o clear	r none
	· · · · · ·										
·											
										(19) (19)	
	ACITY (Gallon					; 2" = 0.16 1/4" = 0.002		•	5" = 1.02; 006: 1/2	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT C			BP = Bladder Pu	/		Submersible Pu		ristaltic Pur		ther (Specify)
						LING DA	TA				
	BY (PRINT) / A Rodne		Te	SAMPLER(S) S		(S):		SAMPLING	13:26	SAMPLIN ENDED A	IG AT: 13:36
PUMP OR	TUBING			TUBING MATERIAL COI		PE /S		-FILTERED: Y	(N)		IZE:μm
	WELL (feet):	ON: PUMI	- Y (N		TUBING	· / /	placed)	on Equipment Typ DUPLICATE:	Y	(M)	
·····	PLE CONTAINE		Ť			TION (includii		INTEND	ED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE		MATERIAL CODE		PRESERVATIV	E T		FINAL	ANALYSIS A METHO		EQUIPMENT CODE	FLOW RATE (mL per minute)
MW4	l	AG	IL	H2SO4		*-00 ¹	<u>{z</u>	FL Pro TI	2PH	APP	200
MW 4	2	Aa	250 mL	None			6.47	8270 C		APP	200
MW 4	3	CG	LOONL	HCL			42	8260B		APP	100
REMARKS	•										L
INLIMANNO											
MATERIAL	. CODES:	AG = Amber G S = Silicone;	Blass; CG = T = Teflon;	Clear Glass; O = Other (Sp		igh Density P	olyethylene;	LDPE = Low De	nsity Polyet	hylene; PP	= Polypropylene;
SAMPLING	G EQUIPMENT	CODES: A	PP = After (T	nrough) Peristalti e Flow Peristalti	c Pump;	B = Bailer; SM = Straw	BP = Blad Method (Tubing	der Pump; ES Gravity Drain);		: Submersible er (Specify)	Pump;
INTES: 1	The above of	do not const	itute all of t	he informatio	n required	d by Chapte	er 62-160, F.A	A.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	Jak Servic	Curren	0.0	V	1 10	CATION.		W 8th S.			
WELL NO:	: MW 5			SAMPLE I		5			DATE: OZ	121/2019	3
					PURG	SING DA	ТА				
WELL DIAMETEI	R (inches): 2,		ER (inches):	0.25 DEPT	H: 4 .7 fe	INTERVAL et to 14.7 fe	STATIC I eet TO WATI	ER (feet): 6, 4	44 OR I	ge pump ty Bailer:	PP
(aply fill ou	t if applicable)		-					WELL CAPACI O . 16 UBING LENGTH)			2 gallons
	it if applicable)				ons + (ns/foot X	feet)		gallons =	= gallons
	JMP OR TUBIN WELL (feet):	^G 8,5		/P OR TUBING WELL (feet):	8.5	PURGIN	g dat: [2:3]		12:53	TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>or</u> % saturation	TURBIDIT (NTUs)	Y COLOF (describ	
12:37	1.00	0.240			7.03	Z8,03	Z13	0.94	3.59		none
12:42	1,00	2.00	0.26		7.14	28.10	<u>219</u>	0.76	2,88		
12:47	1.00	3.00	0.20		7.18	28.11	217	0.65	2.45		
12:52	1.00	4,00	0.20	6.50	7.22	28,18	218	0.39	12.02	2 Clea	r nork
									,		
TUBING II	PACITY (Gallon NSIDE DIA. CAP EQUIPMENT C	PACITY (Gal./	⁻ t.): 1/8" = 0.	1" = 0.04; 1 0006; 3/16" = BP = Bladder Pu	0.0014;	1/4" = 0.002	6; 3" = 0.37; 6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	/	= 0.010;	12" = 5.88 5/8" = 0.016 her (Specify)
TUBING II PURGING	NSIDE DIA. CAN EQUIPMENT C	PACITY (Gal./I ODES: B	⁻ t.): 1/8" = 0.	0006; 3/16" = BP = Bladder Pu	0.0014; mp; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0	.006; 1/2"	= 0.010;	5/8" = 0.016
TUBING II PURGING SAMPLED	NSIDE DIA. CAI	PACITY (Gal./f ODES: B FFILIATION:	=t.): 1/8" = 0. = Bailer;	0006; 3/16" =	0.0014; mp; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu \TA	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A	.006; 1/2" eristaltic Pum r: 12:53	= 0.010; p; O = Ot SAMPLIN ENDED A	5/8" = 0.016 her (Specify) G T: 13:03
TUBING II PURGING SAMPLED Leif PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT C BY (PRINT) / A [2 od n e TUBING WELL (feet):	PACITY (Gal./I PODES: B FFILIATION:	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COI	DE: HD	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ PE / S	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	.006; 1/2" eristaltic Pum T: 12:53 N pe:	sAMPLIN FILTER SI	5/8" = 0.016 her (Specify)
TUBING II PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Colve TUBING WELL (feet): CONTAMINATIO	PACITY (Gal./F ODES: B FFILIATION: SS /A DN: PUM	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL	DE: HD	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ $\frac{\text{PE}}{\text{Y}} = \frac{1}{\text{S}}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced)	.004; 3/8" = 0 Imp; PP = Pe SAMPLING INITIATED A [*] D-FILTERED: Y ion Equipment Ty DUPLICATE:	.006; 1/2" eristaltic Pum T: 1/2 : 53 N pe: Y	sAMPLIN SAMPLIN ENDED A FILTER SI	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm
TUBING II PURGING SAMPLED Le: C PUMP OR DEPTH IN FIELD DEC SAMPLE	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Odvre TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal./f :ODES: B .FFILIATION: 	Ft.): 1/8" = 0. = Bailer; T ←	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ $\frac{PE}{Y} = \frac{S}{N}$ $\frac{V}{N}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y ion Equipment Ty	.006; 1/2" eristattic Pum r: 12 · 53 N pe: Y ED S ND/OR E	sAMPLIN FILTER SI	5/8" = 0.016 her (Specify) G T: 13:03
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	NSIDE DIA. CAF EQUIPMENT C BY (PRINT) / A Codre TUBING WELL (feet): CONTAMINATIC PLE CONTAINE	PACITY (Gal./I CODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA	Ft.): 1/8" = 0. = Bailer; T ← IP Y N TION	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{\text{SP} = \text{Electric}}$ $\frac{\text{LING DA}}{\text{E(S):}}$ $\frac{\text{PE}}{\text{Y}} = \sqrt{\frac{\text{S}}{\text{S}}}$ $\frac{\text{Y}}{\text{N}} \text{ (re}$ $\frac{\text{TION}}{\text{(includit)}}$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A -FILTERED: Y ion Equipment Ty DUPLICATE: INTEND ANALYSIS A	1/2" eristaltic Pum r: 1/2 · 53 pe: Y ED ND/OR E	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A C Odvre TUBING WELL (feet): CONTAMINATIC PLE CONTAINE #	ACITY (Gal./F CODES: B FFILIATION:	-t.): 1/8" = 0. = Bailer; Т IP Y N TION VOLUME	0006; 3/16" = BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y = N (re$ $TION (includit)$ $TION (includit)$ $TOTAL VOL$ $D IN FIELD (re)$	6; 5/16" = 0 Submersible Pu ATA FIELD Filtrat eplaced) ing wet ice) mL FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHC	1/2" eristaltic Pum T: 12:53 N pe: Y ED ND/OR ET DD	SAMPLING QUIPMENT CODE	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 5 YW 5	NSIDE DIA. CAI EQUIPMENT C DBY (PRINT) / A C OUT A TUBING WELL (feet): CONTAINATIC PLE CONTAINE CONTAINERS	PACITY (Gal./F CODES: B FFILIATION: FFILIATION: FFILIATION: PUM CODE A CODE A CODE	T T P Y N TION VOLUME	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 \leq O'_{1}$	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) FINAL pH ¢ 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A D-FILTERED: Y Ion Equipment Ty DUPLICATE: ANALYSIS A METHC FL Pro	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI DD	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo 0
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEC SAMPLE ID CODE MW 5	NSIDE DIA. CAI EQUIPMENT C DBY (PRINT) / A C Octore TUBING WELL (feet): CONTAMINATION PLE CONTAINERS CONTAINERS L Z	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← NP Y N NTION VOLUME Ì L 250 ↔ L	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 SO_4$ None	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) mL) PH C 2 7,22	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI DD	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0
TUBING IN PURGING SAMPLED Le: F PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 5 YW 5	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A [2 odve TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS { CONTAINERS { Z 3	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← NP Y N NTION VOLUME Ì L 250 ↔ L	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED $H_2 SO_4$ None	DE: HD TUBING PRESERVA	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELD Filtrat eplaced) ing wet ice) mL) PH C 2 7,22	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum r: 12 · 53 N pe: Y ED ND/OR EI DD	SAMPLIN SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0
TUBING IN PURGING SAMPLED Leif PUMP OR DEPTH IN FIELD DEG SAMPLE ID CODE MW 5 MW 5 MW 5 MW 5 MW 5	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A [2 odve TUBING WELL (feet): CONTAMINATIC PLE CONTAINERS { CONTAINERS { Z 3	PACITY (Gal./F ODES: B FFILIATION: SS / A ON: PUM ER SPECIFICA MATERIAL CODE A G AG	Ft.): 1/8" = 0. = Bailer; T ← IP Y N TION VOLUME IL 250 ~L 100 m L Glass; CG =	0006; $3/16" =$ BP = Bladder Pu SAMPLER(S) S TUBING MATERIAL COL SAMPLE F PRESERVATIV USED H ₂ SO4 None HCL	HDPE = H	$\frac{1/4" = 0.002}{SP = Electric}$ $\frac{LING DA}{E(S):}$ PE / S $Y N (reconstruction of the second se$	6; 5/16" = 0 Submersible PL ATA FIELL Filtrat splaced) ing wet ice) ML) FINAL pH < 2 7,22 < 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED A SAMPLING A PFILTERED: Y INTEND AUPLICATE: INTEND ANALYSIS A METHC FL FL Pro SZ76 C	.006; 1/2" eristaltic Pum	SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE APP APP	5/8" = 0.016 her (Specify) G T: 13:03 ZE:μm SAMPLE PUMI FLOW RATE (mL per minute Zo0 Zo0

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

SITE NAME:	ak Servic	e Cente	r dba	United Fi	rél si	TE DCATION:	6900 8	SW 8th 8	St, Mi	iami, FL	
	MW 6				ID: MW	6			DATE: O	2/21/201	8
					PURC	SING DA	TA				
WELL	(inches): 2,		TER (inches):	0.25 DEP	L SCREEN	et to 13.3 f	eet TO WA	DEPTH TER (feet): 5.	81 o	URGE PUMP T' R BAILER:	PP PP
	UME PURGE: t if applicable)	1 WELL VO	LUME = (TOT = (AL WELL DEP	TH – STA feet – 5	TIC DEPTH T	O WATER)	x WELL CAPAC	ITY	foot = 1.2	D gallons
	NT VOLUME PI t if applicable)	JRGE: 1 EQU	JIPMENT VOL	. = PUMP VOL	UME + (TUE	SING CAPACI	TY X	TUBING LENGTH	l) + FLOW (CELL VOLUME	
	MP OR TUBIN	G	FINAL PUN	= ga /P OR TUBING	allons + (ons/foot X	feel	·	gallons TOTAL VOI	
	WELL (feet):	8.00	DEPTH IN	WELL (feet):	B.00		ED AT: 11.4	PURGING ENDED AT:		PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	OVVCEN	TURBIĚ (NTU	STY COLO s) (descrit	
11:52	1.0	1.0	0.2	5,90	7.16	26.83		1.93	2.7		
12:02	2.0	3.0	0.2	5.90	7.04	27.72		1.00	1.5	_	
12:07	1.0	4.0	0.2	5,90	7.61	27,72	324	0.83	1.14	t clea	r home
WELL CAP	ACITY (Gallon	s Per Foot): PACITY (Gal./	0.75" = 0.02; Ft.): 1/8" = 0.	1" = 0.04; 0006; 3/16"		6; 2" = 0.1 1/4" = 0.002			5" = 1.02; 0.006; 1	6" = 1.47; /2" = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT C	ODES: B	= Bailer;	BP = Bladder F	1 ·		Submersible I	Pump; PP = F	Peristaltic Pu	ump; O = O	ther (Specify)
						LING D				·····1	
	BY (PRINT) / A Rodne		TC	SAMPLER(S)		E(S):		SAMPLING INITIATED A	T: (2:0	8 SAMPLIN ENDED A	IG AT: 12:18
PUMP OR	······	<u>U</u>		TUBING MATERIAL CO	DDE: HC	PE /S		LD-FILTERED: Y ation Equipment T			IZE:μm
FIELD DEC	ONTAMINATIO	ON: PUN	1PY	0	TUBING	Y Ø(r	eplaced)	DUPLICATE	: Y	Ŵ	r
	PLE CONTAINE	R SPECIFIC	ATION			ATION (includ		INTENI ANALYSIS		SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		fotal vol D in Field (mL) FINAL	METH		CODE	(mL per minute)
MW 6	(AĠ	(L	HzSO4			42		RPH	APP	200
mw 6	2	AG	250mL	None			6.50			APP	200
MW 6	3	Ca	100mL	HCL			< 2	8760	B	APP	100
REMARKS		l			<u> </u>			<u>I</u>		<u></u>	I
MATERIAL	CODES:	AG = Amber S = Silicone;	•	= Clear Glass; O = Other (S		High Density I	^D olyethylene;	LDPE = Low D	ensity Poly	ethylene; PP	= Polypropylene;
		F	RFPP = Revers	hrough) Perista se Flow Perista t he informati	tic Pump;		Method (Tubi	ng Gravity Drain);		ric Submersible her (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	: MW 7			SAMPLE ID:		7			DATE: OZ	121/201	8
· · ·					PURG	ING DA					
WELL	n (markan), 7			: 0.25 WELL S	CREEN II	NTERVAL	STATIC	DEPTH		RGE PUMP TY BAILER:	PP
WELL VO	R (inches): 2	1 WELL VC	DLUME = (TO	TAL WELL DEPTH	- STAT	IC DEPTH T	OWATER) X	WELL CAPACI		DAILER.	<u> </u>
										ot = 1	
EQUIPME	NT VOLUME P	URGE: 1 EQ	UIPMENT VO	L. = PUMP VOLUM	E + (TUBI	NG CAPACI	TY X T	UBING LENGTH)	+ FLOW CE		U 6 gallon:
(only fill or	ut if applicable)			= gallor	s + /	nallo	ns/foot X	feet)	+	gallons	= gallon:
INITIAL P	UMP OR TUBIN	IG 🦼	FINAL PU	IMP OR TUBING		DUDCIN	G	PURGING			LIME
DEPTH IN	WELL (feet):	8.50	DEPTH IN	WELL (feet):	8.50		DAT: 10.0		10:26	PURGED (g	allons): 3, 2
	VOLUME	CUMUL.	PURGE	DEPTH	рН	TEMP	COND.	DISSOLVED OXYGEN	TUDDIDI	Y COLO	
TIME	PURGED	VOLUME PURGED		WATER (S	tandard	TEMP. (^o C)	(circle units) μmhos/cm	(circle units)	TURBIDIT (NTUs)		
	(gallons)	(gallons)	(gpm)	(feet)	units)		<u>or</u> μS/cm	mg/L <u>or</u> % saturation			
10:14	1.0	1.0	0.2	6.67 6	.22	2689	490	0.53			r si pet
10:20	1.2	2.2	0.2		.66	27.06	444	0.43	9.00	o Clean	si pet
10:25	1.0	3.2	0.2	6.67 6	1.71	27.02	428	0.37	6.31	clea	5 Sipe
		-									
	· ·	•									
						1					1
		1									
MELL CA			0.75% - 0.02	4" = 0.04; 4.2	F" - 0.06	· 2 ⁿ = 0.16	$3^{11} - 0.27$	4 ³ - 0.65	F" - 1 02:	6" - 1 47:	42" - 5 99
WELL CA TUBING II	PACITY (Gallor	hs Per Foot): P ACI TY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04; 1.2 0.0006; 3/16" = 0	5" = 0.06 .0014;	; 2 " = 0.16 1/4" = 0.0029	5; 3" = 0.37; 6; 5/16" = 0	4" = 0.65; .004; 3/8" = 0			12" = 5.88 5/8" = 0.016
TUBING I	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES	1/4" = 0,0020 SP = Electric 3	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		= 0.010;	
TUBING II PURGING	NSIDE DIA. CA EQUIPMENT (PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL	1/4" = 0.0020 SP = Electric : _ING DA	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0. imp; PP = Pe	.006; 1/2	= 0.010;	5/8" = 0.016
TUBING II PURGING SAMPLEE	NSIDE DÍA. CA EQUIPMENT (BY (PRINT) / A	PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S):	6; 5/16" = 0 Submersible Pu	<u>.004; 3/8" = 0</u> imp; PP = Pe SAMPLING	.006; 1/2 eristaltic Pum	" = 0.010; p; O = Of SAMPLIN	5/8'' = 0.016 ther (Specify) G
TUBING II PURGING SAMPLEE Leif	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / کورکی م	PACITY (Gal. CODES: I	/Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pum	.0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S):	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0 Imp; PP = Pe SAMPLING INITIATED AT	<u>.006; 1/2</u> eristaltic Pum F: \O ² .ス(" = 0.010; p; O = OI , SAMPLIN ENDED A	5/8" = 0.016 ther (Specify) G T: \O:3 8
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / [2 od n d TUBING WELL (feet):	PACITY (Gal. CODES: I AFFILIATION:	/Ft.): 1/8" = 0 B = Bailer; : て	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE	.0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Tyj	.006; 1/2 eristaltic Pum F: \0°⊋(N pe:	" = 0.010; p; 0 = 01 SAMPLIN ENDED A FILTER SI	5/8'' = 0.016 ther (Specify) G
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / کوران مرکزی TUBING	PACITY (Gal. CODES: I AFFILIATION:	/Ft.): 1/8" = 0 B = Bailer; : て	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE	0014; p; ES SAMPL NATURE	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S	6; 5/16" = 0 Submersible Pu \TA FIELD	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y	.006; 1/2" eristaltic Pum F: \0°. ⊋() C: \0) C: \0) C: \0) C: \0) C: \0) C: \0) C: \0) C: \0) C: Z() C: \0) C: Z()	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: \O:3 8
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAM	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / COULT (PRINT) / / DBY (PRINT) / / CONTAMINATION PLE CONTAMINATION	PACITY (Gal. CODES: I NFFILIATION: W.S. / A ON: PUI ER SPECIFIC	/Ft.): 1/8"=0 B=Bailer; 、てこ MP Y (0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR	0014; p; ES SAMPI NATURE :: HD UBING ESERVA	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ TION (including	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice)	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE	.006; 1/2' eristaltic Pum f: \0°.⊋(n) pe: Y ED {	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING	5/8" = 0.016 ther (Specify) G T: <u></u> (Ο ⁻ .3 § ZE:μm
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / A [Codent TUBING WELL (feet): CONTAMINATIO	PACITY (Gal. CODES: I NFFILIATION: WY / A ON: PUI	/Ft.): 1/8"=0 B=Bailer; 、てこ MP Y (0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG TUBING MATERIAL CODE	0014; p; ES AMPL NATURE HD UBING ESERVAT	$\frac{1/4" = 0.0020}{\text{SP} = \text{Electric}:}$ $\frac{\text{ING DA}}{(S):}$ $\frac{\text{PE}}{Y} = \frac{1}{N}$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE:	.006; <u>1/2'</u> eristaltic Pum f: ۱۵ ² ۲ ce: Y ED S ND/OR E	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DIA. CA EQUIPMENT (BBY (PRINT) / A [Coelve TUBING WELL (feet): CONTAMINATION PLE CONTAINATION #	PACITY (Gal. CODES: I NFFILIATION: SALE A DN: PUI ER SPECIFIC MATERIAL	/Ft.): 1/8" = 0 B = Bailer; ; T ← MP Y (ATION	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG J TUBING MATERIAL CODE N T SAMPLE PR PRESERVATIVE USED	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includie)$ $OTAL VOL$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE ANALYSIS A	.006; 1/2' eristaltic Pum F: \0°.⊋(D D ED D C ED D C ED ED ED ED ED	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING QUIPMENT	5/8" = 0.016 ther (Specify) G T: <u></u> ZE: μm SAMPLE PUMF
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7	NSIDE DIA. CA EQUIPMENT (BBY (PRINT) / A [Coelve TUBING WELL (feet): CONTAMINATION PLE CONTAINATION #	PACITY (Gal. CODES: I NFFILIATION:	/Ft.): 1/8" = (B = Bailer; . Т с MP Y (ATION VOLUME	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG TUBING MATERIAL CODE N T SAMPLE PR PRESERVATIVE	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y \text{ (N)} re}$ $TION (includii)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL pH	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT D-FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDE ANALYSIS AI METHO	.006; 1/2" eristaltic Pum F: 10 ² みな D ED ND/OR D F(2 P H	r = 0.010; p; O = O SAMPLIN ENDED A FILTER SI SAMPLING QUIPMENT CODE	5/8" = 0.016 ther (Specify) G T: Δ0:3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 od/n + TUBING WELL (feet): CONTAMINATI PLE CONTAINERS (CONTAINERS (2)	PACITY (Gal. CODES: I AFFILIATION: CON: PUI ER SPECIFIC MATERIAL CODE AG	/Ft.): 1/8" = 0 B = Bailer; . T < MP Y (ATION VOLUME ↓L	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2504	LOD14; p; ES CAMPI NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includit)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD FI	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2" aristaltic Pum f: 10 ² みし f: 10 ² みし	T = 0.010; p; O = O SAMPLIN ENDED A FILTER SI N SAMPLING QUIPMENT CODE ▲ P P	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute 2 τ C)
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 od/n + TUBING WELL (feet): CONTAMINATI PLE CONTAINERS (CONTAINERS (2)	PACITY (Gal. CODES: I AFFILIATION: CODE: PUI ER SPECIFIC MATERIAL CODE AG AG	/Ft.): 1/8" = 0 B = Bailer; . Т с_ MP Y ATION VOLUME IL 150 mL	0.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG JUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED 1/2504 None	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includin)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) FINAL pH C Z C, 7 1	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2' aristaltic Pum F: 10:2(D D ED D D CPPH	" = 0.010; p; O = OI p; O = OI sampling FILTER SI N Sampling QUIPMENT CODE APP APP	5/8" = 0.016 ther (Specify) G T: <u></u> ZE:μm SAMPLE PUMF FLOW RATE (mL per minute 2 ε c) 2 ε c)
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (BY (PRINT) / / [2 od/n + TUBING WELL (feet): CONTAMINATI PLE CONTAINERS (CONTAINERS (2	PACITY (Gal. CODES: 1 NFFILIATION: WWWWWWWWWWWWWW ON: PUI ER SPECIFIC ER SPECIFIC ER SPECIFIC MATERIAL CODE NG MATERIAL CODE AG HUPE	/Ft.): 1/8" = (B = Bailer; 	0.0006; 3/16" = 0 BP = Bladder Pumm SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLSO4 NONE HNO3 Sodium Thiosul	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{(S):}$ $\frac{PE / S}{Y N re}$ $TION (includin)$ $OTAL VOL$ $D IN FIELD (n)$	6; 5/16" = 0 Submersible Pu TA FIELD Filtrat placed) ng wet ice) nL) FINAL pH 4 2 2 6 , 7 1 4 2	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT INITIATED AT PFILTERED: PFILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro T	.006; 1/2" eristaltic Pum f: いこえん f: いこえん D F: いこれん	" = 0.010; p; 0 = 01 p; 0 = 01 sampling N sampling N sampling N Sampling N Sampling N APP APP APP	5/8" = 0.016 ther (Specify) G T: \O:3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute 200 200 200
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. CODES: I AFFILIATION: US: /A DN: PUI ER SPECIFIC MATERIAL CODE AG AG HDPE CG	/Ft.): 1/8" = 0 B = Bailer; : T C MP Y ATION VOLUME IL ISOML 250 mL UO0ML	D.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLS04 None HN03	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD FILD Co Co T Co Co T Co Co T	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2" eristaltic Pum f: いこえん f: いこえん D F: いこれん	"= 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A Filter SI Sampling QUIPMENT CODE APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O .3 8 ZE:μm SAMPLE PUMF FLOW RATE (mL per minute) 200 200 200
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. CODES: I AFFILIATION: US: /A DN: PUI ER SPECIFIC MATERIAL CODE AG AG HDPE CG	/Ft.): 1/8" = 0 B = Bailer; : T C MP Y ATION VOLUME IL ISOML 250 mL UO0ML	0.0006; 3/16" = 0 BP = Bladder Pumm SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED HLSO4 NONE HNO3 Sodium Thiosul	LOO14; ESAMPL NATURE HD UBING ESERVAT ADDEL	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD FILD Co Co T Co Co T Co Co T	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2" eristaltic Pum f: いこえん f: いこえん D F: いこれん	"= 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A Filter SI Sampling QUIPMENT CODE APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUME FLOW RATE (mL per minute 200 200 200 (00
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 MW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (D BY (PRINT) / A [2 or long WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS I CONTAINERS I 3 3 3	PACITY (Gal. SODES: I AFFILIATION: LAS / A DN: PUI ER SPECIFIC MATERIAL CODE AG HDPE CG GG	/Ft.): 1/8" = 0 B = Bailer; T MP Y (ATION VOLUME IL 150mL 250mL 250mL 100mL	0.0006; 3/16" = 0 BP = Bladder Pum S SAMPLER(S) SIG MATERIAL CODE MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2504 None HN03 Sodium Thiosult	LOD14; p; ES CAMPL INATURE	1/4" = 0.0020 SP = Electric : LING DA (S): PE / S Y Nre TION (includii OTAL VOL D IN FIELD (n 	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD C Z C , 7 1 C Z C Z C Z C Z	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y DUPLICATE: INTENDI ANALYSIS A METHO 1FL-Pro %270 %270	.006; 1/2' aristaltic Pum	" = 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A FILTER SI N Sampling QUIPMENT CODE APP APP APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 § ZE:µm SAMPLE PUMF FLOW RATE (mL per minute 200 200 200 200 100
TUBING II PURGING SAMPLEE Leif PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7 AW 7	NSIDE DIA. CA EQUIPMENT (DBY (PRINT) / / [2 order and TUBING WELL (feet): CONTAMINATION PLE CONTAINATION PLE CONTAINERS (2 1 3 3	PACITY (Gal. SODES: I AFFILIATION: 223 / A DN: PUI ER SPECIFIC MATERIAL CODE AG HDPE CG GG AG = Amber	/Ft.): 1/8" = 0 B = Bailer; T MP Y (ATION VOLUME IL 150mL 250mL 250mL 100mL	D.0006; 3/16" = 0 BP = Bladder Pum SAMPLER(S) SIG TUBING MATERIAL CODE N TI SAMPLE PR PRESERVATIVE USED H2S04 None HN03 Sodium Thiosuli HC1 = Clear Glass; H	LOD14; p; ES CAMPL INATURE	$\frac{1/4" = 0.0020}{SP = Electric :}$ $\frac{ING DA}{SP = Constraints}$ $\frac{PE / S}{Y N re}$ $\frac{PE / S}{V N re}$ $\frac{PE / S}{V N re}$	6; 5/16" = 0 Submersible Pu TA FIELD FILD FILD FILD FILD FILD FILD C Z C , 7 1 C Z C Z C Z C Z	.004; 3/8" = 0 imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y ion Equipment Tyj DUPLICATE: INTENDI ANALYSIS A METHO IFL-Pro	.006; 1/2' aristaltic Pum	" = 0.010; p; 0 = 01 p; 0 = 01 sampling Ended A FILTER SI N Sampling QUIPMENT CODE APP APP APP APP APP APP APP	5/8" = 0.016 ther (Specify) G T: \O : 3 8 ZE:μm SAMPLE PUME FLOW RATE (mL per minute 200 200 200 (00

