7700 N. Kendall Drive Suite 300 Miami, FL 33156 305 412-8185 Fax 305 412-8105 www.scsengineers.com

SCS ENGINEERS

February 14, 2018 File No. 09217186.02

Mr. Wilbur Mayorga, P.E., Chief Department of Regulatory and Economic Resources Division of Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912

MONITORING DERM ENVIRONMENTAL & RESTORATION DIVISION 14/18 via al RSV

Re: Ludlam Corridor Properties 'All Green Trail' Former 1-Mile and 5-Mile Railroad Corridors Between NW 7th and SW 80th Streets Miami, Florida DERM HWR-836

Subject: Soil and Groundwater Sampling Report

Dear Mr. Mayorga:

On behalf of LR 13 – 18 LLC and FECI LT 1 LLC, SCS Engineers (SCS) submits this Soil and Groundwater Sampling Report to the Miami-Dade County Department of Regulatory and Economic Resources, Division of Environmental Resources Management (DERM) for the above referenced site (the Site). The groundwater sampling was conducted in accordance with the Groundwater Sampling Plan approved by DERM with modifications in the December 21, 2017 correspondence. The report also addresses DERM's comment 2.c of the October 31, 2017 correspondence regarding phenolic compounds in soil and comment 2.d in the same correspondence regarding soil boring SB-7. Attachment A contains relevant DERM correspondences. Figure 1 is a site location plan.

FIELD ACTIVITIES

SCS performed field sampling activities in accordance with the Standard Operating Procedures (SOPs) provided within Chapter 62-160, Florida Administrative Code as amended. Underground utility clearance was performed via Sunshine State One Call prior to mobilizing to the Site. SCS retained JAEE Environmental Services, a Florida-licensed driller, and Pace Analytical Services and Jupiter Environmental Laboratories, Inc. (Jupiter), National Environmental Laboratory Accreditation Program (NELAP)-certified laboratories, for drilling and laboratory analyses.

Soil Assessment

On December 8, 2017, SCS advanced seven soil borings SB-8A, SB-12A, SB-30A, SB-40A, SB-42A and SB-48A at the original locations SB-8, SB-12, SB-30, SB-40, SB-42 and SB-48, respectively. The borings were advanced via direct push technology to water table (six or seven feet below ground surface). SCS collected soil samples from 0-0.5 feet (ft) below ground surface (bgs) and 0.5 ft-2 ft bgs intervals. The soil samples were submitted to Pace for analysis for

Mr. Wilbur Mayorga February 14, 2018 Page 2

cresols, pentachlorophenol and phenol via EAP Method 82701. Sample SB-30A (0.5-2) was also analyzed for pentachlorophenol via synthetic precipitation leaching procedure (SPLP) after receiving the initial pentachlorophenol data. **Attachment B** contains the soil boring logs.

On January 16, 2018, SCS advanced soil boring SB-7R via direct push technology approximately 500 ft south of SB-6, near the property boundary. **Table 1a** includes the global positioning system (GPS) coordinates of SB-7R and historical soil borings. The soil samples were collected from 0-0.5 feet (ft) bgs, 0.5 ft-2 ft bgs, and in 2-ft intervals thereafter to the water table. The water table was encountered at approximately six feet bgs as shown on the soil boring log provided in **Attachment B**.

Soil samples collected from the 0-0.5 ft and 0.5 ft-2 ft bgs intervals were submitted to Jupiter for analysis for arsenic, cadmium, chromium, copper, and lead via EPA Method 6020, polycyclic aromatic hydrocarbons (PAHs) via EPA Method 8270, total recoverable petroleum hydrocarbons (TRPH) via FL-PRO, and volatile organic compounds (VOCs) via EPA Method 8260. The remaining samples at deeper intervals were archived.

After receiving initial data from the 0-0.5 ft and 0.5 ft-2 ft intervals, the 0.5 ft-2 ft interval was analyzed for lead via SPLP.

Groundwater Assessment

On January 12, 15, 16 and 17, 2018, SCS installed 18 shallow and one intermediate monitoring wells utilizing hollow stem auger (shallow wells) and direct push drilling method (intermediate well). **Table 1b** summarizes the GPS coordinates of the monitoring wells. The depth of shallow monitoring wells range from 15 feet to 20 feet bgs, depending on water table encountered. The shallow wells were installed with 10-foot of 0.01-inch slotted screen, and completed with flush-mounted steel manhole cover and lockable caps.

The 27-foot deep intermediate monitoring well was installed with a double casing with four inches of outer casing to 20 ft deep. The well has 5-foot of 0.01-inch slotted screen from 22 ft bgs to 27 ft bgs and was completed with a flush-mounted steel manhole cover and lockable caps. Refer to **Attachment C** for monitoring well construction and development logs. Well development water and drill cuttings were contained in 55-gallon drums, pending off-site disposal.

On January 11 and 16 through 19, 2018, SCS sampled the 18 newly installed and 20 existing wells for the parameters show in **Table 2**. Refer to **Attachment D** for copies of the groundwater sampling logs and associated equipment calibration logs.

ANALYTICAL RESULTS SUMMARY AND DISCUSSION

SCS compared the results to applicable groundwater cleanup target levels (GCTLs) or soil cleanup target levels (SCTLs) pursuant to Chapter 24, Code of Miami-Dade County. Laboratory

¹ Note that the chains-of-custody were inadvertently marked for analysis for PAHs and arsenic. None of the samples were analyzed for arsenic and PAHs.

Mr. Wilbur Mayorga February 14, 2018 Page 3

reports and chain of custodies are provided as **Attachment E**. The benzo(a)pyrene equivalents (BaPE) were calculated for SB-7R (0-0.5'). **Attachment F** contains the calculation. A summary of the soil analytical results is provided in **Table 3** and groundwater analytical results in **Tables 4** and **5**.

Soil Sampling Results

Concentrations of cresols, pentachlorophenol and phenol at the samples collected SB-8A, SB-12A, SB-30A, SB-40A, SB-42A and SB-48A were below the direct exposure residential SCTLs or leachability based on groundwater criteria (LBGC) except for pentachlorophenol at SB-30A(0.5-2). Pentachlorophenol concentration at SB-30A (0.5-2) was detected at 0.23 mg/kg (estimated value with flag "I"), exceeding the LBGC of 0.03 mg/kg. However, the SPLP pentachlorophenol was not detected.

Two soil samples collected at SB-7R were analyzed for the parameters shown on **Table 2**. Only benozo(a)pyrene total equivalent (BaPE) at SB-7R (0-0.5) was reported exceeding the direct exposure residential SCTL (0.2 mg/kg). The remainder of PAH compounds were reported less than their respective residential SCTLs or LBGC.

The concentrations of the remaining parameters analyzed, including chromium, copper, arsenic, lead, cadmium, VOCs, and TRPH, were below either the corresponding direct exposure residential SCTLs or leachability based groundwater criteria. The SPLP lead concentration at SB-7R (0.5-2) was reported less than the GCTL.

Groundwater Sampling Results

Thirty-nine groundwater samples were collected and analyzed for select parameters as shown in **Table 2**. Below is a summary of groundwater analytical data.

- Arsenic concentrations from 15 shallow monitoring wells ranged from below the method detection limit (MDL) (at multiple wells) to 100 μ g/L (at MW-9). The arsenic concentration at the intermediate well at MW-37I was below the GCTL. Arsenic concentrations exceeded the GCTL of 10 ug/L at three of 16 wells sampled (100 μ g/L at MW-9, 21 μ g/L at MW-12, and 17 μ g/L at MW-27).
- Arsenic concentrations were reported below the GCTL at the boundary wells MW-3E, MW-7E, MW-10E, MW-29E, and MW-33E, which serve as delineation points for the corresponding wells (MW-3, MW-7, MW-10, MW-29, and MW-33), where arsenic concentrations were previously reported above the GCTL.
- Chloromethane concentrations at MW-31 and 23 were below the laboratory method detection limit (MDL).
- The ammonia concentration at MW-33 was below the laboratory MDL.
- The lead concentration at MW-21-2 was below the GCTL of 15 ug/L.

```
Mr. Wilbur Mayorga
February 14, 2018
Page 4
```

- Concentrations of cresols, phenol and pentachlorophenol at the four wells (MW-7, MW-29, MW-33 and MW-37) were below the corresponding laboratory MDLs.
- PAHs were sampled at 36 monitoring wells, and were not detected above the GCTLs. Note that PAHs were sampled at a total of 46 locations through temporary and permanent monitoring wells at the site. PAHs were not detected above the GCTLs at any of these location.

Figures 2 through 10 depict the arsenic, chloromethane and PAHs data in groundwater samples.

CONCLUSIONS AND RECOMMENDATIONS

Soil analytical results at SB-8A, SB-12A, SB-30A, SB-40A, SB-42A and SB-48A suggest that phenolic compounds are not contaminants of concern in soil at the site. Soil analytical results at SB-7R suggest surficial PAH-impact slightly above the residential direct exposure SCTL at this location (the upper six inches).

Groundwater data indicate that arsenic is the only contaminants of concern in groundwater at the site and that arsenic impact is limited to the shallow groundwater. Arsenic concentrations historically exceeded the GCTL in samples collected from nine monitoring wells (MW-3, MW-7, MW-9, MW-10, MW-12, MW-27, MW-29, MW-33, and MW-37). Groundwater impacts in six previously installed monitoring wells MW-3, MW-7, MW-10, MW-29, MW-33, and MW-37 have been delineated by their corresponding boundary wells, which were sampled and reported below the GCTLs for arsenic and PAHs. Groundwater arsenic concentrations appear to attenuate prior to reaching property boundary.

SCS recommends resampling MW-9, MW-12 and MW-27 to confirm the arsenic results. If confirmed, SCS recommends installing boundary wells to delineate these wells, and an intermediate well adjacent to MW-9 if warranted.

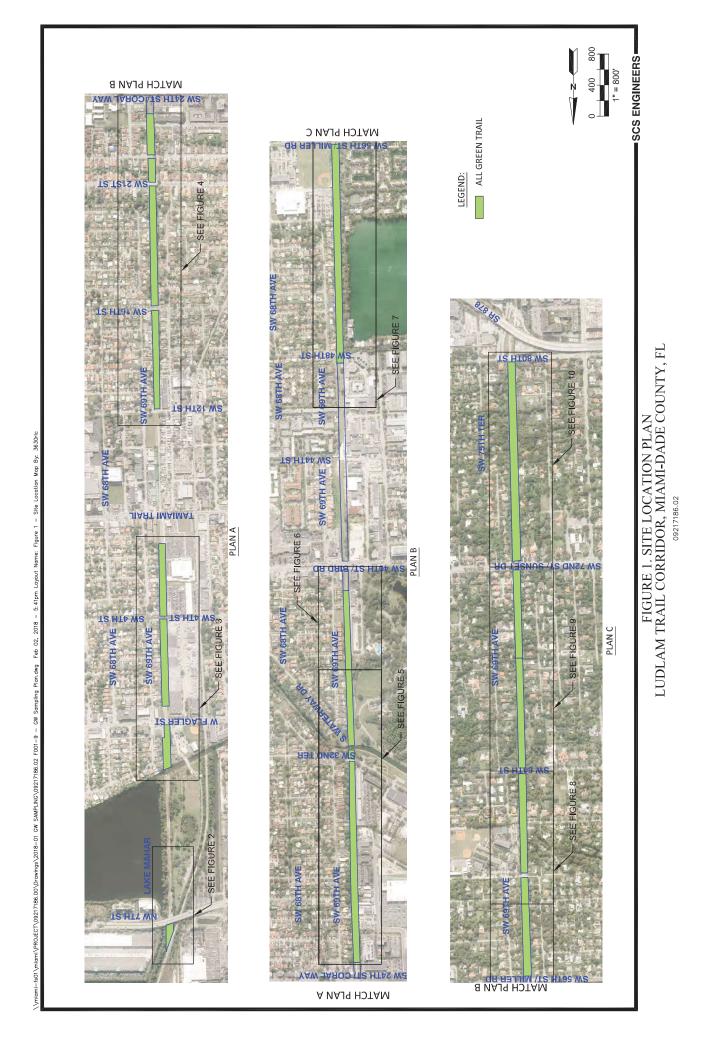
Should you have any questions, please contact the undersigned at 305-412-8185.

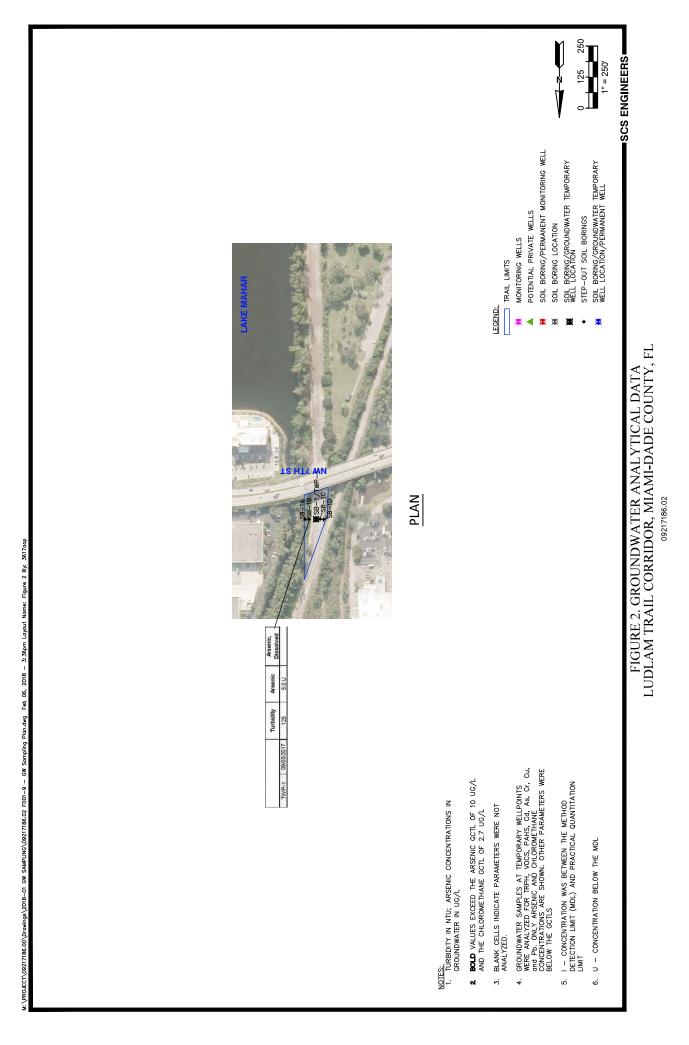
Sincerely,

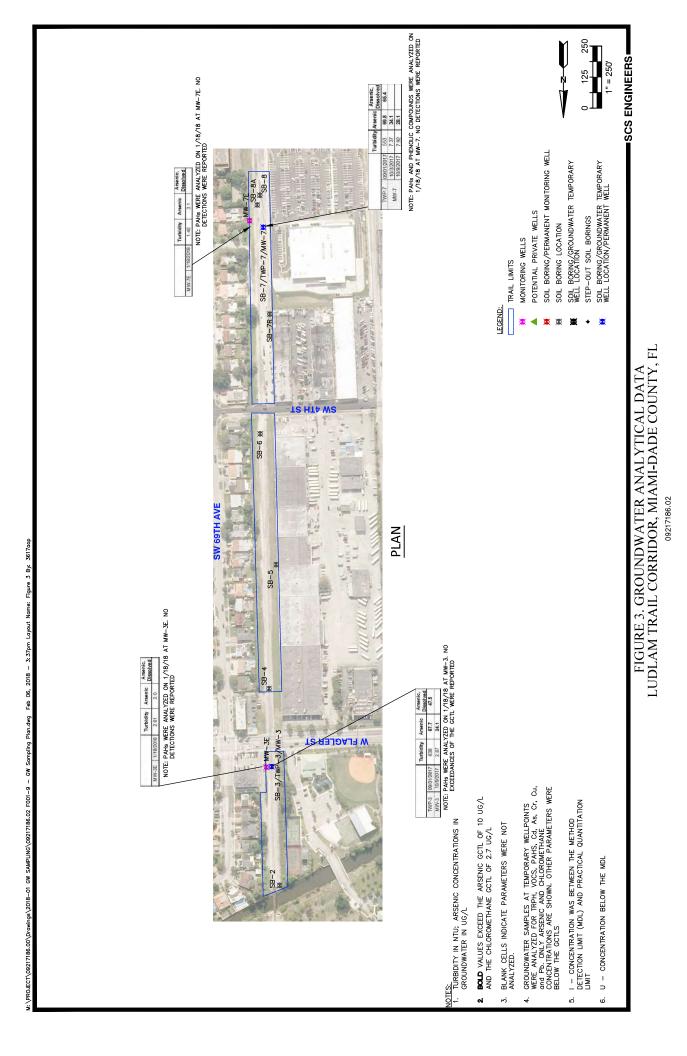
a. Pozota

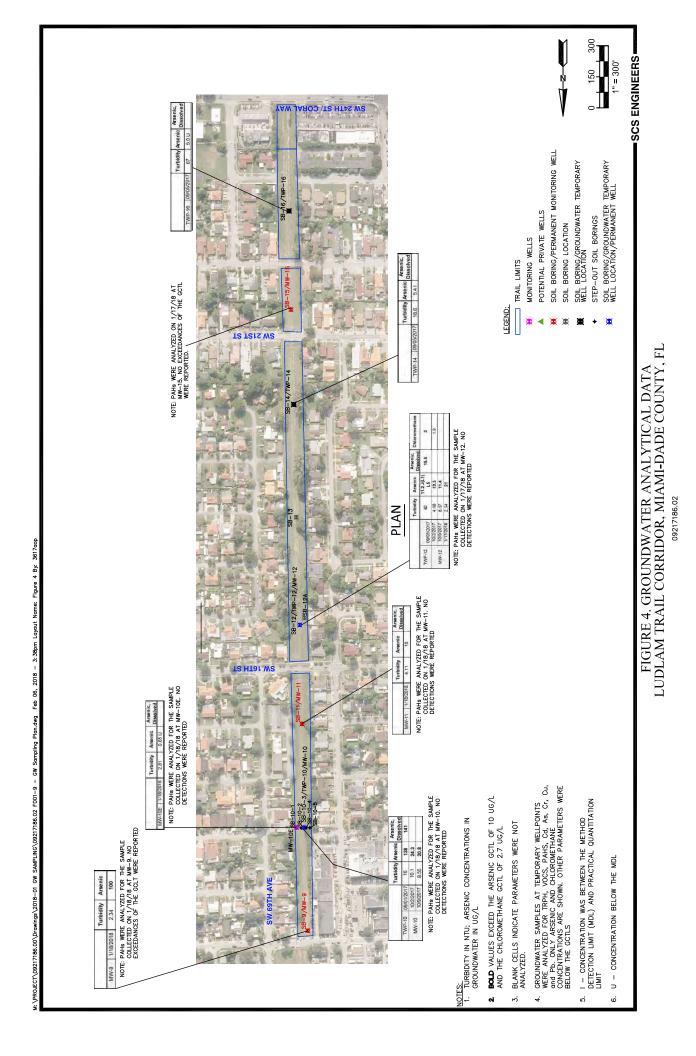
Anthony Pezzotti, P.G. Staff Professional SCS ENGINEERS

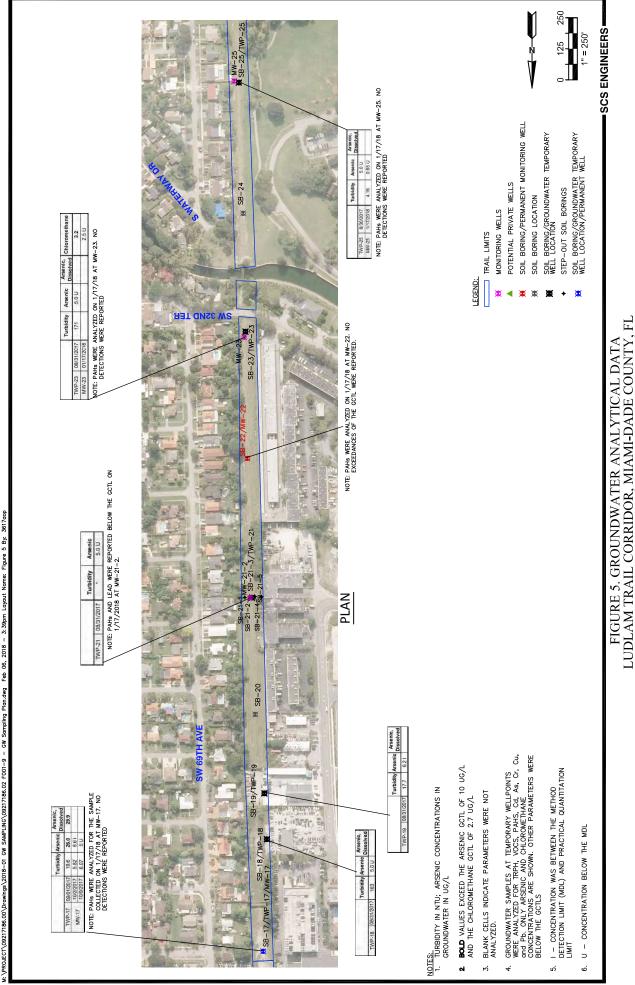
Fangmei Zhang, P.E., PhD Senior Project Manager SCS ENGINEERS

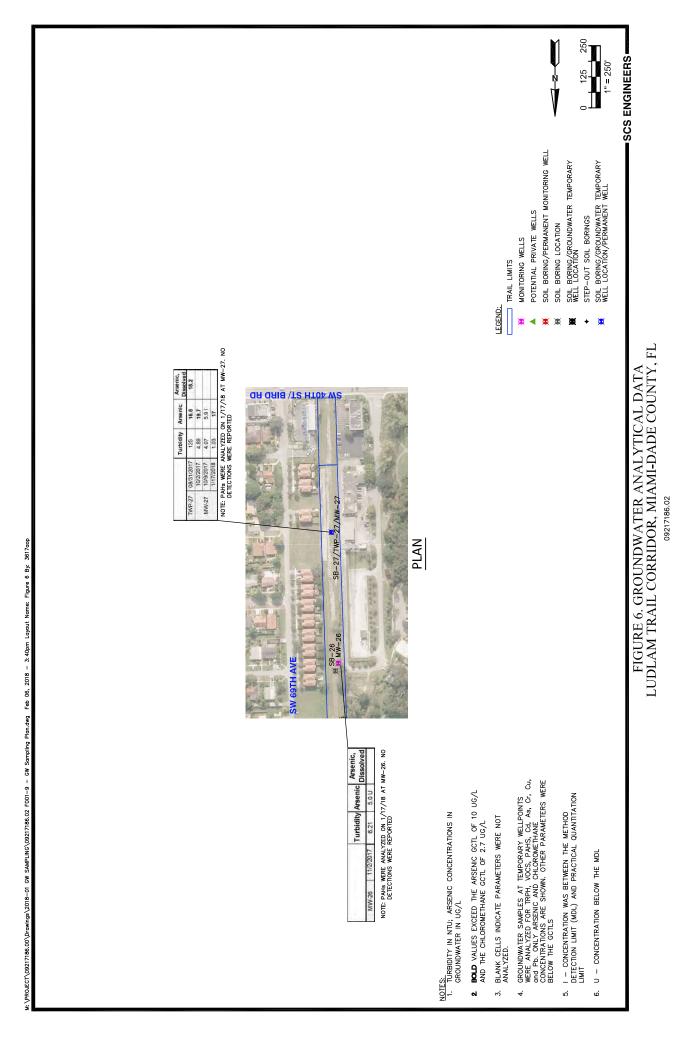

Enclosures:

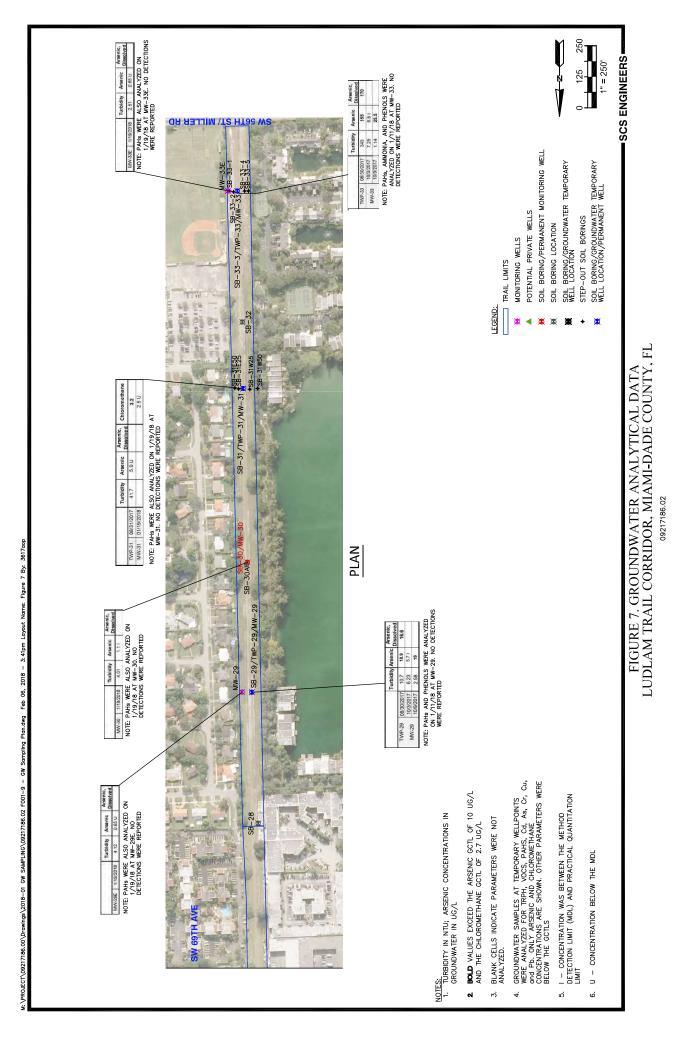

Table 1a – GPS coordinates of soil borings Table 1b – GPS coordinates of monitoring wells and temporary wells Table 2 – Groundwater and soil sampling matrix Table 3 – Soil Analytical Summary Table 4 – Groundwater Analytical Summary - Arsenic Mr. Wilbur Mayorga February 14, 2018 Page 5

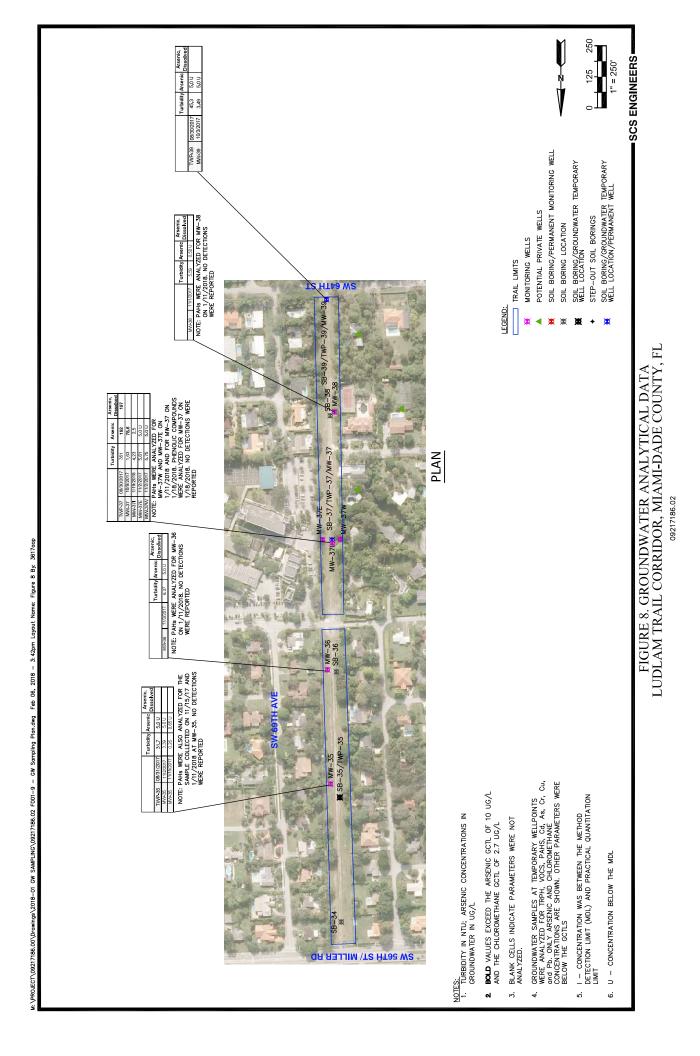

Table 5 – Groundwater Analytical SummaryFigure 1 – Site Location PlanFigure 2 to 10 – Groundwater Analytical DataAttachment A – DERM correspondencesAttachment B – Soil Boring LogsAttachment C – Well Installation DocumentationAttachment D – Groundwater Sampling Logs and Associated Calibration LogsAttachment E – Laboratory Reports and Chains of CustodyAttachment F – BaPE calculation

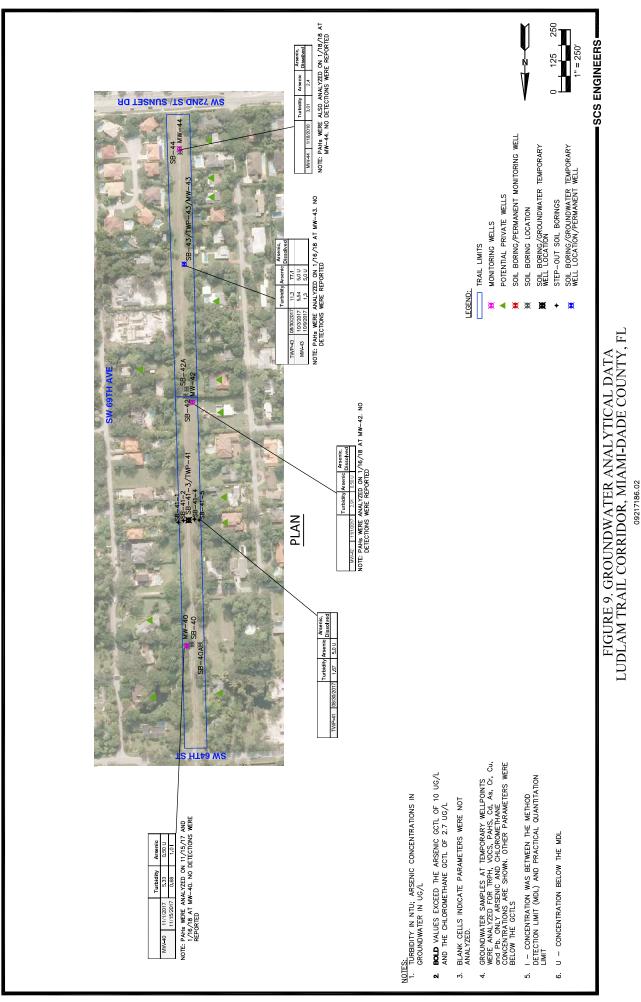

cc: Lee Hefty, Lorna Bucknor, Sandra Rezola, Becky Varley – DERM
 Jose Gonzalez, Adam Furstein, Kolleen Cobb – LR 13 – 18 LLC and FECI LT 1 LLC
 Howard Nelson – Bilzin Sumberg
 Lisa Smith, Eddy Smith – SCS


FIGURES

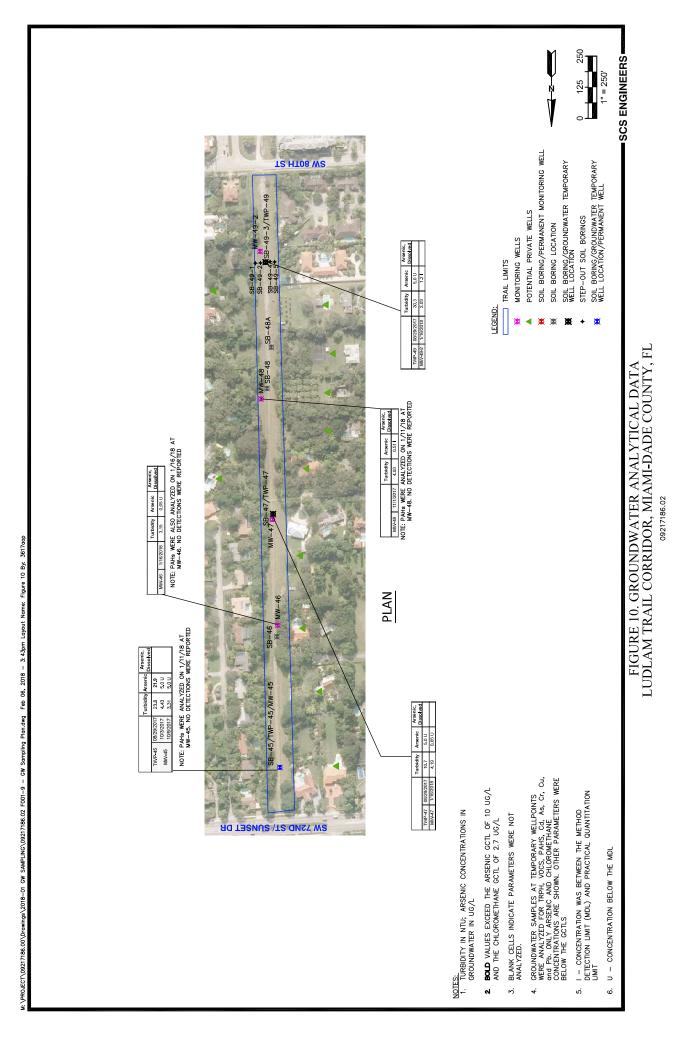








09217186.02



W. \PRO.ECT\09217186.00\Drawings\2018-01 GW SAMPLING\09217186.02 F001-9 - GW Sampling Plan.dwg Feb 07, 2018 - 10:47am Layout Name: Figure 9 By 3617aop

TABLES

Table 1a: GPS Coordinates of soil boringsFacility Name: Ludlam Trail, Miami, FL

Boring No.	Latitude (North)	Longitude (West)
SB-1	25.777812	-80.308289
SB-1B	25.777819	-80.308221
SB-1A	25.77781	-80.308156
SB-1C	25.77781	-80.308338
SB-1D	25.777815	-80.308382
SB-2	25.7719202	-80.3082752
SB-3	25.770605	-80.3081852
SB-4	25.7696915	-80.3081567
SB-5	25.7683692	-80.308253
SB-6	25.76692	-80.3080664
SB-7	25.764633	-80.3081159
SB-7R	25.765594	-80.3081898
SB-8	25.7642782	-80.3080769
SB-8A	25.76438542	-80.30804467
SB-9	25.7591726	-80.3079364
SB-10-1	25.7578059	-80.3077735
SB-10-2	25.7578057	-80.3078447
SB-10-3	25.7578017	-80.3078865
SB-10-4	25.7578054	-80.3079206
SB-10-5	25.75781	-80.3079805
SB-11	25.7564227	-80.3078737
SB-12	25.7551095	-80.3078421
SB-12A	25.75501579	-80.30791333
SB-13	25.75367772	-80.30779862
SB-14	25.7521798	-80.3077745
SB-15	25.7509185	-80.3077378
SB-16	25.7496067	-80.3077168
SB-17	25.7472584	-80.3076868
SB-18	25.7460163	-80.3077407

Table 1a: GPS Coordinates of soil boringsFacility Name: Ludlam Trail, Miami, FL

Boring No.	Latitude (North)	Longitude (West)
SB-19	25.7455092	-80.3077123
SB-20	25.7446343	-80.3076061
SB-21-1	25.7433396	-80.3074869
SB-21-2	25.7433326	-80.3075447
SB-21-3	25.7433495	-80.3075744
SB-21-4	25.7433322	-80.3075941
SB-21-5	25.743333	-80.307689
SB-22	25.7417991	-80.3075246
SB-23	25.7403958	-80.307511
SB-24	25.739086	-80.3074908
SB-25	25.7376366	-80.3074449
SB-26	25.73647	-80.3074086
SB-27	25.7349344	-80.3073722
SB-28	25.7260956	-80.3071993
SB-29	25.7246422	-80.3071497
SB-30	25.7232026	-80.3071041
SB-30A	25.72323174	-80.30709224
SB-31	25.7212782	-80.3070629
SB-31E25	25.721275	-80.307007
SB-31E50	25.7212726	-80.3069616
SB-31W25	25.7212874	-80.3071435
SB-31W50	25.7212786	-80.3072392
SB-32	25.7205418	-80.3070572
SB-33-1	25.719092	-80.3069116
SB-33-2	25.71910068	-80.30695638
SB-33-3	25.7190915	-80.3070049
SB-33-4	25.7190919	-80.3070926
SB-33-5	25.7190914	-80.3071402
SB-34	25.7178142	-80.3069901

Table 1a: GPS Coordinates of soil boringsFacility Name: Ludlam Trail, Miami, FL

Boring No.	Latitude (North)	Longitude (West)				
SB-35	25.7164178	-80.3069778				
SB-36	25.7150424	-80.306951				
SB-37	25.7135815	-80.3068995				
SB-38	25.7122066	-80.3068844				
SB-39	25.7109196	-80.3068469				
SB-40	25.7095364	-80.306798				
SB-40A	25.70954082	-80.30690063				
SB-41-1	25.7081849	-80.3066416				
SB-41-2	25.7081644	-80.3067049				
SB-41-3	25.7081602	-80.3067674				
SB-41-4	25.7081502	-80.306839				
SB-41-5	25.7081597	-80.3068966				
SB-42	25.7067861	-80.306737				
SB-42A	25.70670749	-80.30674959				
SB-43	25.7053267	-80.306731				
SB-44	25.7040849	-80.3066875				
SB-45	25.7028596	-80.3066579				
SB-46	25.7014115	-80.3066302				
SB-47	25.7000529	-80.3065919				
SB-48	25.698663	-80.3065251				
SB-48A	25.69820627	-80.30658052				
SB-49-1	25.697275	-80.3063921				
SB-49-2	25.6972727	-80.3064536				
SB-49-3	25.6972642	-80.3065167				
SB-49-4	25.6972588	-80.3065702				
SB-49-5	25.6972622	-80.3066267				

Table 1b: GPS Coordinates of Monitoring Wells and Temporary Wells Facility Name: Ludlam Trail, Miami, FL

Sample ID	Latitude (North)	Longitude (West)
TWP-1	25.777812	-80.308289
TWP-3/MW-3	25.770605	-80.3081852
MW-3E	25.77061	-80.30812
TWP-7/MW-7	25.764633	-80.3081159
MW-7E	25.76456	-80.30795
MW-9	25.7591726	-80.3079364
TWP-10/MW-10	25.7578017	-80.3078865
MW-10E	25.7578	-80.30778
MW-11	25.7564227	-80.3078737
TWP-12/MW-12	25.7551095	-80.3078421
TWP-14	25.7521798	-80.3077745
MW-15	25.7509185	-80.3077378
TWP-16	25.7496067	-80.3077168
TWP-17/MW-17	25.7472584	-80.3076868
TWP-18	25.7460163	-80.3077407
TWP-19	25.7455092	-80.3077123
TWP-20	25.7446343	-80.3076061
TWP-21	25.7433495	-80.3075744
MW-21-2	25.7433420	-80.3075510
MW-22	25.7417810	-80.3075230
TWP-23	25.7403958	-80.307511
MW-23	25.7404580	-80.3074940
TWP-25	25.7376366	-80.3074449
MW-25	25.7376220	-80.3073890
MW-26	25.736385	-80.307446
TWP-27/MW-27	25.7349344	-80.3073722
TWP-29/MW-29	25.7246422	-80.3071497
MW-29E	25.72464	-80.30703
MW-30	25.7232026	-80.3071041
TWP-31/MW-31	25.7212782	-80.3070629
TWP-33/MW-33	25.7190915	-80.3070049
MW-33E	25.71909	-80.30689
TWP-35	25.7164178	-80.3069778
MW-35	25.716284	-80.306866
MW-36	25.71502	-80.306835
TWP-37/MW-37	25.7135815	-80.3068995
MW-37I	25.71359	-80.30688

Table 1b: GPS Coordinates of Monitoring Wells and Temporary Wells Facility Name: Ludlam Trail, Miami, FL

Sample ID	Latitude (North)	Longitude (West)
MW-37E	25.713695	-80.306832
MW-37W	25.713694	-80.306946
MW-38	25.712165	-80.306939
TWP-39	25.7109196	-80.3068469
MW-40	25.709551	-80.306736
TWP-41	25.7081602	-80.3067674
MW-42	25.706855	-80.306822
TWP-43/MW-43	25.7053267	-80.306731
MW-44	25.704053	-80.306678
TWP-45/MW-45	25.702860	-80.306658
MW-46	25.701283	-80.306642
TWP-47	25.700053	-80.306592
MW-47	25.700114	-80.306586
MW-48	25.698778	-80.306452
MW-49-2	25.697144	-80.306450
TWP-49	25.6972642	-80.3065167

Notes: 1. The coordinates for TWP-21, TWP-33, and TWP-49 correlate with the coordinates for SB-21-3, SB-33-3, and SB-49-3.