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u>

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Å

SITE NAME: N	SITE NAME: Jak Service Center Nou United Fuel SITE LOCATION: 6900 SW 8th St, miami, FL WELL NO: MW 8 SAMPLE ID: MW 8														
WELL NO	MW 8			SAMPLE	ID: MW	8			DATE: OZ	2/21/201	8				
					PURC	SING DA	TA	l							
WELL	R (inches): 2.		G TER (inchor)	: 0.25 DEPT		INTERVAL				URGE PUMP T R BAILER:	PP				
WELL VO	LUME PURGE:			TAL WELL DEPT				ER (feet): 6.0 WELL CAPACI	TY TY		<u> </u>				
(only fill ou	ut if applicable)		= (12.7 L. = PUMP VOLU	feet - (. D(0	feet) X	0.16	gallons/f	oot = l					
	NT VOLUME P ut if applicable)	URGE: 1 EQI	JIPMENT VO	L. = PUMP VOLU			τγ χ τι	JBING LENGTH)	+ FLOW (ELL VOLUME					
			₩		lons + (∭y gallo	ns/foot X	feet)	+	gallons	= gallons				
	INITIAL PUMP OR TUBING DEPTH IN WELL (feet): VOLUME CUMUL. VOLUME CUMUL. UNITIAL PUMP OR TUBING DEPTH IN WELL (feet): DEPTH DEPTH DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH DEPTH COND. OXYGEN TUBNINTY COLOR COND. OXYGEN TUBNINTY COLOR COND. OXYGEN TUBNINTY COLOR COND. DEPTH DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPTH DEPTH DEPTH COND. DEPTH DEPTH DEPT														
TIME	TIME VOLUME PURGED (gallons) VOLUME VOLUME (gallons) PURGE PURGED (gallons) PURGE RATE (gpm) PURGE (feet) PURGE (standard units) PH (standard units) TEMP: (°C) COND. (circle units) pmhos/cm OXYGEN (circle units) mg/L or % saturation TURBIDITY (NTUS) COLOR (describe) ODOR (describe) 1:05 1.0 0.2 0.19 0.83 2.7.64 364 2.53 38.9 C loudy None														
11:05	1-05 1.0 1.0 0.2 6.19 6.83 27.64 364 2.53 38.9 cloudy none														
11:10	:10 1.0 2.0 0.2 6.19 7.00 27.62 364 1.62 20.9 St clarly none														
11:20	:20 2.0 4.0 0.2 6.19 7.02 27.66 366 0.96 11.07 clear none														
11-25	1:25 1605 5045 0.1 6.19 7.02 27.70 360 0.91 7-28 clear none														
	1.25 1805 5045 0.1 6.19 7.02 27.70 360 0.91 7-28 clear none														
											·····				
				1" = 0.04; 0.0006; 3/16" =					5" = 1.02;	6" = 1.47; 2" = 0.010;	12" = 5.88 5/8" = 0.016				
	EQUIPMENT C	•	= Bailer;	BP = Bladder Pu			Submersible Pu		ristaltic Pu		other (Specify)				
						LING DA	TA	·····							
	BY (PRINT) / A		·	SAMPLER(S) S	/	E(S):		SAMPLING	. itst	SAMPLIN	NG AT: 11:36				
PUMPOR	Rodne	of TA	10	TURING			FIELD	-FILTERED: Y	<u> </u>		SIZE:μm				
DEPTH IN	WELL (feet):			MATERIAL CO			Filtratio	on Equipment Typ	be.		p				
	CONTAMINATIO				TUBING	<u> </u>	placed)	DUPLICATE:	Y	Ŵ					
	PLE CONTAINE #				PRESERVA	TION (includi	ng wet ice)	INTENDE ANALYSIS AI	ND/OR	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE				
ID CODE	CONTAINERS	CODE	VOLUME	USED	ADDE	D IN FIELD (n	nL) pH	METHO	D	CODE	(mL per minute)				
MW 8	1	AG	12	HzSOZ	¥		42	FL-Pro T		APP	200				
MW 8	2	Aá	250mL	None			6.50	8270 C		APP	206				
MW 8	3	CG	100 m L	HCL			42	8260 E	>	APP	100				
											· ····				
REMARKS	:	L				*****	I	· · · · · · · · · · · · · · · · · · ·			L				
MATERIAL		AG = Amber S = Silicone;	•	= Clear Glass; O = Other (Sp		ligh Density P	olyethylene;	LDPE = Low De	nsity Polye	ihylene; PP	= Polypropylene;				
SAMPLING	G EQUIPMENT			hrough) Peristalti se Flow Peristalti		B = Bailer; SM = Straw I	BP = Bladd Method (Tubing			c Submersible er (Specify)	Pump;				
IOTES: 1	The above of	to not cons	titute all of	the informatio	n require										

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: N	Jak Service	e Center	r dba (Inited Fi	rel si	TE DCATION: (6900 8	SW 8th	St, m	iamis FL	•
WELL NO:	MW E	3		SAMPLE	ID: MW	B			DATE: (02/21/201	8
					PURG	SING DA	TA				
WELL DIAMETER	R (inches): 2.		ER (inches):	0.25 DEP	L SCREEN TH: 4.6 fe	et to 14.6 f	eet TO WA	DEPTH TER (feet):	189	PURGE PUMP T OR BAILER:	PP
1	LUME PURGE: it if applicable) NT VOLUME PL							x 0.16	gallon	s/foot = (,Z	3 gallons
	NT VOLUME PL It if applicable)	IRGE: 1 EQU	IPMENT VOL.				TY X	TUBING LENG	ΓΗ) + FLOW	CELL VOLUME	
INITIAL PL	JMP OR TUBING			P OR TUBING	allons + (PURGIN	G	PURGING	eet) +	TOTAL VO	LUME
DEPTH IN	WELL (feet):	8,5	DEPTH IN \	VELL (feet):	8.5		DAT: 13:1	DISSOLVE		+4 PURGED (gallons): 4.1C
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	OVVCEN	;) TURB (NT	Us) (descri	
13:22	0.50	0.50	0.10	6.92	7.04	27.23	753	1.19	4.0	>o clear	r none
13:27	0,75	1.25	0.15	6.92	7.1Z	27.44	242	0.77		+1 Clear	
13:32	0.75	2.00	0.15	6.92	7,15	27.42	242	0.70			r none
13:42	2.00	4.00	0120	6.92	7.13	27,21	239	0.51	(,-	72 clea	r none
TUBING I	PACITY (Gallon: NSIDE DIA. CAP EQUIPMENT C	ACITY (Gal./F	⁻ t.): 1/8" = 0.0	1" = 0.04; 0006; 3/16" 3P = Bladder F	= 0.0014; Pump; E	1/4" = 0.002 SP = Electric	6; 5/16" = Submersible F	0.004; 3/8"	5" = 1.02 = 0.006; = Peristaltic I	1/2" = 0.010;	12 " = 5.88 5/8 " = 0.016 Other (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)			AIA	CAMPLIN		CAMPLIN	
	Rodne			Z	2 th	-		SAMPLIN	DAT: 13:	44 SAMPLIN ENDED	AT: 13:54
PUMP OR				TUBING ² MATERIAL C				_D-FILTERED: ation Equipment			SIZE:μm
FIELD DE	CONTAMINATIO	DN: PUM	PY (N)	TUBING	Y N/re	eplaced)	DUPLICA	TE: Y		
SAMPLE	PLE CONTAINE	MATERIAL	TION	PRESERVAT	IVE 1	TION (includ	FINAL	ANALYSI	NDED S AND/OR 'HOD	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
ID CODE MW B	CONTAINERS	CODE A G	16	USED 1tz SO4		D IN FIELD (<u>mL) pH</u> くこ	FL-Pro		APP	200
	2									APP	200
MWB	3	AG	250mL	None HCL			7.13			APP	100
MWB		Con	100mL	ncL				- 0			
REMARKS	<u> </u>										<u></u>
		AG = Amber (S = Silicone;	T = Teflon;	Clear Glass; O = Other (S	Specify)	High Density F		LDPE = Low			P = Polypropylene;
SAMPLIN	G EQUIPMENT			rough) Perista e Flow Perista		B = Bailer SM = Straw		adder Pump; ng Gravity Drain		ctric Submersible Other (Specify)	Pump;

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

AVELL INC				SAMPLE	ID: MW	0			DATE:	A lata	10210	8				
	MW 9						F.A.		21.11 M	5010	11431	0				
WELL		TUBIN	G d	as WE	PURC LL SCREEN	SING DA	STATIC D	EPTH		PURGE	E PUMP TYP	F				
DIAMETE	R (inches):	DIAME	TER (inches)	DEF						OR BAI		PP				
(only in or	ut if applicable)		= (12.7	feet -	6.33	feet) X	0.09	gallons	s/foot	= 0:5	7 gallon				
(only fill or	ut if applicable)	URGE: 1 EQ	UIPINENT VO							GELL						
		0		= ga IMP OR TUBINO		gallor PURGINO		PURGING		T	gallons = OTAL VOLU	gallon				
	UMP OR TUBIN WELL (feet):	^G 9.30		WELL (feet):	\$,30	INITIATE	DAT: 10:5	ENDED AT:	11:1		URGED (gal	ons): 2.1				
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (^o C)	COND. (circle units) μmhos/cm or μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBI (NTI		COLOR (describe)	ODOR (describe				
10:01	0.SO	0.50	0.10	\$6.40	5.94	28.80	197	0.58	105.	6	clouch	1 none				
11:06	1.00	0.50	0.10	6.40	5.11	28.72	198	0.47	52.	9	cloudy					
11:11	150	0,50	0,10	6,40	4.25	28.87	198	0.47	33.	7	Cloud					
11:16	2.00	0,50	0.10	6.40	5.34	28.78	198	0.48	21	.3	S) claud	y none				
			_						-							
	-		-			S			-	_	-	-				
			-						-	_	-					
	-		-						-		-	-				
	and the second se						1.	1			$5^{n} = 1.02^{n}$ $6^{n} = 1.47^{n}$ $12^{n} = 5.88$					
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006;										6"	= 1.47; 1:	2" = 5.88				
TUBING I	NSIDE DIA. CAI	PACITY (Gal.	/Ft.): 1/8" = (0.0006; 3/16"	= 0.0014;	1/4" = 0.0026	5; 5/16" = 0.0	004; 3/8" = 0	0.006;	1/2" = (0.010; 5/8	3" = 0.016				
TUBING I	PACITY (Gallon NSIDE DIA. CAI EQUIPMENT C	PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer;	1" = 0.04; 0.0006; 3/16" BP = Bladder F	= 0.0014; Pump; E	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0		1/2" = (0.010; 5/8					
TUBING I PURGING SAMPLED	NSIDE DIA. CAN EQUIPMENT C D BY (PRINT) / A	PACITY (Gal., CODES: E	/Ft.): 1/8" = (BP = Bladder F	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S	6; 5/16" = 0.0 Submersible Pur	004; 3/8" = 0	0.006;	1/2" = (² ump;	0.010; 5/8	3" = 0.016				
SAMPLEE	NSIDE DIA. CAI EQUIPMENT O DBY (PRINT) / A Rodney	PACITY (Gal., CODES: E	/Ft.): 1/8" = (0.0006; 3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA E(S):	5/16" = 0. Submersible Pur TA	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A	0.006; eristaltic F T: 11:	1/2" = (Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)				
SAMPLED PURGING SAMPLED Zeij	NSIDE DIA. CAI EQUIPMENT O DBY (PRINT) / A Rodney	PACITY (Gal., CODES: E	/Ft.): 1/8" = (0.0006; 3/16" BP = Bladder F SAMPLER(S)	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA E(S):	5/16" = 0. Submersible Pur TA FIELD-	004; 3/8" = 0 mp; PP = P SAMPLING	0.006; eristaltic F T: 11:	1/2" = (Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)				
TUBING I PURGING SAMPLED Zerd PUMP OR DEPTH IN	NSIDE DIA. CAI EQUIPMENT C D BY (PRINT) / A /Zodneg R TUBING	PACITY (Gal. CODES: E FFILIATION: JATE	(Ft.): 1/8" = 0 3 = Bailer;	D.0006; 3/16" BP = Bladder F SAMPLER(S) U TUBING MATERIAL C	= 0.0014; Pump; E SAMP SIGNATUR	1/4" = 0.0026 SP = Electric S LING DA E(S):	5; 5/16" = 0. Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y	0.006; eristaltic F T: 11! N ype:	1/2" = (Pump;	0.010; 5/4 O = Othe SAMPLING ENDED AT:	3" = 0.016 er (Specify)				
TUBING I PURGING SAMPLED Zeif PUMP OR DEPTH IN FIELD DE	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodney R TUBING I WELL (feet):	PACITY (Gal. CODES: E SFFILIATION: JAτc DN: PUM	/Ft.): 1/8" = (3 = Bailer; //P Y (0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C	= 0.0014; Pump; E SIGNATUR SIGNATUR ODE: HP TUBING	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (R) (rel	5; 5/16" = 0. Submersible Pur TA FIELD- Filtratic	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: yon Equipment Ty DUPLICATE: INTEND	D.006; eristaltic F T: 11: (N) /pe: Y ED	1/2" = (^p ump; 1%	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZE MPLING 5	3" = 0.016 er (Specify) []μm E:μm				
TUBING I PURGING SAMPLED Zevij PUMP OR DEPTH IN FIELD DE SAM SAMPLE	NSIDE DÍA. CAI BEQUIPMENT C DBY (PRINT) / A / Zodney R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINE #	CODES: E FFILIATION: A TC ON: PUM ER SPECIFIC, MATERIAL	/Ft.): 1/8" = (3 = Bailer; //P Y (0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: WP TUBING PRESERV/	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: yon Equipment Ty DUPLICATE:	D.006; eristaltic F T: 11: ype: Y ED ND/OR	1/2" = (^p ump; 1 % SAM EQUI	0.010; 5/K O = Othe SAMPLING ENDED AT: FILTER SIZE	3" = 0.016 er (Specify) [] : 26 Ξ:μm GAMPLE PUM FLOW RATE				
TUBING I PURGING Zeid PUMP OF DEPTH IN FIELD DE SAM SAMPLE ID CODE	NSIDE DÍA. CAN BEQUIPMENT C D BY (PRINT) / A ROUBING WELL (feet): CONTAMINATIC IPLE CONTAINE CONTAINERS	CODES: E EFFILIATION: A TC ON: PUN ER SPECIFIC, MATERIAL CODE	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: WP TUBING PRESERV/	1/4" = 0.0026 SP = Electric S LING DA E(S): PE / S Y (rel ATION (includir	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y on Equipment Ty DUPLICATE: INTEND ANALYSIS A	D.006; eristaltic F T: 11: ype: Y ED ND/OR	1/2" = (⁹ ump; 18 SAM EQUI	0.010; 5/K O = Othe SAMPLING ENDED AT: FILTER SIZE	3" = 0.016 er (Specify) II: 26 E:μm EAMPLE PUM FLOW RATE mL per minute				
TUBING I PURGING SAMPLED Zecif PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE NAW ^Q I	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodney RTUBING WELL (feet): CONTAMINATION IPLE CONTAINERS	CODES: E FFILIATION: A TC ON: PUM ER SPECIFIC, MATERIAL	/Ft.): 1/8" = (3 = Bailer; //Р Y (ATION VOLUME 250 ~ L	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: WP TUBING PRESERV/	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH < 2_	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED; Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO PB	0.006; eristaltic F T: 11: (N) /pe: Y ED ND/OR DD	1/2" = (Pump; I & SAM EQUI CO	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZI OD IPLING IPMENT ODE (3" = 0.016 er (Specify) E:μm EAMPLE PUM FLOW RATE mL per minute				
TUBING I PURGING Zerij PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodrey R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS	PACITY (Gal. CODES: E FFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE ACI	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO 3	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR ODE: WP TUBING PRESERV/	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO P8 SATO F	0.006; eristaltic F T: 111: (N) rpe: Y ED ND/OR DD	1/2" = (Pump; 1% SAM EQUI C(A1	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZI () IPLING IPMENT ODE () PP	B" = 0.016 ar (Specify) II: Δ6 E:μm GAMPLE PUN FLOW RATE mL per minut				
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 91 MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodney RTUBING WELL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E FFILIATION: JATC ON: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; AP Y (ATION VOLUME 250 ~ L 2,50 ~ L	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT USED H NO 3 DONC H CL	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR DODE: WP TUBING PRESERV/ IVE ADDE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH <22, 5,34	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED; Y n Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO PB	0.006; eristaltic F T: 11: (N) /pe: Y ED ND/OR DD 2413 TX.M	1/2" = (Pump; 18 SAM EQUI CO iA1 A	0.010; 5/4 O = Othe SAMPLING ENDED AT: FILTER SIZE MPLING IPMENT ODE (PP PP PP	3" = 0.016 er (Specify)				
TUBING I PURGING SAMPLED Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 91 MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodrey R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS	PACITY (Gal. CODES: E FFILIATION: JATC DN: PUM ER SPECIFIC, MATERIAL CODE HDPE ACI	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME 250 ~ L 2,50 ~ L 2,50 ~ L 4.0 ~ L	0.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT USED H NO 3 DON 2	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR DODE: WP TUBING PRESERV/ IVE ADDE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH 5.39 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO P8 5370 7360	0.006; eristaltic F T: 11: (N) /pe: Y ED ND/OR DD 2413 TX.M	1/2" = (Pump; 18 SAM EQUI CO iA1 A	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE MPLING IPMENT ODE (PP PP PP PP	3" = 0.016 ar (Specify) II: а.6 E:µm FLOW RATE mL per minute 100 mL/				
TUBING I PURGING SAMPLEE Zerij PUMP OR DEPTH IN FIELD DE SAMPLE ID CODE MW 9 MW 9 MW 9	NSIDE DÍA. CAI BEQUIPMENT C D BY (PRINT) / A Rodrey R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS	ACITY (Gal.) CODES: E FFILIATION: JATC ON: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME 250 ~ L 2,50 ~ L 2,50 ~ L 4.0 ~ L	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT USED H NO 3 DONC H CL	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR DODE: WP TUBING PRESERV/ IVE ADDE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH 5.39 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO P8 5370 7360	0.006; eristaltic F T: 11: (N) /pe: Y ED ND/OR DD 2413 TX.M	1/2" = (Pump; 18 SAM EQUI CO iA1 A	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE MPLING IPMENT ODE (PP PP PP PP	3" = 0.016 er (Specify)				
TUBING I PURGING SAMPLED Zerid PUMP OR DEPTH IN FIELD DE SAMPLE	NSIDE DÍA. CAI E EQUIPMENT O D BY (PRINT) / A / /Zodwey R TUBING I WELL (feet): CONTAMINATION INCONTAMINERS 1 2 3 1	ACITY (Gal.) CODES: E FFILIATION: JATC ON: PUM ER SPECIFIC, MATERIAL CODE HDPE AG CG	/Ft.): 1/8" = (3 = Bailer; //P Y (ATION VOLUME 250 ~ L 2,50 ~ L 2,50 ~ L 4.0 ~ L	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT USED H NO 3 DONC H CL	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR DODE: WP TUBING PRESERV/ IVE ADDE	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL pH 5.39 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO P8 5370 7360	0.006; eristaltic F T: 11: (N) /pe: Y ED ND/OR DD 2413 TX.M	1/2" = (Pump; 18 SAM EQUI CO iA1 A	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE MPLING IPMENT ODE (PP PP PP PP	3" = 0.016 er (Specify) II: а.б E: µm EAMPLE PUN FLOW RATE mL per minut				
TUBING I PURGING SAMPLEI Zevij PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9 MW 9 MW 9	NSIDE DÍA. CAI E EQUIPMENT O D BY (PRINT) / A Rodney R TUBING I WELL (feet): CONTAMINATION IPLE CONTAINERS 1 2 3 1 5:	PACITY (Gal. CODES: E FFILIATION: J A TC DN: PUN R SPECIFIC MATERIAL CODE HDPE AG CG AG	/Ft.): 1/8" = (3 = Bailer; AP Y (ATION VOLUME 250 ~ L 2,50 ~ L 40 ~ L 1 L	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO3 DONE H CL H 2 SO4	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NP TUBING PRESERV/ IVE ADDE	1/4" = 0.0026 SP = Electric S LING DA E(S): Y N (rep NTION (includin TOTAL VOL D IN FIELD (m	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL PH 42, 5,34 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A INITIATED A FILTERED: FILTERED: Yon Equipment Ty DUPLICATE: INTEND ANALYSIS A METHO PB B SQTO F \$260 B	0.006; eristaltic F T: 11: (N) rpe: Y ED ND/OR DD PA1H TX.M	1/2" = (Pump; 18 SAM EQUI C(IA A	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE () MPLING IPMENT ODE () PP PP PP	3" = 0.016 pr (Specify) II: Δ6 E:μm SAMPLE PUM FLOW RATE mL per minut 100 mL/				
TUBING I PURGING SAMPLEI Zevij PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9 MW 9 MW 9	NSIDE DÍA. CAI E EQUIPMENT O D BY (PRINT) / A CONTAINS R TUBING I WELL (feet): CONTAMINATION I WELL (feet): I WELL (feet):	AG = Amber	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y //P Y //ATION VOLUME //ATION VOLUME //ASOmL //ASOmL //AC //AmL //L //AmL //L //AmL //L //AmL //L //AmL //L //AmL //AmL //L	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVAT USED H NO 3 DONC H CL	E 0.0014; Pump; E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NP TUBING PRESERV/ IVE ADDE HDPE = 1	$\frac{1/4" = 0.0026}{\text{SP} = \text{Electric S}}$ $\frac{\text{LING DA}}{\text{E(S)}}$ $\frac{\text{PE}}{\text{Y}} \frac{1/5}{\text{O}} (\text{reg})$ $\frac{\text{TION (includir FOTAL VOL)}}{\text{FOTAL VOL}}$	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL PH 42, 5,34 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO P8 5370 7360	0.006; eristaltic F T: 11: (N) rpe: Y ED ND/OR DD PA1H TX.M	1/2" = (Pump; 18 SAM EQUI C(IA A	0.010; 5/4 0 = Othe SAMPLING ENDED AT: FILTER SIZE () MPLING IPMENT ODE () PP PP PP	3" = 0.016 ar (Specify) II: а.б E:µm FLOW RATE mL per minut				
TUBING I PURGING SAMPLEL ZevJ PUMP OR DEPTH IN FIELD DE SAM SAMPLE ID CODE MW 9 MW 9 MW 9 MW 9 MW 9 MW 9 MW 9 MW 9	NSIDE DÍA. CAI E EQUIPMENT O D BY (PRINT) / A CONTAINS R TUBING I WELL (feet): CONTAMINATION I WELL (feet): I WELL (feet): CONTAMINATION I WELL (feet): I WELL (feet):	AG = Amber S = Silicone; CODES:	/Ft.): 1/8" = (3 = Bailer; //P Y //P Y //ATION VOLUME 250 ~ L 2,50 ~ L 3,50 ~ L 1 1 1 40 ~ L 1 1 Glass; CG T = Teflon; APP = After (1)	D.0006; 3/16" BP = Bladder F SAMPLER(S) TUBING MATERIAL C SAMPLE PRESERVAT USED H NO3 DONE H CL H 2 SO4 = Clear Glass;	= 0.0014; Pump; E SAMP SIGNATUR SIGNATUR SIGNATUR SIGNATUR SIGNATUR NP TUBING PRESERV/ IVE ADDE HDPE = I Specify) Ittic Pump;	1/4" = 0.0026 SP = Electric S LING DA E(S): Y (N) (rep TION (includin TOTAL VOL D IN FIELD (n High Density P B = Bailer;	5; 5/16" = 0.1 Submersible Pur TA FIELD- Filtratic placed) ng wet ice) FINAL PH 42, 5,34 < 2	004; 3/8" = 0 mp; PP = P SAMPLING INITIATED A FILTERED: Y DUPLICATE: INTEND ANALYSIS A METHO ANALYSIS A METHO PB SQTO FL FL LDPE = Low De er Pump;	0.006; eristaltic F T: 111: (N) rpe: Y ED ND/OR DD PA(1) TX.M O ensity Poly SP = Elecc	1/2" = (Pump; I % SAM EQUI C(A A A A	0.010; 5/8 O = Othe SAMPLING ENDED AT: FILTER SIZI D IPLING IPMENT ODE PP ODE Image: PP = Image: PP =	B ^{arr} = 0.016 ar (Specify) II: 2.6 E:μm SAMPLE PUN FLOW RATE mL per minut 100 mL/ L Polypropylene				