Table 2: Groundwater and Soil sampling matrix Facility Name: Ludlam Trail

Proposed wells	As	Pb	PAHs	Ammonia	Chloromethane	Cresols, Phenol,	SPLP	SPLP Pb	Cd	Cr	Cu	TRPH	VOC 8260 LL
		FU		Annionia	chloromethane	Pentachlorophenol	Pentachlorophenol	JELE ED	cu	CI	Cu	INFI	VOC 8200 LL
MW-3E	X		X										
MW-7E	X		X										
MW-9	X		Х										
MW-10E	Х		х										
MW-11	Х		х										
MW-23			Х		Х								
MW-25	Х		Х										
MW-29E	Х		Х										
MW-30	Х		Х										
MW-31			Х		Х								
MW-33E	Х		Х										
MW-44	Х		Х										
MW-46	Х		Х										
DERM proposed													
MW-49-2	Х												
MW-47	Х												
MW-15			Х										
MW-21-2		Х	Х										
MW-22			Х										
MW-37I*	Х												
Existing Wells													
MW-3			Х										
MW-7			Х			Х							
MW-10			Х										
MW-12	Х		Х										
MW-17			Х										
MW-26			Х										
MW-27	Х		Х										
MW-29			Х			Х							
MW-33			Х	Х		Х							
MW-35			X										
MW-36			X										
MW-37			X			Х							
MW-37E			X										
MW-37W			X										
MW-38			X										
MW-39			X										
MW-40			X										
MW-40			X								1	1	
MW-42			X								1	1	
MW-45			X								<u> </u>		
MW-45			X								<u> </u>		
Soil Borings			^										
SB-7R (0-0.5)	х	х	х						х	х	х	х	Х
SB-7R (0-0.5) SB-7R (0.5-2)	× X	X	X					х	X	X	X	X	X
SB-8A (0-0.5)	Λ	^	^			Х		^	^	^	^	^	^
SB-8A (0-0.5) SB-8A (0.5-2)						X						-	
SB-8A (0.5-2) SB-12A (0-0.5)						X					<u> </u>	<u> </u>	
SB-12A (0-0.5) SB-12A (0.5-2)						X					<u> </u>	<u> </u>	
						X							
SB-30A (0-0.5)						X	v						
SB-30A (0.5-2)						X	x						
SB-40A (0-0.5)						X					ļ		
SB-40A (0.5-2)						X					<u> </u>	<u> </u>	
SB-42A (0-0.5)						X							
SB-42A (0.5-2)						Х							
SB-48A (0-0.5)						X					L	L	
SB-48A (0.5-2)						Х							

Notes:

1. Additional groundwater sampling may be required based on the results for pentachlorophenol, phenol, and cresols at SB-8, -12, -30, -40, -42, and -48 2. * - MW-37I installed immediately adjacent to MW-37 and installed at 22-27 feet below ground surface

Table 3: Soil Analytical Summary Facility Name: Ludlam Trail

	Table II, Ch. 62		Cleanup Target									
Sample Location	Leachability	Levels	Direct			SB-7R (0-0.5)	SB-7R (0.5-2)	SB-8A (0-0.5)	SB-8A (0.5-2)	SB-12A (0-0.5)	SB-12A (0.5-2)	SB-30A (0-0.5)
0.111.0	Based on Groundwater Criteria	Direct Exposure Residential	Exposure Commercial / Industrial	Groundwater Cleanup Target Levels	Units	1/16/2018	1/16/2018	12/08/2017	12/08/2017	12/08/2017	12/08/2017	12/08/2017
Soil Intervals EPA 6010					ft bgs	0-0.5	0.5-2	0-0.5	0.5-2	0-0.5	0.5-2	0-0.5
Chromium Copper	38 ***	210 150	470 89000		mg/kg mg/kg	8.5 7.8	3.2 11					
Arsenic Cadmium	*** 7.5	2.1 82	12 1700		mg/kg mg/kg	1.4 0.0950 U	1.9 0.120 U					
Lead	***	400	1400		mg/kg	14	64					
SPLP Lead EPA 8270				0.015	mg/L		0.0095					
1-Methylnaphthalene 2-Methylnaphthalene	3.1 8.5	200 210	1800 2100		mg/kg mg/kg	0.120 U 0.120 U	0.230 U 0.230 U					
Acenaphthene	2.1 27	2400 1800	20000 20000		mg/kg	0.0600 U 0.0600 U	0.115 U 0.115 U					
Acenaphthylene Anthracene	2500	21000	300000		mg/kg mg/kg	0.0600 U	0.115 U					
Benzo(a)anthracene Benzo(a)pyrene	0.8 8	1.3 0.1	6.6 0.7		mg/kg mg/kg	0.156 0.144	0.0690 U 0.0420 U					+
Benzo(b)fluoranthene Benzo(g,h,i)perylene	2.4 32000	1.3 2500	6.5 52000		mg/kg mg/kg	0.231 0.132 i	0.0600 U 0.0690 U					-
Benzo(k)fluoranthene	24	13	66		mg/kg	0.0810 i	0.0690 U					
Chrysene Dibenz(a,h)anthracene	77 0.7	130 0.1	640 0.7		mg/kg mg/kg	0.143 i 0.0220 i	0.0690 U 0.0170 U					
Fluoranthene Fluorene	1200 160	3200 2600	59000 33000		mg/kg mg/kg	0.159 i 0.0600 U	0.115 U 0.115 U					+
Indeno(1,2,3-cd)pyrene Naphthalene	6.6 1.2	1.3 55	6.6 300		mg/kg mg/kg	0.189 0.120 U	0.0690 U 0.230 U					
Phenanthrene	250	2200	36000		mg/kg	0.0600 U	0.115 U					
Pyrene Benzo(a)pyrene Equivalents	880	2400 0.1	45000 0.7		mg/kg mg/kg	0.234 I 0.2	0.115 U 0.0					
FL-PRO Florida Pro Total	340	460	2,700		mg/kg	45.7 I	11.5 U					
EPA 8260 1,1,1,2-Tetrachloroethane	0.01	2.9	4.3		mg/kg	0.000460 U	0.000560 U					
1,1,1-Trichloroethane	1.9	730	3900		mg/kg	0.000430 U	0.000510 U					
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	0.001 0.03	0.7 1.4	1.2 2		mg/kg mg/kg	0.000370 U 0.000390 U	0.000450 U 0.000480 U					
1,1-Dichloroethane 1,1-Dichloroethene	0.4 0.06	390 95	2100 510		mg/kg mg/kg	0.000600 U 0.000700 U	0.000730 U 0.000840 U					
1,1-Dichloropropene 1,2,3-Trichlorobenzene	4.6	650	8200		mg/kg mg/kg	0.000360 U 0.000110 U	0.000440 U 0.000130 U					<u> </u>
1,2,3-Trichloropropane	0.0001	0.06	0.1		mg/kg	0.000930 U	0.00110 U					
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5.3 0.3	660 18	8500 95		mg/kg mg/kg	0.000170 U 0.000580 U	0.000210 U 0.000700 U					
1,2-DBCP 1,2-Dibromoethane (EDB)	0.001 0.0001	0.7 0.1	3.8 0.2		mg/kg mg/kg	0.000160 U 0.000370 U	0.000200 U 0.000450 U					
1,2-Dichlorobenzene	17	880	5000		mg/kg	0.000220 U	0.000270 U					
1,2-Dichloroethane 1,2-Dichloropropane	0.01 0.03	0.5 0.6	0.7 0.9		mg/kg mg/kg	0.000650 U 0.000460 U	0.000780 U 0.000560 U					
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	0.3	15 380	80 2200		mg/kg mg/kg	0.000160 U 0.000240 U	0.000200 U 0.000290 U					
1,3-Dichloropropane 1,4-Dichlorobenzene	2.2	6.4	9.9		mg/kg mg/kg	0.000350 U 0.000260 U	0.000420 U 0.000320 U					
2,2-Dichloropropane					mg/kg	0.000410 U	0.000500 U					
2-Chlorotoluene 2-Hexanone	2.8 1.4	200 24	1200 130		mg/kg mg/kg	0.000290 U 0.000890 U	0.000350 U 0.00110 U					
4-Chlorotoluene 4-Isopropyltoluene	2.5	170	990 5600		mg/kg mg/kg	0.000250 U 0.000190 U	0.000300 U 0.000220 U					
4-methyl-2-pentanone Acetone	2.6 25	4300 11000	44000 68000		mg/kg mg/kg	0.000420 U 0.00240 U	0.000500 U 0.00290 U					
Acrolein	0.01	0.05	0.3		mg/kg	0.00360 U	0.00440 U					
Acrylonitrile Benzene	0.0003 0.007	0.3 1.2	0.6 1.7		mg/kg mg/kg	0.00580 U 0.000360 U	0.00700 U 0.000430 U					
Bromobenzene Bromochloromethane	0.6	95	530		mg/kg mg/kg	0.000290 U 0.000860 U	0.000350 U 0.00100 U					
Bromodichloromethane Bromoform	0.004	1.5 48	2.2 93		mg/kg mg/kg	0.000280 U 0.000580 U	0.000340 U 0.000700 U					
Bromomethane	0.05	3.1	16 1500		mg/kg	0.00120 U	0.00140 U					
Carbon disulfide Carbon tetrachloride	5.6 0.04	270 0.5	0.7		mg/kg mg/kg	0.000560 U 0.000420 U	0.000670 U 0.000500 U					
Chlorobenzene Chloroethane	1.3 0.06	120 3.9	650 5.4		mg/kg mg/kg	0.000330 U 0.000450 U	0.000400 U 0.000540 U					
Chloroform Chloromethane	0.4 0.01	0.4	0.6 5.7		mg/kg mg/kg	0.00510 U 0.000530 U	0.00620 U 0.000640 U					
cis-1,2-Dichloroethene	0.4	33	180		mg/kg	0.000340 U	0.000410 U					
cis-1,3-Dichloropropene cis-1,4-Dichloro-2-butene					mg/kg mg/kg	0.000430 U 0.000720 U	0.000520 U 0.000870 U					
Dibromochloromethane Dibromomethane	0.003	1.5 96	2.3 550		mg/kg mg/kg	0.000440 U 0.000880 U	0.000530 U 0.00110 U					
Dichlorodifluoromethane Ethyl methacrylate	44 3.5	77 630	410 3500		mg/kg mg/kg	0.000290 U 0.000280 U	0.000350 U 0.000340 U					-
Ethylbenzene	0.6	1500	9200		mg/kg	0.000260 U	0.000310 U					
Hexachlorobutadiene Iodomethane	1	6.2	13		mg/kg mg/kg	0.000170 U 0.000330 U	0.000210 U 0.000400 U					
Isopropylbenzene (Cumene) Methyl ethyl ketone (MEK)	0.2	220 16000	1200 110000		mg/kg mg/kg	0.000260 U 0.00110 U	0.000310 U 0.00140 U					
Methylene chloride Naphthalene	0.02	17 55	26 300		mg/kg mg/kg	0.00390 U 0.00390 U	0.00470 U 0.0047 U					
n-Butylbenzene					mg/kg	0.000200 U	0.000240 U					1
n-propylbenzene sec-Butylbenzene					mg/kg mg/kg	0.000230 U 0.000180 U	0.000280 U 0.000210 U					
Styrene t-1,4-Dichloro-2-butene	3.6	3600	23000		mg/kg mg/kg	0.000240 U 0.00550 U	0.000290 U 0.00660 U					
tert-Butyl methyl ether (MTBE) tert-Butylbenzene	0.09	4400	24000		mg/kg mg/kg	0.000860 U 0.000220 U	0.00100 U 0.000270 U					
Tetrachloroethene	0.03	8.8	18		mg/kg	0.000350 U	0.000420 U					
Toluene trans-1,2-Dichloroethene	0.5 0.7	7500 53	60000 290		mg/kg mg/kg	0.000310 U 0.000690 U	0.000370 U 0.000830 U					
trans-1,3-Dichloropropene Trichloroethene	0.03	6.4	9.3		mg/kg mg/kg	0.000340 U 0.000600 U	0.000410 U 0.000730 U					
Trichlorofluoromethane Vinvl acetate	33 0.4	270 320	1500 1700		mg/kg	0.000580 U	0.000700 U 0.000770 U					
Vinyl chloride	0.007	0.2	0.8		mg/kg mg/kg	0.000630 U 0.000760 U	0.000920 U					
Xylenes- Total Phenolic Compounds	0.2	130	700		mg/kg	0.000770 U	0.000920 U					
2-Methylphenol(o-Cresol)	0.3	2,900	31,000		mg/kg			0.025 U P3	0.025 U P3	0.27 U P1 P3	0.075 U P1 P3	0.025 U
3&4-Methylphenol(m&p Cresol) Pentachlorophenol	0.03/0.3*** 0.03	300/2,900* 7.2	3,400/33,000 [#] 28		mg/kg mg/kg			0.051 U P3 0.022 U P3	0.051 U P3 0.022 U P3	0.56 U P1 P3 0.24 U P1 P3	0.15 U P1 P3 0.065 U P1 P3	0.052 U 0.022 U
SPLP Pentachlorophenol				1	µg/L							
Phenol	0.05	500	220,000		mg/kg			0.032 U P3	0.032 U P3	0.35 U P1 P3	0.095 U P1 P3	0.032 U

Notes: - {BOLDED CONCENTRATION} exceeds its residential direct exposure limit established in Table 2 of Chapter 62-777, FAC. - {BOLDED ITALICIZED CONCENTRATION} exceeds its commercial direct exposure limit established in Table 2 of Chapter 62-777, FAC. - {BOLDED ITALICIZED CONCENTRATION} with an ** beside it exceeds its leachability limit established in Table 2 of Chapter 62-777, FAC. - "U" flag indicates concentration was below the method detection limit (MDL).

- "I" flag indicates concentration was between the MDL and practical quantitation limit (PQL).
 - Benzo(a)pyrene equivalent is calculated using FDEP calculator. For those samples where all carcinogenic compounds are not detected, the equivalent was not calculated, but zero was input.

* 300 mg/kg for p-cresol and 2,900 mg/kg for m-cresol
3,400 mg/kg for p-cresol and 33,000 mg/kg for m-cresol
*** 0.03 mg/kg for p-cresol and 0.3 mg/kg for m-cresol
Blank space indicates that the compound was not analyzed at the well location
"1p" indicates that a matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume
"P1" indicates that routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits
"P3" indicates that the sample extract could not be concentrated to the routine final volume, resulting in elevated reporting limits.

Table 3: Soil Analytical Summary Facility Name: Ludlam Trail

Sample Location	Table II, Ch. 62	2-777 FAC Soil	Cleanup Target			SB-30A (0.5-2)	SB-40A (0-0.5)	SB-40A (0.5-2)	SB-42A (0-0.5)	SB-42A (0.5-2)	SB-48A (0-0.5)	SB-48A (0.5-2)
	Leachability Based on Groundwater	Direct Exposure	Direct Exposure Commercial /	Groundwater Cleanup	11							
Soil Intervals	Criteria	Residential	Industrial	Target Levels	Units ft bgs	12/08/2017 0.5-2	12/08/2017 0-0.5	12/08/2017 0.5-2	12/08/2017 0-0.5	12/08/2017 0.5-2	12/08/2017 0-0.5	12/08/2017 0.5-2
EPA 6010 Chromium	38	210	470		mg/kg							
Copper Arsenic	***	150 2.1	89000 12		mg/kg mg/kg							
Cadmium Lead	7.5	82 400	1700 1400		mg/kg mg/kg							<u> </u>
SPLP Lead EPA 8270		400	1400	0.015	mg/L							<u> </u>
1-Methylnaphthalene	3.1	200	1800		mg/kg							
2-Methylnaphthalene Acenaphthene	8.5 2.1	210 2400	2100 20000		mg/kg mg/kg							
Acenaphthylene Anthracene	27 2500	1800 21000	20000 300000		mg/kg mg/kg							
Benzo(a)anthracene Benzo(a)pyrene	0.8	1.3 0.1	6.6 0.7		mg/kg mg/kg							
Benzo(b)fluoranthene Benzo(g,h,i)perylene	2.4 32000	1.3 2500	6.5 52000		mg/kg mg/kg							
Benzo(k)fluoranthene Chrysene	24	13 130	66 640		mg/kg mg/kg							
Dibenz(a,h)anthracene Fluoranthene	0.7	0.1	0.7		mg/kg							+
Fluorene	160	2600	33000		mg/kg mg/kg							-
Indeno(1,2,3-cd)pyrene Naphthalene	6.6 1.2	1.3 55	6.6 300		mg/kg mg/kg							+
Phenanthrene Pyrene	250 880	2200 2400	36000 45000		mg/kg mg/kg							<u> </u>
Benzo(a)pyrene Equivalents FL-PRO		0.1	0.7		mg/kg							
Florida Pro Total EPA 8260	340	460	2,700		mg/kg							
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	0.01	2.9 730	4.3 3900		mg/kg mg/kg							1
1,1,2,2-Tetrachloroethane	0.001	0.7	1.2		mg/kg							+
1,1,2-Trichloroethane 1,1-Dichloroethane	0.03	1.4 390	2 2100		mg/kg mg/kg							<u> </u>
1,1-Dichloroethene 1,1-Dichloropropene	0.06	95	510		mg/kg mg/kg							
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	4.6	650 0.06	8200 0.1		mg/kg mg/kg							
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	5.3 0.3	660 18	8500 95		mg/kg mg/kg							+
1,2-DBCP 1,2-Dibromoethane (EDB)	0.001	0.7	3.8 0.2		mg/kg mg/kg							-
1,2-Dichlorobenzene	17 0.001	880 0.5	5000		mg/kg							
1,2-Dichloroethane 1,2-Dichloropropane	0.03	0.6	0.7		mg/kg mg/kg							
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	0.3	15 380	80 2200		mg/kg mg/kg							
1,3-Dichloropropane 1,4-Dichlorobenzene	2.2	6.4	9.9		mg/kg mg/kg							<u> </u>
2,2-Dichloropropane 2-Chlorotoluene	2.8	200	1200		mg/kg mg/kg							
2-Hexanone 4-Chlorotoluene	1.4 2.5	24 170	130 990		mg/kg mg/kg							+
4-Isopropyltoluene 4-methyl-2-pentanone	2.6	4300	5600 44000		mg/kg mg/kg							
Acetone	2:0 25 0.01	11000 0.05	68000 0.3		mg/kg							<u> </u>
Acrolein Acrylonitrile	0.0003	0.3	0.6		mg/kg mg/kg							
Benzene Bromobenzene	0.007	1.2	1.7		mg/kg mg/kg							
Bromochloromethane Bromodichloromethane	0.6	95 1.5	530 2.2		mg/kg mg/kg							
Bromoform Bromomethane	0.03 0.05	48 3.1	93 16		mg/kg mg/kg							1
Carbon disulfide Carbon tetrachloride	5.6 0.04	270 0.5	1500 0.7		mg/kg mg/kg							
Chlorobenzene Chloroethane	1.3 0.06	120 3.9	650 5.4		mg/kg mg/kg							
Chloroform	0.4	0.4	0.6		mg/kg							
Chloromethane cis-1,2-Dichloroethene	0.01	4 33	5.7 180		mg/kg mg/kg							+
cis-1,3-Dichloropropene cis-1,4-Dichloro-2-butene					mg/kg mg/kg							<u> </u>
Dibromochloromethane Dibromomethane	0.003	1.5 96	2.3 550		mg/kg mg/kg							
Dichlorodifluoromethane Ethyl methacrylate	44 3.5	77 630	410 3500		mg/kg mg/kg							
Ethylbenzene Hexachlorobutadiene	0.6	1500 6.2	9200 13		mg/kg mg/kg							<u> </u>
Iodomethane Isopropylbenzene (Cumene)	0.2	220	1200		mg/kg mg/kg							
Methyl ethyl ketone (MEK)	17	16000	110000		mg/kg							<u> </u>
Methylene chloride Naphthalene	0.02	17 55	26 300		mg/kg mg/kg							+
n-Butylbenzene n-propylbenzene					mg/kg mg/kg							<u> </u>
sec-Butylbenzene Styrene	3.6	3600	23000		mg/kg mg/kg							
t-1,4-Dichloro-2-butene tert-Butyl methyl ether (MTBE)	0.09	4400	24000		mg/kg mg/kg							
tert-Butylbenzene Tetrachloroethene	0.03	8.8	18		mg/kg mg/kg							
Toluene	0.5	7500	60000		mg/kg							+
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	0.7	53	290		mg/kg mg/kg							+
Trichloroethene Trichlorofluoromethane	0.03 33	6.4 270	9.3 1500		mg/kg mg/kg							<u> </u>
Vinyl acetate Vinyl chloride	0.4 0.007	320 0.2	1700 0.8		mg/kg mg/kg							
Xylenes- Total Phenolic Compounds	0.2	130	700		mg/kg							
2-Methylphenol(o-Cresol)	0.3	2,900	31,000		mg/kg	0.025 U	0.026 U	0.027 U	0.025 U	0.027 U	0.025 U	0.026 U
3&4-Methylphenol(m&p Cresol) Pentachlorophenol	0.03/0.3*** 0.03	300/2,900* 7.2	3,400/33,000 [#] 28		mg/kg mg/kg	0.052 U 0.23 /**	0.053 U 0.022 U	0.056 U 0.023 U	0.052 U 0.022 U	0.055 U 0.023 U	0.051 U 0.022 U	0.053 U 0.022 U
SPLP Pentachlorophenol				1	μg/L	0.66 U 1p						
Phenol	0.05	500	220,000	1	mg/kg	0.032 U	0.033 U	0.034 U	0.032 U	0.034 U	0.032 U	0.033 U

Notes: - {BOLDED CONCENTRATION} exceeds its residential direct exposure limit established in Table 2 of Chapter 62-777, FAC. - {BOLDED ITALICIZED CONCENTRATION} exceeds its commercial direct exposure limit established in Table 2 of Chapter 62-777, FAC. - {BOLDED ITALICIZED CONCENTRATION} with an ** beside it exceeds its leachability limit established in Table 2 of Chapter 62-777, FAC. - "U" flag indicates concentration was below the method detection limit (MDL).

- "I" flag indicates concentration was between the MDL and practical quantitation limit (PQL).
 - Benzo(a)pyrene equivalent is calculated using FDEP calculator. For those samples where all carcinogenic compounds are not detected, the equivalent was not calculated, but zero was input.

* 300 mg/kg for p-cresol and 2,900 mg/kg for m-cresol
3,400 mg/kg for p-cresol and 33,000 mg/kg for m-cresol
*** 0.03 mg/kg for p-cresol and 0.3 mg/kg for m-cresol
Blank space indicates that the compound was not analyzed at the well location
"1p" indicates that a matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume
"P1" indicates that routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits
"P3" indicates that the sample extract could not be concentrated to the routine final volume, resulting in elevated reporting limits.

SCS ENGINEERS

Table 4: Groundwater Analytical Summary - ArsenicFacility Name: Ludlam Trail

		Groundwater Arsenic							
		Turbidity	Arsenic	Arsenic, Dissolved					
Units		NTU	µg/L	µg/L					
CTL			10	10					
TWP-1	09/05/2017	125	5.0 U J(L1) L5						
TWP-3	09/01/2017	638	67.7	47.5					
MW-3 MW-3E	10/9/2017 1/18/2018	2.87 2.01	24.1 2.0						
TWP-7	09/01/2017	553	69.8	65.4					
	10/3/2017	7.37	34.1	00.4					
MW-7	10/9/2017	7.92	28.1						
MW-7E	1/18/2018	1.40	3.1						
MW-9 TWP-10	1/18/2018 09/01/2017	2.34	100	4.44					
	10/2/2017	16 10.1	138 24.3	141					
MW-10	10/9/2017	8.55	20.8						
MW-10E	1/18/2018	2.81	0.65 U						
MW-11	1/18/2018	4.11	10						
TWP-12	09/05/2017 10/2/2017	42	11.2 J(L1) L5	15.5					
MW-12	10/2/2017	4.68 8.67	10.3 11.4						
	1/17/2018	2.54	21						
TWP-14	09/05/2017	18.6	5.4 I J(L1) L5						
TWP-16	09/05/2017	67	5.0 U J(L1) L5						
TWP-17	09/01/2017	19.6	26.0	29.9					
MW-17	10/2/2017	5.82	8.61						
	10/9/2017 08/31/2017	6.07	5 U						
TWP-18 TWP-19	08/31/2017	163 17.7	5.0 U 6.2 I						
TWP-19	08/31/2017	17.7	5.0 U						
TWP-23	08/31/2017	171	5.0 U						
TWP-25	8/30/2017		5.0 U						
MW-25	1/17/2018	4.16	0.65 U						
MW-26	11/2/2017	6.21	5.0 U						
TWP-27	08/31/2017	125	16.8	18.2					
MW-27	10/2/2017 10/9/2017	4.89 4.07	19.7 5.9 I						
10100-21	1/17/2018	1.03	17						
TWP-29	08/30/2017	10.7	18.9	16.6					
MW-29	10/3/2017	6.23	5.7 I						
	10/9/2017	2.58	19						
MW-29E	1/19/2018 1/19/2018	4.12	0.65 U						
MW-30 TWP-31	08/31/2017	4.01 41.7	1.1 I 5.0 U						
TWP-33	08/30/2017	343	155	170					
	10/3/2017	7.25	6.6 1						
MW-33	10/9/2017	1.14	25.5						
MW-33E	1/19/2018	2.51	0.65 U						
TWP-35 MW-35	08/31/2017 11/2/2017	31.7 3.39	5.0 U 5.0 U						
MVV-35 MW-35	11/2/2017	3.39 0.26	5.0 U 0.65 U						
MW-36	11/2/2017	6.37	5.0 U						
TWP-37	08/30/2017	351	192	197					
MW-37	10/9/2017	1.63	78.6						
MW-371	1/19/2018	4.23	2.5						
MW-37E MW-37W	11/2/2017 11/2/2017	5.61 5.75	5.0 U 5.0 U						
TWP-39	08/30/2017	45.3	5.0 U						
MW-38	11/1/2017	5.59	0.50 U						
MW-40	11/1/2017	5.33	0.50 U						
	11/15/2017	0.68	1.0						
TWP-41 MW-42	08/30/2017	1.67	5.0 U						
	11/1/2017 08/30/2017	2.91 11.3	0.50 U 77.1						
	10/3/2017	5.54	5.0 U						
MW-43	10/9/2017	1.3	5.0 U						
MW-44	1/18/2018	3.01	2.4						
TWP-45	08/29/2017	23.8	21.9						
MW-45	10/3/2017 10/9/2017	4.43	5.0 U						
MW-46	1/16/2018	3.31 3.15	5.0 U 0.65 U						
TWP-47	08/29/2017	3.15 10.7	0.65 U 5.0 U						
		4.19	0.65 U						
MW-47	1/16/2018	4.13							
MW-47 MW-48	11/1/2017	4.93	0.51 l						

Notes:

- {BOLDED CONCENTRATION} exceeds its Groundwater Cleanup Target Level (GCTL).
- "U" flag indicates concentration was below the method detection
- "I" flag indicates concentration was between the MDL and practical quantitation limit (PQL).
- "J(L1)" Estimated value. Analyte Analyte recovery in the laboratory control sample(LCS) was above
- QC limits. Results for this analyte in associated samples may be biased high.
- "L5" flag indicates LCS recovery exceeded QC limits. Batch accepted based on matrix spike recovery within LCS limits.

Table 5: Groundwater Analytical SummaryFacility Name: Ludlam Trail

Location				MW-3	MW-3E	MW-7	MW-7E	MW-9	MW-10	MW-10E	MW-11	MW-12	MW-15	MW-17	MW-21-2	MW-22	MW-23	MW-25	MW-26	MW-27	MW-29	MW-29E	MW-30
Sample	Date	GCTLs	NADCs	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/18/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/17/2018	1/11/2018	1/19/2018	1/19/2018
6020 Metals																							
Lead	μg/L	15	150												0.45 I								
8270																							
1-Methylnaphthalene	μg/L	28	280	0.0470 U	0.058 I	0.0470 U	0.0470 U	0.0470 U															
2-Methylnaphthalene	μg/L	28	280	0.0470 U	0.051 I	0.0470 U	0.0470 U	0.0470 U															
Acenaphthene	μg/L	20	200	0.0230 U	0.0230 U	0.0230 U																	
Acenaphthylene	μg/L	210	2100	0.0230 U	0.0230 U	0.0230 U																	
Anthracene	μg/L	2100	21000	0.0330 i	0.0230 U	0.0230 U	0.0230 U																
Benzo(a)anthracene	μg/L	0.05	5	0.0230 U	0.0230 U	0.0230 U																	
Benzo(a)pyrene	μg/L	0.2	20	0.0140 U	0.0140 U	0.0140 U																	
Benzo(b)fluoranthene	μg/L	0.05	5	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0300 i	0.0140 U	0.0140 U	0.0140 U												
Benzo(g,h,i)perylene	μg/L	210	2100	0.0140 U	0.0140 U	0.0140 U																	
Benzo(k)fluoranthene	μg/L	0.5	50	0.0140 U	0.0140 U	0.0140 U																	
Chrysene	μg/L	4.8	480	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0260 i	0.0230 U	0.0230 U	0.0230 U												
Dibenz(a,h)anthracene	μg/L	0.005	0.5	0.00480 U	0.00480 U	0.00480 U																	
Fluoranthene	μg/L	280	2800	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0450 i	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.039	0.0230 U	0.0360 i	0.077	0.0230 U	0.0230 U	0.0230 U				
Fluorene	μg/L	280	2800	0.0230 U	0.0230 U	0.0230 U																	
Indeno(1,2,3-cd)pyrene	μg/L	0.05	5	0.0140 U	0.0140 U	0.0140 U																	
Naphthalene	μg/L	14	140	0.0470 U	0.158	0.0470 U	0.0470 U	0.0470 U															
Phenanthrene	μg/L	210	2100	0.0230 U	0.048	0.0230 U	0.0230 U	0.0230 U															
Pyrene	μg/L	210	2100	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.055	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.057	0.0230 U	0.0240 i	0.0430 i	0.0230 U	0.0230 U	0.0230 U				
8260																							
Chloromethane	μg/L	2.7	270														2.50 U						
Ammonia 350.1																							
Ammonia (N)	mg/L	2.8	28																				
SVOCs																							
Di-n-octylphthalate	μg/L	140	1400			0.86 U																	
2-Methylphenol(o-Cresol)	μg/L	35	350			0.70 U															1.1 U, 1p, P1		
3&4-Methylphenol(m&p Cresol)	μg/L	3.5/35*	35/350**			0.63 U															0.96 U, 1p, P1		
Pentachlorophenol	μg/L	1	100			0.63 U															0.96 U, 1p, P1		
Phenol	μg/L	10	100			0.52 U															0.79 U, 1p, P1, J(L1)		

Notes:

- {BOLDED CONCENTRATION} exceeds its Groundwater Cleanup Target Level (GCTL)

- {BOLDED ITALICIZED CONCENTRATION} exceeds its Natural Attenuation Default Concentration.

- "U" flag indicates concentration was below the method detection limit (MDL).

- "I" flag indicates concentration was between the MDL and practical quantitation limit (PQL).

- Blank space indicates that the compound was not analyzed at the well location

- "1p" flag indicates a matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume

 "J(L1) flag indicates an estimated value. Analyte recovery in the laboratory control samples was above QC limits. Results for this analyte in associated samples may be biased high.

- "P1" flag indicates that the routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits.

- * 3.5 μg/L for p-cresol and 35 μg/L for m-cresol

- **35 µg/L for p-cresol and 350 µg/L for m-cresol

SCS ENGINEERS

Table 5: Groundwater Analytical SummaryFacility Name: Ludlam Trail

Location				MW-31	MW-33E	MW-33	MW-35	MW-36	MW-37	MW-37E	MW-37W	MW-38	MW-40	MW-42	MW-43	MW-44	MW-45	MW-46	MW-48
Sample	Date	GCTLs	NADCs	1/19/2018	1/19/2018	1/11/2018	1/11/2018	1/11/2018	1/18/2018	1/11/2018	1/11/2018	1/11/2018	1/16/2018	1/16/2018	1/16/2018	1/18/2018	1/11/2018	1/16/2018	1/11/2018
6020 Metals																			
Lead	μg/L	15	150																
8270																			
1-Methylnaphthalene	μg/L	28	280	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U
2-Methylnaphthalene	μg/L	28	280	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U
Acenaphthene	μg/L	20	200	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Acenaphthylene	μg/L	210	2100	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Anthracene	μg/L	2100	21000	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Benzo(a)anthracene	μg/L	0.05	5	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Benzo(a)pyrene	μg/L	0.2	20	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U
Benzo(b)fluoranthene	μg/L	0.05	5	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U
Benzo(g,h,i)perylene	μg/L	210	2100	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U
Benzo(k)fluoranthene	μg/L	0.5	50	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U
Chrysene	μg/L	4.8	480	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Dibenz(a,h)anthracene	μg/L	0.005	0.5	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U	0.00480 U
Fluoranthene	μg/L	280	2800	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Fluorene	μg/L	280	2800	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Indeno(1,2,3-cd)pyrene	μg/L	0.05	5	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U	0.0140 U
Naphthalene	μg/L	14	140	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U	0.0470 U
Phenanthrene	μg/L	210	2100	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
Pyrene	μg/L	210	2100	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U	0.0230 U	0.0240 U	0.0230 U
8260																			
Chloromethane	μg/L	2.7	270	2.50U															
Ammonia 350.1																			
Ammonia (N)	mg/L	2.8	28			0.0500 U													
SVOCs																			
Di-n-octylphthalate	μg/L	140	1400						0.87 U										
2-Methylphenol(o-Cresol)	μg/L	35	350			0.78 U, 1p			0.70 U										
3&4-Methylphenol(m&p Cresol)	μg/L	3.5/35*	35/350**			0.71 U, 1p			0.63 U										
Pentachlorophenol	μg/L	1	100			0.71 U, 1p			0.63 U										
Phenol	μg/L	10	100			0.58 U, 1p, J(L1)			0.52 U										

Notes:

- {BOLDED CONCENTRATION} exceeds its Groundwater Cleanup Target Level (GCTL)

- {BOLDED ITALICIZED CONCENTRATION} exceeds its Natural Attenuation Default Concentration.

- "U" flag indicates concentration was below the method detection limit (MDL).

- "I" flag indicates concentration was between the MDL and practical quantitation limit (PQL).

- Blank space indicates that the compound was not analyzed at the well location

- "1p" flag indicates a matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume

 "J(L1) flag indicates an estimated value. Analyte recovery in the laboratory control samples was above QC limits. Results for this analyte in associated samples may be biased high.

- "P1" flag indicates that the routine initial sample volume or weight was not used for extraction, resulting in elevated reporting limits.

- * 3.5 $\mu g/L$ for p-cresol and 35 $\mu g/L$ for m-cresol

- **35 μ g/L for p-cresol and 350 μ g/L for m-cresol

SCS ENGINEERS

ATTACHMENT A

DERM CORRESPONDENCES

Zhang, Fangmei

From:	Varley, Becky (RER) <becky.varley@miamidade.gov></becky.varley@miamidade.gov>
Sent:	Wednesday, December 6, 2017 12:22 PM
То:	Zhang, Fangmei; DERM PCD (RER)
Cc:	Mayorga, Wilbur (RER); Bucknor, Lorna (RER); Rezola, Sandra (RER); Wright, Caroline (RER); Howard Nelson; Gonzalez, Jose; Speed, Robert; Smith, Lisa; Smith, Eddy
Subject:	RE: Notification for Soil Sampling at Ludlam (HWR-836)
Categories:	Filed by Newforma

Hi

Thanks for the notification. The DERM respectfully requests that you add SB-8 in addition to proposed sampling at SB-12, SB-30, SB-40, SB-42 and SB-48. Thank you.

Rebecca S. Varley, Hydrogeologist 3 Department of Regulatory and Economic Resources Division of Environmental Resources Management (DERM) 701 NW 1st Court © 4th Floor © Miami, Florida 33136 305-372-6824 Phone 305-372-6982 Fax

From: Zhang, Fangmei [mailto:FZhang@scsengineers.com]
Sent: Tuesday, December 05, 2017 11:45 AM
To: DERM PCD (RER)
Cc: Mayorga, Wilbur (RER); Varley, Becky (RER); Bucknor, Lorna (RER); Rezola, Sandra (RER); Wright, Caroline (RER); Howard Nelson; Gonzalez, Jose; Speed, Robert; Smith, Lisa; Smith, Eddy
Subject: Notification for Soil Sampling at Ludlam (HWR-836)

Good morning all.

By this email I am notifying DERM that we plan to conduct soil sampling at Ludlam Corridor Properties on December 8, 2017 in response to Comment 2.c in DERM's October 31, 2017 correspondence.

We are planning to advance five soil borings at the former locations of SB-12, SB-30, SB-40, SB-42 and SB-48, and collect soil samples from the 0-6" and 6"-2 ft depth at each location. The 10 soil samples will be analyzed for cresols, pentachlorophenol and phenol. Please provide your concurrence, and feel free to call me if you have any questions or need additional information.

Thank you. Have a great day!

Fangmei Zhang, PhD, P.E. Sr. Project Manager SCS Engineers 7700 N Kendall Drive, Suite 300 Miami, FL 33156 (305) 412-8185 x 2053 (W) (786) 792-5364 (D) (786) 999-5521 (C) fzhang@scsengineers.com www.scsengineers.com Ownership Makes a Difference!

Department of Regulatory and Economic Resources Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

October 31, 2017

Kolleen Cobb Flagler Global Logistics LLC 2855 LeJeune Rd, 4th Floor Coral Gables, FL 33134

CERTIFIED MAIL NO. 7014 1200 0002 0821 5357 RETURN RECEIPT REQUESTED

RE: Phase II Environmental Site Assessment Report dated October 18, 2017 submitted by SCS Engineers for the Ludlam Corridor ("the Site") (HWR-836), located between NW 7 Street and SW 80 Street and between 69 Avenue and 70 Avenue (folio numbers: 30-3052-000-0020, 30-4002-000-0111, 30-4011-018-0040, 30-4011-018-0080, 30-4011-000-0050, 30-4011-019-0690, 30-4014-000-0070, 30-4023-000-0500, 30-4026-000-0190, 30-4035-000-0210, 3040-110-19-1100, 30-403-5000-1330, 30-4035-000-1440, and 30-4035-000-1280), Miami-Dade County, Florida.