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FT 1000 General Field Testing and Measurement

		Ponna		FIELD INSTRUMEN				
				56				
			*	2020wc/268				
					INSTR	RUMENT #		
	-	applicable star	-					
		🗌 OVA] OTHER		
				s, Lot #, Bottle # and		•		
				Standar				
				PINE Standar				
				MA PINE Standar				
							•	OPINE Lamotte
				Standar				
Standard K (OVA 100pp	m isobutylene	05/10/20	<u>-166 PU</u> Estandai 521	rd L (ORP :	231 mV @25°C) <u>*</u>	<u> 10120 - 10120 - </u>	33 HANNA
DATE (m/d/y)	TIME (hr:min)	STD (A, B, C, etc.)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INITIAL, POST)	SAMPLER INITIALS
06/07/18	10:34	A	•	30.67	All and a second	NO	Initial	Ll.
1	10:35	C	7.00	7.10	1.43	YES	1	
	10:39	ß	4.00	4.00	0.00	-		
	10:44	D	10-00	10.14	1.40			
	10:48	E	500	518	3.60			
	10:31	5	1.00	1.10	10.0			
	10:33	Н	10.00	8.91	10,9			
	10:55)	100	98.9	1.00			
1	10:51		240	224.4	6,50		_	·
		, 						
			•					
	· ·							
						,		2
						;		
			1					

APPENDIX F

FDEP PURCHASE ORDER B22481 AND CHANGE ORDER 1

Florida Market Place

CHANGED: Order No. B22481

Version Number: 2 Internal Version: false Issued on Mon, 30 Apr, 2018 Created on Mon, 30 Apr, 2018 by Ariba System

Supplier:

ATC Group Services, LLC 5602 Thompson Center Ct, Suite 405 Tampa, FL 33634 United States Phone: 1813-889-8960 Fax: 1813-889-8754 Contact: Kurt Juntunen

Ship To:

DEP-PETROLEUM RESTORATION PROGRAM BMC RM 420 MS 4575 2600 BLAIR STONE RD TALLAHASSEE, FL 32399 United States

Deliver To: Caroline Herman Bill To: DEP-PETROLEUM RESTORATION PROGRAM BMC RM 420 MS 4575 2600 BLAIR STONE RD TALLAHASSEE, FL 32399 United States Entity Description: Department of Environmental Protection Organization Code: 37450404555 Object Code: 00000-131545 Expansion Option: JG Exemption Status: No Exemption Reason?:

Item	Action	Description	Part Number	Unit	Qty	Need By	Unit Price	Extended Amount
1	Modified	Contractor has been selected to perform a Low		Dollar	29,674.45	None	\$1.00000 USD	\$29,674.45000 USD

Contractor has been selected to perform a Low Score Assessment (LSA) at the Jak Service Center Inc DBA United Fuel, 6900 SW 8th St, Miami, Miami-Dade County, Florida, FAC ID 138503663. Attachment A, Scope of Work, attached to the purchase order (PO) describes the work to be completed by the Contractor. All work shall be performed in accordance with the terms of the Agency Term Contract (ATC). The PRP reference number for this project is 844-036A.

Attache

d hereto and made a part of this PO is Attachment B - Schedule of Pay Items and Other Related Documents. Pay Items are at or below the negotiated maximum rates included in the ATC. Contractor must submit the appropriate completed documents from Attachment B to the Site Manager with each deliverable, as instructed. Upon completion and approval of all work under this PO, Contractor shall submit a signed Release of Claims document, along with the final invoice. Contractor must include Subcontractor Utilization Report form, included as a tab on Attachment B, with each invoice.

The Department will retain 5% of the total amount of each payment made. Contractor may submit a request for release of retainage upon completion, and DEP approval of, all work performed under this PO.

The Department will evaluate the Contractor as specified in the Agency Term Contract.

The Contractor agrees to perform the services described in the PO in accordance with the terms of its ATC (as those terms may have been amended) which are in effect on date of issuance of the PO. The applicable ATC terms are available at the following URL: https://facts.fldfs. com/Search/ContractD etail.aspx?AgencyId= 370000&ContractId=GC 844

Distributors?: N Requester: Caroline Herman (Contracts) Ship To Code: DEP305S

State Contract ID: Contract ID: Requester Phone: PR No.: PR10316460-V2 MyGreenFlorida Content: N Method of Procurement:: J - Agency ITN [s 287.057(1) (c), F.S.] Shipping Method: Best Way FOB Code: INC-Dest FOB Code Description: Destination freight paid by vendor and included in price. Title passes upon receipt. Vendor files any claims. Encumber Funds: Yes PO Start Date: Wed, 15 Nov, 2017 PO End Date: Wed, 31 Oct, 2018 Fiscal Year Indicator: 2018 PUI#: 3701 Site Code: 370000-12 Terms and Conditions: http://dms.myflorida.com/mfmp_PO_TC P Card Order?: No

> Total \$29,674.45000 USD

Changes

- Purchase Order TimeCreated changed from Wed, 15 Nov, 2017 to Mon, 30 Apr, 2018
- Purchase Order ContentLength changed from 1385747 to 1386677
- Purchase Order Filename changed from Attachment B Schedule of Pay Items & Other Related Documents 138503663.xlsm to
 Attachment B (Revision 1) Schedule of Pay Items & Other Related Documents 138503663.xlsm
- Purchase Order StoredFilename changed from 10922533 to 11381982
- Purchase Order Date changed from Tue, 14 Nov, 2017 to Mon, 30 Apr, 2018
- Purchase Order Attachments 3 changed from (no value) to [ariba.approvable.core.AttachmentWrapper [Baseld 95432898755 17uaa7yb.d6]]
- Purchase Order Total ordered changed from \$27,041.76000 USD to \$29,674.45000 USD
- Line Item 1, Accounting, Accounting 1, ERPTransactionDate changed from 11152017 to 04302018
- Line Item 1, Accounting, Accounting 1, ERPMessage changed from SUCCESSFUL ENCUMBRANCE 60S to SUCCESSFUL ENCUMBRANCE 6SU
- Line Item 1, Accounting, Accounting 1, CurrentFLAIRAmount changed from 20,626.39 to 23,259.08
- Line Item 1, Accounting, Accounting 1, RoundedAmount changed from \$27,041.76000 USD to \$29,674.45000 USD
- Line Item 1, Quantity changed from 27,041.76 to 29,674.45
- Line Item 1, ERPTransactionDate changed from 11152017 to 04302018
- · Line Item 1, LI Amount Recorder in FLAIR changed from \$27,041.76000 USD to \$29,674.45000 USD
- · Line Item [Baseld 95432898700 17uaa7ws.6c] was deleted

Comments

- Jordan Riedel (Contracts), 11/14/2017: The following attachments are attached hereto and made a part of this Purchase Order. Attachment A – Scope of Work Attachment B, Schedule of Day Items and Other Belated Deguments (Jordan Biodel (Central Attachment B)
- Attachment B Schedule of Pay Items and Other Related Documents (Jordan Riedel (Contracts), Tue, 14 Nov, 2017) • COMMENT by Vicki Chatelain (Contracts) on 11/15/2017
- Note: Attachment B language appearing in upper right-hand corner titled "Less Surcharge" is used by the program to identify the total cost less the 6% handling and MFMP fee on reimbursable items. This information is only used as a check point for PRP staff. The total PO amount for the project is the amount appearing in the "Total Extended Cost" section in the upper right-hand side of the spreadsheet. (Vicki Chatelain (Contracts), Wed, 15 Nov, 2017)
- Jordan Riedel (Contracts), 04/30/2018: Change Order (CO) #1, Tasks #3-4 (referred to as "PO B22481 - CO 1, Tks 3-4 & PO End Date - 138503663," below) is attached hereto and made part of this Purchase Order (PO) to increase the PO amount by \$2,632.69 (new PO total \$29,674.45), and extends the task deliverable due dates & PO End Date as follows:

Task #3 is extended to 06/29/18 Task #4 is extended to 08/29/18 PO End Date is extended to 10/31/18

Attachment B (Revision 1) is attached hereto and made a part of this PO to replace Attachment B in its entirety.

It is understood that should the due date for a deliverable fall on a weekend or State observed holiday, the due date will be recognized as the next State business day.

All other terms and conditions of the PO remain unchanged. (Jordan Riedel (Contracts), Mon, 30 Apr, 2018) COMMENT by Magen Greene (Contracts) on 04/30/2018

Contractor has provided the DEP with quotes for some of the activities for this project. The terms and conditions of the DEP Agency Term Contract (ATC) apply to and control all work performed by Contractor, and DEP does not accept, agree to, or incorporate any other terms and conditions. Any terms and conditions negotiated between Contractor and any subcontractors or suppliers that seek to supplement, or are in conflict with the ATC, are not binding on or apply to the Contractor and DEP's contractual relationship. Contractor bears the risk that additional terms and conditions negotiated between it and subcontractors or suppliers will delay, interfere with or frustrate its performance under the ATC. (Magen Greene (Contracts), Mon, 30 Apr, 2018)

Attachments

- ATTACHMENT by Jordan Riedel (Contracts) on Tuesday, November 14, 2017 at 3:26 PM Attachment A - LSA Scope of Work - 138503663.pdf (124977 bytes)
- ATTACHMENT by Jordan Riedel (Contracts) on Monday, April 30, 2018 at 8:12 AM Attachment B (Revision 1) - Schedule of Pay Items & Other Related Documents - 138503663.xlsm (1386677 bytes)
- ATTACHMENT by Jordan Riedel (Contracts) on Monday, April 30, 2018 at 8:12 AM PO B22481 - CO 1, Tks 3-4 & PO End Date - 138503663.pdf (934972 bytes)

Attachment A **Petroleum Restoration Program** Scope of Work

9-Digit Facility ID Number: 138503663

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SubPhase(s): LSA

Specifications

All work must be performed in accordance with this Scope of Work (SOW) and any attachments, Chapters 62-160, 62-532, 62-777 and 62-780, F.A.C., all applicable FDEP and Water Management District guidance memoranda, standard industry procedures and as described in the Agency Term Contract (ATC).

Copies of all referenced guidelines are available at:

http://www.dep.state.fl.us/waste/categories/pcp/default.htm

Reports must be submitted using the appropriate FDEP forms found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/pg_documents.htm

All work must be conducted in accordance with PRP Standard Specification Details found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/templates.htm

The following tables are included as attachments to this SOW and further represent the details of the scope of work.

✓ Water Sampling Table \checkmark

Soil and Air Sampling Table

Soil Boring (SB) and Well Installation Table

Task 1 Description:	Perform a thorough File Review. Prepare a Health & Saftey Plan. Mobilize to the site to
	perform a site reconnaissance, and perform well gauging of up to thirteen (13) onsite
	monitoring wells, Prepare a modified assessment proposal. Please note that per the DEP site
	access agreement, a separate site access agreement between the owner and the ATC has
	been requested by the property owner or tenant. Submit an email or letter (copying the
	owner or tenant) indicating either that this separate site access agreement has been
	executed or that the owner no longer wants such an agreement with the contractor (the
	owner is content with the current DEP site access agreement). The DEP does not need a
	copy of this agreement.
Task 1 Deliverable:	Health & Saftey Plan. Historical Summary Worksheet. Field notes and photo documentation
	from the site reconnaissance including a summary of the site reconnaissance visit, and a
	proposal for modified site assessment in the next task. Email/letter confirming the
	ATC/Owner site access agreement is executed or that the Owner has retracted its request
	for a separate agreement with the ATC.
Task 1 Deliverable Due Date:	Monday, January 29, 2018
Task 2 Description:	Contingent upon written approval from FDEP. Collect and analyze groundwater samples
	from up to thirteen (13)on site monitoring wells. Prepare an Interim Assessment Report.
Task 2 Deliverable:	Interim Assessment Report including updated tables and figures, field notes, groundwater
	sampling logs, laboratory reports, and recommendations.
Task 2 Deliverable Due Date:	Friday, March 30, 2018
Task 3 Description:	Contingent upon written approval from FDEP. Advance soil borings (screening & sampling),
	collect soil samples. Due to the local limestone lithology, HSA is being used instead of hand
	augering. Prepare an Interim Assessment Report.

Attachment A Petroleum Restoration Program Scope of Work

9-Digit Facility ID Number:	138503663
STCM Facility Name:	JAK SERVICE CENTER INC DBA UNITED FUEL
Task 3 Deliverable:	Interim Assessment Report including updated tables and figures, boring logs, field notes,
	laboratory reports, and recommendations.
Task 3 Deliverable Due Date:	Tuesday, May 29, 2018
Task 4 Description:	Mobilize to the site to dispose of any IDW generated during assessment activities.
	Contingent upon written approval from FDEP. Prepare and submit a General Site
	Assessment Report in the TSAR format, including the Site Screening Information tab of the
	Site Screening Workbook (located at
	http://www.dep.state.fl.us/waste/categories/pcp/pages/screening.htm). Contingent
	funding in this task is only to be used to offset the cost for pay items associated with a Field
	Request for Change for any open task.
Task 4 Deliverable:	General Site Assessment Report and disposal manifests.
Task 4 Deliverable Due Date:	Monday, July 30, 2018
PO End Date:	Monday, October 1, 2018

Schedule of Pay Items (SPI)

All unit rates and extended prices for all line item costs associated with this project are provided in the SPI [Attachment B to this Purchase Order (PO)] and shall not exceed the rates established in the ATC.

Requests for Change (RFC)

All requests for changes to the SOW must be submitted in writing and be approved in writing by the FDEP/LP using the RFC form in accordance with paragraphs 2.A and 26 of the ATC and can be found at:

http://www.dep.state.fl.us/waste/categories/pcp/pages/templates.htm

Any change which results in an extension of the due dates, PO end date, or a change in quantities or costs, requires that a PO Change Order be formally issued prior to performance of the revised SOW.

Performance Measures

The FDEP/LP Site Manager will review the submitted documentation to confirm that all work was performed in accordance with the Specifications referenced above. The FDEP/LP Site Manager will notify the Contractor of acceptance or any deficiencies in the work and/or deliverables. The Contractor will be given an opportunity to remedy deficiencies at no additional cost to the FDEP.

The FDEP/LP Site Manager will review the work and/or deliverables within the timeframes established in FDEP guidance documents. The Contractor will respond to any comments to complete the work and/or deliverables within the timeframe established in the comment letter or email correspondence.

Invoicing, Payments and Financial Consequences

The Contractor may submit an invoice for a Task upon written notification of acceptance of the work/deliverables by the FDEP/LP Site Manager. Upon receipt of FDEP/LP written approval of the required documentation for completed portions of each task, the Contractor must submit an invoice. Invoices for completed work may be submitted no more frequently than every thirty (30) days, or upon completion of the individual tasks as specified. Each invoice request must contain all documentation of performance as specified in the ATC, this Purchase Order (PO), and its attachments.

Failure to provide all deliverables, failure to provide deliverables which are satisfactory or failure to meet the specified deliverable timetables, shall result in non-payment, loss of retainage, or other financial consequences, and/or termination of the PO, as specified in the ATC. If the deliverable due day occurs on a weekend, state holiday, or federal holiday the deliverable will be due the following business day.

Attachment A Petroleum Restoration Program Scope of Work

9-Digit Facility ID Number: 138503663

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

Retainage shall be withheld in the amount of 5%, unless otherwise noted in the SPI, from each payment by the FDEP/LP until completion and approval of all Tasks. The Contractor shall submit a Release of Claims and request for retainage payment with the final invoice. Payment of retainage will be reduced by the amount of any assessed financial consequences.

Notice of Field Activities

The Contractor must provide written notification (emails are acceptable) of field activities at least seven (7) calendar days prior to the commencement of work to all applicable parties including the PRP site manager, PRP Inspector (PRP_Inspector@dep.state.fl.us), site operator, site owner, RP and affected off-site property owners.

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

	SAMPLING TABLE																			
Task #	Well #(s) or Water Sample Location		Expedited Turnaround (TA)	Water Level/FP Gauging Only (8-7.)		(9-27.) BTEX + MTBE	(9-30.) PAHs		(9-25.) GAG/KE G - Table C	(9-41.) Lead, Total										
1	Gauge Existing Monitoring Wells			13																
2	Existing Monitoring Wells				13	12	12	12	1											
3	TCLP Leachate					1				1										
3	SPLP Leachate					5	5													
		-	Task 1 Subtotal	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	Task 2 Subtotal	0	13	12	12	12	1	0	0	0	0	0	0	0	0	0	0	0
			Task 3 Subtotal	0	0	6	5	0	0	1	0	0	0	0	0	0	0	0	0	0
	GRANE		13	13	18	17	12	1	1	0	0	0	0	0	0	0	0	0	0	

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SOIL and	AIR SAMPLING TA	BLE																	
Task #	Soil /Air Sample Locations	Frequency (if applicable)		Depth Interval (if applicable)	(9-2.) BTEX + MTBE	(9-5.) PAHs	(9-8.) TRPH (FL-PRO)	(9-8.a.) TRPH Fraction ation	(9-11.) Arsenic	(9-12.) Cadmiu m	(9-13.) Chromiu m	(9-14.) Lead	(9-15.) TCLP- Extractio n Only	(9-16.) SPLP- Extractio n Only					(8-14.) Encore Sampler
3	Soil Samples (TBD)			Highest OVA or the 2' interval directly above the water table	5	5	5	5						10					5
3	Waste Characterization TCLP				1				1	1	1	1	2						
			Т	ask 2 Subtotal	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		GRAND TOTAL	.S		6	5	5	5	1	1	1	1	2	10	0	0	0	0	5

STCM Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL

SOIL BO	SOIL BORING (SB) and WELL INSTALLATION TABLE																
	SOIL	BORING DET	TAILS		Screening	g/Split Spoor	n Intervals				V	VELL INSTALI	ATION DET	AILS			
TASK #	SK # Installation Quantity Depth E Method Quantity (ft bls) Fo			Total Boring Footage (ft)	Screening Depth Interval 1 & Spacing	Screening Depth Interval 2 & Spacing	Screening Depth Interval 3 & Spacing	Quantity	Well Type	Well Denth Screen Well Casing Cas						Total Casing Footage (ft)	Well Completion Type
3	HSA/MR 5 6 30 0-6'@2'											0			0		
	TO								0			0					

Petroleum Contamination Site Response Action Services SCHEDULE OF PAY ITEMS INVOICE RATE SHEET

	Facility Name: JAK SERVICE CENTER INC DBA UNITED FUEL		Contractor:	ATC	GROUP SE	RVICES, LLC						
7.	Digit Facility ID #: 8503663	-	CID #:		00787			Retainage %:	5%	Purchase Order:	B22481	
	County: 13	-	Contract #:		GC844	-	FDE	P Cost Share %:	100.00%	Download Date:	10/30/17 11:	37
	Region: South	-	SPI ID #:		10895	-	Tota	I Extended Cost:	\$ 29,674.45	Assginment Type:	CSF	
Si	te Manager Name: CAROLINE HERMAN	•				•	Witho	ut Handling Fee:	\$ 29,641.67			
	e Manager Phone: (305)372-6856	-	Transiti	ion A	greement:	🔿 Yes	ا ۱	No				
Si	te Manager Email: caroline.herman@miamidade.gov											
					PO Rate S	heet		Previously Invoiced	This	Invoice	Balance	
PAY ITEM	DESCRIPTION	UNIT OF MEASURE	UNITS		GOTIATED Em Price	TOTAL EXTEN PRICE	DED	UNITS	UNITS	EXTENDED PRICE	UNITS	
Task	1											
1-1.	File Review	Per Review	1	\$	350.00	\$ 35	50.00	1	0	\$-	0	
1-2.	Site Health & Safety Plan	Per Site	1	\$	200.00	\$ 20	00.00	1	0	\$-	0	
2-1.	Site Reconnaissance/Field Measurement Visit	Per Visit	1	\$	600.00	•	00.00	1	0	\$-	0	
3-1.	Mobilization, Light Duty Vehicle (car or $1/2$ ton truck) - \leq 100 miles each way	Per Round Trip	1	\$	374.50		74.50	1	0	\$ -	0	
8-7.	Water Level or Free Product Gauging	Per Well	13	\$	15.00	\$ 19	95.00	10	0	\$-	3	
		RETAINAGE				\$ 8	35.98	\$ 83.73		\$-	\$2	.25
		SUBTOTAL				\$ 1,7	19.50	\$ 1,674.50		\$-	\$ 45	.00
Task				-		-						
3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - \leq 100 miles each way	Per Round Trip	1	\$	374.50	\$ 3	74.50	1	0	\$-	0	
8-1.	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	13	\$	165.00		45.00	9	0	\$-	4	
8-11.	Electronic Data Deliverables (EDD)	Per Sampling Event	1	\$	125.00	\$ 12	25.00	1	0	\$-	0	
	Water, Gasoline/Kerosene Analytical Group-Table C of Ch. 62-780, F.A.C. (multiple methods)	Per Sample	1	\$	240.75		40.75	1	0	\$-	0	
9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	12	\$	34.00	\$ 40	08.00	8	0	\$-	4	
9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1-methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	12	\$	80.25	\$ 96	53.00	8	0	\$-	4	
9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	12	\$	67.41	\$ 80	08.92	8	0	\$-	4	
19-27.	Interim Assessment Report	Per Report	1	\$	1,400.00	\$ 1,40	00.00	1	0	\$-	0	
		RETAINAGE				\$ 32	23.26	\$ 253.93		\$-	\$ 69	.33
		SUBTOTAL				\$ 6,40	65.17	\$ 5,078.53		\$-	\$ 1,386	.64
Task	3											
1-4.	Permit Fees (actual fee only, cost to obtain permit is included in applicable pay items)	Reimbursable*	90	\$	1.00	\$	90.00	0	0	\$-	90	
1-7.	6% Handling Fee for Cost Reimbursable Items	% Surcharge	546.3	\$	0.06	•	32.78	0	456.3	\$ 27.38	90	
	Mobilization, Light Duty Vehicle (car or $1/2$ ton truck) - \leq 100 miles each way	Per Round Trip	2	\$	374.50		19.00	0	2	\$ 749.00	0	
	DPT Rig and Support Vehicles Mobilization - \leq 100 miles each way	Per Round Trip	1	\$	625.00	•	25.00	0	1	\$ 625.00	0	
	Direct Push Technology (DPT) Rig and Equipment	Full Day	1	\$	2,999.00		99.00	0	1	\$ 2,999.00	0	
	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	1	\$	165.00		65.00	0	1	\$ 165.00	0	
	Soil/Sediment Sample Collection	Per Sample	6	\$	50.00		00.00	0	5	\$ 250.00	1	
	Electronic Data Deliverables (EDD)	Per Sampling Event	1	\$	125.00	\$ 12	25.00	0	1	\$ 125.00	0	
8-14.	Encore (25 gram) for SPLP Soil Sample Collection: [Per Encore]. The cost will include the 25 gram Encore samples submitted to the laboratory for SPLP testing and the 25 gram Encore samples collected in the field but not submitted to the laboratory for testing (discarded).	Per Sample	5	\$	18.00	¢ (90.00	0	5	\$ 90.00	0	
	Soil, BTEX + MTBE (EPA 8021 or EPA 8260)	Per Sample	5 6	ֆ \$	35.31		11.86	0	5 5	\$ 90.00 \$ 176.55	0	_
		Per Sample Per Sample	5	э \$	74.90		74.50	0	5 5	\$ 176.55 \$ 374.50	0	
	Soil, Polycyclic Aromatic Hydrocarbons (EPA 8270 or EPA 8310) Soil, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	-	5	ֆ \$	67.41		74.50 37.05	0	5	\$ 374.50 \$ 337.05	0	_
	Soil, Total Recoverable Petroleum Hydrocarbons (PL-PRO) Soil, TRPH Fractionation (MADEP-EPH/VPH Method or TPHCWG Direct Method)	Per Sample Per Sample	5 5	э \$	265.00		25.00	0	5 0	\$ <u>337.05</u> \$ -	5	_
J-0.d.	oui, TREDETALIUNIAIUN (MADEE-EED/VED MELIUU UT TENGWG DITECT MELIUU)	rei Sampie	5	φ	205.00	φ 1,3/	20.00	U	U	φ -	5	