Dear Ms. Cobb:

The Department of Regulatory and Economic Resources-Division of Environmental Resources Management (DERM) has reviewed the above-referenced document received October 18, 2017. The levels of Arsenic, Total Recoverable Petroleum Hydrocarbons (TRPH) and Polycyclic Aromatic Hydrocarbons (PAHs) in the soil and Arsenic and Chloromethane in the groundwater constitute violations of Chapter 24, Code of Miami-Dade County (the Code), specifically, Sections 24-44, 24-27, 24-28, and 24-29 of the Code. Therefore, pursuant to Sections 24-7(15), 24-7(26), and 24-44(2)(g) of the Code, a Site Assessment Report (SAR) is required. The following shall be addressed:

- Based on the magnitude and extent of Arsenic and PAH soil contamination within the corridor, temporary measures to restrict public access (e.g. fencing, etc.) shall be implemented in areas accessible to the public, such as open residential lots and public recreation areas (e.g., no private fencing, etc.) and roadway entrance points. Documentation shall be provided to DERM within fifteen (15) days of receipt of this letter confirming the implementation of access restrictions in all applicable areas.
- 2. Additional soil assessment is required as follows:
 - a. Additional soil assessment is required in areas where residential homes have encroached onto the railway corridor or in areas directly adjacent to the corridor that are known to be frequented for recreational use (e.g. vicinity of SB-24 (adjacent to A.D. Barnes Park), SB-29, SB-30, SB-31, SB-42, etc.). Soil shall be assessed at the 0-6" and 6"-2' intervals for Arsenic and PAHs. Intervals below 2' shall be archived and analyzed pending the results. Figures of soil sample locations and tables of assessment results shall be provided. If assessment results are above applicable cleanup target levels (CTLs) or background concentrations, delineate accordingly, including off-site as needed, and provide a plan to address the contamination.
 - b. The Phase II states that "based on the consistency of soil data coupled with our knowledge of similar rail sites and proposed redevelopment, further soil sampling within the Site is not warranted". DERM acknowledges/that if the responsible party elects a No Further Action with Conditions with stitutional and engineering controls in

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 2 of 7

> accordance with the Code and associated guidance documents (e.g., pavement, pavers, 2 feet of clean fill or equivalent), further sampling requirements within the interior of the Site may be limited. However, hot spot areas may require delineation regardless of the closure option elected. Additionally, irrespective of the closure option elected, soils at the property boundary, or boundary of the engineering control, if applicable, shall meet the Direct Exposure Residential Soil CTLs, or applicable background concentrations, and leachability based on groundwater criteria. Further, based on the Phase II analytical results, the consistency of soil data has not been demonstrated. For example, several transects demonstrated a lack of reduction in concentrations with distance from the centerline (e.g., SB-1D(0.5-2') and SB-21-1(0.5-2'), etc.). Therefore, a soil sampling plan shall be provided for hot spot delineation and delineation of the contaminated soil horizontally and vertically up to, or at (as applicable), the property boundaries, and, if necessary, beyond. The soil sampling plan shall also consider and address the above-referenced lack of consistency in soil data and include an analysis of potential gaps in soil assessment. Be advised, Arsenic in soil shall be delineated to the regional background values of 3.5 mg/kg in the 0-6" interval and 2.1 in intervals beneath the 0-6" interval, as referenced in DERM's Anthropogenic Background Study for Miami-Dade County Technical Memorandum dated April 3, 2014.

- c. Based on the Phase II Arsenic and PAH results, confirming residual contamination from historic railroad use, in those areas containing the highest concentrations of Arsenic and PAHs, a representative number of delineating and/or confirmation soil samples shall be analyzed for cresols, pentachlorophenol and phenol. Based on the results, additional assessment may be required.
- d. The soil boring 7 location should have been located in the vicinity of 883854.1331 520871.9264 feet (NAD 1983 State Plane Florida East). Reinstall a soil boring in this vicinity and collect soil samples at the 0-6" and 6"-2' intervals for VOC (full EPA 8260 scan low levels), PAH, TRPH, Arsenic, Cadmium, Chromium, Lead, and Copper. Intervals below 2' shall be archived and analyzed pending the results.
- e. PAH SPLP testing is required at the following locations: SB-1D (6"-2'), SB-8 (0-6"), SB-10-2 (0-6"), SB-12 (0-6"), SB-16 (0-6"), SB-21-2 (0-6"), SB-34 (6"-2'), SB-38 (6"-2') and SB-41-3 (0-6"). Alternatively, in lieu of the SPLP analysis requested above, pursuant to 24-44(2)(f)(ii)2 of the Code, you have the option of conducting one year of groundwater monitoring in the locations specified to demonstrate that contaminants will not leach into the groundwater at concentrations that exceed the applicable CTLs.
- f. It appears that a layer of fill was added to the property between SW 40 St and SW 80 St. (SB-24 through SB-49). However, the soil boring logs in these areas do not indicate any major lithological differences between the upper intervals compared to the same intervals throughout the length of the Site. Therefore, provide clarification if fill was observed in soil borings, and if observed, provide documentation of the source and thickness of the fill as well as the length of time the fill has been in place. Include a discussion on how the sampling was adjusted in these areas or whether the fill was

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 3 of 7

sampled. Be advised that based on the information provided, additional soil and/or groundwater sampling may be required.

- 3. Additional groundwater sampling is required. A Groundwater Sampling Plan shall be provided to DERM for review and approval that evaluates and addresses the seeming lack of correlation between soil and groundwater data. For example, the highest groundwater Arsenic concentration was documented at MW-37 (78.7 ug/L), where the Arsenic soil concentration immediately above the water table was below the CTL (SB-37, 2.0 mg/kg at 2-4'). The Groundwater Sampling Plan shall also consider lithologic variations and differences in unsaturated soil depths (e.g., SB-33, etc.), and shall address the following:
 - a. Horizontal delineation is required in all directions at each location with results above the applicable groundwater CTL. However, monitoring wells that marginally exceeded the Arsenic groundwater CTL of 10 ug/l (e.g., MW-12, etc.) may be resampled to confirm the result. The results from adjacent monitoring wells to the north and south may serve as the north and south delineation points, however consideration should be given to the need to tighten the delineation in the north/south direction for purposes of potential remediation and/or stormwater drainage design and requirements. Contaminated groundwater shall be delineated laterally, in the east-west direction, to the property boundaries, and beyond, if necessary. Sample results from temporary monitoring wells may only be used for screening purposes; samples from permanent monitoring wells (MWs) are required to demonstrate the contaminant plume(s) have been delineated. Depending on the results, additional horizontal and/or vertical delineation may be required.
 - b. Groundwater assessment is required in locations that documented the highest soil Arsenic concentrations where groundwater was not assessed (e.g., SB-30, SB-38, SB-39, SB-40, SB-42, etc.). Additionally, groundwater assessment shall be conducted at those locations where Arsenic was documented at the interval directly above the groundwater interface (SB-9, SB-11, SB-13, SB-28, SB-32, SB-46 and SB-48). Based on the results, additional soil and/or groundwater assessment may be required.
 - c. A groundwater sample for ammonia is required from MW-33.
 - d. Groundwater samples shall be collected for pentachlorophenol, phenol and cresols at locations MW-37, MW-33, MW-29 and MW-7, and at any soil sample location where these contaminants exceed leachability based on groundwater CTLs, upon addressing comment 2c. above, if applicable.
 - e. The analytical results for Chloromethane in the temporary wells exceeded the applicable groundwater criteria at location TWP-12, TWP-23, and TWP-31, however only one permanent well was installed and sampled at location TWP-12. The report states that Chloromethane is not believed to be a potential contaminant of concern in the groundwater. Please provide additional explanation regarding this conclusion.
 - f. Based on the soil Arsenic concentrations in the locations of SB-47 and SB-49, and the potential presence of private residential wells in these areas, permanent shallow

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 4 of 7

monitoring wells shall be installed in these locations. Additionally, based on the Arsenic concentration in MW-37, and it's proximity to residences with potential private wells, a vertical extent well shall be installed immediately adjacent to MW-37. Note that permanent or temporary surface casing should be used to minimize the potential for contaminant drag-down. An evaluation of the need for double-casing of vertical extent wells shall be based on lithology, zone of contamination, and the existence of a confining/retarding unit.

- g. Based on the results for TCLP Lead at location SB-21-2(0-6") and SB-21-4 (0-6"), exceeding the groundwater CTL, and total Lead exceeding the Miami-Dade County Lead background concentration in certain locations, the Groundwater Sampling Plan shall propose the sampling of representative monitoring wells for Lead to demonstrate lack of leaching.
- h. Based on the SPLP PAH results, the monitoring wells requested in the areas of SB-9, SB-11, SB-13, SB-40, SB-42 and SB-47 for arsenic analysis shall also be sampled for PAHs. Additionally, install a permanent shallow monitoring well for PAH analysis at the following locations: SB-2, SB-15, SB-21-5, SB-22, SB-23, SB-24, SB-25, SB-26, SB-35 and SB-44. However, for those locations that had SPLP PAH results with a qualifier indicating that the sample exceeded holding times, resampling and analysis for SPLP PAH may be conducted to demonstrate compliance with the groundwater CTLs.
- i. Be advised that the monitoring wells shall be sampled using the low-flow/low-volume purging and sampling technique to reduce sample turbidity.
- 4. A well survey shall be conducted that identifies the location of all municipal/public wells and private supply wells (e.g., potable, irrigation, industrial, etc.) identified within ½ mile and ¼ mile, respectively, of the Site. A table summarizing the capacity, use and well construction details of all the water supply wells identified and a well location map shall be provided. Be advised that based on the private well locations and depths, and the results of the additional groundwater assessment, additional vertical extent wells may be required.
- 5. Provide a scaled site map clearly depicting easements and lease boundaries. Also, provide a site map showing all surface and sub-surface features such as utilities, current and past above and underground structures, current and past storage areas, local drainage features, natural and man-made structures that may influence mounding or plume migration and existing land cover.
- 6. For those samples that exceeded holding times, resamples shall be collected if the data will be used to demonstrate compliance with the applicable CTLs (e.g., soil Speciation for FL-PRO and SPLP PAH results, etc.) or to delineate the vertical and/or horizontal extent of contamination. The analysis for samples that exceeded holding times with results above the applicable CTL may also be repeated. Be advised, if the resamples meet the applicable criteria, no additional sampling will be required.
- 7. The soil and groundwater summary tables shall be revised to include the results with the assigned qualifier, as applicable. Also, the report shall include a discussion regarding the

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 5 of 7

QA/QC issues (qualifiers) and the potential implications with respect to the validity of the sample results.

- One or more scaled site maps that illustrate the degree and extent of groundwater and soil (for each sampling interval) contamination using sufficient isoconcentration lines, as feasible, shall be provided in the next submittal.
- 9. The following errors on the summary tables and figures shall be corrected:
 - a. SB-32 (0-0.5 and (0.5-2) metals data is not in Table 7.
 - B. Revise labels for SB-22 intervals on the tables and maps. Clarify that the results are correct for the intervals provided.
 - c. Table 5 SB-46 results entered under the SB-49-1 row shall be revised.
 - d. Verify the correct location of SB-13 since the coordinates as plotted indicate the location is approximately 790' south of SB-12 and approximately 275' north of SB-14, not 500' from each. Similarly, the coordinates as plotted for SB-33-2 are approximately 310' north of the SB-33 transect, please verify the correct location.
 - e. Verify the correct location of SB-1 and associated transect soil borings since the coordinates as plotted indicate the location of all of the soil borings are on the east side of the railroad track.
 - f. Based on the groundwater sampling logs, the sample date for MW-7, MW-33, MW-43, MW-45 and MW-37 was 10/3/17 and not 10/2/17 as indicated in Table 9.
- 10. Table 3 (MW Construction Details) shall be updated to include the top of casing elevation, depth to groundwater and water table elevations.
- 11. The dissolved Arsenic laboratory results for TWP-27, 33 and 37 are missing and shall be provided in the next submittal.
- 12. Chain of custody forms for TWP-21, 19 and 18 are missing and shall be provided in the next submittal.
- 13. A soil boring log has SB-20 crossed out and replaced by SB-18, and there is an additional log for SB-20. However, there is a missing Chain of Custody form for SB-18. Verify that the lab data for SB-20 is actually for SB-20 and the lab data for SB-18 is actually for SB-18. Provide a table and map depicting the results at each location with the correct sample results and sample dates and corresponding laboratory report ID #.
- 14. Clarify the discrepancy between MW-37 installed and sampled at location TWP-39 and subsequently placed at TWP-37 location. The report indicates the well ID in sampling logs and the laboratory report was shown as MW-37 at the MW-39 location. Provide a table and map depicting the results at each location with the correct sample results and sample dates and corresponding laboratory report ID #.
- 15. The report references that monitoring wells were resampled for total Arsenic where low pH values were reported due to equipment failure; however, the calibration logs indicate the equipment on the date of sampling (10/3/17 and 10/2/17) was functioning. Provide an

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 6 of 7

explanation regarding the equipment failure and how the equipment was repaired and/or an explanation for the low pH values in the groundwater.

- 16. The tubing material referenced on the groundwater sampling logs is "PE". Please include additional information regarding whether the tubing is low density or high density polyethylene (PE) for the sampling event at MW-12 and in all future groundwater sampling logs.
- 17. Monitoring well schematics shall be provided for the permanent wells. In the case where the borehole was over drilled by greater than 3' below the depth of the monitoring well, discuss whether the additional borehole depth will create a preferential pathway for contaminants since the borehole appears to have been completely backfilled with the filter pack (30/65 fine grain sand).
- 18. Provide disposal receipts for the Investigative Derived Waste (IDW) generated from the monitoring well installation and soil and groundwater sampling. Also, please provide any analytical results required by the disposal facility to properly dispose of the soil/groundwater.
- 19. The report references an average concentration of Benzo(a)pyrene Equivalents of 1.5 mg/kg. Please explain how this average concentration was calculated.
- 20. Please note that the folio number "30-4035-000-01530", referenced on page 1 of the Phase II, is not a valid folio.
- 21. Be advised that per the Miami Dade County Parks, Recreation and Open Spaces Department (PROS), site plans or cross sections for the Ludlam Trail have not yet been developed. Therefore, any conceptual corrective action plan and/or engineering control proposal that utilizes elements of the trail design, such as the width of paved areas, requires consultation with and approval by PROS.
- 22. As discussed in the October 16, 2017 DERM meeting and as stated in the report, a topographic survey shall be completed and submitted in electronic (AutoCAD) format as well as hard copy.
- 23. Future Development Concerns:
 - a. Any proposed development of the Ludlam Trail resulting in greater than 2 acres of impervious surface will require a surface water management General Permit from the DERM, for construction of the required stormwater management system. A Class IV permit in areas of groundwater contamination will also be required. Be advised, additional groundwater assessment will be required in areas of proposed stormwater drainage, unless recent (within 9 months) groundwater data for the contaminants of concern exists for the area in question.
 - b. Based on the review of the Phase I received September 14, 2015, additional soil and groundwater sampling pursuant to the letter dated October 29, 2015, will be required within the portions of the Ludlam Trail contemplated to be retained by FECI. Additional assessment may be required based on the results.

Ms. Kolleen Cobb HWR-836 October 31, 2017 Page 7 of 7

> c. Once site assessment activities have been completed, and prior to site development and earthwork activities, a site specific Contaminated Soil Management Plan (SMP), Air Monitoring Plan (AMP), Dust Control Plan (DCP), and Health and Safety Plan (HASP), signed by a certified industrial hygienist, shall be provided to the department for review.

Based on the above, and pursuant to Sections 24-7(15), 24-7(26), and 24-44(2)(g) of the Code, you are hereby ordered to submit to this office for review, within ninety (90) days of receipt of this letter, two copies of a Site Assessment Report (SAR), one paper and one electronic PDF on CD, prepared in accordance with Section 24-44(2)(j)(iv) of the Code. A review fee of \$1451.25 (\$1350 for the review of the SAR and \$101.25 for the RER surcharge) shall be included. Specific guidance for the preparation of the SAR downloaded from DERM's web may be page at: www.miamidade.gov/environment/pollution-remediation.asp. Additionally, the documentation of access restriction implementation and the topographic survey shall be provided within fifteen (15) days of receipt of this letter, and the soil and groundwater sampling plan shall be provided within thirty (30) days of receipt of this letter.

Be advised that failure to comply with the above orders may result in enforcement action for this site.

Any person aggrieved by any action or decision of the DERM Director may appeal said action or decision to the Environmental Quality Control Board (EQCB) by filing a written notice of appeal along with submittal of the applicable fee, to the Code Coordination and Public Hearings Section of DERM within fifteen (15) days of the date of the action or decision by DERM.

If you have any questions concerning the above, please contact me at <u>Wilbur.Mayorga@miamidade.gov</u> or (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Environmental Monitoring & Restoration Division

RSV

ec: Lee N. Hefty, RER Director, Division of Environmental Resources Management Maria I. Nardi, Director, Parks, Recreation and Open Spaces Jose M. Gonzalez, FEC Industries, <u>jose.gonzalez@feci.com</u> Fangmei Zhang, P.E., PhD, SCS Engineers, <u>fzhang@scsengineers.com</u> Lisa Smith, SCS Engineers, <u>Ismith@scsengineers.com</u> HWR-716

Carlos A. Gimenez, Mayor

December 21, 2017

Department of Regulatory and Economic Resources Environmental Resources Management 701 NW 1st Court, 4th Floor Miami, Florida 33136-3912 T 305-372-6700 F 305-372-6982

miamidade.gov

Kolleen Cobb LR 13-18 LLC and FECI LT 1 LLC 2855 Le Jeune Rd., 4th Floor Coral Gables, FL 33134

CERTIFIED MAIL NO. 7014 1200 0002 0821 5456 RETURN RECEIPT REQUESTED

RE: Proposed Groundwater Sampling and Analysis Plan - Ludlam Corridor Properties 'All Green Trail' Former 1-Mile and 5-Mile Railroad Corridors ("the Site"), located in portions between NW 7 Street and SW 80 Street and between 69 Avenue and 70 Avenue, (folio numbers: 30-3052-000-0020, 30-4002-000-0111, 30-4011-018-0040, 30-4011-018-0080, 30-4011-000-0050, 30-4011-019-0690, 30-4014-000-0070, 30-4023-000-0500, 30-4026-000-0190, 30-4035-000-0210, 3040-110-19-1100, 30-403-5000-1330, 30-4035-000-1440, and 30-4035-000-1280), Miami-Dade County, Florida (HWR-836).

Dear Ms. Cobb:

The Department of Regulatory and Economic Resources-Division of Environmental Resources Management (DERM) has reviewed the above-referenced document received December 7, 2017. The Plan is approved with the following modifications:

- 1. The proposed MWs 3E, 7E, 10E, 29E and 33E on the eastern boundary to be sampled for arsenic are approved. Please be advised that a continuous eastwardly regional flow cannot be presumed for the entire site as local-scale variations in groundwater flow and direction can be caused by spatial variability of hydraulic characteristics, such as nearby pumping wells, surface water bodies (e.g., adjacent to MW-29, etc.), etc. Therefore, the need for additional monitoring wells along the western boundary will be determined based on future soil and groundwater results and observed variations in local-scale groundwater flow directions as indicated from groundwater elevation contour maps.
- 2. MW-27 shall be resampled for arsenic to confirm contaminant concentrations below the applicable groundwater cleanup target levels (GCTLs).
- 3. The proposed monitoring wells at SB-9, 11, 25, 30 and 46 are approved; however, a monitoring well shall also be installed at SB-49-2 and SB-47 due to the soil arsenic concentrations and nearby private potable wells.
- 4. In addition to the proposed groundwater sampling to assess the potential PAH leachability throughout the corridor, DERM requires monitoring wells at SB-15, SB-21-2, and SB-22 to be sampled for PAHs. However, please be advised that you have the option of conducting Synthetic Precipitation Leaching Procedure (SPLP) testing on those soil samples from the above-referenced soil borings (i.e., SB-21-2, etc.) to determine if leachate concentrations exceed the applicable GCTLs.
- 5. DERM acknowledges that a statistical comparison of on-site lead to the Miami-Dade County lead background data set identified statistically similar concentrations. However, the statistical comparison did not address the fact that lead results for soil samples SB-21-2 and SB-21-4 (0-6") are outliers within the Ludlam data set and not consistent with Miami-

Ms. Kolleen Cobb HWR-836 December 21, 2017 Page 2 of 3

Dade County's background distribution. Therefore, based on the above, and the Toxicity Characterization Leaching Procedure (TCLP) values for lead (above the groundwater CTL), the requested monitoring well at SB-21-2 shall also be sampled for lead. Alternatively, you have the option of conducting SPLP analysis on SB-21-2 (0-6") and SB-21-4 (0-6") to determine the need for lead groundwater assessment in this area. Please be advised that based on the results, additional soil and/or groundwater assessment may be required.

- 6. Additional groundwater sampling may be required based on the results for pentachlorophenol, phenol and cresols at SB-8, 12, 30, 40, 42, 48.
- 7. As previously requested, a vertical extent well shall be installed immediately adjacent to MW-37. Note that permanent or temporary surface casing should be used to minimize the potential for contaminant drag-down. An evaluation of the need for double-casing of vertical extent wells shall be based on lithology, zone of contamination, and the existence of a confining/retarding unit.
- Based on the sampling notification dated November 10, 2017, SCS planned to sample 9 monitoring wells on November 15, 2017; however, the results for that sampling event were not provided (except MW-35 and MW-40). Please provide the results for the remaining seven MWs.
- 9. The monitoring well construction data for MW-26, 37W, 37E, 35 and 36 indicate that the borehole above the grout was backfilled with drill cuttings up to 6' above the grout in some cases. Provide an explanation for this practice at these monitoring wells and evaluate and discuss if the material used will prevent surface water run-off from migrating down the outside of the well casing or the borehole.