Petroleum Contamination Site Response Action Services SCHEDULE OF PAY ITEMS INVOICE RATE SHEET

				Р	O Rate S	heet	Previously Invoiced	Thi	is Invoice	Balance
PAY ITEM	DESCRIPTION	UNIT OF MEASURE	UNITS		DTIATED PRICE	TOTAL EXTENDED PRICE	UNITS	UNITS	EXTENDED PRICE	UNITS
9-11.	Soil, Arsenic (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-12.	Soil, Cadmium (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-13.	Soil, Chromium (EPA 6010 or EPA 6020)	Per Sample	1	\$	12.00	\$ 12.00	0	0	\$-	1
9-14.	Soil, Lead (EPA 6010 or EPA 6020)	Per Sample	2	\$	12.00	\$ 24.00	0	1	\$ 12.0	0 1
9-15.	Soil, Toxicity Characteristic Leaching Procedure-Extraction Only (EPA 1311)	Per Sample	2	\$	60.99	\$ 121.98	0	0	\$-	2
9-16.	Soil, Synthetic Precipitation Leaching Procedure-Extraction Only (EPA1312)	Per Sample	10	\$	60.99	\$ 609.90	0	0	\$ -	10
9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	7	\$	34.00	\$ 238.00	0	1	\$ 34.0	D 6
9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1-methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	6	\$	80.25	1	0	1	\$ 80.2	5 5
9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	1	\$	67.41	\$ 67.41	0	1	\$ 67.4	1 0
9-41.	Water, Lead, Total (EPA 200.7, EPA 200.8, EPA 6010 or EPA 6020)	Per Sample	2	\$	10.50	\$ 21.00	0	1	\$ 10.5	0 1
19-27.	Interim Assessment Report	Per Report	1	\$	1,400.00	\$ 1,400.00	0	1	\$ 1,400.0	0 0
22-1.	Well Installation 1.5 Inch Diameter (vertical) by Direct Push	Reimbursable*	456.3	\$	1.00	\$ 456.30	0	456.3	\$ 456.3	0 0
		RETAINAGE				\$ 544.01	\$-		\$ 398.9	5 \$ 145.07
		SUBTOTAL				\$ 10,880.28	\$-		\$ 7,978.9	4 \$ 2,901.34
Task	1									
3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - ≤ 100 miles each way	Per Round Trip	1	\$	374.50	\$ 374.50	0	0	\$-	1
12-6.	Transport and Disposal of Petroleum Impacted Soil (includes drum)	Per Drum	3	\$	200.00	\$ 600.00	0	0	\$-	3
12-13.	Transport and Disposal of Petroleum Contact Water (includes drum)	Per Drum	1	\$	185.00	\$ 185.00	0	0	\$ -	1
19-3.	General Site Assessment Report	Per Report	1	\$	1,950.00	\$ 1,950.00	1	0	\$-	0
21-15.	P.G. or Qualified P.E. Review, Evaluation and Certification of a General Site Assessment Report	Per Report	1	\$	500.00	\$ 500.00	1	0	\$-	0
23-1.	Contingent Funding - Allowance only to be used as offset for field change orders	NOT BILLABLE	7000	\$	1.00	\$ 7,000.00	n/a	n/a	n/a	7000
		RETAINAGE				\$ 530.48	\$ 122.50		\$-	\$ 407.98
		SUBTOTAL				\$ 10,609.50	\$ 2,450.00		\$-	\$ 8,159.50
		TOTAL COST				\$ 29,674.45	\$ 9,203.03		\$ 7,978.9	4 \$ 12,492.48
Version:	10.0	·	Ov	vner Co	st Share:	\$ -	\$-	l	\$ -	\$ -
			FI	DEP Co	st Share:	\$ 29,674.45	\$ 9,203.03	1	\$ 7,978.9	4 \$ 12,492.48
				R	etainage:	\$ 1,483.72	\$ 460.15	1	\$ 398.9	5 \$ 624.62
			FDEP	Less R	etainage:	\$ 28,190.73	\$ 8,742.88	1	\$ 7,579.9	9 \$ 11,867.86

Site Manager Approval:

Print Name

Signature

Date of Review Letter

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program

Request for Change - Authorization for Change in Scope of Work

9-Digit Facility ID #: 138503663	Ref #: 844-036A	PO #: B22481
Facility Name: FUEL Jak Service Center INC DBA United Fuel	FDEP Cost Share %: 100.00%	CO #: 1
Site Manager Name: CAROLINE HERMAN	Contract #: GC844	CO Type: Regular
Site Manager Phone: (305)372-6856	Contractor: ATC GROUP SERVICES,	
Site Manager Email: caroline.herman@miamidade.gov	Contractor Phone: (305) 882-8200	

This is an authorization for the costs associated with the change in quantities of services being provided and/or deliverable due dates. In order for these costs to be paid, these changes must be processed through a change order to the purchase requisition and a revised Purchase Order issued by MFMP prior to initiating work.

Description of Change and Justification: Include complete description of who, what, where, when, how and why.

Per the RER/DERM Interim Assessment Report review transmittal email (in Oculus), the following items will be required in addition to those items currently specified in the Task 3 scope of work: analysis of the soil sample collected from proposed soil boring SB-5 for lead analysis; monitoring well installation – 1.5 inch diameter (vertical), as detailed on the attached Soil Boring and Monitoring Well Installation table; and collection of a groundwater sample from the "new" well for BTEX, MTBE, PAHs, TRPH and lead. Copies of permits, laboratory results, updated tables, groundwater sampling logs, and well construction logs will be included in the Task 3 deliverable, Interim Assessment Report. Request a 30-day extension of time for all remaining deliverables. The use of a direct push rig is specified since the mast on a rotary drill rig is to tall to fit beneath the canopy to advance three of the four soil borings. A 1.5-inch diameter well is specified in lieu of a 2-inch diameter well because the direct push rig will be used to install the well and 1.5-inch diameter prepack is the largest that the DP rig can install. A quote for installation of a 1.5-inch x 13 feet deep monitoring well including 8-inch manhole and concrete pad prepared by the direct push contractor is attached.

TASK	PAY ITEM	DESCRIPTION	UNIT OF MEASURE	PAY ITEM PRICE	QUANTITY	EXT	ENDED PRICE
3	1-7.	6% Handling Fee for Cost Reimbursable Items	% Surcharge	\$0.06	546.3	\$	32.78
3	9-14.	Soil, Lead (EPA 6010 or EPA 6020)	Per Sample	\$12.00	1	\$	12.00
3	3-7.a.	DPT Rig and Support Vehicles Mobilization - ≤ 100 miles each way	Per Round Trip	\$625.00	1	\$	625.00
3	5-3.a.	Direct Push Technology (DPT) Rig and Equipment	Full Day	\$2,999.00	1	\$	2,999.00
3	22-1.	Well Installation 1.5 Inch Diameter (vertical) by Direct Push	Reimbursable*	\$1.00	456.3	\$	456.30

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program Request for Change - Authorization for Change in Scope of Work

9-D		CHEL	# 844-036A		PO	#: B2248	1
_	Facility Name	E FUEL CH Jak Service Center INC DBA United Fuel FDEP Cost Share %	: 100.00%		CO	#: 1	
3	3-1.	Mobilization, Light Duty Vehicle (car or 1/2 ton truck) - ≤ 100 miles each way	Per Round Trip	\$374.50	1	\$	374.50
3	8-1.	Monitoring Well Sampling with Water Level, ≤ 100 foot depth	Per Well	\$165.00	1	\$	165.00
3	9-27.	Water, BTEX + MTBE (EPA 602, EPA 624, EPA 8021 or EPA 8260)	Per Sample	\$34.00	1	\$	34.00
3	9-30.	Water, Polycyclic Aromatic Hydrocarbons, including 1- methylnaphthalene + 2-methylnaphthalene (EPA 610 [HPLC], EPA 625, EPA 8270 or EPA 8310)	Per Sample	\$80.25	1	\$	80.25
3	9-36.	Water, Total Recoverable Petroleum Hydrocarbons (FL-PRO)	Per Sample	\$67,41	1	ş	67.4
3	9-41.	Water, Lead, Total (EPA 200.7, EPA 200.8, EPA 6010 or EPA 6020)	Per Sample	\$10.50	1	\$	10.5
3	1-4.	Permit Fees (actual fee only, cost to obtain permit is included in applicable pay items)	Reimbursable*	\$1.00	90	\$	90.00
3	3-9.a.	Drill Rig and Support Vehicles Mobilization (hollow stem auger, mud rotary or sonic) - ≤ 100 miles each way	Per Round Trip	\$1,050.00	-1	\$	(1,050.00
3	5-1.a.1.	Split Spoon Sampling – 2 foot (during boring) < 50 feet	Per Spoon	\$34.75	-15	\$	(521.2
3	5-6.	HSA or MR Boring, ≤ 6 inch diameter, < 50 foot total depth	Per Foot	\$24.76	-30	s	(742.8

"For reimbursable pay items the cost listed is a "not to exceed" amount. Fees will be reimbursed for the pay item based on the actual invoice. Please note, the unit of measure for these items will be displayed as dollars for invoicing purposes. Please refer to the Scope of Work for additional description of these items.

Florida Department of Environmental Protection-Division of Waste Management-Petroleum Restoration Program **Request for Change** - Authorization for Change in Scope of Work

Task		LCH Jak Service Center INC DBA United Fuel	FDEP Cost Share %: 100.00%	CO	# 1
	Deliverable Name		Previous Due Date	New Due Date	Change Order Subtotals
3	Interim Assessme	nt Report	5/29/2018	6/29/2018	\$ 2,632.69
4	General Site Asse	ssment report and disposal manifests	7/30/2019	8/29/2000 2018	\$ -
		Period of Se	rvice: 10/1/2018	10/31/2018	\$ 2,632.69
FDEF	Representative: P Site Manager: ative Reviewer:	Dwight W. Schwendernan (Print Name) CAROLINE HERMAN (Print Name) James Fletcher (Print Name)	Previous End Date	New End Date	Total Authorized Cost (FDEP Share: 100%) 4/25/2018 (Date) 4/25/2018 (Date) 4/26/2018 (Date)
Technical Ap	proval (optional):	4126/18			
ost Center Ap	proval (optional):				

STCM Facility Name: JAK SERVICE CENTER DBA UNITED FUEL

SOIL BORING DETAILS Screening/Split Spoon Intervals							Intervals	WELL INSTALLATION DETAILS									
TASK #	Installation Method	Quantity	Depth (ft bls)	Total Boring Footage (ft)	Screening Depth Interval 1 & Spacing	Screening Depth Interval 2 & Spacing	Screening Depth Interval 3 & Spacing	Quantity	Well Type	Well Diameter (in)	Depth (ft bls)	Screen Interval (ft bis)	Total Well Footage (ft)	Surface Casing Diameter (in)	Surface Casing Depth (ft)	Total Casing Footage (ft)	Well Completion Type
3	DPT			0		h		1	MW	cm=11/2	13	3-13	13	10 million 1		0	8" MH
	TO	TALS		0	10000								13			0	

Direct Push Technology Quote Form JAEE@bellsouth.net (954) 476-8333 (Office) (954) 476-8347 (Fax)

Contact: Dw	1		
6	0	Date: 4/257	16
		1 1	
<i>n</i> . 1			
Conficto -	unde	1 1001	in us had
Services 10	i wance	i ma pr	puner
34 Interio	n tule	1	
o 10 10 SLAM	4 perce	·)	
	-0		
	-	_	
UNIT	RATE	NUMBER OF UNITS	EXTENDED
whole day			\$
half day	1 million - 1		\$
per foot	1		\$
each fait	35,10	13	\$ 416.30
each			\$
each	-		\$
per well		8. 7	\$
roundtrip		5 ()	\$
			\$
each	1	0	\$
each	1	1	\$
			\$
			\$
			\$
	Тс	otal Quote Price	456.30
			0070/0
	Seurces -	Seuricos fa institu 3 fd, 10's cuen, funder UNIT RATE whole day half day per foot each each per well roundtrip per night/crew each each a cuent roundtrip per night/crew each cuent	Sewices to institut one per Sewices to institut one per Std, 10's cleh, fundel) UNIT RATE NUMBER OF UNITS whole day half day per foot each each per well roundtrip per night/crew each

3101 Peachtree Cir. Davie, FL 33328

Signature of Person Submitting Quote:

Contract Company Address:

APPENDIX G

FIELD NOTES

Location 6900 SW Bth St. Miani Date 01/18/18 65 Project / Client Jak / United - FDEP FDEP ID No. 13/8503663 FDEP PO WO B22481 Dwight W, Schwendeman ATE Jeep Patriot ATTIVE: 1132 Repart:1435 weather; Sunny 60-650F N/0-15 dejective; Conduct site Inpection - Noticy owner Julia Ugan ou-site - Review HASP, JSAS \$ SOW · Walk site with Map from + DERM Compliance 1993 CAR Well & DTW ITB Remo LAR TTB Remailles MW-1 MW-2 MW-3 110-4 Wells from CAR site mw-5 Plan chearly not Identified 1410-6 with MW-7 Respect to New Site MW-8 Layout -> Used DERM Comp Map 6.94 Needs Cap MW-1 19,1 6.99 MW-1 18:1 6.96 Milv-3 12,0 19.3 MW-H 1.12 14.7 1hw 5 6:70 MW-6 0,10 13.3

Project/Client Jak/United · FDEP 67 Date Location Project / Client FPEP ID: 13/8503663 DWS
 Vell
 DTW
 DTB
 Remarks

 Did=1 MW-9 6,89 14,6
 Needs Cap

 MW-7 6,63 13,0
 Weeds Cap

 MW-7 6,63 13,0
 Weeds Cap

 MW-8 6,33 14,6
 11

 MW-8 7,13 12.7
 11
 Discussed insportion briefly with J. Ugan and departed site 1.4 Rete in the Rais
Location Jak/United Fuel Date 02/21/19 J Project/Client 6800 SW 8th Street, Miami, FL FDEP ID No. 13/3503663 FDEP PO No. 322481 Puright W. Schwende man - ATZ Jeep Patriot Leif Rodney - ATC Dodge Rain 1500Pu depart: LE arrive: 1015 weather: M-Sunny & 82-85°F ESE 15+ objectives Conduct GW sampling pe Task, 2 of POB22481 2 DERM e-mail update - Review MASP, JSAS 2 800 -Notify owner Rep (Jose) ou-site equipment - Caliboate Glus · Gauge DT W/ Survey Well Tols Remarks well DIW RR 1 6,70 4,61 \$ ReplacedCap 2 Replaced Cap 4,61 ± 3 Need Low Pro Cap 6.69 4.63 Replaced Cap 4 4.49 \$ 6:81 5 Replaced Las 6.43 5.87 5.50 Roplaced Cap 5.83 6 6.37 Replaced Cap 7 8 Replaced Cap 6.05 5.28 ReplacedCap MW-B 6.80 4.44

Location 6900 SW Sth St, Miami Date 02/21/2015 Project/Client Jak Service Center / United Fuel 2101430699 Leif Rodney ATC Doglge RAM 1500 Arrive: 1033 Depart: 15:13 Weather: SI cloudy T: ~ 750 F Objective: Ground water sampling event (2 Day) - Called owner upon arrival - Reviewed HASP, USA ESOW - walked site with map for well identificat noi Sampling / pepth to water - MW/, MWZ, MW3, MW4 * Assistd D. Schwendeman w/ Survey monitoring well top-of-casting elevations for wells. - MWI, MWZ, MWB, MWG, MWG, MWG, MWT, MW8, MWB

6 Location 6900 SW 8th St, Miami Date 02/22/2018 Project / Client Jak Service Center / United Fuel - FDEP 2101430699 Leif Rodney / ATC Dodge RAM Arrive 09:25 Depart: 14:00 Weather: 770 F Cloudy objective: Groundwater Sampling MW5/6/9/A/B - Owner informed yesterday assignment was for two days - HASP, JSA & SOW Reviewed yesterday - Walked Site for well location retrester Sampling / Depth to Water - MW7, MW8, MW6, MWS, MWB

128 Miami Location 6900 SW Sth Street, Date 06/05/18 Miami Location 69005W 8th Street Date 06/05/18 129 Project / Client Jak gervice Conter aba cuited Fuel Project / Client Jak Service Center dba United Fuel FDER Not 13/ PO NO. FJEP No. 13/ PO NO. Durglot W. Schwendergan - ATC Jeep Patriol + Soil loor Juge / Sampling Continued Leff Rodney - ATC Dodge Ram Lithology 58-2 assive; 0850 depart: Dus 1145 OUA PID FILLES QU 1010 0-2 concrete weather: An-sunny = BO-92°F WS-10 0,19 Sand pal brown Trend, y 2-4 objective Advance 5 535 to 0,1 to light grey LS@ 3.5" <0,1 61 bind nistall 13' very light a cer toutite 1020 V MW S R-1 1041) Noticy Ji ligen on-site 10250-2 concrete LS 6" Sand Conduct taildate safety 20,1 greyish brown trending mating review HASP, JSAS 2011 to pale brown KS f Sold 10404 rG CO.1+ @ 3.5! very light quey to - Set up DP rig @ SB-3 ocation white to si hand clear to 5' SB-5 asphalt/concrete Depth E'n. LS 0-2 concret Lithology 58-3 1055 Sound with 40 H OVA (PIP) LS Frags 1.5 Sand Boown 2-4 19250 - 2. 0,3 Fill - LS mix with P-rock 0.5 trend ight prown LS@3,5x0,1 Fill-LS 2-21 <011 pole brown Sand grey to Hoh grey mot < 0.1 Sand grey staining- Pet opos 4-6 grey staining light Pet ador Sand into & grey 0935 6-8 5B-4 Concrete, LS. Fill, 1105 grey * hay Sample 0945 0-2 09" Sand Pale brown mist 40,1 - Install monitoring well (MW-9) 2.4 Sand grey trendrys 501 MW - 7 - DTW = 6.15'0955 4-6 5 Sand Tight reddigh @ \$B-5 Location 0.1 well construction - 1.5" & x 13" deep with * brown 10 of pre-pack scoren with 3" Dog 6-9 Grey staining-Pet oder

Ludlam Trail Corridor PD&E Study

Contamination Screening Evaluation Report

Medium Risk Site - 2

Dade County School Board - Transportation

Wheatcroft, Belinda

Subject:

FW: Dade County School Board Transportation FAC ID# 13/8628726 - TSAR-

From: Dan Warmke <dwarmke@aetllc.com>
Sent: Monday, November 26, 2018 3:36 PM
To: Maldonado, Rafael <<u>RMaldonado@ene.com</u>>
Subject: RE: Dade County School Board Transportation FAC ID# 13/8628726 - TSAR-

Hi Rafael

Attached is the TSAR for the Dade County School Broad Transportation Facility (13-8628726) in Miami, FI. Please give me a call if you have any questions or require any additional information.

Thank you,

Dan Warmke, P.G. Project Manager/Geologist Advanced Environmental Technologies, LLC 4265 New Tampa Highway Lakeland, Florida 33815 800.989.8298, X132

DATE:	November 26, 2018			
PO#/TA#/WO# :	AF4CB5			
Site FDEP Facility ID #	13/8628726	Score: 10		
Site Name:	Dade County School BD-			
	Transportation			
Address:	7011 SW 4 TH Street			
City:	Miami, Florida			
County:	Miami - Dade			
Consultant Company:	Advanced Environmenta	Technologies		
		Technologies		
Address:	4265 New Tampa Hwy			
City, State, Zip	Lakeland, Florida 33815			
Consultant Rep.:	Daniel Warmke			
Phone #:	(800) 989-8298			
Responsible Party Name: Address:	School Board of Miami- 12525 N.W. 28th Avenu			
City, State, Zip:	Miami, Florida 33167			
Responsible Party Rep.:	Jorge Corrales			
Phone #:	305-995-7881			

TEMPLATE SITE ASSESSMENT REPORT [Signature Page]

CERTIFICATION:

Qualified Registered Professional Engineer or Registered Professional Geologist Certification. I hereby certify that I have supervised the field work (as summarized in the "Recent Site Assessment Activities" section) and preparation of this report, in accordance with Florida Rules and Regulations. As a registered professional geologist and/or professional engineer, as authorized by Chapters 492 or 471, Florida Statutes, I certify that I am a qualified groundwater professional, with knowledge and experience in groundwater contamination assessment and cleanup. To the best of my knowledge, the information and laboratory data summarized in the "Recent Site Assessment Activities" section (including the applicable attachments) are true, accurate, complete, and in accordance with applicable State Rules and Regulations. *Include a hard (paper) copy of this cover page, signed and sealed, when submitting the report electronically.*

Consultant Name: Daniel Warmke

Signature: Aamel Marmhe

Date: $\frac{11/36}{18}$ PE or PG License #: 0001792 (BHHHH)

Site Name:
Facility ID
Date:

Dade County School Board

	· · · · · · · · · · · · · · · · · · ·
#:	13/8628726
	11/26/18

TABLE OF CONTENTS

SECTIONS INCLUDED IN REPORT:					
x List of Attachments					
X SECTION I - Facility and Discharg	e Inform	ation/Ini	tial Abatement		
Fill out this section for each site in the cluster.	C	luster Site Ind	lex (if applicable)		
A) Site Description		FDEP ID #	Site Name		
	Part one				
B) Petroleum System/Tank History	Part two Part three				
C) Release Information	Part four				
D) Initial Abatement/Source Removal	Part five Part six				
x SECTION II - Background Site Ass	sessment	Informa	tion		
A) Receptor Investigation					
B) Previous Non-Closure Assessment					
C) Previous Remediation					
	a ant A ati				
	ient Act	lvilles			
A) Soil Investigation					
B) Groundwater Investigation					
C) Free Product Investigation					
D) Comments					
X SECTION IV - Impacted Media					
A) Lithologic Summary					
B) Hydrologic Summary					
C) Risk Evaluation					
X SECTION V - Post Assessment Sur	nmary &	k Recom	mendations		
	<i>Fill out this section <u>after</u> site assessment has been completed.</i>				
A) Site Assessment Summary	1				
B) Recommendations					
C) Comments					
X SECTION VI - Program Issues (for state funded cleanup sites)					
A) Work Plan and Cost Summary					
Appendices					
rppondious					

(Appendix ID)	(Contents)
Α	Tables
В	Figures
С	2012 Potable Well search and receptor survey
D	Boring logs, GWS Logs, Calibration Logs, Field Notes
Е	Soil & Groundwater Analytical Results
F	Purchase Order, Change Orders, Attachment A, SCS Summary
	Worksheet

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

LIST of ATTACHMENTS

(Formats for Tables and Figures are provided in FDEP Petroleum Cleanup Preapproval Program Standard Operating Procedures (SOP) Manual, 5th Edition, April 2005 and subsequent updates, SOP PCS-004, SOP PCS-005, SOP PCS-006 and the October 1998 Assessment Report Preparation guidance). Updated Table formats can be found at the Petroleum Cleanup website.