Be advised that the vertical and horizontal extent of the contaminant plume(s) shall be fully delineated. DERM has the option to split any samples deemed necessary with the consultant or laboratory at the subject site. The consultant collecting the samples shall perform field sampling work in accordance with the Standard Operating Procedures provided in Chapter 62-160, Florida Administrative Code (FAC), as amended. The laboratory analyzing the samples shall perform laboratory analyses pursuant to the National Environmental Laboratory Accreditation Program (NELAP) certification requirements. If the data submitted exhibits a substantial variance from DERM split sample analysis, a complete resampling using two independent certified laboratories will be required.

DERM shall be notified in writing a minimum of three (3) working days prior to the implementation of any sampling or field activities. Email notifications shall be directed to DERMPCD@miamidade.gov. Please include the DERM file number on all correspondence.

Based on the above, and pursuant to Sections 24-7(15), 24-7(26), and 24-44(2)(g) of the Code, you are hereby ordered to submit to this office for review, within forty-five (45) days of receipt of this letter, two copies of a Site Assessment Report (SAR), one paper and one electronic PDF on CD, prepared in accordance with Section 24-44(2)(j)(iv) of the Code. A review fee of \$1451.25 (\$1350 for the review of the SAR and \$101.25 for the RER surcharge) shall be included. Specific guidance for the

Ms. Kolleen Cobb HWR-836 December 21, 2017 Page 3 of 3

2

preparation of the SAR may be downloaded from DERM's web page at: www.miamidade.gov/environment/pollution-remediation.asp.

Be advised, failure to adhere to the items and timeframes stipulated above may result in enforcement action for this site.

Any person aggrieved by any action or decision of the DERM Director may appeal said action or decision to the Environmental Quality Control Board (EQCB) by filing a written notice of appeal along with submittal of the applicable fee, to the Code Coordination and Public Hearings Section of DERM within fifteen (15) days of the date of the action or decision by DERM.

If you have any questions concerning the above, please contact me at <u>Wilbur.Mayorga@miamidade.gov</u> or (305) 372-6700.

Sincerely,

Wilbur Mayorga, P.E., Chief Environmental Monitoring & Restoration Division

RSV

 Lee N. Hefty, RER Assistant Director, Division of Environmental Resources Management Maria I. Nardi, Director, Parks, Recreation and Open Spaces Matilda Reyes, Assistant Director, Parks, Recreation and Open Spaces Jose M. Gonzalez, FEC Industries, jose.gonzalez@feci.com Fangmei Zhang, P.E., PhD, SCS Engineers, <u>fzhang@scsengineers.com</u> Lisa Smith, SCS Engineers, <u>Ismith@scsengineers.com</u> Howard Nelson, Bilzin Sumberg, <u>hnelson@bilzin.com</u> HWR-716

ATTACHMENT B

SOIL BORING LOGS

										Page 1 of		
Site Name:			<u> </u>			Boring ID:			Folio/	Permit Nu		
Site Addres		_udlam C	Corrido	r		Caalagist's	SB-	12A	Envin	nmontol 7	N/A Fechnician'	a Nomo
Sile Addres	55.	N/A	Δ			č					ohn Marra	
Environme	ntal Contra			Borehole	Start Date			Borehole Start T	ime:	1325		PM
5	SCS Engi	neers		Ŧ	End Date:	8-Dec-		End T	ime:	1330	AM	_
Drilling co	-		iole Dep			Diameter (i		Apparent Bore				
	\EE		7			2		7				
Drilling Me				Pavement 7		(inches):	Depos	ition of Drill Cuttin	ngs:	Borehole	Completion	
Direct Pus					N/A			Backfill			Backfill	
Sample Type	Sample Depth Interval (feet)	Depth (feet)		(include g	grain size	Sample I based, odo		ion ing, and other re	marks)		Sample
DP	0-0.5	0.5	0-0.5' 1	Dark brow	n silty toj	psoil					SB-12A (0)-0.5) 1345
			0.5-7']	Dark brow	n sandy t	opsoil witl	h sand					
DP	0.5-2	1.0									SB-12A (0.5-2) 134
		2.0										
DP	2-4	3.0									SB-12A	(2-4) 1348
		4.0										
DP	4-6	5.0									SB-12A	(4-6) 1349
		6.0										
DP	6-7	7.0									· SB-12A	(6-7) 1350
		8.0										
		9.0										
		10.0						Shelby Tube: $\mathbf{DP} = \mathbf{I}$				

										Page 1 of	
Site Name:	:					Boring ID:			Folio	Permit Nu	mber:
	l	_udlam (Corrido	r			SB-	8A			N/A
Site Addre	ss:					Geologist's Name: Environmental				onmental 7	Technician's Name:
		N/	A			Maria Giudici Jo			hn Marra		
Environme	ental Contra	actor:		Borehole	Start Date:	8-Dec-	2017	Borehole Start	Fime:	1415	🗌 AM 🗌 PM
5	SCS Engi	neers			End Date:	8-Dec-	2017	End T	Time:	1420	🗆 AM 🗖 PM
Drilling co	-		hole Der			Diameter (in		Apparent Bor			
_	\EE		8	()		2	,	6		()	
Drilling M			0	Pavement	L Thickness (Deposi	tion of Drill Cutt	ings:	Borehole (Completion:
Direct Pus					N/A	():		Backfill	8		Backfill
Sample Type	Sample Depth Interval (feet)	Depth (feet)			grain size l				emark	s)	Lab Soil Sample Collection Time
DP	0-0.5	0.5		Dark brow							SB-8A (0-0.5) 1440
DP	0.5-2	1.0 2.0				uined sand					SB-8A (0.5-2) 1441
DP	2-4	3.0	2-5' Ta	in fine gra	ined sand						SB-8A (2-4) 1443
DP	4-6	5.0 6.0	5-8' Ta	n limestor	ne						SB-8A (4-6) 1444
		7.0									
		9.0									
L		10.0									

BORING LOG

										Pa	ge 1 of	
Borin	g/Well	Numbe				Permit	Number:		FDEP Facili	ity Ider	ntificati	ion Number:
Site N	~ ~	00				Boreho	ole Start D	ate: 28 2013 Borehole Start	Time:			АМ ГРМ
	dlu						End Da	ate: 120/2017 End?			Γ/	Ам ГРМ
	onmenta		ractor:				ist's Nam	brudici	Environmen karm			
Drilli	ng Com	bany.	neus		Paveme	ent Thic	kness (inc	hes): Borehole Diameter (inches):	Bo	rehole	Depth	(feet):
	JAU 1g Meth			Annaren	t Boreho			Measured Well DTW (in feet after	OVA (list m	8 odel ar	ad che	ok tumo):
	irec		sh.	No.5	oil moistu			water recharges in well): N A	NIA			FID □ PID
			Cuttings [Г	Drum F Spread FBackfill	☐ Stoc	kp ile	Г	Other
			multiple i			d): Well	☐ Gro					
Boren	ole Con	ipietio	n (check d	one):	1	well	J Gro	ut 🔽 Bentonite 🔽 Backfi	Fine	other (
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odo and other remarks)		USCS Symbol	Moisture Content	Lab Soil and Groundwater Samples (list sample number and depth or temporary screen interval)
DP	0.0.5 0.5-7 2-4 4-0			2	×	/	1 2 3 4 5 6 7 8	0-0.5 eff white er linerock fill. 0.5-1,5 Dank Brown topsoil with small nedrum encotore with some igneous n fragments 1.5-24 Dark orange Nith small eines fragments. 4-8 tan to orange Qinestore	silty to fragna och silt	ets.		SB-30A (0-0.5) 8B-30A (0.5-2) SB-30A (2-4) SB-30A (2-4).
							9 10 11 12	Soil Boring ter @ 4 ft B	mino AS	fee	2	

BORING LOG

-								Page 1 of
Borin	g/Well 1	Numbe	r:			Permit	Number:	FDEP Facility Identification Number:
Site N	Vame:	40	n		_	Boreho	le Start D	Date: 128 12. Borehole Start Time:
11	udlu	m T	rail					Date: 12-8 2013 End Time: TAM TPM
	onmenta	_			_	Geolog	ist's Nam	me: Environmental Technician's Name:
5			ine	us-		N		rabiudici Karinnebedosky.
Drilli	TAT.	-	0		Paveme	ent Thick	kness (inc	iches): Borehole Diameter (inches): Borehole Depth (feet):
Drilli	ng Meth	V.	11		t Boreho			Measured Well DTW (in feet after, OVA (list model and check type):
Vi	ne	* H	JSK	from so	oil moistu	ire conter	$_{\rm nt):} \sim 0$	
Dispo	sition of	f Drill (Cuttings [check m	ethod(s)]:	Γı	Drum 🔽 Spread TBackfill TStockpile TOther
(descr	ribe if ot	her or	multiple i	tems are				
Boreh	ole Con	npletion	n (check c	one):	Г	Well	☐ Gro	rout T Bentonite T Backfill T Other (describe)
Sample Type	Sample Depth Interval (feet)	Sample Recovery (inches)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	Sample Description (include grain size based on USCS, odors, staining, and other remarks)
DP	0-05 0.5-2 2-4 4-6			3-	4			4-8 tan to offunite limeotore. Soil Boring Terminated C & freet BGS
							11 12	

BORING LOG

	Page 1 of
Boring/Well Number: SB-U2A	Permit Number: FDEP Facility Identification Number:
Site Name:	Borehole Start Date: 28 2013 Borehole Start Time:
Ludlum Trail	End Date: 28 2017 . End Time:
Environmental Contractor:	Geologist's Name: Environmental Technician's Name:
SCS Engineers	Maria Givdia Karinne Bedoshy.
Drilling Company. Paveme	ent Thickness (inches): Borehole Diameter (inches): Borehole Depth (feet).
Differ	N/A 2.5 B
Drilling Method(s): Apparent Boreho Divert PUSh from soil moist	ble DTW (in feet ure content): ~ (Water recharges in well): N/A Water recharges in well): N/A
Disposition of Drill Cuttings [check method(s)	
(describe if other or multiple items are checked	/ /
Borehole Completion (check one):	Well Grout Generative Backfill Other (describe)
	Lah Coll on
Filtered OVA Unfiltered OVA SPT Blows (per six inches) Sample Recovery (inches) Sample Depth Interval (feet) Sample Type	Net Deptition Sample Description Samples (list sample number numb
filtered OV afiltered OV SPT Blows oer six inch mple Recov (inches) ample Dep nterval (fee sample Typ	Net Deptile Sample Description Samples (list) Net Optile (include grain size based on USCS, odors, staining, and other remarks) Sample number of the sample num
d OV nch Dep (fee	and other remarks)
A VA VA VA VA very very very very	Interval)
0-05	1 0-1 Dffuhik crushed linerock SB-42A fill (0-0,5)
205-2	2 1-2.5 Dank Brown silty SB-48A
	2 2 3 3 4 2,75-4 tan to orange linestore 4 2,75-4 tan to orange linestore 3 4 2,75-4 tan to orange linestore 3 3 4 2,75-4 tan to orange linestore 3 3 4 2,75-4 tan to orange linestore 3 3 4 2,75-4 tan to orange linestore 3 4 2,75-4 tan to orange linestore
	3 medium linestone fragmente. SB-48f
1-6 N/A	2.5-2.75 orange sitt. (2.4)
	4 2.75-4 tan to orange larestine
	4-9 Tan L alling
	limestore
	8
	9 Soil Borng terminated 10 @ 8ft BGS.
	9 soil boing terminated
	@ 8ABGC
	12

BORING LOG

												Pag	ge 1 of	·
Borin	g/Well I	Numbe				Permit	Number:				FDEP Facili	ity Iden	tificati	on Number:
Site N			5.			Boreho	le Start D	ate: 12	B 2017	Borehole Start	Time: 09	8	V	АМ ГРМ
	Judi	um	Frail				End Da	ate: 12	8 2017	End	Time: 090	2	FU.	АМ ГРМ
			ractor:				ist's Nam	e:			Environmen	tal Tec		
			leers.				aria							bosky
Drilli	ng Com	bany:			Paveme	nt Thic	kness (inc	hes):	Borehole Dia	meter (inches):	Bo	rehole]	Depth	(feet):
Drillin	ng Meth	od(s)	100	Apparen	t Boreho			Mea	sured Well DT	V (in feet after	OVA (list m	odel an) d cher	k type):
0	inec		wh				nt): ~7			well The				FID FID
			Cuttings [Spread	Backfill		kpile		Other
			multiple i		.,	-			•			1	,	
11110-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	2-24-CZ*		n (check c		<u>г</u>		☐ Gro	out	Bentonit	e 🔽 Backf	in 🔽	Other (descrit	
Boren	ore con	ipiecioi		<i></i>	2	W OII	, on	, ut	Dentoint	Ducki	•			Sand
<u> </u>		10					r	2			TINE	gia	-	Lab Soil and
Sa	Sample Depth Interval (feet)	Sample Recovery (inches)	(pe S	Unf	Fil		U U					US	Moisture Content	Groundwater
mpl	erva	ıple Recc (inches)	PT] r six	ilter	tere	Vet (epth		-	e Description		CS	ture	Samples (list
Sample Type	De Ll (fe	Reco hes)	SPT Blows (per six inches)	Unfiltered OVA	Filtered OVA	Net OVA	Depth (feet)	(Includ	-	sed on USCS, od (ther remarks)	ors, staining,	USCS Symbol	°C:	sample number and depth or
pe	et)	ver	vs hes)	VVA	VA		Ű			,	Acc	bol	nter	temporary screen
		,									20000	-	T.	interval)
	0-05	2				1	1	0-0.	5 Tan	tooffut	He crus	red		SB-40A
	05-2	ľ				1			mero					(0-0'2)
	2-4					/	2	0.5-	25 Bri	oun recti	un			SB-48A
DP	·				/		_	to	220 0 00	Sand	with			(0.5-2)
	4-6				1		3	med	and to	im sand lange lin	watere			SB-48A
	10-7			- 6	/			fin	in the second	inder mi	New June			(2-4)
				N	A.		4	inc	Sincur					SB-48,4
								2.5-	6 Tan.	to orang otore	1			(4-6)
							_ 5		line	otore	,			
										of lone				SB-48A (6-7)
							- °	•••	Jun	the second	21006			(6-1)
							7							
			/				<u> </u>							
			/				8					-		
		-		-		- 2					minat	ed		
							9		bil 'Bo	me -lei				
									Q	rmg-ter 8 f-eet 1	RC2			
							10		-					
							11							
							10							
							12						_	

											Page 1 of			
Site Name:						°					Folio/Permit Number:			
<u>al.</u>		udlam	Corrido	r		a 1	SB-	7R			. 1 .	N/A		
Site Addre	ss:	NU	•			Geologist's		D	# ;	Envir	onmental	Fechnician [®]	s Name:	
Environme	ental Contra	N/	A	Borehole	Start Date		nthony		ehole Start T	ime [.]	10:40	N/A	PM	
	SCS Engi					16-Jan		Bu	End T		10:40	AM	_	
Drilling co	-		10le Dep		End Date: Borehole	Diameter (i		A	pparent Bore					
_	AEE		10			2.25		6						
Drilling M	ethod(s):			Pavement	Thickness	(inches):	Deposi	ition o	of Drill Cuttin	ngs:	Borehole	Completion	1:	
Direct Pus	irect Push 3				3			E	Backfill			Backfill		
Sample Type	Sample Depth Interval (feet)	Depth (feet) (feet) (include grain siz				Sample Description ze based, odors, staining, and other remarks)						l Sample/ ion Time		
DP	0-0.5	0.5	0-1' Li	ght grey to) medium	brown fin	e sand	with	gravel			SB-7R (0-	0.5) 10:45	
DP	0.5-2	1.0	1'-3' M	ledium bro	own fine s	sand						• SB-7R (0	0.5-2) 10:50	
DP	2-4	3.0	3'-7' M	ledium bro	own to tar	n fine sand						· SB-7R (2-4) 10:55	
DP	4-6	5.0										SB-7R (4-6) 11:00	
		7.0		Light grey	limestone	e								
		9.0 9.0												

ATTACHMENT C

WELL INSTALLATION DOCUMENTATION

WELL CONSTRUCTION AND DEVELOPMENT LOG

	WELL CONSTRUCTION	DATA	
Well Number: Site Name: MW-3E LUD	in Colda las	FDEP Facility I.D. Numb	
Wall Leastion and Type (check over it is)		NIA	January 16, 2018
Well Location and Type (check appropriate boxes):	Well Purpose: Perched Mon	-	Well Install Method:
Con-Site Right-of-Way		ter-Table) Monitoring	Hollowstem
Above Grade (AG) K Flush-to-Grade		or Deep Monitoring or Other (describe)	Surface Casing Install Method:
If AG, list feet of riser above land surface: 0	1 Kontegration (of other (describe)	NIA
	e Diameter Manhole Diameter	Well Pad Size:	- re
(feet): 15, , (feet): 15, (inches)		2 feet	by feet
Riser Diameter and Material: Riser/Screen	Flush-Threaded	Riser Length:	feet
2°5Ch 90 PVC Connections	Other (describe)	from 🚫	feet to 5 2 feet
Screen Diameter and Material:	Screen Slot Size:	Screen Length: 10 1	eet
2" slotted schild puc	0.01	from 5.2	feet to 15. A feet
1 st Surface Casing Material:	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length:	feet
also check: Permanent Temporary	NIA	from	feet to feet
2 nd Surface Casing Material:	2 nd Surface Casing I.D. (inches):	2 nd Surface Casing Length	feet
also check: Permanent Temporary	MA	from	feet to feet
3 rd Surface Casing Material:	3 rd Surface Casing I.D. (inches):	3rd Surface Casing Length:	feet
also check: Permanent Temporary	NA	from	feet tofeet
Filter Pack Material and Size: Prepacked Filter A	round Screen (check one):	Filter Pack Length:	feet
6120 Fine Sona TYes	No	from 3.2	feet to 15, feet
Filter Pack Seal Material and		Filter Pack Seal Length:	feet
Size: 30165 Fire SO	NO	from 1.7	
Surface Seal Material:		Surface Seal Length:	feet
G-VOUL		from	feet to 1.7 feet

		WELL DEVELO	DPMENT DATA	
Well Development Date:	Well	Development Method (chea Other (describe)	ck one): Xurge/F	Pump 🦳 Pump 🦳 Compressed Air
Submersible Other (describe)	Centri	ifugal / Peristaltic	Depth to Groundwater (h	before developing in feet):
Pumping Rate (gallons per minute):	12	Maximum Drawdown of O Development (feet):	Groundwater During	Well Purged Dry (check one):
Continuous Intermittent	emoved	elopment Water (gallons): 55	Development Duration (minutes):	Development Water Drummed (check one): Yes T No
Water Appearance (color and odor) At 3	Start of D	evelopment:	Water Appearance (color	r and odor) At End of Development:
Whiteing	M		clear, no	one

WELL CONSTRUCTION AND DEVELOPMENT LOG

V	VELL CONSTRUCTION	DATA
Well Number: MW-33 E Site Name: Lud IOM		FDEP Facility I.D. Number: Well Install Date(s):
Well Location and Type (check appropriate boxes): On-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface: NA	Intermediate of	itoring er-Table) Monitoring or Deep Monitoring or Other (describe) Well Install Method: HOILOW Surface Casing Install Method NA
Borehole Depth (feet): (7.3 (inches): (inches): (1.5 (inches): 6	Well Pad Size:
Riser Diameter and Material: 2^{5} S (40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length: 7.3 feet from 9 feet to 7.3 feet
Screen Diameter and Material: a Schyo Pucs lotted	Screen Slot Size:	Screen Length: 10 feet from 7.3 feet to 17.3 feet
l st Surface Casing Material: also check: Permanent Temporary	1^{st} Surface Casing I.D. (inches):	l st Surface Casing Length:feetfeetfeet tofeet
2 nd Surface Casing Material: also check: Permanent Temporary	2^{nd} Surface Casing I.D. (inches): $\sim (\triangle)$	2 nd Surface Casing Length:feet fromfeet tofeet
3 rd Surface Casing Material: also check:	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length:feet fromfeet tofeet
Filter Pack Material and Size: Prepacked Filter Aron 6120 5003 Tyes	Ind Screen (check one):	Filter Pack Length: <u>1</u> feet from 5.3 feet to 17.3 feet
Filter Pack Seal Material and Size: 30(65 Sond		Filter Pack Seal Length: from 3.3 feet to 5.3 feet
Surface Seal Material:		Surface Seal Length: <u>33</u> feet from <u>9</u> feet to <u>33</u> feet