TABLESATTACHEDTA	BLE #	AP	PENDIX
Assessment Tables			
X SOIL SCREENING RESULTS	1		A
X SOIL ANALYTICAL RESULTS	2A-D		Α
X GROUNDWATER ANALYTICAL RESULTS (monitoring wells)	4A-B		A
GROUNDWATER ANALYTICAL RESULTS (direct push)			Α
X GROUNDWATER ELEVATION DATA	3		Α
MONITORING WELL CONSTRUCTION DATA			Α
SUPPLY WELL CONSTRUCTION DATA (includes			Α
well owner name and address information) X SITE ASSESSMENT SUMMARY FORM	6		Α
OTHER: SPLP Analytical and MADEP EHP/VPH	3A-B		Α

TEMPLATE SITE ASSESSMENT REPORT School Board

Site Name:	Dade County S
Facility ID #:	13/862
Date:	11/26

28726 11/26/18

FIGURES

ATTACI Assessmen		FIGURE #	APPENDIX
X	SITE PLAN - including current and/or former tank locations, piping/utilities, and extent of soil excavations (if applicable)	<u>1</u> A	B
X	SITE VICINITY AREA USE MAP - including all potential off-site sources of contamination and water wells located within 500 feet	<u>1B</u>	В
	POTABLE WELL LOCATION MAP - A USGS quadrangle map illustrating all municipal/public and private supply wells located with 1/2 and 1/4 mile, respectively (respective radii illustrated)	in	<u> </u>
X	SOIL SAMPLING LOCATIONS - including data collected during monitoring well installation	2	В
X	SOIL SCREENING DATA PLOTTED - including data collected from monitoring well installations. <u>This map can include recommended</u> boring locations		<u> </u>
X	GROUNDWATER SAMPLING LOCATIONS - including all monitoring well and direct push sampling locations	5	<u> </u>
X	GROUNDWATER CONTAMINANT CONCENTRATIONS Benzene, BTEX, MTBE & Naphthalene concentrations plotted at each sampling point. <u>This map can include recommended well locations</u>	- <u>5</u>	<u> </u>
<u>X</u>	GROUNDWATER ELEVATION CONTOUR MAP(S) - with flow interpretation for each impacted zone. <u>Note, previous flow</u> interpretations should be submitted when they are not consistent with the current flow interpretation(s)	4A thru 4B	<u> </u>
X	GROUNDWATER PLUME INTERPRETATION(S) - with contaminant isoconcentration contours plotted for each significant contaminant of concern (or total BTEX)	5A thru	<u> </u>
	ESTIMATED FREE PRODUCT PLUME AREA - including thickness measured		
	GEOLOGIC/HYDROLOGIC CROSS-SECTION - including lithologic, well screen and depth to water fluctuation information		
	PROPOSED SOIL BORING AND MONITORING WELL LOCATIONS (if not illustrated in another figure)		
X	OTHER: USGS Topographic Map	1C	В

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

FIGURES (continued)

_

ATTACHED Remediation Figures	FIGURE #	APPENDIX
REMEDIAL SYSTEM SITE LAYOUT - showing remedial sy layout and locations of major system components (e.g., monitoring and recovery wells, system housing, effluent discharge, etc.)		

	REMEDIATION SYSTEM SCHEMATIC - showing treatment influent/effluent discharge, etc.			
O'	THER:	Soil SPLP Summary Map	3B	В

MISC. ATTACHMENTS

ATTACHED	APPENDIX
LABORATORY ANALYTICAL REPORTS - including COCs required for all sampling	<u> </u>
GROUNDWATER SAMPLING LOGS – form FD 9000-24 is required for all groundwater sampling	D
FIELD INSTRUMENT CALIBRATION RECORDS- form FD 9000-8 is required for all groundwater sampling	D
WELL CONSTRUCTION & DEVELOPMENT LOGS recommend using Petroleum Cleanup Program forms	D
BORING LOGS recommend using Petroleum Cleanup Program forms	D
CONTAMINATED SOIL AND/OR GW VOLUME AND CONTAMINANT MASS CALCULATIONS	
COPIES OF OFF-SITE ACCESS AGREEMENTS	
COPY OF APPLICABLE WORK ORDER, PURCHASE ORDER, OR TASI ASSIGNMENT	K F
COPY OF APPLICABLE CHANGE ORDERS	F
COPY OF DISPOSAL MANIFESTS - to document IDW soil and/or groundwater disposal	
AQUIFER TEST CALCULATIONS	

T - TSAR

TEMPLAT	E SITE ASSESSMENT REPORT		
Site Name:	Dade County School Board		
Facility ID #	t: 13/8628726		
Date:	11/26/18		
	CHRONOLOGY OF FIELD WORK PERFO - a list of what was performed and when performed	ORMED	
	COPY OF PREVIOUS REMEDIAL ACTIC APPROVAL ORDER	ON PLAN	
	COPY OF PREVIOUS SITE (OR CONTAN ASSESSMENT REPORT APPROVAL LET	,	
	OTHER:		
	OTHER:		
	ORIGINAL SIGNED AND SEALED PROP	FESSIONAL LAND SURVEY	
	ELECTRONIC COPY OF PROFESSIONA	L LAND SURVEY	
	ELECTRONIC COPY OF TEMPLATE SIT	TE ASSESSMENT REPORT	

TEMPLATE SITE ASSESSMENT REPORT			
Site Name:	Dade County School Board		
Facility ID #:	13/8628726		
Date:	11/26/18		

SECTION I - Facility & Discharge Information/Initial Abatement Site Name

Cluster Site		
Part	Facility FDEP#	Site Name:

I-A) Site Description

Please provide a brief description of the site and a summary of site history and operations. What type of business or businesses (if any), non-petroleum as well as petroleum, operated at the former/present site? If petroleum, describe where all former and current fuel tanks, lines and dispensers were/are located (indicating how this information was obtained). Describe any access constraints (utility conduits, canopies, land cover, etc.) which also might influence the placement of monitoring wells and/or the installation of soil borings. Indicate whether there are any owner issues or traffic concerns which might affect when the work can be performed? <u>Please indicate when the requested information is best illustrated on the site map.</u>

This site is currently active and is used as administration offices, fleet maintenance for all vehicles and parking for the Miami-Dade County School System. The site is located at 7001 SW 4th Street in Miami, Florida, and sites on 11.87 acres. Currently, no fuel of any type is being dispensed from here.

Based on information obtained from FDEP and Miami-Dade County, there have been ten (10) UST's removed from the site and five (5) abandoned in place in 1989. The UST's were located in several different locations throughout the property. This property has four (4) different areas of investigation and seven different (7) releases located within its boundaries. For the purpose of this investigation AET is only focusing on Area 4 from the site.

Within area 4, there have been three (3) reported releases. The first was in January 1984 and is PCPP eligible, the second was in July 1987 and is also PCPP eligible. The third was in December 2012 and is a non-program release. In area 4, there are 5 UST's abandoned in place, are 4,000-gallon in size and are believed to be located in two (2) pits; 3 to the south and 2 to the north of the current pump island. There are conflicting reports as to their actual location and it appears that they were filled with concrete. There are also two (2) 12,000-gallon underground storage tanks (UST). These 2 UST's dispensed unleaded gasoline and diesel fuel from 1989 until 2013 when they were listed as inactive. The pump island is covered with an overhead canopy located on the west central portion of the property with the current UST's directly to the north.

There are many underground utilities running under the entire property, AET used GPR to locate the subsurface utilities and lines located in area 4. The property cannot be accessed without proper permission. All work needs to be coordinated through the Dade County School Board in advance.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

I-B) Petroleum System/Tank History

List current and former UST's and/or AST's operated at site. Systems (PAST AND PRESENT) must be illustrated on Site Plan. This information should be a summary of the Department's STCM database, all tank closure reports (if applicable) and site owner & operator information.

<u>ID#</u>	AST or	Size	Installation	Contents	<u>Status</u>	Date Removed
	<u>UST</u>	(gallons)	Date	(unleaded gasoline/	(active, removed or	or Abandoned
				diesel/etc.)	abandoned [in place])	(if applicable)
1	UST	4000	Unknown	unleaded gasoline	Removed	1989
2	UST	4000	Unknown	Unleaded gasoline	Removed	1989
3	UST	4000	Unknown	Leaded gasoline	Abandoned	1989
4	UST	4000	Unknown	Leaded gasoline	Abandoned	1989
5	UST	4000	Unknown	Leaded gasoline	Abandoned	1989
6	UST	4000	Unknown	Leaded gasoline	Abandoned	1989
7	UST	4000	Unknown	Leaded gasoline	Abandoned	1989
8	UST	1000	Unknown	Unleaded gasoline	Removed	1989
9	UST	500	Unknown	Kerosene	Removed	1991
10	UST	500	Unknown	Unknown	Removed	1991
11	UST	3000	Unknown	Leaded gasoline	Removed	1989
12	UST	3000	Unknown	Leaded gasoline	Removed	1989
13	UST	3000	Unknown	Unleaded gasoline	Removed	1989
14	UST	3000	Unknown	Unleaded gasoline	Removed	1989
15	UST	500	Unknown	Unknown	Removed	1991
16	UST	12000	07/1989	Diesel	Out of service	2013
17	UST	12000	07/1989	Unleaded gasoline	Our of service	2013

-If above information is different than the Department's STCM database, please indicate source of updated information:

Tank ID # 2, 3, 4, 5, 6, 7 and 16 &17 listed above are located within the area 4 investigation site.

Active Site? If yes, please indicate method, date and extent of latest tank and line tightness test (include copy of tightness test results). If tank tightness test results are

NO X

YES

not available, please explain why they are not necessary or indicate when next tightness test will be performed.

Fuel is not being dispensed from the property at the current time.

Copy of tightness test results included in Appendix

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

I-B) Petroleum System/Tank History (continued)

Petroleum System Closure? If yes, briefly describe type of petroleum system (AST, UST, distribution lines, etc.) and closure activities conducted. <u>Description not</u> needed if copy of system tank closure report included.

X NO

Note: Section I-C should be used to document soil, groundwater or product removal performed during closures.

The 5 UST's abandoned in place are 4,000-gallon in size and are believed to be located in two (2) pits; 3 to the south and 2 to the north of the current pump island. There are conflicting reports as to their actual location and it appears that they were filled with concrete.

The two (2) 12,000-gallon UST's are listed as inactive.

Description of system closure activities included in attached tank closure report.

Copy of tank or system closure report (if applicable) included in Appendix

I-C) Release Information

Discovery Date(s)	<u>Program Type(s)</u> : ATRP, EDI, PCPP, PLRIP or Non-program (please indicate if a non-program discharge has been combined with an eligible discharge)
1/1/1984	PCPP
6/6/1986	Non-Program
6/24/1987	PCPP
6/16/1989	Non-Program
7/8/1992	Non-Program
11/11/1996	Non-Program
12/4/2012	Non-Program
	1/1/1984 6/6/1986 6/24/1987 6/16/1989 7/8/1992 11/11/1996

-Source description and release history that includes date(s) of release(s), cause(s) of release(s), where they occurred, type(s) of product released and volume(s) of release(s) [please explain how estimates were derived].

There have been multiple discharges reported for this site in different areas of the property, for the purpose of this report, we are only reporting on discharges 1 and 3 from the above, reported on 1/1/1984 and 6/24/1987. During an inspection of the site in June 1987, monitor wells were checked and a sheen was observed in MW-6 and a thin layer of product was also observed in MW-9. It was unknown how much product was released, and it was from an unknown source. PCPP eligibility is for area 4 (tank pit area) only.

- Suspected type(s) of product released:

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

I-D) Initial Abatement/Source Removal

(Soil/Groundwater/Free Product removal during tank closures):

Was soil	contamination	detected during	petroleum system
closure?	If ves. please brief	y describe extent of per	roleum impacts and

The area of this investigation is around the UST pit where the five (5) 4000-gallon UST's are abandoned in place and the two (2) 12,000-gallon out of service UST's are located. Soil was not investigated during the closure of the 4,000-gallon UST's.

Site map (Figure) illustrating soil sampling loc	ations is included in Appendix
Tabular summary of soil	sampling results (Table) is included in Appendix

Was contaminated soil removed? If yes, please describe the horizontal and vertical extents of the soil removal and indicate where contaminated soil might still exist.	YES	X	N/A
Approximate depth to water at time of excavation (i	if known)	feet bls	
Approximate amount removed tons yd	b^3 Date	2:	

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

I-D) Initial Abatement/Source Removal (continued)

Was groundwater contamination detected during
petroleum system closure? If yes, please indicate whether wells were
installed (including their construction details if possible) and indicate the
maximum levels for petroleum contaminants of concern that were detected.

Compliance wells were installed around the UST's prior to abandonment and during the compliance inspection in 1987, sheen and product was observed in two of the wells. It was this discharge that prompted the abandonment of these 5 tanks in 1989. There are no records of when the monitor wells were installed.

Site map (Figure) illustrating groundwater sampling locations is in	ncluded in Ap	pendix	
Was contaminated water removed? If yes, please identify removal location(s) and describe method of removal.	YES	NO	N/A
Approximate volume removed: gallons Date	(s):		
Disposal method:			

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

I-D) Initial Abatement/Source Removal (continued)

Was free product detected during petroleum system

YES	NO	
	Х	

YES

NO

Х

N/A

N/A

closure? If yes, please describe location(s) where product was observed and thickness observed.

Site map (Figure _____) illustrating locations where free product was observed is included in Appendix Tabular summary of product thickness (Table ______) is included in Appendix ______

Was free product removed? If yes, please identify removal location(s) and describe method of removal.

Volume removed: _____gallons Date(s): _____

TEMPLATE SITE ASSESSMENT REPORT Dade County School Board

Site Name:	,
Facility ID #:	13/8628726
Date:	11/26/18

SECTION II - Background Site Assessment Information

II-A) <u>Receptor Investigation</u>

Are large (>100,000 gallons per day) public supply potable wells located within 1/2 mile? If yes, please indicate distance(s) and direction(s) from site, if they are located downgradient and if the well(s) are screened deeper than contamination. If unknown, please explain.

YES	NO
	X

According to the 2012, Potable Well Survey (PWS), there are no large public supply wells within $\frac{1}{2}$ mile of the site. A copy of the 2012 PWS is included in **Appendix C**.

 Potable well survey map (Figure
) is included in Appendix
 C

 Potable well construction summary (Table
) is included in Appendix

Are water wells, including irrigation, industrial and all potable wells (<100,000 gallons per day), located

within 1/4 mile? If yes, please identify the type(s) of wells, their distances and directions from the site, if they are located downgradient and if the well(s) are screened deeper than the contamination. If unknown, please explain.

According to the 2012, Potable Well Survey (PWS), there are no small potable wells within $\frac{1}{4}$ mile of the site. A copy of the 2012 PWS is included in **Appendix C**.

Water well survey map (Figure) is included in Appendix C	
Water well construction summary (Table) is included in Appendix	

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

II-A) Receptor Investigation (continued)

Was an area use survey performed? If yes, please identify all water wells within the survey area (as identified in the database searches and walk through

В

Unknown

NO

Х

YES

survey), all surface waters, any basements or other subsurface structures and any other receptors which might be impacted. Please indicate predominant property use in area and if there are any potential off-site contamination sources located within at least a one block radius of the contaminant plume.

Lake Mahar is located approximately ¹/₄ mile N/NE from the northern property line of the site. The surrounding area is commercial and residential in this area.

Area use survey map (Figure 1B) is included in Appendix

Are there any potable wells that have been impacted_by contamination? If yes, please describe what was done to provide

users of the contaminated potable well(s) an alternative drinking water supply. If unknown, please explain.

Based on the 2012 PWS, there are no large public supply wells or small potable wells with $\frac{1}{2}$ and $\frac{1}{4}$ mile of the site, respectively.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

II-A) Receptor Investigation (continued)

Are there any surface water bodies which have been impacted by the contamination? If yes, please describe what (if anything) has been done to abate or prevent contamination impacting surface water. If unknown, please explain.

YES

NO

Unknown

Are the Chapter 62-777, F.A.C., (effective April 17, 2005) default Cleanup Target Levels (CTLs) for soil and groundwater the

cleanup goals for this site?

If no, please indicate if the cleanup goals are from the 1999 version of Chapter 62-770, F.A.C., or pre-1999, apply to this site (providing the reason why) or if alternative cleanup target levels have been or might be established for this site (outlining all engineering and/or institutional controls which already exist or will need to be implemented in the future).

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

II-B) Previous Site Assessment

Information not described in Section I ("release information" or "initial abatement/source removal")

Was site assessment work performed? If yes, please indicate who performed it (with reason performed) and dates performed (see table below)

List of all reports where site assessment information was originally submitted to the FDEP (oldest to most recent):

Date of report July 7, 1992	<u>Title of report</u> Contamination Assessment Report	<u>Company that prepared report</u> Southeast Environmental Consultants
July 30, 1993	Contamination Assessment Report Addendum	Blasland, Bouck & Lee
October 23, 2015	Site Assessment Report	Nutting Environmental of Florida, Inc.
September 28, 2016	Site Assessment Report Addendum	Nutting Environmental of Florida, Inc.
January 29, 2018	Interim Report	AET LLC
		YES NO

Was soil assessment performed? If yes, please briefly describe work performed and discuss results. <u>A description of the sampling results can be omitted</u> if the data are included with current tabular summaries and soil plume maps (if applicable).

NO

The 1993 CAR Addendum documented that 5 soil borings and 5 test borings were advanced in area 4 of the site. There was no indication of impacted soil from any of the soil samples collected for this CAR Addendum. A major portion of this CAR Addendum was conducted on other portions of the property not related to the area 4 assessment area. However, this report recommended a Monitoring Only Plan (MOP) in area 4 however, the MOP was not implemented.

In October 2015, a non-program assessment was performed in area 4. Monitor wells MW-1,2,3 and 4 all contained free product surrounding the currently inactive 12,000-gallon UST's. Soil and groundwater assessment were conducted. Contaminants above SCTL's were not identified in any soil samples collected.

Additional assessment was conducted in 2016 and was reported in the SAR Addendum dated September 28, 2016. In the 2016 non-program assessment, it was recommended that the two (2) 12,000-gallon UST's be removed. To date, the UST's have not been removed from the site.

X Results included in current soil OVA screening and soil analytical summary tables.

Site map (Figure	2) illustrating sampling l	location	ns is included in Appendix	В	_
Tabular summa	ry of soil	sampling results (Table	1) is included in Appendix	А	

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

II-B) Previous Site Assessment (continued)

Any monitoring wells installed? If yes, briefly identify where the wells were installed and describe their construction. Please indicate if the wells are still	X	
on-site. The well descriptions and can be omitted if the information is included in a cur	rent tabu	lar
summaries.		

There are 14 groundwater monitor wells in the Area 4 assessment area. Five (5) Monitor wells MW-9 thru MW-13 were installed by Nutting Environmental during a Non-Program related assessment in 2015. There is no information in the database on when MW-1 thru MW-8 and MW-A were installed. It is assumed that they could have been installed during the July 1992 CAR, but this report is not located in the data base.

Site map (Figure	1) illustrating well lo	ocations is included in Appendix	В
Tabular summary of wel	l constru	ction details (Table) is included in Appen	dix

Has direct push (geoprobe)	groundwater	grab-s	ampling	been
C 19				_

NO
Х

YES

YES

NO

performed? If yes, briefly identify the locations and depths where the samples were collected. <u>A description of the sample locations and results can be omitted if the information is included in current site maps and tabular summaries</u>

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

II-B) Previous Site Assessment (continued)

Was groundwater sampling performed? If yes, briefly describe what sampling was performed and summarize results. <u>A description of the sampling results can be omitted</u>	Χ	
if the data are included with the current tabular summaries and groundwater plume maps (i	f applic	able).

Three (3) monitor wells MW-3, MW-4 and MW-13 in the Area 4 were sampled during the 1993 CAR Addendum. Groundwater analytical data from these three wells were all below Groundwater Target Cleanup Levels GCTLs). In the 1993 CAR Addendum, a MOP was recommended but was not implemented.

During a compliance inspection in 2012, free product was reported in Monitor wells MW-1, 2, 3 and 4, a DRF was submitted, and in 2013 the tanks were listed as inactive. The October 2015, non-program site assessment report documented soil/groundwater sampling activities in area 4. Monitor wells MW-1, 2, 3, and 4 all reported free product surrounding the current inactive 12,000-gallon UST's.

Additional assessment was conducted and reported in the 2016 SAR Addendum. In this 2016 non-program assessment, it was recommended that the two (2) 12,000-gallon UST's be removed. The removal of the UST's was never performed.

X Results included in current groundwater analytical summary table.

 Site map (Figure _____) illustrating sampling locations is included in Appendix

 Tabular summary of groundwater results (Table _____) is included in Appendix

Has free product been observed in wells or excavations (not including tank and/or system closures)? If yes, please describe. <u>A description</u>

of the thickness measured can be omitted if the previous data are included with the current tabular summaries and illustrated on current free product plume maps (if applicable).

During a compliance inspection in 2012, free product was reported in Monitor wells MW-1, 2, 3 and 4, a DRF was submitted, and in 2013 the tanks were listed as inactive. Free product was also identified in monitor wells MW-1, MW-2, MW-3 and MW-4 during the 2015 and 2016 CAR and CAR Addendum, respectively.

YES

YES

Х

NO

NO

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

II-B) Previous Site Assessment (continued)

	YES	NO
Has the previous site assessment been approved by the	X	
FDEP (was a CAR or SAR approval letter issued?)	$ \Lambda $	
	October 4, 199	
Date site assessment (or contamination assessment) was approved:	October 4, 199	-5
II-C) Previous Remediation		
II-C) <u>I Tevious Reinculation</u>	YES	S NO
Has a Remedial Action Plan been prepared? If yes, please br		
describe the remedial strategy. <u>The description of the remedial strategy can</u>		
omitted if the RAP was implemented (this item will be addressed in the active r	remediation section	on that follows).
Date of RAP: Prepared by:		
Remedial Action Plan approved by FDEP. Date of RAP approv	al order	
	YES	S NO
Was soil examption (not associated with a system alogure)		
Was soil excavation (not associated with a system closure)		
performed? If yes, please briefly describe work performed and discuss	s results.	
The description of the source removal can be omitted if already discussed in the	initial abatemen	t section.
Approximate depth to water at time of excavation (if know	(n) t	feet
Site map (Figure) illustrating sampling locations and extent of excava		
	d in Appendix	
future summing of son sumpring results (ruble) is include	- III TPPOINT	

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

II-C) Previous Remediation (continued)

Has active remediation been performed? If yes, please indicate dates performed (each applicable technology), evaluate previous system effectiveness and indicate if any previous equipment is still available for cleanup.

YES

Identify type(s) of active remediation previously performed:

Air Sparging & Vapor Extraction	Groundwater Recovery (pump &	treat) Multiphase Extraction (w/dual phase)
Limited scope well over-development	Excavation	Enhanced Bio-Remediation (ORC, etc.)
Free Product Recovery	Other:	

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

SECTION III - Recent Site Assessment Activities

III-A) Soil Investigation

[soil sampling]

Was soil (vadose zone and smear zone) investigated? If yes, please provide a brief discussion of soil sampling methodology, including the method(s) used to collect the laboratory samples. If no, please explain.

As per the current Work Scope (PO# AF4CB5) AET preformed the following soil investigation:

On 10/19/17, AET was on-site to conduct a GPR survey to locate unknown utilities, lines and subsurface features in area 4.

On 12/18/17, AET on-site to advance fifteen (15) soil borings (SB-16 to SB-31) to a depth of 14-ft using direct push technology. Soil samples were analyzed for BETX/MTBE, PAHs, TRPH, MADEP and SPLP.