· ·····		WELL DEVE	LOPMEN 7	T DATA			
Well Development Date:	Well	II Development Method (check one): Ksurge Other (describe)			Pump 🦵 Pum	np 「Con	npressed Air
Development Pump Type (check):	Centri	ifugal / Peristaltic	Depth to C	Groundwater (I	before developing i	in feet):	
Pumping Rate (gallons per minute):	5	Maximum Drawdown o Development (feet):	of Groundwate	r During	Well Purged Dry Yes	(check one):	
		elopment Water (gallons): 555	Developme (minutes):	ent Duration	Development War (check one):		└_ No
Water Appearance (color and odor) At S			Water App		r and odor) At End	of Developme	ent:
white	CION	ne .		CHO	v, none		

WELL CONSTRUCTION AND DEVELOPMENT LOG

V	VELL CONSTRUCTION	DATA	
Well Number: Site Name:	M	FDEP Facility I.D. Number	er: Well Install Date(s):
Well Location and Type (check appropriate boxes): On-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface: N/A	Well Purpose: Freched Mor Shallow (Wa Intermediate Remediation	hitoring ter-Table) Monitoring or Deep Monitoring or Other (describe)	Well Install Method: Hoillow Stem Avget Surface Casing Install Method N/A
(feet): 17.5 (feet): 17.5 (inches):		the second se	by 者 feet
2"Sch 40 Puc Connections:	Flush-Threaded Other (describe)	Riser Length: 7.5 from 0	feet to 2.5 feet
Screen Diameter and Material: デントレートレートレート	Screen Slot Size:	Screen Length: 10 f from 2.5	teet to 17.5 feet
1 st Surface Casing Material: also check: Permanent Temporary	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length: from	feet to feet
2 nd Surface Casing Material: also check: Permanent Temporary	2^{nd} Surface Casing I.D. (inches):	2 nd Surface Casing Length: from	feet to feet
3 rd Surface Casing Material: also check: Permanent Temporary	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length: from	feet
Filter Pack Material and Size: Prepacked Filter Aro	und Screen (check one):	Filter Pack Length: from 5.5	
Filter Pack Seal Material and Size: 30/655	onl	Filter Pack Seal Length:	
iurface Seal Material:	31214	Surface Seal Length: from	feet to 4.5 feet

	WELL DEVELOPMENT DATA					
Well Development Date:		Development Method (che Other (describe)	ck one): 🏹 🖓 urge/I	Pump 🦵 Pump 🦵 Compressed Air		
Development Pump Type (check):	Centri	ifugal 🗍 Peristaltic	Depth to Groundwater (before developing in feet):			
		Maximum Drawdown of Groundwater During Development (feet):		Well Purged Dry (check one):		
Pumping Condition (check one): Total Development Water Continuous Intermittent Removed (gallons): 55		(gallons): 55	Development Duration (minutes):	Development Water Drummed (check one): Xes T No		
Water Appearance (color and odor) At Start of Development:			Water Appearance (color and odor) At End of Development;			
Where	non	و		Clearinne		

WELL CONSTRUCTION AND DEVELOPMENT LOG

	V	VELL CONSTRUCTION	ON DATA	
Well Number: Site Name: MW-30			FDEP Facility I.D. Numb	ber: Well Install Date(s):
Off-Site Private Property Above Grade (AG) FF If AG, list feet of riser above land surf	ight-of-Way Iush-to-Grade ace: MA	[Intermedi	Monitoring Water-Table) Monitoring iate or Deep Monitoring ion or Other (describe)	Well Install Method: HONOWStern Auger Surface Casing Install Method N/A
Borehole Depth (feet): 17,5 (feet): 1 Riser Diameter and Material:			Well Pad Size: <u>a</u> feet Riser Length: <u>7-5</u> from 0	
Screen Diameter and Material: J'Slotted 5Ch40	PUC	Screen Slot Size:	Screen Length: 10	
1 st Surface Casing Material: also check: Permanent	Temporary	1 st Surface Casing I.D. (inches)	l st Surface Casing Length from	
2 nd Surface Casing Material: Iso check:	Temporary	2^{nd} Surface Casing I.D. (inches): 2 nd Surface Casing Length from	
rd Surface Casing Material: lso check:	Тетрогагу	3 rd Surface Casing I.D. (inches)	: 3 rd Surface Casing Length from	feet to feet
1 feet and the second sec	repacked Filter Arou	Ind Screen (check one):	Filter Pack Length: from 5	12-5 feet feet to 7.5 feet
ilter Pack Seal Material and ize:	30165 F	inesond	Filter Pack Seal Length: from 3	feet
urface Seal Material;	Fine growt		Surface Seal Length: from	feet to feet

WELL DEVELOPMENT DATA					
Well Development Date:		Development Method (ch Other (describe)	eck one): Surge/	Pump 「Pump 「Compressed Air	
Development Pump Type (chcck): Centrifugal Peristaltic Depth to Groundwater (before developing in feet):					
Pumping Rate (gallons per minute):		Maximum Drawdown of Groundwater Du Development (feet):		Well Purged Dry (check one):	
	Removed (Development Duration (minutes): 6 ()	Development Water Drummed (check one): X Yes No	
Water Appearance (color and odor) At Start of Development:			Water Appearance (color and odor) At End of Development:		

WELL CONSTRUCTION AND DEVELOPMENT LOG

WELL CONSTRUCTION DATA							
	Site Name: Ludlam Corride	or Properties 'All Green Trail'	FDEP Facility I.D. Number N/A	r: Well Install Date(s):			
Well Location and Type (check a On-Site Off-Site Private Property Above Grade (AG) If AG, list feet of riser above land su	ppropriate boxes): Right-of-Way Flush-to-Grade	Well Purpose: Ferched Mov Shallow (Wa Intermediate	ter-Table) Monitoring	Well Install Method: Hollow Stem Auger Surface Casing Install Method:			
Borehole Depth Well D (feet): 17.3 (feet):	17.3 (inches):	4.5 (inches): 6	Well Pad Size:				
Riser Diameter and Material: 2" Sch 40 PVC	Riser/Screen Connections:	Flush-ThreadedOther (describe)	Riser Length: 73 fe from 0	feet to <u>23</u> feet			
Screen Diameter and Material: Slotted 2" Sch 4	0 PVC	Screen Slot Size: 0.01	Screen Length: <u>()</u> fe from <u>)</u>	et feet to 17.3 feet			
1 st Surface Casing Material: also check:	Temporary	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length: from	feet			
2 nd Surface Casing Material: also check: Permanent	Temporary	2 nd Surface Casing I.D. (inches);	2 nd Surface Casing Length: from	feet			
3 rd Surface Casing Material: also check: Permanent	Temporary	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length:				
Filter Pack Material and Size: 6/20 fine sand	Prepacked Filter Aro		Filter Pack Length: from <u>5.3</u>	$\frac{12}{\text{feet}} \text{ feet}$ feet to $\frac{17.3}{17.3}$ feet			
Filter Pack Seal Material and Size:	3	0/65 fine sand		feet to 5.3 feet			
Surface Seal Material:		fine grout	Surface Seal Length: from	Particular Science 1 (1997)			

WELL DEVELOPMENT DATA							
Well Development Date:		Development Method (chec	ck one):		/Pu ∫¯ Pum	np Comp	ressed Air
90012,2018	r	Other (describe)			, , , , , , , , , , , , , , , , , , ,	· · · · · · · ·	
Development Pump Type (check):	ifugal 🦵 Peristaltic		indwater (b	efore developing i	n feet):		
		Maximum Drawdown of C		uring	Well Purged Dry	(check one):	
	_	Development (feet):	9.70		∫ Yes	✓ No	
Pumping Condition (check one): To	tal Dev	elopment Water	Development Duration Development Water Drummed				
Continuous 🔽 Intermittent Re	emoved (gallons): 55		(minutes):	55	(check one):	🔽 Yes	∫ No
Water Appearance (color and odor) At Start of Development:			Water Appearance (color and odor) At End of Development:				
whitenone				Clear,	none		

WELL CONSTRUCTION AND DEVELOPMENT LOG

	WELL CONSTRUCT	TION DATA
Well Number: MW - 15	Ludian	FDEP Facility I.D. Number: Well Install Date(s):
Well Location and Type (check appropriate On-Site Right-of- Off-Site Private Property Above Grade (AG) Flush-to- If AG, list feet of riser above land surface:	Way Shallov Thterm Grade Remed	ed Monitoring w (Water-Table) Monitoring nediate or Deep Monitoring liation or Other (describe) Well Install Method: How Stery AVBu Surface Casing Install Method: NIA
(feet): 15.2 (feet): 15.2		Well Pad Size:
Constant Const	r/Screen Flush-Threaded nections: Other (describe)	Riser Length: 52 feet from 6 feet to 52 feet
Screen Diameter and Material: SCN 40 2 510 the PU	C Screen Slot Size:	Screen Length: $(\bigcirc$ feet from 5.2 feet to 152 feet
1 st Surface Casing Material: also check: Permanent T Ter	nporary	hes): 1 st Surface Casing Length:feet
2 nd Surface Casing Material: also check:	2 nd Surface Casing I.D. (incl nporary	hes): 2 nd Surface Casing Length:feetfee
3 rd Surface Casing Material: also check:	3 rd Surface Casing I.D. (inch	
Filter Pack Material and Size:Prepacked b (∂o 5 $\otimes N$) \Box Yes	Filter Around Screen (check one):	Filter Pack Length: 42 feet from 32 feet to 152 feet
Filter Pack Seal Material and Size: 30/05 504	1	Filter Pack Seal Length: $3 \cdot 3$ feet from $1 \cdot 3$ feet to $3 \cdot 3$ feet
Size: <u>30/65 500</u> Surface Seal Material: gyov9		Surface Seal Length: <u>1.2</u> feet from <u>6eet to</u> feet

WELL DEVELOPMENT DATA					
Well Development Date: _) on 15, Joho		Development Method (chec Other (describe)	k one): XSurge/I	Pump 🦵 Pump 🦵 Compressed Air	
Submersible Other (describe)	Centri	fugal 🦵 Peristaltic	Depth to Groundwater (before developing in feet):		
		Maximum Drawdown of Groundwater During Development (feet): 8.52		Well Purged Dry (check one):	
Continuous 🔽 Intermittent Re			Development Duration (minutes):	Development Water Drummed (check one): Krys I No	
Water Appearance (color and odor) At Start of Development:			Water Appearance (color and odor) At End of Development:		
White, none			Clear	, nore	

WELL CONSTRUCTION AND DEVELOPMENT LOG

	WELL CONSTRUCTION DATA							
Well Number:	Site Name:				FDEP Facility I.D. Number: Well Install Date(Date(s):
mw-11	Ludlam Corrid	Corridor Properties 'All Green Trail'			N/A		Jon 1	6106
Well Location and Type (check a	appropriate boxes):	Well Pu	rpose:	Perched Mor	nitoring	Well I	nstall Meth	od:
	Right-of-Way		V	Shallow(Wat	ter-Table) Monitoring		Hollow Ste	m Auger
Coff-Site Private Property				Intermediate	or Deep Monitoring			
T Above Grade (AG)	Flush-to-Grade			Remediation	or Other (describe)	Surfac	, T	stall Method:
If AG, list feet of riser above land su							NA	
Borehole Depth Well D		Diameter	Manhole D	iameter	Well Pad Size:			
(feet): (feet):	[5 (inches):	4.5	(inches):	6	2 feet	by	2 feet	
Riser Diameter and Material:	Riser/Screen	🔽 Flush	1-Threaded		Riser Length: 5	feet	AP	
2" Sch 40 PVC	Connections:	☐ Othe	r (describe)		from 🔾	feet 1	to 15	feet
Screen Diameter and Material:		Screen S	lot Size:		Screen Length:			
Slotted 2" Sch 4	0 PVC	0.01		from 5	feet t	to 15	feet	
1st Surface Casing Material:		1 st Surface Casing I.D. (inches):		1st Surface Casing Length		feet		
also check: 🦵 Permanent	Temporary	NIA		from	feet t	.0	feet	
2 nd Surface Casing Material:		2 nd Surfa	ce Casing I.	.D. (inches):	2 nd Surface Casing Length	n:	feet	
also check: 📕 Permanent	Temporary		NI	A	from	feet t	0	feet
3 rd Surface Casing Material:		3 rd Surfa	ce Casing I.	D. (inches):	3rd Surface Casing Length		feet	
also check: TPermanent	Temporary	-	\sim	A	from	feet t		feet
Filter Pack Material and Size:	Prepacked Filter Aro	und Scree	n (check on	e):	Filter Pack Length:	1) feet	
6/20 fine sand	√ Yes 🔽 No			from 3	feet t	o (5	feet	
Filter Pack Seal Material and				Filter Pack Seal Length:	3	feet		
Size:	ze: 30/65 fine sand		from			feet		
Surface Seal Material:		fine are	Sut		Surface Seal Length:		feet	
		fine grout			from O	feet t	0	feet

WELL DEVELOPMENT DATA							
Well Development Date:	Well	ell Development Method (check one): Kurge/Pu Pump Compressed Air					
1115118	Г	" Other (describe)	(
Development Pump Type (check):	Centr	ifugal 🔽 Peristaltic		before developing in feet):			
Submersible / Other (describe)			6.80				
Pumping Rate (gallons per minute):		Maximum Drawdown of G	own of Groundwater During Well Purged Dry (check one):				
0.95	1	Development (feet):		TYes Vo			
		elopment Water	Development Duration	Development Water Drummed			
🔽 Continuous 🦵 Intermittent	Removed	(gallons): 55	(minutes): 🕞 🔿	(check one): Ves No			
Water Appearance (color and odor) At Start of Development:		Development:	Water Appearance (color and odor) At End of Development:				
cultiternore		chor, non	e				

WELL CONSTRUCTION AND DEVELOPMENT LOG

	W	ELL CONS	TRUCTION	DATA	
	ite Name:			FDEP Facility I.D. Num	iber: Well Install Date(s):
Well Location and Type (check app On-Site Rig Off-Site Private Property Above Grade (AG) FI If AG, list feet of riser above land surfa	ropriate boxes): ght-of-Way ush-to-Grade ice: V(A	Well Purpose:	Intermediate	ittoring ter-Table) Monitoring or Deep Monitoring or Other (describe)	Well Install Method: Hol (Ow Surface Casing Install Method: NA
Borehole Depth (feet): 15.2	Sid (inches): Riser/Screen		ed	Riser Length:	by <u>}</u> feet feet feet to <u>5.3</u> feet
Screen Diameter and Material: JUSIOFEd SCHUE		Screen Slot Size		Screen Length: 10 from 5. 3	feet to 5.2 feet
1 st Surface Casing Material: also check:	Temporary	1 st Surface Casin		1 st Surface Casing Length from	h:feet feet tofeet
2 nd Surface Casing Material: also check:	Temporary	2 nd Surface Casin		2 nd Surface Casing Lengt	
3 rd Surface Casing Material: also check:	Тетрогагу	3 rd Surface Casin		3 rd Surface Casing Lengt from	h:feet
	epacked Filter Arou		one):	Filter Pack Length: from 3	feet to 15.2 feet
Filter Pack Seal Material and Size:	0165 SONI			Filter Pack Seal Length:	
Surface Seal Material:	2655011 gravt			Surface Seal Length: from	feet feet

WELL DEVELOPMENT DATA							
Well Development Date:	Well Development Method (cheo	ck one): X Surge/F	Pump Compressed Air				
Submersible Cother (describe)	Centrifugal / Peristaltic	Depth to Groundwater (before developing in feet): 6.83					
Pumping Rate (gallons per minute):	Maximum Drawdown of O Development (feet):	Groundwater During	Well Purged Dry (check one):				
Continuous Intermittent R	otal Development Water emoved (gallons): 55	Development Duration (minutes): 60	Development Water Drummed (check one): Kyes Mo				
Water Appearance (color and odor) At S	-	Water Appearance (color and odor) At End of Development:					

WELL CONSTRUCTION AND DEVELOPMENT LOG

	WELL CONSTRUCTION	N DATA		
Well Number: MW-9 Site Name:	FDEP Facility I.D. Number: Well Install Date(s):			
Well Location and Type (check appropriate boxes): Con-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface/	Intermediate	nitoring tter-Table) Monitoring or Deep Monitoring or Other (describe)	Well Install Method: HONOW Stern AUGEL Surface Casing Install Metho NIA	
	Manhole Diameter	Well Pad Size:	by feet	
Riser Diameter and Material: Riser/Screen Connections:	i habii i moudod	Riser Length: <u>5</u> from <u>0</u>	feet to <u>5</u> feet	
Screen Diameter and Material: 2 ¹¹¹ 510 HIL SCh40 PUC	Screen Slot Size:	Screen Length: 10 from 5	feet to 15 feet	
I st Surface Casing Material: also check:	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length from		
2 nd Surface Casing Material: also check: Permanent F Temporary	2 nd Surface Casing I.D. (inches):	2 nd Surface Casing Length from	n: feet feet to feet	
rd Surface Casing Material: Ilso check: Permanent Temporary	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length from	feet feet	
	ound Screen (check one):	Filter Pack Length: from	feet to 15 feet	
ilter Pack Seal Material and lize: 30/65 500/		Filter Pack Seal Length: from	feet to <u>3</u> feet	
Surface Seal Material: G-VOV+		Surface Seal Length: from	feet to feet	

WELL DEVELOPMENT DATA					
Jon 15 DONS	Well Development Method (check one): KSurge/Pump Pump Compressed Air				
Development Pump Type (check): Centrifugal Peristaltic Depth to Groundwater (before developing in feet):					
Pumping Rate (gallons per minute):	Maximum Drawdown of C Development (feet):	Groundwater During	Well Purged Dry (check one):		
Continuous Intermittent Rem	Development Water oved (gallons): 55		Development Water Drummed (check one): X Yes T No		
Water Appearance (color and odor) At Start of Development:		Water Appearance (color and odor) At End of Development:			
whik, none		clear, no	ne		

WELL CONSTRUCTION AND DEVELOPMENT LOG

WELL CONSTRUCTION DATA					
Well Number:	Site Name:		FDEP Facility I.D. Number		
MW-7E		lor Properties 'All Green Trail'	N/A	Jon 15, 2018	
Well Location and Type (check a	appropriate boxes):	Well Purpose: F Perched Mon	itoring	Well Install Method:	
	Right-of-Way	Shallow (Wat	er-Table) Monitoring	Hollow Stem Auger	
Off-Site Private Property		Intermediate	or Deep Monitoring		
T Above Grade (AG)	Flush-to-Grade	Remediation	or Other (describe)	Surface Casing Install Method:	
If AG, list feet of riser above land su	urface:			NA	
Borehole Depth Well D	epth Borehole I	Diameter Manhole Diameter	Well Pad Size:		
(feet): 15 (feet):	(inches):	4.5 (inches): 6	feet	by 2 feet	
Riser Diameter and Material:	Riser/Screen	Flush-Threaded		et	
2" Sch 40 PVC	Connections:	Other (describe)	from	feet to <u></u> feet	
Screen Diameter and Material:		Screen Slot Size:	Screen Length: 10 fe	et	
Slotted 2" Sch 4	0 PVC	0.01	from <u>5</u>	feet to <u>15</u> feet	
1st Surface Casing Material:		1 st Surface Casing I.D. (inches):	1 st Surface Casing Length:	feet	
also check: 🔽 Permanent	Temporary	NIA	from	feet to feet	
2 nd Surface Casing Material:		2 nd Surface Casing I.D. (inches):	2 nd Surface Casing Length:		
also check: Fermanent	Temporary	AIN	from	feet tofeet	
3 rd Surface Casing Material:			3 rd Surface Casing Length:		
also check: TPermanent	Temporary	NIA	from	feet tofeet	
Filter Pack Material and Size:	Prepacked Filter Arc	ound Screen (check one):	Filter Pack Length:	12_feet	
6/20 fine sand	T Yes	₩ No		feet to 15 feet	
Filter Pack Seal Material and		20/65 fine cond	Filter Pack Seal Length:	A feet	
Size:	: 30/65 fine sand		from	feet to <u>3</u> feet	
Surface Seal Material:		fine arout	Surface Seal Length:	feet	
fine grout		from	feet to feet		