On 4/26/18, Miami Dade County Schools agreed to a Conditional Site Closure

On 5/25/18, AET re-sampled soil boring SB-31 and SB-32 to confirm soil exceedances for Conditional Closure.

On 5/29/18, it is reported that soil samples from SB-31 and SB-32 were not received by the laboratory.

On 6/25/18, AET re-sampled SB-31 and SB-32 for MADEP Speciation.

On 7/9/18, AET reports that soil samples SB-31 and SB-32 were received at the subcontracted lab out of temperature thresholds.

On 9/5/18, AET re-sampled SB 31 and SB-32; results indicated a TRPH exceedance in both samples. Benzo (a) pyrene was also exceeded in SB-32 @ 1-2-ft.

Date of last soil screening event (OVA data) with or without laboratory sampling:

Site map (Figure <u>3A</u>) illustrating sampling locations is included in Appendix <u>B</u>

 Tabular summary of soil screening results (Table 1) is included in Appendix A

 Tabular summary of laboratory soil sampling results (Table 2A-) is included in Appendix A

Soil sampling logs (for laboratory samples) are included in Appendix D

Soil samples (previous sampling events included) have been collected and analyzed for:

Required for all suspected GAG & KAG contaminated sites.

x BTEX/MTBE (<i>low//high</i>)	x PAHs	x TRPHs
Required for all s	ites where Used Oil contam	ination is suspected.
Priority Pollutant Volatile	. As, Cd, Cr, F	b TRPHs

Organics & Extractable Organics

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

III-A) Soil Investigation (continued)

	YES	NO	N/A
Was soil Investigative Derived Waste (IDW) generated?		\mathbf{V}	
If yes, please describe method used for identifying soil needing disposal:		X	
IJ yes, please describe method used for identifying son needing disposal.			
	1		
Volume of contaminated soil disposed of:	drums	си.	yds.
Disposal method:			
[soil results]			
	YES	NO	N/A
Was soil contamination above applicable Cleanup Target			
Was soil contamination above applicable Cleanup Target	X		
Levels identified above the water table? If yes, identify where			
concentrations above CTLs were detected, depths encountered and corresponding	ig OVA re	adings. If n	o, please
indicate whether laboratory results agree with OVA readings (if they do not agree	•		•
OVA screening data and/or reliability of laboratory results). If "N/A", please ex	-	0	
SB-31 (4-ft) and SB-32 (4-ft) reported TRPH above Residential I		xposure Le	evels in the
		-	
sampling events. Additionally, Benzo(a) pyrene equivalents were e	exceeded	I III SD-32((1-2-11) and
in SB-32(4-ft) in the sampling events.			
Approximate volume of vadose zone soil contamination:	си. у	vds.	
Site map (Figure <u>3A-B</u>) illustrating extent of soil contamination is inc	cluded in A	Appendix	В
Soil concentration summary (Table 2A-) is included in	n Appendi	x A	
D			
D			

TEMPLATE SIT	E ASSESSMENT	REPORT

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-A) Soil Investigation (continued)

Was vadose zone soil contamination delineated? If no, please describe where additional borings should be located (indicating proposed depths of investigations). If "N/A", please explain.	X	NO	N/A
Site map (Figure) illustrating proposed sampling locations is i	ncluded in App YES	pendix NO	
Has a smear zone been identified? Definition: The "smear zone is the soil contamination located within the zone of water table fluctuation (it	e" X		
has been described as a "secondary source" of contamination). If yes, please contaminant mass distribution in the smear zone. If no, please describe wha borings, well data, etc.). If "N/A", please explain.	discuss the hol		
Based on historical and current groundwater elevation data and appears to exist between 4-ft to 5.5-ft.	depths to w	rater, the sm	ear zone
Site map (Figure) illustrating proposed sampling locations is i	noluded in Are	andix	

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-B) Groundwater Investigation

[monitoring wells/direct push]

Were monitoring wells installed (or abandoned)? If yes, briefly identify

which wells were installed/abandoned and describe their construction. <u>The well locations</u> and construction details can be omitted if the information is included in current site maps and tabular summaries.

) illustrating the well locations is included in Appendix Site map (Figure Tabular summary of well construction details (Table ______) is included in Appendix Monitoring well completion reports are included in Appendix

Was direct push (geoprobe) groundwater grab-sampling

performed? If yes, briefly identify the locations and depths where the samples were collected. <u>A description of the sample locations and results can be omitted if the information is</u> included in current site maps and tabular summaries

) illustrating the groundwater sampling results is included in Appendix Site map (Figure

 Tabular summary of groundwater sampling results (Table
) is included in Appendix

YES

YES

Site Name:	Dade County School Board	
Facility ID #:	13/8628726	
Date:	11/26/18	

III-B) Groundwater Investigation (continued)

[groundwater sampling]

Was groundwater sampling performed? If yes, please provide a brief discussion of groundwater purging and sampling methodology and identify the wells that were sampled. If no, please explain. <u>A description of the sampling results can be omit</u>

<u>information is illustrated in current contaminant plume maps and tabular summaries</u> On 8/24/17, AET was on-site and conducted a receptor survey and collected depth to water data from all 14 wells.

On 10/8/17, AET reported that due to a laboratory error, it was believed that hold times for MW-10, MW-11 and MW-12 were exceeded.

On 10/31/17, AET was on-site to re-sample monitor wells MW-10, 11 and 12.

If groundwater sampling not performed, indicate date of last sampling event (if applicable): Indicate wells sampled on that date (if applicable):

 Site map (Figure ______5) illustrating the groundwater sampling results is included in Appendix _____B

 Tabular summary of groundwater sampling results (Table _____AB___) is included in Appendix _____A

Groundwater field sampling logs are included in Appendix D

Groundwater samples (previous sampling events included) have been collected and analyzed for:

Required for all suspected GAG/KAG sites.

X BTEX/MTBE	X PAHs	X TRPHs
Required for all con	ntaminated GAG/KAG sites.	
EDB	Lead (Pb)	VOHs
Required for all suspected u	used oil (or unknown fuel type) cont	aminated sites.
Priority Pollutant Volatile Organics & Extractable Organics	As, Cd, Cr, Pb	TRPHs

<i>r</i>		
tted	l if the	

NO

YES

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-B) Groundwater Investigation (continued)

	YES	NO	N/A
Was groundwater IDW generated? If yes, please explain why lisposal on-site was not possible.		Χ	
Volume of contaminated groundwater disposed of:	drum	IS	gallons
oundwater results]	VEG	NO	27/1
Was anound water contamination identified above the	YES	NO	N/A
Vas groundwater contamination identified above the	X		
pplicable Cleanup Target Levels? If yes, indicate locations here highest concentrations detected with depths encountered. If "N/A", pl	ease explain		
RPH was identified at 8,300 μ g/L in monitor well MW-11 in the		e-sampling	event.
		e samping	••••
Approximate volume of contaminated groundwater:		gallons	
Plume maps [Figure(s) 5A] illustrating extent of	f groundwater	contaminatio	on
is/are included in Appendix B			

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-B) Groundwater Investigation (continued)

Has horizontal delineation been completed in the surficial aquifer? If no, please describe where additional sampling is required (indicating wells and needed analyses) and/or additional monitoring wells should be installed (indicating proposed screened intervals for each). If "N/A", please explain.	N/A
An additional monitor well to the north of MW-11 should be installed.	
Site map (Figure) illustrating proposed monitoring well locations are included in Appendix	
Has vertical delineation been completed in the <u>plume</u>	N/A
area? If no, please describe where additional sampling is required (indicating needed analyses) and/or identify locations where vertical extent well(s) should be installed (indicating prepared areas and be an and be and be an	1g
proposed screened intervals, single or double cased and length of surface casings). If "N/A", please explain. There were no vertical extent wells installed during this investigation nor are there any vertice extent wells currently existing in the investigation area.	cal
Site map (Figure) illustrating proposed vertical extent well locations are included in Appendix]

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-B) Groundwater Investigation (continued)

<i>Is the lower aquifer(s) contaminated?</i> If yes, please describe location and estimated depth of contamination. If unknown, please explain.	YES	NO	Unknown X
There are no vertical extent wells in the area of investigation.			
Cross-section (Figure) illustrating vertical extent of contamination is	included in	n Appendix	
	YES		NO
Were natural attenuation parameters data collected? If yes,			X
please specify which parameters were collected (and where collected) and provide			Δ
interpretation of results.			
Site map (Figure) illustrating natural attenuation parameter of Appendix	iata is inclu	uded in	
	cluded in .	Appendix	

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-B) Groundwater Investigation (continued) [impacted receptors]

Have any supply wells or surface waters been impacted? Image: Stepse indicate concentration(s) of water sample(s) taken and the wells/surface water body/bodies impacted. If unknown, please explain. Image: Stepse indicate concentration(s) of water sample(s) taken and the wells/surface water body/bodies impacted. If unknown, please explain. Is surface water and/or sediment sampling required? If yes. Image: Stepse indicate water samples should be collected, and the proposed analyses. Image: Stepse indicate water samples should be collected, and the proposed analyses. It have: Image: Stepse indicate water samples should be collected, and the proposed analyses. Image: Stepse indicate water samples should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results. I funknown, please explain. Site map (Figure) illustrating sampling locations is included in Appendix		YES	NO	Unknown
If yes, please indicate concentration(s) of water sample(s) taken and the wells/surface water body/bodies impacted. If unknown, please explain. Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Not: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Site map (Figure) illustrating sampling locations is included in Appendix	Have any supply wells or surface waters been impacted?		\mathbf{V}	
wells/surface water body/bodies impacted. If unknown, please explain. Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. NO Unknown Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. NO Unknown Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown please explain. YES NO Unknown Inknown Site map (Figure) illustrating potable well locations are included in YES NO Unknown Site map (Figure) illustrating potable well locations are included in YES NO Unknown			$ \Lambda $	
YES NO Unknown Is surface water and/or sediment sampling required? If yes, X Image: Comparison of the proposed analyses I hote: surface water sampling results should be collected, and the proposed analyses. X Image: Comparison of the proposed analyses I hote: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. YES NO Unknown Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, image: X X Image: X				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, X please indicate where samples should be collected, and the proposed analyses. X [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. X Site map (Figure) illustrating sampling locations is included in Appendix YES NO Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. X				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown				
Is surface water and/or sediment sampling required? If yes, please indicate where samples should be collected, and the proposed analyses. Image: Collected in the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Image: Collected in the proposed analyses. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown		YES	NO	Unknown
please indicate where samples should be collected, and the proposed analyses. Image: Collected, and the proposed analyses. [Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Site map (Figure) illustrating sampling locations is included in Appendix YES NO Unknown YES NO Unknown, please explain. YES NO Unknown YES Please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. Site map (Figure) illustrating potable well locations are included in	Is surface water and/on a diment sampling nearing d? If			
[Note: surface water sampling results should be summarized with the groundwater analytical results and sediment sampling results should be summarized with the soil analytical results.] If unknown, please explain. Site map (Figure) illustrating sampling locations is included in Appendix Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. Site map (Figure) illustrating potable well locations are included in Appendix YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, please explain.				
sampling results should be summarized with the soil analytical results.] If unknown, please explain. Site map (Figure) illustrating sampling locations is included in Appendix Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. Site map (Figure) illustrating potable well locations are included in Appendix				
Site map (Figure) illustrating sampling locations is included in Appendix YES NO Are there any potable wells that need to be sampled? If yes, please indicate wells to be sampled, and the proposed analyses. If unknown, please explain. X Site map (Figure) illustrating potable well locations are included in YES		•		l sediment
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X	sampling results should be summarized with the soil analytical results.] If unkno	wn, please e:	xplain.	
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, YES X Image: Comparison of the proposed analyses please explain. Site map (Figure) illustrating potable well locations are included in				
Are there any potable wells that need to be sampled? If yes, YES NO Unknown please indicate wells to be sampled, and the proposed analyses. If unknown, X	Site man (Figure) illustrating compling locations is included in	Annondin		
Are there any potable wells that need to be sampled? If yes, X please indicate wells to be sampled, and the proposed analyses. If unknown, X please explain. Y Site map (Figure) illustrating potable well locations are included in	Site map (Figure) mustrating sampling locations is included in	I Appendix		
please indicate wells to be sampled, and the proposed analyses. If unknown, TA		YES	NO	Unknown
please indicate wells to be sampled, and the proposed analyses. If unknown, TA	Are there any notable wells that need to be sampled? If yes		\mathbf{V}	
please explain.			$ \Lambda $	
Site map (Figure) illustrating potable well locations are included in				
	pieuse expluin.			
	Site map (Figure) illustrating potable well locations are inc Appendix	iudea in		

Appendix

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-C) Free Product Investigation

Is free product present? If yes, please indicate where product has been observed and its thickness, describe the product (color, odor, etc.) and estimate the type and age of the product.

Free product was not present during the 2017 and 2018 assessments; however, free product was present during the 2015 and 2016 assessments for a non-program related release in monitor wells MW-1 MW-2, MW-3 and MW-4.) illustrating free product thickness at well locations is included in Appendix Site map (Figure Tabular summary of free product thickness (Table) is included in Appendix YES NO N/A Has the extent of free product been delineated? If no, please describe where additional wells or piezometers should be located. During the 2015 and 2016 assessments conducted by Nutting Environmental, free product was not present and contained in the Tank Pit area only. Site map (Figure) illustrating locations of proposed piezometers or wells is included in Appendix YES NO N/A Is free product recovery ongoing? If yes, please indicate the method Х and frequency of removal and summarize recovery efforts to date.

Tabular summary of product recovery amounts (Table) is included in Appendix YES NO N/A If free product recovery is not ongoing, are free product Х recovery efforts recommended? If yes, please indicate the proposed method and frequency of removal. If no, please explain why product removal is not recommended. It was previously recommended that the 12,000-gallon UST's be removed from the site. To date, the USTs have not been removed from the site. Site map (Figure) illustrating locations of proposed additional piezometers and/or wells for free

product recovery is included in Appendix

NO

Х

YES
Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

III-D) <u>Comments</u>

Any issues or concerns not addressed in previous questions which might help better describe the degree and extent of the contamination at this site.

In the 2015 and 2016 non-program Site Assessments, free product was identified in monitor wells MW-1 thru MW-4. It was recommended that the two 12,000-gallon UST's be removed and the removal and disposal of any impacted soil. During the 2017 & 2018 investigation, there was no free product measured in any of the monitor wells. It is possible that free product could exist inbetween the current out of service UST's. The presence of free product could be an occasional re-occurring event in this area.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

SECTION IV - Impacted Media

IV-A) Lithologic Summary

The impacted aquifer(s) can be best characterized by the following description (predominantly): Select One

Please describe a typical soil column and all defined aquifers (perched/upper/lower). This should include a brief description of the site lithology (using the Unified Soil Classification System), and all other geologic and/or hydrogeologic characteristics of the area which might influence migration or transport of the contamination.

Site map illustrating proposed lithologic boring locations (Figure _____) is included in Appendix

TEMPLATE SITE	ASSESSMENT REPORT			
Site Name:	Dade County School Board			
Facility ID #:	13/8628726	_		
Date:	11/26/18	_		
Have all the	blogic Summary e monitoring well tops-of-c ibe why this information has not be	en obtained. [Note, the TOC		
•	have to be performed by a Profession	•		
are installed prid	or to the survey, then the TOCs show	uld be included in the Professi	onal Land Survey.]	
			YES NO	
date of survey, w performed it. Al	ssional land survey perfor whether it was saved on disk (indicat so indicate which monitoring wells ap must be based on the profession	ting type of program), and who (if any) were included in the s		
	Is original signed a	nd sealed professional land su	rvey included?]
Is copy of electr	onic version of land survey (labeled	with ID #, site name & report	date) included?	
			YES NO	
in the upper average depth to	to groundwater and groun r zone aquifer been detern water and fluctuation range (low/h	nined? If yes, please indicat	e X	
explain.	ly and October 2017, groundw	voter compling events den	th to water ranged from A	73
	pectively. There are no deep (v			

Site map(s) [Figure(s)] illustrating upper zone water table elevations and interpretation(s)

 of groundwater flow direction(s) is/are included in Appendix

 Tabular summary of all groundwater elevation data (Table ______) is included in Appendix

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

IV-B) Hydrologic Summary (continued)

	YES
<i>Have depth to groundwater and groundwater flow direction(s) in</i>	
lower and/or intermediate aquifer(s) been determined?	
If yes, please indicate average depth to water and fluctuation range in vertical extent wells	5

(low/high stand). If no, please explain.

Site map [Figure(s)____] illustrating lower/intermediate zone water table elevations and interpretation(s) of groundwater flow direction(s) is/are included in Appendix _____

YES

Are perched aquifer conditions suspected? If yes, please indicate	
estimated depth and thickness of perched zone and whether perched zone extends	
across entire site.	

Site map (Figure) illustrating estimated lateral extent of perched zone (when it does not extend across entire
site), water level elevati	ons and interpretation(s) of groundwater flow direction(s) is/are included in Appendix

	YES	NO	Unknown
Is the site tidally influenced? If yes, please indicate tidal fluctuation range and whether groundwater flow direction might change during tidal cycle.		X	
If unknown, please indicate whether this issue is important at this site (outlining	data colle	ection plan if	needed).

Site map(s) [Figure(s)] illustrating changes in flow direction is/are included in Appendix

NO

Х

NO

Х

Site Name:	E ASSESSMENT REPORT Dade County School Board				
Facility ID #:	13/8628726				
Date:	11/26/18				
IV-B) Hydr	ologic Summary (continued)				
IV-B) Hydr	ologic Summary (continued)		VES	NO	Unknown
		rs haina	YES	NO	Unknown
Is groundw	ologic Summary (continued) ater flow in the impacted aquife by pumping from nearby water	0	YES	NO	Unknown

Aquifer test data and calculations included in Appendix

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

IV-B) Hydrologic Summary (continued)

Depth to groundwater in upper zone water-table wells (ft):		5.72	Average (ft):	4.91
Depth to groundwater in lower zone vertical extent wells (ft):	 to		Average (ft):	
Observed maximum range of upper zone fluctuation (ft):	 Tidall	y influenc	ced? Yes No	X

IV-C) Risk Evaluation

Is human health, safety, or welfare affected by exposure to the contamination or will the contamination substantially affect, or migrate to and substantially affect a known public or private source of potable water? If yes, please describe in detail.

i.		

YES

NO

Х

SECTION V - Post Assessment Summary & Recommendations

Filled out AFTER site assessment has been completed

V-A) Site Assessment Summary

The Site Assessment Summary table shall be completed and submitted as an attachment to this TSAR. The summary is a separate Excel worksheet. Site Assessment Summary completed and included as Table <u>5</u> in Appendix A.

Are all the documents submitted to date adequate to meet the site assessment requirements of Rule 62-780.600, Florida Administrative Code (F.A.C.)?

V-B) Recommendations

Is No Further Action (NFA) without conditions recommended? If yes, please provide reasons NFA is appropriate.

NO

Х

NO

YES

Х

YES

YES

Is No Further Action (NFA) with conditions recommended?		
If yes, please provide reasons conditional NFA is appropriate and describe the		
conditions [the needed institutional or engineering controls] pursuant to Rule 62-770.6	580(2), F.	<i>A</i> . <i>C</i> .

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

V-B) Recommendations (continued)

If the groundwater plume is shrinking or stable is there any reason that Remediation by Natural Attenuation (RNA) cannot be the selected remedial strategy?

YES

If no, outline the proposed monitoring plan including monitoring wells, sampling parameters and sampling frequency. If yes, specify why natural attenuation is not appropriate.

AET recommends the installation of an additional monitor well north of MW-11. AET also recommends sampling monitor wells MW-1 thru MW-4, MW-10 thru MW-12, and the proposed new monitor well on a quarterly basis for one year. Based on the groundwater analytical data, AET will recommend the appropriate course of action (i.e., additional monitoring, site closure, etc.).

Monite	oring Wells: MW-1, 2, 3	, 4, MW-10, 1	1, 12, propose	ed well	
Contaminants:	BTEX/MTBE, PAH,	Frequency:	quarterly	Duration:	1 year
-	TRPH				
				YES	NO
	oval (soil or free pro	,		If yes, X	

As per the 2015, and 2016, assessment reports, AET would also recommend the removal the two (2) 21,000-gallon tanks currently listed as inactive in the area 4 investigation area. Free product was identified in the four (4) wells, MW-1 thru MW-4 around these tanks. If free products exist within the tank pit area, the excavation of the USTs could aid in the source being abated.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

V-B) Recommendations (continued)

Is a Limited Scope Remedial Action Plan (LSRAP) needed? If yes, please provide reasons for performing limited remediation and briefly outline

YES

NO

plan for remediation. At this time, a LSRAP is not recommended. Based on future analytical data, a LSRAP may be considered.

Site map (Figure_____) illustrating locations of any proposed recovery wells (if applicable)

is included in Appendix

If RAP already approved for site...

YES	

Is a Remedial Action Modification Plan (RAMP) needed? If yes, please provide reasons for continuing approved RA at the site and indicate proposed modifications.

At this time, a RAPMOD is not recommended.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

V-B) Recommendations (continued)

Is a Remedial Action Plan (RAP) needed? If yes, please provide reasons for performing in-situ remediation at the site and indicate which remediation technology or combination of technologies is recommended or should be evaluated

Is a Pilot Test recommended? If yes, please indicate recommended

remedial technology and outline specifics of proposed pilot test. Details include

(with reasons for recommendation).

At this time, a RAP is not recommended. Based on future analytical data, a RAP may be considered.

area of site where test is planned, recovery/air sparging well construction details, which wells will be used to evaluate test, proposed recovery and/or pumping and/or blowing rates and plan for IDW disposal (if applicable). *The FDEP should be consulted before preparing a pilot test outline.*

At this time, a Pilot Test is not recommended. Based on future analytical data, a Pilot Test may be considered.

Site map (Figure_____)

) illustrating pilot test layout is included in Appendix

YES

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

V-C) <u>Comments</u>

Any issues or concerns not addressed in previous questions which might influence remediation decisions at this site.

In the 2015, and 2016, non-program Site Assessments, free product was identified in monitor wells MW-1 thru MW-4. It was recommended that the two (2) 12,000-gallon UST's be removed and impacted soil be removed and transported off-site to an approved disposal facility for proper disposal. During the 2017, and 2018, investigation, free product was not measured in any of the monitor wells sampled. It is possible that free product could still exist in-between the current out of service UST's, which could be a continual source of contamination to the soil and groundwater in this area.

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

<u>SECTION VI</u> - Program Issues (for state funded cleanup sites)

List of all consultant company personnel (not subcontractor employees) that participated in the field work or helped to prepare the report:

<u>Name</u>	Duties		<u>Dates On-Site</u> (if applicable)	
Andres Sanchez	E.I./Reviewer	2017	thru	2018
Dan Warmke, P.G.	Report Perpetration/Review	2018	thru	2018
Justiano Marquez, G.I.T.	Field Scientist	2017	thru	2018
Gabrielle Brooks, E.I.	CADD	2018	thru	2018
Jerry Reeves, LEP #405	Senior P.M./Reviewer	2018	thru	2018
			thru	

VI-A) Work Plan and Cost Summary

Briefly summarize initial work plan.

Copy of original work order or task assignment is included in ap	opendix	
	YES	NO
Was any extra work authorized? If yes, please summarize extra work planned for site.	X	
Change and #9 was approved to conduct a CDD survey to locate w	tiliting lines	and arrhansufa a a

Change order #8 was approved to conduct a GPR survey to locate utilities, lines and subsurface features in area 4.

Change order #12 was approved to collect confirmatory soil samples from SB-31 and SB-32.

Copies of all authorization forms are included in Appendix F

Site Name:	Dade County School Board
Facility ID #:	13/8628726
Date:	11/26/18

VI-A) Work Plan and Cost Summary (continued)

Was any planned work <u>not</u> performed? If yes, please describe work not performed with reasons why not performed.	YES	X
Are there any changes in cost from original work order, purchase order, or task assignment? If yes, please describe the changes and cost adjustments that will be required for invoicing.	YES	NO
Change Order #2 approved contingency funds of \$7,000. Change Order #8 added costs of \$1,819.48 to conduct the GPR surve Change Order #12 added costs of \$1,677.94 to collect and analyze SB-32.	•	from SB-31 &
Copies of all needed subcontractor and/or materials invoices and draft ch included in Appendix F	ange order cost t	emplate

APPENDIX A

TABLES

	Soil Headspa		outhwest 4th	Table 1A g Photo-Ionization Detector (PID) (n Street Miami, Miami-Dade County e-2866, FDEP Facility ID#: 8628726	ν, Florida					
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments					
		Trator								
SB-1	6/30/2015	~ 5'	0 - 2'	2.8						
			2' - 4'	2.3						
			4' - 6'	4.9						
			6' - 8'	1.6						
					No odors or staining observed					
	Lithology:	0 - 2"	Asphalt		-					
		2" - 12"		quartz fine sand with limestone fragme	ents					
		12" - 3'	-	wn quartz fine sand with limestone frag						
		3' - 3'6"		wn quartz fine sand						
		3'6" - 5'	-	quartz fine sand						
	-	5' - 7'	Loose light brown quartz fine sand with some limestone fragments							
		7' - 8'		quartz fine sand						
Boring	Date	Depth to	Depth	Field Headspace Testing	Comments					
J		Water		Results (in ppm)						
SB-2	6/30/2015	~ 5'	0 - 2'	17.6	Submitted for Lab Analysis					
			2' - 4'	10.7						
			4' - 6'	12.9						
			6' - 8'	79.3						
					No odors or staining observed					
	Lithology:	0 - 6"	Asphalt							
		6" - 3'	Greyish brow	wn quartz fine sand with limestone frag	ments					
		3' - 5'	Brown quart							
		5' - 8'	-	z fine sand with limestone fragments						
				<u> </u>						
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments					
20 2	6/30/2015	~ 5'	0 - 2'	2.4						
SB-3	6/30/2015	~ 5		3.1						
			2' - 4'	8.6						
			4' - 6'	4.5						
			6' - 8'	4.1	No. others are different to the					
					No odors or staining observed					
	Lithology:	0 - 3"	Asphalt							
		3" - 12"		quartz fine sand & limestone fragment	s					
		12" - 5'		wn quartz fine sand						
		5' - 6'		quartz fine sand						
		6' - 8'	Grey quartz	fine sand						

	Soil Headsp		outhwest 4th	Table 1A g Photo-Ionization Detector (PID) Centra ı Street Miami, Miami-Dade County, Flori e-2866, FDEP Facility ID#: 8628726						
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments					
	0/00/0045		0.01	2.0						
SB-4	6/30/2015	~ 5'	0-2'	2.0						
			2'-4'	2.7						
			4'-6'	4.0						
			6'-8'	3.8	.					
					No odors or staining observed					
	Lithology:	0 - 2"	Asphalt							
		2" - 12"	-	mestone fragments & quartz fine sand						
				n quartz fine sand						
		4'6" - 7'		fine sand & trace of limestone						
		7 '- 8'	Greyish brow	n quartz fine sand						
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments					
B-5	6/30/2015	~ 5'	0 - 2'	2.0						
	0.00.2010		2' - 4'	3.6						
			4' - 6'	8.3						
			6' - 8'	4.9						
		-	0 0	4.9	No odors or staining observed					
	Lithology:	0 - 3"	Asphalt		No odors of staining observed					
	Litilology.	3" - 12"		uartz fine sand & limestone fragments						
				uartz fine sand						
		30" - 5'		uartz fine sand						
		30 - 5 5 '- 7'		uartz line sand lartz fine sand & some root						
		5 - 7								
		/ - ŏ	BIOWII quaftz	fine sand & little limestone frag						
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments					
				F F***7						
6B-6	6/30/2015	~ 5'	0 - 2'	3.7						
-			2' - 4'	1.7						
		-	4' - 6'	2.5						
		-	6' - 8'	3.1						
				0.1	No odors or staining observed					
	Lithology:	0 - 3"	Asphalt							
	Ennology.	3" - 8"		mestone fragments & quartz fine cand						
			Light brown limestone fragments & quartz fine sand							
			-	uartz fine sand						
		8" - 12" 12" - 8'	-	uartz fine sand						

Table 1A Soil Headspace Analysis Results using Photo-Ionization Detector (PID) Central East Transportation 7011 Southwest 4th Street Miami, Miami-Dade County, Florida UT-1354/File-2866, FDEP Facility ID#: 8628726

Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments				
SB-7	6/30/2015	~ 5'	0 - 2'	2.6					
			2' - 4'	2.6					
			4' - 6'	2.4					
			6' - 8'	2.9					
					No odors or staining observed				
	Lithology:	0 - 2"	Asphalt						
		2" - 5'		quartz fine sand					
		5' - 8'	Brown quartz	z fine sand with little limestone fragments					
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments				
SB-8	6/30/2015	~ 5'	0 - 2'	9.8	Submitted for Lab Analysis				
			2' - 4'	4.5					
			4' - 6'	3.9					
			6' - 8'	2.4					
					No odors or staining observed				
	Lithology:	0 - 2"	Asphalt						
		2" - 8"	Light brown limestone fragments and quartz fine sand						
		8" - 4'	Brown quartz fine sand						
		4' - 8'	Light brown quartz fine sand with little limestone fragments						
Boring	Date	Depth to	Depth	Field Headspace Testing Results (Comments				
		Water		in ppm)					
SB-9	6/30/2015	~ 5'	0 - 2'	0.0					
			2' - 4'	0.0					
			4' - 6'	156.2	Submitted for Lab Analysis				
			6' - 8'	123.9					
					No odors or staining observed				
	Lithology:	0 - 6"	Concrete		-				
		6" - 2'	Light brown I	limestone fragment & quartz fine					
		2' - 4'		fine sand & limestone fragment					
-		4' - 7'		y/ grey quartz fine sand					
			Light brown quartz fine sand						
		7' - 8'	Light brown	quartz fine sand					

	Soil Headspac	7011 So	uthwest 4th	Table 1A Photo-Ionization Detector (PID) Centra Street Miami, Miami-Dade County, Flor -2866, FDEP Facility ID#: 8628726	
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments
SB-10	6/30/2015	~ 5'	0 - 2' 2' - 4' 4' - 6'	11.2 4.6 246.6	Submitted for Lab Analysis
	Lithology:	0 - 6"	6' - 8' Concrete Light brown o	88.5 quartz fine sand	Odor in 4'-6' interval BLS
		2' - 5' 5' - 7' 7' - 8'		ey quartz fine sand quartz fine sand z fine sand	
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments
SB-11	6/30/2015	~ 5'	0 - 2' 2' - 4' 4' - 6' 6' - 8'	2.8 6.9 19.7 7.0	Submitted for Lab Analysis
	Lithology:	0 - 2" 2" - 6" 6" - 12" 12" - 5' 5' - 7'	Dark brown o Greyish brow	quartz fine sand & limestone fragments quartz fine sand /n quartz fine sand brown quartz fine sand & little limestone frag	No odors or staining observed
Boring	Date	7' - 8' Depth to Water	Light brown o	quartz fine sand Field Headspace Testing Results (in ppm)	Comments
SB-12	6/30/2015	~ 5'	0 - 2' 2' - 4' 4' - 6'	2.6 12.9 10.9	
	Lithology:	0 - 2" 2" - 8" 8" - 18"		9.7 imestone fragments and quartz fine sand quartz fine sand	No odors or staining observed
		18" - 3'6" 3'6" - 4' 4' - 5' 5' - 7'6" 7'6" - 8"	Light brown of Brown clay & Loose brown Light brown of Light tan qua		

	Soil Headspa	7011 So	uthwest 4th	Table 1A Photo-Ionization Detector (PID) Central Street Miami, Miami-Dade County, Florid -2866, FDEP Facility ID#: 8628726				
Boring	Date	Depth to	Depth	Field Headspace Testing Results	Comments			
		Water		(in ppm)				
	0/00/0045	C 1	0.01	5.0				
SB-13	6/30/2015	~ 5'	0 - 2' 2' - 4'	5.8				
			2 - 4 4' - 6'	2.7				
			6' - 8'	1.4				
			0-0	1.4	No odors or staining observed			
	Lithology:	0 - 2"	Asphalt					
		2" - 12"		l limestone fragments & quatz fine sand				
		12" - 3'		quatz fine sand				
		3' - 5'	Brown quart					
		5' - 6'	Loose brown	quartz fine sand & trace limestone fragments				
		6' - 8'		quartz fine sand				
Boring	Date	Depth to	Depth	Field Headspace Testing Results	Comments			
		Water		(in ppm)				
B-14	6/20/2045	~ 5'	0 - 2'	2.3				
D-14	6/30/2015	~ 5	2' - 4'	3.5				
			4' - 6'	8.9				
			6' - 8'	5.2				
			0 - 0	0.2	No odors or staining observed			
	Lithology:	0 - 2"	Asphalt					
		2" - 12"		limestone fragments and quartz fine sand				
		12" - 5'	Brown quart					
		5' - 8'	Light brown	quartz fine sand with traces of limestone fragi	nents			
				_				
Boring	Date	Depth to Water	Depth	Field Headspace Testing Results (in ppm)	Comments			
B-15	6/30/2015	~ 5'	0 - 2'	2.1				
		-	2' - 4'	6.6				
			4' - 6'	6.6				
			6' - 8'	1.8				
		1		1	No odors or staining observed			
			0-2"	Asphalt	-			
	Lithology:	0 - 2"	Asphalt					
		2" - 3'	Greyish brow	wn quartz fine sand				
		3' - 8'	Light brown	quartz fine sand & some limestone fragments				

TABLE 1: SOIL SCREENING SUMMARY

Facility Name:Dade County School Board - TransportationAddress:7011 SW 4th StreetCity, State:Miami, FLCounty:Miami-DadeFDEP FAC#:13/8628726AET Project #:26672.00

Not Applicable = N/A All Measurements = Feet. No Data = " " Free Product Recovery = FPR

	SAMPLE				OVA-FI	O SCREENIN	NG RESULTS
	DATE	DEPTH TO	-	TOTAL	CARBON	NET	
BORING NO.	COLLECTED	•	INTERVAL		FILTERED		COMMENTS
	002220125	bls)	(ft bls)	(ppm)	(ppm)	(ppm)	
			1	100	8.5	91.5	SOIL SAMPLE SB-16@1-2
			2	90	10	80	AKA SB-32@1-2
			3	37.5	25	12.5	
			4	680	16	664	SOIL SAMPLE SB-16@4
SB-16	12/18/2017	6	6	1760	13	1747	AKA SB-32@4
			8	1193	12	1181	
			10	540	8	532	
			12	670	12	658	
			14	265	7	258	
			4	100	0	100	
			1	120 160	0	120 160	
			3	6	0	6	
	12/18/2017		4	157 1490	0	157 1485	
SB-17		6	-		-		
			8	103	10.5	92.5	
			10 12	42 27	10.5 7	31.5 20	
			12	52	6.5	20 45.5	
			14	52	0.0	45.5	
			1	0	0	0	
			2	0	0	0	
			3	1.5	0	1.5	
			4	0	0	0	
05.40			6	114	16	98	
SB-18	12/18/2017	6	8	42	3	39	
			10	17	0	17	
			12	560	0	560	
			14	440	0	440	
				_			
			1	0	0	0	
			2	0	0	0	
			3	582	42	540	
			4	1500	50	1450	
SB-19	12/18/2017	6	6	1950	12	1938	
30-19	12/10/2017	U	8	1380	21	1359	
			10	740	5	735	
			12	435	1	434	
			14	440	2	438	

TABLE 1: SOIL SCREENING SUMMARY

Facility Name:Dade County School Board - TransportationAddress:7011 SW 4th StreetCity, State:Miami, FLCounty:Miami-DadeFDEP FAC#:13/8628726AET Project #:26672.00

Not Applicable = N/A All Measurements = Feet. No Data = " " Free Product Recovery = FPR

	SAMPLE				OVA-FIE	SCREENIN	IG RESULTS
BORING NO.	DATE COLLECTED	DEPTH TO WATER (ft bls)	SAMPLE INTERVAL (ft bls)	TOTAL READING (ppm)	CARBON FILTERED (ppm)	NET READING (ppm)	COMMENTS
			1	0	0	0	
			2	0	0	0	
05.04			3				bore terminated due to
SB-21	12/19/2017	N/A	4				pea gravel
			6				
			8				
			1	0	0	0	
			2	0	0	0	SOIL SAMPLE SB-22@1-2
			3	0	0	0	
SB-22	12/19/2017	6	4	0	0	0	SOIL SAMPLE SB-22@4
		-	6	1	1	0	
			8	0	0	0	
			10	0	0	0	
			1	0.5	0.5	0	
	12/19/2017		2	0	0	0	
		6	3	0	0	0	
SB-23			4	0	0	0	
			6	3	2	1	
			8	59	8	51	
			10	305	79	226	
			1	0	0	0	
			2	0	0	0	
			3	1.5	1.2	0.3	
SB-24	12/19/2017	6	4	0	0	0	
			6 8	213	7 47	206	
			8 10	2800 250	47	2753 110	
			10	250	140	110	
			1	0	0	0	
			2	0	0	0	
			3	0	0	0	
SB-25	12/19/2017	6	4	0	0	0	
			6	3	2	1	
			<u>8</u> 10	18.5 89	10 70	8.5 19	
			10	09	10	19	

TABLE 1: SOIL SCREENING SUMMARY

Facility Name:Dade County School Board - TransportationAddress:7011 SW 4th StreetCity, State:Miami, FLCounty:Miami-DadeFDEP FAC#:13/8628726AET Project #:26672.00

Not Applicable = N/A All Measurements = Feet. No Data = " " Free Product Recovery = FPR

	SAMPLE				OVA-FI	SCREENIN	IG RESULTS
	DATE	DEPTH TO		TOTAL	CARBON	NET	
BORING NO.	COLLECTED		INTERVAL	READING			COMMENTS
		bls)	(ft bls)	(ppm)	(ppm)	(ppm)	
			1	1	0	1	
			2	0	0	0	SOIL SAMPLE SB-26@1-2
			3	0	0	0	
			4	0	0	0	SOIL SAMPLE SB-26@4
SB-26	12/19/2017	6	6	2	0	2	
			8	2.5	0	2.5	
			10	8	8	0	
			12 14	0	0	0	
			14	0	0	0	
			1	0	0	0	
			2	0	0	0	
			3	0	0	0	
			4	0	0	0	
SB-27	12/19/2017	6	6	8	2	6	
00-21	12/13/2017	0	8	12	3	9	
			10	7.5	0	7.5	
			12	3	1	2	
			14	1	0	1	
	12/18/2017	6	1	0.5	0.5	0	
			2	1.5	0.5	1	
			3	0.5	0	0.5	
			4	1	1	0	
SB-29			6 8	0	0	0	
			8 10	0	0	0	
			10	0	0	0	
			12	0	0	0	
			17	0	0	0	
			1	0	0	0	
			2	0	0	0	
			3	0	0	0	
			4	0.5	0.5	0	
SB-30	12/19/2017	6	6	0	0	0	
00-30	12/13/2017	0	8	0	0	0	
			10	0.5	0.5	0	
			12	0	0	0	
			14	0	0	0	
			1	0	0	0	
			1 2	550	5	0 545	
			3	2300	14	2286	
			4	1700	8	1692	SOIL SAMPLE SB-31@4
			6	1345	5	1340	
SB-31	12/18/2017	6	8	270	1.5	268.5	
			10	100	4	96	
			12	119	3	116	
			14	50	12	38	
						-	

TABLE 2A: SOIL ANALYTICAL SUMMARY - VOAs, TRPHs and Metals Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION

See notes at end of table.

	Sam	ple		OVA			OVA Laboratory Analyses									
Boring/ Well No.	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	Benzene	Ethyl- benzene	Toluene	Total Xylenes	MTBE	TRPHs	Arsenic	Cad-mium	Chro-mium	Lead	1	
		(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Comment	
	sed on Ground		ı (mg/kg)		0.007	0.6	0.5	0.2	0.09	340	*	7.5	38	*		
Direct Exposure	e Residential (r	ng/kg)			1.2	1,500	7,500	130	4,400	460	2.1	82	210	400		
SB-2 0-2	7/1/2015		0-2		0.0025 U	0.0027 U	0.0026 U	0.0050 U	0.0024 U	2.6 U						
SB-8 0-2	7/1/2015		0-2		0.0025 U	0.0027 U	0.0026 U	0.0050 U	0.0024 U	2.6 U						
SB-9 4-5	7/1/2015		4-5		0.0025 U	0.0027 U	0.0026 U	0.0050 U	0.0024 U	2.7 U						
SB-10 4-5	7/1/2015		4-5		0.0025 U	0.0027 U	0.0026 U	0.0050 U	0.0024 U	2.8 U						
SB-11 4-5	7/1/2015		4-5		0.0025 U	0.0027 U	0.0026 U	0.0050 U	0.0024 U	2.7 U						
SB-22 @ 1'-2'	12/19/2017	6	1-2	0	0.00048 U	0.00012 U	0.00034 U	0.0011 U	0.00058 U	2.2 U						
SB-22 @ 4'	12/19/2017	6	4	0	0.00049 U	0.00013 U	0.00036 U	0.0012 U	0.00060 U	2.2 U						
SB-26 @ 1'-2'	12/19/2017	6	1-2	0	0.00048 U	0.00012 U	0.00035 U	0.0011 U	0.00059 U	55						
SB-26 @ 4'	12/19/2017	6	4	0	0.00050 U	0.00013 U	0.00036 U	0.0012 U	0.00062 U	2.2 U						
SB-31 @ 4'	12/19/2017	6	4	1692	0.00048 U	0.00013 U	0.00035 U	0.0012 U	0.00058 U	4300						
SB-31R SB-31RR	6/25/2018 9/8/2018		4		0.0010 U	0.00085 U	0.0010 U	0.0021 U	0.00059 U	5700 1300						
SB-32 @ 1'-2'	12/19/2017	6	1-2	80	0.00049 U	0.00012 U	0.00035 U	0.0012 U	0.00060 U	61					SB-16@1	
Sb-32 RR	6/25/2018		1-2		0.0013 U	0.0010 U	0.0013 U	0.0025 U	0.00071 U	24						
SB-32 @ 4'	12/19/2017	6	4	664	0.00048 U	0.00013 U	0.00035 U	0.0012 U	0.00059 U	1700					SB-16@4	
SB32RR	6/25/2018		4		0.0011 U	0.0084 U	0.0011 U	0.0021 U	0.00058 U	5400						
PREBURN	12/19/2017										0.39 I	0.030 I	6.0 V	0.78		

NS = Not Sampled.

Facility ID#: 13/8628726

* = Leachability value may be determined using TCLP.

TABLE 2B: SOIL ANALYTICAL SUMMARY - Non-Carcinogenic PAHs Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION

Facility ID#: 13/8628726

See notes at end of table.

	Sam	nple		OVA												
Boring/ Well No.	Date Collected	Depth to Water (ft)	Sample Interval (fbls)	Net OVA Reading (ppm)	Naph- thalene (mg/kg)	1-Methyl- naph- thalene (mg/kg)	2-Methyl- naph- thalene (mg/kg)	Acen- aph- thene (mg/kg)	Acen- aph- thylene (mg/kg)	Anthra- cene (mg/kg)	Benzo (g,h,i) pery- (mg/kg)	Fluoran- thene (mg/kg)	Fluor- ene (mg/kg)	Phenan- threne (mg/kg)	Pyrene (mg/kg)	Comments
Leachability B	ased on Grour	. ,		(PP)	1.2	3.1	8.5	2.1	27	2,500	32,000	1,200	160	250	880	
Direct Exposul			a (mg/kg)		55	200	210	2.400	1.800	21,000	2,500	3,200	2.600	2.200	2.400	
SB-2 0-2	7/1/2015	(9/9/	0-2		0.011 U	0.0056 U	0.0044 U	0.0050 U	0.0035 U	0.0046 U	0.0039 U	0.0045 U	0.0044 U	0.013 U	0.037	
00202					0.011 0	0.0000 0	0.0011 0	0.0000 0	0.0000 0	0.0040 0	0.0000 0	0.0040 0	0.0044 0	0.010 0	0.001	
SB-8 0-2	7/1/2015		0-2		0.011 U	0.0056 U	0.0044 U	0.0049 U	0.0035 U	0.0046 U	0.0041 U	0.0041 U	0.0044 U	0.013 U	0.0036 U	
SB-9 4-5	7/1/2015		4-5		0.011 U	0.0058 U	0.0077 I	0.0052 U	0.0037 U	0.0048 U	0.0041 U	0.0047 U	0.0046 U	0.013 U	0.0037 U	
SB-10 4-5	7/1/2015		4-5		0.015 l	0.019 l	0.028	0.053 U	0.0038 U	0.0049 U	0.0041 U	0.0048 U	0.0047 U	0.041 U	0.0038 U	
SB-11 4-5	7/1/2015		4-5		0.011 U	0.0057 U	0.0046 U	0.0051 U	0.0036 U	0.0048 U	0.0040 U	0.0047 U	0.0045 U	0.013 U	0.0037 U	
SB-22 @ 1'-2'	12/19/2017	6	1-2	0	0.010 U	0.0076 U	0.0081 U	0.017 U	0.0080 U	0.011 I	0.011 I	0.037 I	0.0087 U	0.015 U	0.031 I	
SB-22 @ 4'	12/19/2017	6	4	0	0.011 U	0.0077 U	0.0082 U	0.017 U	0.0081 U	0.0074 U	0.010 U	0.0095 U	0.0088 U	0.015 U	0.0086 U	
SB-22 @ 4	12/19/2017	0	4	0	0.011.0	0.0077 0	0.0062 0	0.017 0	0.0061.0	0.0074 0	0.010 0	0.0095 0	0.0000 0	0.015 0	0.0066 0	
SB-26 @ 1'-2'	12/19/2017	6	1-2	0	0.010 U	0.0075 U	0.0080 U	0.016 U	0.0079 U	0.018 I	0.010 U	0.017 I	0.0086 U	0.014 U	0.012	
0020@12	12/10/2011	•			0.010 0	0.0010 0	0.0000 0	0.010 0	0.0010 0	0.0101	0.010 0	0.0171	0.0000 0	0.014 0	0.0121	
SB-26 @ 4'	12/19/2017	6	4	0	0.011 U	0.0078 U	0.0083 U	0.017 U	0.0082 U	0.0075 U	0.010 U	0.018 I	0.0090 U	0.024 I	0.013 I	
SB-31 @ 4'	12/19/2017	6	4	1692	0.52	1.4	1.7	0.058 I	0.019 I	0.0074 U	0.062 I	0.12	0.20	0.67	0.010 I	
SB-31R	6/25/2018		4		0.60	1.8	3	0.015 U	0.0095 U	0.0084 U	0.12	0.25	0.0080 U	0.82	0.70	
SB-32 @ 1'-2'	12/19/2017	6	1-2	80	0.011 U	0.0081 U	0.0086 U	0.018 U	0.0085 U	0.010 l	0.20	0.20	0.0093 U	0.015 U	0.18	SB-16@1-2
SB-32 RR	6/25/2018		1-2		0.021 U	0.013 U	0.019 U	0.016 U	0.011 U	0.0093 U	0.12	0.071 I	0.0088 U	0.019 I	0.074 I	
00.00.00.11	40/40/00/17	0	4	004	0.070 /	0.01	0.070	0.047.1	0.000	0.040 /	0.000	0.057	0.050.1	0.000 /	0.40	00.400.1
SB-32 @ 4'	12/19/2017 6/25/2018	6	4	664	0.070 I	0.21	0.073	0.017	0.020 I 0.0097 U	0.012	0.089	0.057 I	0.052	0.068 I 1.2	0.12	SB-16@4
SB-32RR	0/25/2018		4		0.78	2.1	3.1	0.015 U	0.0097 0	0.0085 U	0.076	0.20	1.4	1.2	0.05	

NS = Not Sampled.

TABLE 2C: SOIL ANALYTICAL SUMMARY - Carcinogenic PAHs Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION

	Sample	Ð		OVA				Laborator	y Analyses				
Boring/ Well No.	Date Collected	Depth to Water (ft)	Sample Interval (fbls)	Net OVA Reading (ppm)	Benzo (a) pyrene (mg/kg)	Benzo (a) anthra- (mg/kg)	Benzo (b) fluoran- (mg/kg)	Benzo (k) fluoran- (mg/kg)	Chry- sene (mg/kg)	Dibenz (a,h) anthra- (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	Benzo (a) pyrene (mg/kg)	Comments
eachability Based	on Groundwa	()	· · /	ur 7	8	0.8	2.4	24	77	0.7	6.6	**	
) irect Exposure Re		(5 5/		0.1	#	#	#	#	#	#	0.1	
SB-2 0-2	7/1/2015		0-2		0.046	0.030 I	0.057	0.023 I	0.04	0.08	0.084		
SB-8 0-2	7/1/2015		0-2		0.0039 U	0.0041	0.025 U	0.0073 U	0.0040 U	0.0052 U	0.0059 U		
SB-9 4-5	7/1/2015		4-5		0.0041 U	0.0042 U	0.026 U	0.0076 U	0.0041 U	0.0053 U	0.0060 U		
SB-10 4-5	7/1/2015		4-5		0.0042 U	0.0043 U	0.027 U	0.0077 U	0.0043 U	0.0055 U	0.0062 U		
	7/4/0045		4.5										
SB-11 4-5	7/1/2015		4-5		0.0041 U	0.0042 U	0.026 U	0.0075 U	0.0042 U	0.0054 U	0.0061 U		
SB-22 @ 1'-2'	12/19/2017	6	1-2	0	0.015 I	0.010 U	0.027 I	0.0094 I	0.017 I	0.011 U	0.015 I	0.03	
SB-22 @ 4'	12/19/2017	6	4	0	0.0095 U	0.010 U	0.010 U	0.0092 U	0.012 U	0.012 U	0.0072 U		
	40/40/0047	6	1-2	0	0.0000.11	0.0000.11	0.0000.11	0.0000.11	0.044.11	0.044.11	0.0074.11		
SB-26 @ 1'-2'	12/19/2017	0	1-2	0	0.0092 U	0.0099 U	0.0099 U	0.0090 U	0.011 U	0.011 U	0.0071 U		
SB-26 @ 4'	12/19/2017	6	4	0	0.0096 U	0.010 U	0.010 U	0.0094 U	0.012 U	0.012 U	0.0074 U		
SB-31 @ 4'	12/19/2017	6	4	1692	0.085	0.057 I	0.13	0.053 I	0.053 I	0.016 l	0.075	0.13	
SB-31R@4	6/25/2018		4		0.092	0.10	0.13	0.057 I	0.078	0.028 I	0.12	0.16	
SB-32 @ 1'-2'	12/19/2017	6	1-2	80	0.23	0.17	0.33	0.12	0.012 U	0.045 I	0.20	0.35	SB-16@1-2
SB-32RR @1-2	6/25/2018		1-2		0.10	0.0081 U	0.13	0.049 1	0.074	0.041 I	0.11	0.17	
				004									
6B-32 @ 4'	12/19/2017	6	4	664	0.12	0.037 1	0.16	0.052 1	0.061 I	0.023 I	0.10	0.17	SB-16@4
SB-32RR @4	6/25/2018		4		0.062 I	0.0074 U	0.074	0.034 I	0.046 I	0.020 I	0.064 I	0.097	

NS = Not Sampled.

** = Leachability value not applicable.

= Direct Exposure value not applicable except as part of the Benzo(a)pyrene equivalent.

				TABLE 20	D: Benzo(a)p	yrene Conve	rsion				
						eanup Target Leve	ls				
	1			Instru	ctions can be foun				1	-	
Facility/Site Name:			unty School					Value	Units	1	
Site Location:			Street, Miami, Fl				ct Exposure SCTL		mg/kg		
Facility/Site ID No.:		13/86	28726				t Exposure SCTL	0.7	mg/kg	4	
		quivalency Factor					CTL (Optional) kground (Optional)		mg/kg	-	
	IEF - TOXICE	quivalency racio				Sile Specific Bac	kground (Optional)		mg/kg	1	
	Soil Sample #	SB-22 @ 1-2	Sb-31 @ 4	SB-32 @ 1-2	SB 32 @ 4	SB-31R @4	SB-32RR @1-2	SB-32RR @4			
	Sample Date	12/19/2017	12/19/2017	12/19/2017	12/19/2017	6/25/2018	6/25/2018	6/25/2018			
	Location:	East of UST	North of UST	East of MW-11	East of MW-11	North of UST	East of MW-11	East of MW-11			
	Depth (ft):	1-2	4	1-2	4	4	1-2	4			
					Contaminant Con	centrations					
		SB-22 @ 1-2	Sb-31 @ 4	SB-32 @ 1-2	SB 32 @ 4	SB-31R @4	SB-32RR @1-2	SB-32RR @4			
Contaminant	TEF	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Benzo(a)pyrene	1.0	0.015	0.085	0.23	0.12	0.092	0.1	0.062			
Benzo(a)anthracene	0.1	0.005	0.057	0.17	0.037	0.1	0.004	0.0037			
Benzo(b)fluoranthene	0.1	0.027	0.13	0.33	0.16	0.13	0.13	0.074			
Benzo(k)fluoranthene	0.01	0.009	0.053	0.12	0.052	0.057	0.049	0.034			
Chrysene	0.001	0.017	0.053	0.006	0.061	0.078	0.074	0.046			
Dibenz(a,h)anthracene	1.0	0.006	0.016	0.045	0.023	0.028	0.041	0.02			
Indeno(1,2,3-cd)pyrene	0.1	0.015	0.075	0.2	0.1	0.12	0.11	0.064			
					Benzo(a)pyrene E						
		SB-22 @ 1-2	Sb-31 @ 4	SB-32 @ 1-2	SB 32 @ 4	SB-31R @4	SB-32RR @1-2	SB-32RR @4			1
Contaminant	TEF	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
Benzo(a)pyrene	1.0	0.0150	0.0850	0.2300	0.1200	0.0920	0.1000	0.0620	0.0000	0.0000	0.0000
Benzo(a)anthracene	0.1	0.0005	0.0057	0.0170	0.0037	0.0100	0.0004	0.0004	0.0000	0.0000	0.0000
Benzo(b)fluoranthene	0.1	0.0027	0.0130	0.0330	0.0160	0.0130	0.0130	0.0074	0.0000	0.0000	0.0000
Benzo(k)fluoranthene	0.01	0.0001	0.0005	0.0012	0.0005	0.0006	0.0005	0.0003	0.0000	0.0000	0.0000
Chrysene	0.001	0.0000	0.0001	0.0000	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000
Dibenz(a,h)anthracene	1.0 0.1	0.0060 0.0015	0.0160 0.0075	0.0450 0.0200	0.0230	0.0280	0.0410 0.0110	0.0200	0.0000	0.0000 0.0000	0.0000
Indeno(1,2,3-cd)pyrene	0.1	0.0015	0.0075	0.0200	Total Equiva		0.0110	0.0064	0.0000	0.0000	0.0000
Total Benzo(a)pyrene	Equivalents	0.03	0.13	0.35	0.17	0.16	0.17	0.097	0.0	0.0	0.0
		0.00	0.10	0.00	Comparisons to		0.11	0.001	0.0	0.0	0.0
		SB-22 @ 1-2	Sb-31 @ 4	SB-32 @ 1-2	SB 32 @ 4	SB-31R @4	SB-32RR @1-2	SB-32RR @4		1	
Does This Sample	Exceed:	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)			
The Residential Direct Exp	posure SCTL of	OK OK	OK OK	EXCEEDS	EXCEEDS	EXCEEDS	EXCEEDS	OK OK	OK	OK	ОК
The Industrial Direct Exp		OK	OK	OK	OK	OK	OK	OK	OK	OK	OK
No Alternative SCT	L Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
No Site Specific Backg	round Given	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Benzo(a)P	yrene Equivalents	Calculator In	structions
-----------	-------------------	---------------	------------

		teria for Table En	tries
	Concentration		
Detection	Reported	Data Qualifier	Enter
	Quantified with		
Various	certainty	None	reported value
Various	Estimated	J	reported (estimated) value
ND at MDL	MDL	U	1/2 reported value
< MDL	Estimated	Т	reported (estimated) value
≥ MDL but < PQL	Estimated	I	reported (estimated) value
≥ MDL but < PQL	PQL	М	1/2 reported value

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether 1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value; 2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter 1/2 of the reported value; 3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value; 4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value; 5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter 1/2 of the reported value;

TABLE 3A: SPLP ANALYTICAL SUMMARY - PAHs and TRPHs

Facility ID#: 8628726 Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION

See notes at end of table.

Sam	ple	TRPHs	Naph- thalene	naph- thalene	naph- thalene	aph- thene	aph- thvlene	Anthra- cene	(g,h,i) perv-	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	(a) pvrene	(a) anthra-	(b) fluoran-	(k) fluoran-	Chry- sene	(a,h) anthra-	(1,2,3-cd) pvrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
GC	Ls	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NAD	Cs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5
SB-32 @ 1'-2'	12/19/2017		0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
SB-32 @ 4'	12/19/2017		0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 I	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
aka SB-16@	4																			
Notes:	NA = Not Ava	ilable.																		

Notes:

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

^a = See the October 12, 2004 "Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluate data when the CTL is lower than the PQL.

TABLE 3B: SOIL ANALYTICAL SUMMARY - MADEP EPH/VPH

Facility ID#: 13-8628726

Facility Name: DADE COUNTY SCHOOL BOARD - TRANSPORTATION

	San	nple		OVA			Laborator	y Analyses			
Boring/ Well No.	Date Collected	Depth to Water	Sample Interval	Net OVA Reading	C ₉ -C ₁₀ Aromatic	C ₁₁ -C ₂₂ Aromatic	C ₅ -C ₈ Aliphatic	C ₉ -C ₁₂ Aliphatic	C ₉ -C ₁₈ Aliphatic	C ₁₉ -C ₃₆ Aliphatic	
wen no.	Collected	(ft)	(fbls)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Comments
			TRPH SCT	L Residential	560	1,800	7,100	1,700	2,900	42,000	
		TRPH SC	TL Commerc	ial/Industrial:	3,400	15,000	38,000	11,000	21,000	280,000	
			TRPH SCTL	Leachability	380	1,000	960	31,000	140,000	*	
SB-31@4	12/19/2017	6	4	1,692	11.5	1370	3.67	27.8	1340	367	
SB-32@4	12/19/2017	6	4	664	7.95	43.7	3.43	17.4	86.6	44.3	SB-16@4

Notes:

NA = Not Available. NS = Not Sampled.

NS - Not Sampled.

* = Not a health concern for this exposure scenario

TABLE 4: GROUNDWATER ELEVATION SUMMARY

Facility Name: Address: City, State: County: FDEP FAC#: AET Project #: Dade County School Board - Transportation 7011 SW 4th Street Miami, FL Miami-Dade 13/8628726 26672.00

Not Applicable = N/A
All Measurements = Feet.
No Data = " "
Free Product = FP

WELL NO.		MW-1			MW-2			MW-3			MW-4			MW-5			MW-6	
DIAMETER (INCH)		4			4			4			4			2			2	
WELL DEPTH (FEET)		12			12			12			11			14			11	
SCREEN INTERVAL (FEET)		2-12			2-12			2-12			1-11			4-14			1-11	
TOC ELEV (FEET) ¹⁾		14.39			14.72			14.44			14.14			14.43			14.52	
TOC ELEV (FEET) ²⁾		99.90			100.21			99.91			99.61			100.03			100.13	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
2/12/2015			0.02			0.02			0.02			0.02	9.58	4.85		9.61	4.91	
7/12/2015			0.01			0.01			0.01			0.01	9.58	4.85		9.59	4.93	
8/14/2015			0.01			0.01			0.01			0.01	9.65	4.78		9.69	4.83	
9/13/2016			0.01			0.01			0.01			0.01	9.23	5.20		9.23	5.29	
7/19/2017	95.37	4.53		95.36	4.85		95.32	4.59		95.33	4.28		95.26	4.77				
8/24/2017	95.12	4.78		95.11	5.10		95.10	4.81		95.09	4.52		94.96	5.07				
10/17/2017	95.04	4.86		95.03	5.18		95.80	4.11		95.00	4.61		94.81	5.22		94.86	5.27	
8																-		
WELL NO.		MW-7			MW-8			MW-9			MW-10			MW-11			MW-12	

WELL NO.		MW-7			MW-8			MW-9		MW-10			MW-11				MW-12	
DIAMETER (INCH)		2			2			1.5			1.5			4			1.5	
WELL DEPTH (FEET)		13			14			12			12			12			12	
SCREEN INTERVAL (FEET)		3-13		4-14			2-12				2-12			2-12			2-12	
TOC ELEV (FEET) ¹⁾		14.57		14.68			14.73			14.46				14.29			14.23	
TOC ELEV (FEET) 2)		100.18		100.29			100.34		100.05			99.90				99.83		
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
2/12/2015	9.57	5.00		9.40	5.28													
7/12/2015	9.56	5.01		9.56	5.12		9.58	5.15		9.54	4.92		9.54	4.75		9.54	4.69	
8/14/2015	9.63	4.94		9.63	5.05		9.65	5.08		9.63	4.83					9.63	4.60	
9/13/2016	9.22	5.35					9.28	5.45		9.03	5.43		9.23	5.06		9.22	5.01	
7/19/2017	95.26	4.92		95.28	5.01		95.28	5.06		95.20	4.85		95.35	4.55		95.23	4.60	
8/24/2017	94.96	5.22		94.96	5.33		94.98	5.36		94.95	5.10		95.11	4.79		94.94	4.89	
10/17/2017	94.82	5.36		94.82	5.47		94.83	5.51		94.33	5.72		95.02	4.88		94.78	5.05	

TABLE 4: GROUNDWATER ELEVATION SUMMARY

Facility Name: Address: City, State: County: FDEP FAC#: AET Project #: Dade County School Board - Transportation 7011 SW 4th Street Miami, FL Miami-Dade 13/8628726 26672.00

Not Applicable = N/A
All Measurements = Feet.
No Data = " "
Free Product = FP

WELL NO.		MW-13			MW-A													
DIAMETER (INCH)		1.5			2													
WELL DEPTH (FEET)		12			14													
SCREEN INTERVAL (FEET)		2-12			4-14													
TOC ELEV (FEET) ¹⁾		14.45																
TOC ELEV (FEET) ²⁾		100.08			100.04													
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
7/12/2015	9.52	4.93																
8/14/2015	9.61	4.84																
9/13/2016	9.22	5.23																
7/19/2017	95.26	4.82		95.32	4.72													
8/24/2017	94.95	5.13		95.02	5.02													
10/17/2017	94.80	5.28		94.88	5.16													
1) ELEVATION MEASURED DURIN	IC 1/19/11						1		1			1						

¹⁾ ELEVATION MEASURED DURING 1/18/11 SURVEY TO DETERMINE LOCATION OF DW-1 ²⁾ COMPLETE ELEVATION MEASUREMENTS FROM ALL INSTALLED MONITORING WELLS

TABLE 5A: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - VOCs and Metals

Facility ID#: 13/8628726 Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION

See notes at end of table.

Location GC NAI	Date			benzene	Xylenes	VOAs	MTBE	EDB	chloro- ethane	Arsenic	Cad- mium	Chro- mium	Lead
	TIe	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NAI	1123	1**	40**	30**	20**	NA	20	0.02**	3**	10**	5**	100**	15**
	DCs	100	400	300	200	NA	200	2	300	100	50	1,000	150
MW-1	10/18/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U	0.0040 U	0.90 U				1.9 U
MW-2	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
MW-3	10/18/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U	0.0040 U	0.90 U				1.9 U
MW-4	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	2/12/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-5	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U		0.000				0.0 0
	2/12/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				8.2 I
MW-6	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	2/12/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-7	10/18/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U	0.0040 U	0.90 U				1.9 U
	2/12/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-8	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	7/1/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-9	9/13/2016	0.10 U	0.50 U	0.50 U	1.5 U	1.5 U	0.50 U		0.50 U				
	10/18/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	7/1/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-10	9/13/2016	0.10 U	0.50 U	0.50 U	1.5 U	1.5 U	0.50 U		0.50 U				
10100-10	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	7/6/2015	0.12 I	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-11	9/13/2016	0.10 U	0.50 U	0.50 U	1.5 U	1.5 U	0.50 U		0.50 U				
	10/17/2017	0.52 U	0.41 U	0.34 U	1.4 U	1.4 U	0.49 U						
	7/1/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-12	9/13/2016	0.10 U	0.50 U	0.50 U	1.5 U	1.5 U	0.50 U		0.50 U				
	10/17/2017	1.0 U	0.82 U	0.68 U	2.8 U	2.8 U	0.98 U						
	7/1/2015	0.10 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U		0.50 U				5.0 U
MW-13	9/13/2016 10/17/2017	0.10 U 0.52 U	0.50 U 0.41 U	0.50 U 0.34 U	1.5 U 1.4 U	1.5 U 1.4 U	0.50 U 0.49 U		0.50 U				
			0.8211	0.68.11	2.911		0.08.11						
MW-A	10/18/2017	1.0 U	0.82 U	0.68 U	2.8 U	2.8 U	0.98 U						

Notes:

NA = Not Available. NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

TABLE 5B: GROUNDWATER MONITORING WELL ANALYTICAL SUMMARY - PAHs and TRPHs

Facility Name: DADE CNTY SCHOOL BD-TRANSPORTATION Facility ID#: 13/8628726

See notes at end of table.

	nple	TRPHs	Naph- thalene	naph- thalene	naph- thalene	aph- thene	aph- thvlene	Anthra- cene	(g,h,i) perv-	Fluoran- thene	Fluor- ene	Phenan- threne	Pyrene	(a) pvrene	(a) anthra-	(b) fluoran-	(k) fluoran-	Chry- sene	(a,h) anthra-	(1,2,3-cd) pvrene
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
-	TLs	5,000	14	28	28	20	210	2,100	210	280	280	210	210	0.2**	0.05 ^a	0.05 ^a	0.5	4.8	0.005 ^a	0.05 ^a
NA	DCs	50,000	140	280	280	200	2,100	21,000	2,100	2,800	2,800	2,100	2,100	20	5	5	50	480	0.5	5
MW-1	10/18/2017	770	0.18 I	0.27 1	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 ไ
MW-2	10/17/2017	2000	0.15 I	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 l	0.22	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
MW-3	10/18/2017	76 U	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
MW-4	10/17/2017	76 U	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
MW-5	2/12/2015	0.063 U	1.0 U	1.0 U	1.0 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 L
	10/17/2017	76 U	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
MW-6	2/12/2015	0.063 U	1.0 U	1.0 U	1.0 U	0.071 I	0.025 U	0.1	0.025 U	0.18	0.16	0.12	0.15	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/17/2017	4500	0.13 U	0.25 I	0.21 U	0.57 I	0.19 U	1.5 I	1.2 I	4.8	1.6 I	1.9 I	4.7	1.5	0.66	2.7	1	2.1	0.25	1.3
MW-7	2/12/2015	0.064 U	1.0 U	1.0 U	1.0 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/18/2017	76 U	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
MW-8	2/12/2015	0.078 I	1.0 U	1.0 U	1.0 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/17/2017	76 U	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
MW-9	7/1/2015	0.49	1.0 U	1.0 U	1.0 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	9/13/2016	1.6	1.0 U	1.0 U	1.0 U	0.17 I	0.025 U	0.033 I	0.028 U	0.025 U	0.095 I	0.050 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/18/2017	820	0.13 U	0.21 U	0.21 U	0.26 U	0.19 U	0.19 U	0.34 U	0.17 U	0.16 U	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
MW-10	7/1/2015	1.6	1.2 I	13.8	16.7	0.58	0.025 U	0.025 U	0.025 U	0.085 I	1.7	0.36	0.036 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	9/13/2016	2.4	1.1 I	2.7	1.9 I	0.53	0.025 U	0.071 I	0.028 U	0.052 I	0.96	0.62	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/17/2017	780	0.49 I	1.8 I	0.55 I	0.69 I	0.19 U	0.19 U	0.34 U	0.23 I	1.1 I	0.55 I	0.26 I	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
	10/31/2017	1100	0.57 I	2.3	0.89 I	0.60 I	0.19 U	0.19 U	0.34 U	0.17 U	1.3 I	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
MW-11	7/6/2015	1.2	4.8	17.5	20.9	0.63	0.025 U	0.025 U	0.025 U	0.025 U	2.1	1.2	0.045 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 L
	9/13/2016	2.9	1.3 I	6.8	6.1	0.068	0.025 U	0.051 I	0.028 U	0.025 U	0.84	0.48 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 L
	10/17/2017	1600	0.86 I	3.1	2.6	1.1 I	0.24 I	0.19 U	0.34 U	0.19 I	2.1	1.4 I	0.27 I	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
	10/31/2017	8300	1.1 I	2.9	2.8	1.1 I	0.24 I	0.19 U	0.34 U	0.17 U	2.3	1.3 I	0.25 I	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 L
MW-12	7/1/2015	0.45	1.0 U	2.4	1.3 I	0.35	0.025 U	0.025 U	0.025 U	0.025 U	1.0	0.074 I	0.029 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	9/13/2016	2.8	1.2 I	4.1	1.9 I	0.54	0.025 U	0.075 I	0.028 U	0.025 U	0.94	0.054	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U
	10/17/2017	1200	0.48 I	1.11	0.21 U	0.53 I	0.19 U	0.19 U	0.34 U	0.17 U	0.54 I	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
	10/31/2017	1100	0.58 I	1.81	0.93 I	0.60 I	0.19 U	0.19 U	0.34 U	0.17 U	1.2 I	0.74 I	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047 U
MW-13	7/1/2015	0.72	1.2 I	5.3	3.6	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.082 I	0.045 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025
	9/13/2016	4.1	1.9 I	13.5	8.6	0.8	0.025 U	0.082 I	0.028 U	0.12 I	1.4	0.36 I	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025 U	0.025
	10/17/2017	1400	1.2 I	12	7.7	0.59 I	0.19 U	0.19 U	0.34 U	0.17 U	0.87 I	0.45 I	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047
MW-A	10/18/2017	2000	0.33 I	1.6 I	0.42 I	0.40 I	0.19 U	0.19 U	0.34 U	0.17 U	0.28 I	0.26 U	0.18 U	0.090 U	0.10 U	0.088 U	0.083 U	0.21 U	0.057 U	0.047

NS = Not Sampled.

GCTLs = Groundwater Cleanup Target Levels specified in Table I of Chapter 62-777, F.A.C.

NADCs = Natural Attenuation Default Source Concentrations specified in Table V of Chapter 62-777, F.A.C.

** = As provided in Chapter 62-550, F.A.C.

^a = See the October 12, 2004 *Guidance for the Selection of Analytical Methods and for the Evaluation of Practical Quantitation Limits" to determine how to evaluate data when the CTL is lower than the PQL.

Table 6: Site Assessment Summary Worksheet

FDEP FAC ID #: 13/862	8726		Site Name:	Miami-[Dade County Scho	ol Board - Transpor	tation
Does Site Qualify for LTNAM:	Yes						
Dominant Lithology Vadose Zone			GW Contaminants one per constituent	≤ GCTLs	≤ NADC	> NADC	Not Analyzed
First Lithology (USCS):	SP		Benzene	х			
Second Lithology (USCS):	SC		Ethylbenzene	Х			
Dominant Lithology Saturated Zone			Toluene	Х			
First Lithology (USCS):	SP		Total Xylenes	Х			
Second Lithology (USCS):	SC		МТВЕ	Х			
	SC SP SC South O: Natural Attenuation cy: Standard Excavation ce: \$250,001 - \$500,000		Naphthalene	Х			
Average Depth to Water: 0' - 5'	SP SC 0' - 5' Direction: South hnology for SRCO: Natural Attenuation bined Technology: Standard Excavation RCO Cost Estimate: \$250,001 - \$500,000 FAC Cost Estimate: \$100,001 - \$250,000		1-Methylnaphthalene	Х			
Groundwater Flow Direction:	South		2-Methylnaphthalene	Х			
			TRPHs		х		
Recommended Technology for SRCO:	Natural Atte	enuation	EDB				Х
Combined Technology:	Standard Ex	cavation	As				Х
			Pb				Х
Consultant SRCO Cost Estimate:	\$250,001 - \$	500,000	Other				
Consultant NFAC Cost Estimate:	\$100,001 - \$	250,000					
			Soil Contaminants (select one unless Leachability & Direct Exposure CTLs exceeded)	No Soil Exceedences*	Exceeds Leachability	Exceeds Direct Exposure	Not Analyzed
			Benzene	Х			
			Ethylbenzene	Х			
Plume Characteristics	Groundwater	Soil	Toluene	Х			
Shrinking or Stable	Yes		Total Xylenes	Х			
On-site only	Yes	Yes	МТВЕ	Х			
Plume <1/4 acre	Yes	Yes	Naphthalene	Х			
Exclusion Zone Only	N/A	N/A	1-Methylnaphthalene	Х			
In FDOT ROW only	No	No	2-Methylnaphthalene	Х			
On State-Owned Land Only	N/A	N/A	Other PAHs			Х	
Organoleptic Exceedence only (< HB CTLs)	N/A		TRPHs			Х	
					1		V
DE Soil Exceedences above 2'		N/A	As				Х
		N/A Yes	As Pb				X X
DE Soil Exceedences above 2' DE Soil Exceedences from 2' to 10'							
DE Soil Exceedences above 2'	No	Yes	Pb				Х

DE = Direct Exposure CTLS ; HB = Health Based

APPENDIX B

FIGURES