WELL DEVELOPMENT DATA						
Well Development Date:	Well	Development Method (chec	ek one): 📉 🤭 Surge	/Pu Pump Compressed Air		
Jon 15,0018	r	• Other (describe)	,	,		
Development Pump Type (check):						
f Submersible f Other (describe) 6.80						
Pumping Rate (gallons per minute):		Maximum Drawdown of C	_	Well Purged Dry (check one):		
		Development (feet):	7.08	TYes Vo		
		elopment Water	Development Duration	Development Water Drummed		
🔽 Continuous 🦵 Intermittent F	Removed	(gallons): 55	(minutes): 55	(check one): Ves TNO		
Water Appearance (color and odor) At Start of Development:		Water Appearance (color and odor) At End of Development:				
White, more char, none			one			

WELL CONSTRUCTION AND DEVELOPMENT LOG

	W	VELL CONSTRUCTION	DATA	
Well Number: MW-371	Site Name:	corridor	FDEP Facility I.D. Numb	er: Well Install Date(s):
Well Location and Type (check appropriate boxes): Con-Site Right-of-Way Shallow (Wate Off-Site Private Property				
Borehole Depth Well Do (feet): ' }-7 (feet):		Diameter Manhole Diameter (inches): 6	Well Pad Size:	by 🔼 feet
Riser Diameter and Material: 1.5 Schulo PUC	Riser/Screen Connections:	Flush-Threaded Other (describe)	Riser Length: 33 from <u>Q</u>	feet to $\overrightarrow{\partial \partial}$ feet
Screen Diameter and Material:	PUL	Screen Slot Size:	Screen Length: 5 from 22	feet to $\overline{}$ feet
1 st Surface Casing Material: also check: 🕅 Permanent	Temporary	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length: from	feet to $\overline{}$ feet
2 nd Surface Casing Material: also check:	Temporary	2 nd Surface Casing I.D. (inches):	2 nd Surface Casing Length from	feet to feet
3 rd Surface Casing Material: also check:	Temporary	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length from	feet to feet
Filter Pack Material and Size: I	Prepacked Filter Arou	ind Screen (check one):	Filter Pack Length: from <u>30</u>	feet to 7 feet
Filter Pack Seal Material and Size:	501655000		Filter Pack Seal Length: from _{ 3	feet to 30 feet
Surface Seal Material:	Fine 3box		Surface Seal Length:	feet to defined

WELL DEVELOPMENT DATA					
Vell Development Date: Well Development Method (check one): Surge/Pump Pump Compressed Air Jon 17,3018 Other (describe)					
Development Pump Type (check): Centrifugal Peristaltic Depth to Groundwater (before developing in feet): Submersible Other (describe) M(A)					
Pumping Rate (gallons per minute): O.93 Maximum Drawdown of Grou Development (feet):			Groundwater During	Well Purged Dry (check one):	
		elopment Water (gallons): 55	Development Duration (minutes): 60	Development Water Drummed (check one): Xyes TNo	
Water Appearance (color and odor) At Start of Development:			and odor) At End of Development:		

WELL CONSTRUCTION DATA						
Well Number: Site Name:	udlam Trail	FDEP Facility LD. Number	Well Install Date(s): 15 - January - 2018			
Well Location and Type (check appropriate boxes): On-Site	Tutowe dista	ter-Table) Monitoring or Deep Monitoring	Well Install Method: Hollow Stem Auger Surface Casing Install Method:			
If AG, list feet of riser above land surface:	Diameter Manhole Diameter (inches):	Well Pad Size	NA			
Riser Diameter and Material: Riser/Screen 2 " Sch 40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length: 7 fe from 0	et feet to <u>7</u> feet			
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"	Screen Length: 10 fee from 7	1			
1 st Surface Casing Material: N/A check: Permanent Temporary	1 st Surface Casing I.D. (inches): N/A	1 st Surface Casing Length: from				
2 nd Surface Casing Material: N/A check: Permanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length: from				
3 rd Surface Casing Material: N/A check: □ Permanent □ Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length: from	feet NA feet tofeet			
Filter Pack Material and Size: Prepacked Filter Around 60-20 Silica Sand \rightarrow Yes		1-1	43 feet feet to 4 feet			
Filter Pack Seal Material and Size: 35-65 Fine Grain sar		Filter Pack Seal Length: from	$\frac{3}{\text{feet}}$ feet			
Surface Seal Material: Fine Grout		Surface Seal Length: from	feet to 1 feet			

WELL DEVELOPMENT DATA					
Well Development Date: 15-January - 6	Well Development Method (cheo C Other (describe)	ck one): XSurge	/Pu Fump Compressed Air		
Development Pump Type (check): Centrifugal Feristaltic Depth to Groundwater (before developing in feet):					
Pumping Rate (gallons per minute):	PM Maximum Drawdown of C Development (feet):	Groundwater During	Well Purged Dry (check one):		
A	Total Development Water Removed (gallons):	Development Duration (minutes):	Development Water Drummed (check one): Yes No		
Water Appearance (color and odor) At Start of Development: Water Appearance (color and odor) At End of Development:					

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

July 1	WELL CONSTRUCTION DATA						
Well Number: MW-21-2 Site Name: UM	v udlam Trail	FDEP Facility I.D. Number	15 - January - 2018				
Well Location and Type (check appropriate boxes): On-Site Right-of-Way Off-Site Private Property	Well Purpose: Perched Mor Shallow (Wa	ell Purpose: Perched Monitoring Well Install Method: Shallow (Water-Table) Monitoring Hollow Stem A					
Above Grade (AG) Krlush-to-Grade If AG, list feet of riser above land surface:	I Remediation	or Other (describe)	Surface Casing Install Method: NA				
Borehole Depth (feet): 8 Well Depth (feet): 18 Borehole I (inches):	Diameter Manhole Diameter (inches):	Well Pad Size:	by feet				
Riser Diameter and Material: Riser/Screen 2 " Sch 40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length:f	reet feet to <u>8</u> feet				
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"	Screen Length: for	eet feet to feet				
1 st Surface Casing Material: N/A check: Permanent Temporary	1 st Surface Casing I.D. (inches): N/A	1 st Surface Casing Length: from	feet NA				
2 nd Surface Casing Material: N/A check: TPermanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length:					
3 rd Surface Casing Material: N/A check: Permanent Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length: from	feet NA				
Filter Pack Material and Size: Prepacked Filter Around 60-20 Silica Sand \rightarrow Yes			$\frac{2400}{\text{feet to}} \text{ feet } \frac{14}{\text{feet}}$				
Filter Pack Seal Material and Size: 35-65 Fine Grain sar	nd	Filter Pack Seal Length: from <u>4</u>					
Surface Seal Material: Fine Grout		Surface Seal Length: from /	feet to feet				

WELL DEVELOPMENT DATA						
Well Development Date: 15 - January - 2	Well Development Method (che	eck one): Ksurge	/Pu Pump Compressed Air			
Development Pump Type (check): Peristaltic Depth to Groundwater (before developing in feet):						
Pumping Rate (gallons per minute):	1 Maximum Drawdown of Development (feet):	Groundwater During	Well Purged Dry (check one):			
	tal Development Waters moved (gallons):		Development Water Drummed (check one): X Yes T No			
Water Appearance (color and odor) At Sta Tan , no o		Water Appearance (color Clean	r and odor) At End of Development:			

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

WELL CONSTRUCTION DATA						
Well Number: MW - 22 Site Name:	Lud	llam Trail		FDEP Facility I.D. Numb	ber: Well Install Date(s): 15 - January - 2018	
				er-Table) Monitoring or Deep Monitoring	Well Install Method: Hollow Stem Auger Surface Casing Install Method: NA	
Borehole Depth (feet): Q Well Depth (feet): Q Riser Diameter and Material: Riser/Se	(inches):	Flush-Thr); 8	Well Pad Size: 2 feet Riser Length: 11	by 2 feet feet	
2 " Sch 40 PVC Connec	tions:	Other (descr		from <i>O</i>	feet to 1/ feet	
Screen Diameter and Material: 2" Sch 40 Slotted PVC	So	creen Slot Size	:: 0.010"	Screen Length: <u>10</u> from <u>11</u>	feet to 21 feet	
l st Surface Casing Material: N/A check: □ Permanent □ Tempo			ng I.D. (inches): N/A	1 st Surface Casing Length from	r:feet NA	
2 nd Surface Casing Material: N// check: Permanent Tempo			ng I.D. (inches): N/A	2 nd Surface Casing Length from		
3 rd Surface Casing Material: N// check: Permanent Tempor	5		ng I.D. (inches): N/A	3 rd Surface Casing Length from	r:feet NA feet tofeet	
60-20 Silica Sand Tres	ter Around Sca	reen (check or	ie):	Filter Pack Length: from 21	$\frac{7}{100}$ feet feet to $\frac{7}{100}$ feet	
Filter Pack Seal Material and Size: 35-65 Fine Grain sand		Filter Pack Seal Length: from	feet feet			
Surface Seal Material: Fine Grout				Surface Seal Length: from <u>Ö</u>	feet to feet	

WELL DEVELOPMENT DATA						
Well Development Date: 5 - 2018	Well Development Method (chee Other (describe)	ck one): XSurge	/Pu Pump Compressed Air			
Development Pump Type (check):	Centrifugal F Peristaltic	Depth to Groundwater (before developing in feet):			
Pumping Rate (gallons per minuto):	Maximum Drawdown of (Development (feet):	Groundwater During	Well Purged Dry (check one):			
	I Development Water 60	Development Duration (minutes):	Development Water Drummed (check one):			
Water Appearance (color and odor) At Start	200 No odor	Water Appearance (colo	r and odor) At End of Development:			

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

WELL CONSTRUCTION DATA						
Well Number: WW - 23 Site Name:	Ludlam Trail	FDEP Facility I.D. Numbe	r: Well Install Date(s): 15 - January - 2018			
Well Location and Type (check appropriate boxes): Con-Site Right-of-Way Coff-Site Private Property Above Grade (AG) Flush-to-Grade Remedia		Monitoring (Water-Table) Monitoring diate or Deep Monitoring tion or Other (describe) Well Install Method: Hollow Stem Auger Surface Casing Install Metho NA				
If AG, list feet of riser above land surface: Borehole Depth (feet): Depth (Borehol (feet): Depth (Inches)	e Diameter Manhole Diameter : (inches):	Well Pad Size:	by 2 feet			
Riser Diameter and Material;Riser/Screen2 " Sch 40 PVCConnections:	Flush-Threaded Other (describe)		eet feet to <u>//</u> feet			
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"	Screen Length: 10 fe from 11	feet to <u>2</u> (feet			
1 st Surface Casing Material: N/A check: Permanent Temporary	1 st Surface Casing I.D. (inches): N/A	1 st Surface Casing Length: from	feet NA			
2 nd Surface Casing Material: N/A check: Permanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length: from	feet NA			
3 rd Surface Casing Material: N/A check: Permanent Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length: from	feet NA			
Filter Pack Material and Size: Prepacked Filter Aroun 60-20 Silica Sand		Filter Pack Length: from	$\underline{17}$ feet feet to $\underline{21}$ feet			
Filter Pack Seal Material and Size: 35-65 Fine Grain s	and	Filter Pack Seal Length:				
Surface Seal Material: Fine Grout		Surface Seal Length: from	feet to feet			

WELL DEVELOPMENT DATA										
Well Development Date: 15 - Janvay - 2018	Well Development Method (che	eck one): X Surge	e/Pu Pump Compressed Air							
Development Pump Type (check): Cent Submersible Other (describe)	trifugal F Peristaltic	Depth to Groundwater (13_1	before developing in feet):							
Pumping Rate (gallons per minuto):	Maximum Drawdown of O Development (feet):	Groundwater During	Well Purged Dry (check one):							
	evelopment Water 60	Development Duration (minutes):	Development Water Drummed (check one): Yes No							
Water Appearance (color and odor) At Start of	,	Water Appearance (colo	or and odor) At End of Development: Clean, None							

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

	DATA				
Well Number: Site Name:	Ludlam Trail	FDEP Facility LD/Numb	er: Well Install Date(s): 12 - January - 2018		
Well ⁴ Location and Type (check appropriate boxes): Con-Site Right-of-Way Off-Site Private Property	<u> </u>	nitoring ater-Table) Monitoring	Well Install Method: Hollow Stem Auger		
Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface:		or Other (describe)	Surface Casing Install Method: NA		
(feet): 20 (feet): 20 (inches)	e Diameter (inches):	Well Pad Size	by <u>A</u> feet		
Riser Diameter and Material: Riser/Screen 2 " Sch 40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length: 10 feet from 20 feet to 10 feet			
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"		feet feet to <u>20</u> feet		
1 st Surface Casing Material: N/A check: Permanent Temporary	I st Surface Casing I.D. (inches): N/A	1 st Surface Casing Length: from			
2 nd Surface Casing Material: N/A check: Permanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length from	:feet NA		
3 rd Surface Casing Material: N/A check: □ Permanent □ Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length from	feet NA		
Filter Pack Material and Size: Prepacked Filter Arou 60-20 Silica Sand \[Yes \]	1 No	Filter Pack Length: from <u>20</u>	$\frac{16}{16}$ feet feet to $\frac{4}{16}$ feet		
Filter Pack Seal Material and Size: 35-65 Fine Grain s	Filter Pack Seal Length:	feet to <u>4</u> feet			
Surface Seal Material: Fine Grout		Surface Seal Length: from	feet to feet		

WELL DEVELOPMENT DATA									
Well Development Date:Well Development Method (check one): $\begin{tabular}{c} \begin{tabular}{c} tabular$									
Development Pump Type (check): Centrifugal Peristaltic Depth to Groundwater (before developing in feet):									
Pumping Rate (gallons per minute);	Maximum Drawdown of Groundwater During Development (feet):		Well Purged Dry (check one):						
Continuous TIntermittent Remov	Development Water ed (gallons): 60		Development Water Drummed (check one): Ves No						
Water Appearance (color and odor) At Start o Developed 1600 - 1700	f Development: (lorly No ocloc	Water Appearance (colo	r and odor) At End of Development: en, NO odor						

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

W	ELL CONSTRUCTION	DATA	
Well Number: Site Name:	Ludlam Trail	FDEP Facility I.D. Number	: Well Install Date(s): 12 - January - 2018
Well Location and Type (check appropriate boxes): On-Site Right-of-Way Off-Site Private Property Above Grade (AG) Flush-to-Grade If AG, list feet of riser above land surface:	Intermediate	iter-Table) Monitoring or Deep Monitoring	Well Install Method: Hollow Stem Auger Surface Casing Install Method: NA
Borehole Depth (feet): 18 Well Depth (feet): 18 (inches):	Diameter Manhole Diameter (inches):	Well Pad Size:	2
Riser Diameter and Material: Riser/Screen 2 " Sch 40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length: fee from	et feet to feet
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"	Screen Length: fee from	
1 st Surface Casing Material: N/A check: □ Permanent □ Temporary	1 st Surface Casing I.D. (inches): N/A	1 st Surface Casing Length: from	
2 nd Surface Casing Material: N/A check: Permanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length: from	
3 rd Surface Casing Material: N/A check: Permanent Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length: from	feet to feet
Filter Pack Material and Size: Prepacked Filter Around 60-20 Silica Sand \[Yes \]	No No	Filter Pack Length: from <u>18</u>	13 feet feet to 4 feet
Filter Pack Seal Material and Size: 35-65 Fine Grain sa	nd	Filter Pack Seal Length:	$\frac{3}{\text{feet}}$ feet to $\frac{9}{7}$ feet
Surface Seal Material: Fine Grout		Surface Seal Length: from	feet to 1 feet

	W	VELL DEVELOR	PMENT DATA						
Well Development Date: 12 - Janvary -201	Well Dev	velopment Method (cheo ther (describe)	ck one): X Surge	/Pu Pump Compressed Air					
Development Pump Type (check): Centrifugal Peristaltic Depth to Groundwater (before developing in feet):									
Pumping Rate (gallons per minute): Maximum Drawdown of Groundwater During Well Purged Dry (check one): Development (feet): Tyes No									
	Total Developmen Removed (gallons)			Development Water Drummed (check one): Yes No					
Water Appearance (color and odor) At S Developed Gum 13	Start of Developm	nent: No odcor		r and odor) At End of Development:					

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

v	ELL CONSTRUCTION	DATA			
Well Number: MW-47 Site Name:	Ludlam Trail	FDEP Facility I.D. Numb	er: Well Install Date(s): 12 - January - 2018		
Well Location and Type (check appropriate boxes):	Well Purpose: Perched Mor	-	Well Install Method:		
☐ Off-Site Private Property		ter-Table) Monitoring or Deep Monitoring	Hollow Stem Auger		
Above Grade (AG) KFlush-to-Grade	Remediation	or Other (describe)	Surface Casing Install Method:		
If AG, list feet of riser above land surface:			NA		
Borehole Depth (feet): 18 Well Depth (feet): 18 (inches)	Manhole Diameter (inches):	Well Pad Size:	by <u>2</u> feet		
Riser Diameter and Material: Riser/Screen	Flush-Threaded	Riser Length:	feet		
2 " Sch 40 PVC Connections:	Other (describe)	from 💋	feet to <u>8</u> feet		
Screen Diameter and Material:	Screen Slot Size: 0.010"	Screen Length: 10	feet		
2" Sch 40 Slotted PVC		from $\underline{8}$ feet to $\underline{18}$ feet			
1 st Surface Casing Material: N/A	1 st Surface Casing I.D. (inches):	1 st Surface Casing Length:feet NA			
check: Permanent Temporary	N/A	from	feet tofeet		
2 nd Surface Casing Material: N/A	2 nd Surface Casing I.D. (inches):	2 nd Surface Casing Length:feet NA			
check: Permanent Temporary	N/A	from feet tofeet			
3 rd Surface Casing Material: N/A	3 rd Surface Casing I.D. (inches):	3 rd Surface Casing Length	:feet NA		
check: Permanent Temporary	N/A	from feet tofeet			
Filter Pack Material and Size: Prepacked Filter Arour	d Screen (check one):	Filter Pack Length:	19 to feel		
60-20 Silica Sand TYes	No No	from <u>4</u>	feet to 18 feet		
Filter Pack Seal Material and Size: 35-65 Fine Grain s	and	Filter Pack Seal Length:	<u>3</u> feet		
		from _/	feet to <u>4</u> feet		
Surface Seal Material: Fine Grout		Surface Seal Length:	feet		
		from 6	feet to / feet		

		WELL DEVELO	PMENT DATA	
Well Development Date: 12 - January - 201		Development Method (che Other (describe)	ck one): X Surge	Pu Pump Compressed Air
	K Centrifugal	Peristaltic	Depth to Groundwater (9.91 f	before developing in feet):
Pumping Rate (gallons per minute):	GPM	Maximum Drawdown of O Development (feet):	Groundwater During	Well Purged Dry (check one):
	Total Developi Removed (gall		Development Duration (minutes):	Development Water Drummed (check one):
Water Appearance (color and odor) At Milka, Mi	Start of Develo	opment: 1200-1300		eul, none 1. SINTU

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

Soil and Water Drummed DrUM from MW-49-2 placed by well

W	ELL CONSTRUCTION I	DATA		
Well Number: MW - 49 - 2 Site Name:	Ludlam Trail	FDEP Facility I.D. Numbe	er: Well Install Date(s): 12 - January - 2018	
Well Location and Type (check appropriate boxes): On-Site	Well Purpose:	Well Install Method: Hollow Stem Auger Surface Casing Install Method: NA		
	Diameter (inches):	Well Pad Size:	by 2 feet	
Riser Diameter and Material: Riser/Screen 2 " Sch 40 PVC Connections:	Flush-Threaded Other (describe)	Riser Length: 6 fe	feet to 6_feet	
Screen Diameter and Material: 2" Sch 40 Slotted PVC	Screen Slot Size: 0.010"	feet to <u>16</u> feet		
1 st Surface Casing Material: N/A check: □ Permanent □ Temporary	1 st Surface Casing I.D. (inches): N/A	feet NA		
2 nd Surface Casing Material: N/A check: Permanent Temporary	2 nd Surface Casing I.D. (inches): N/A	2 nd Surface Casing Length: from		
3 rd Surface Casing Material: N/A check: ☐ Permanent ☐ Temporary	3 rd Surface Casing I.D. (inches): N/A	3 rd Surface Casing Length: from	feet NA	
Filter Pack Material and Size: Prepacked Filter Around 60-20 Silica Sand Yes	l Screen (check one):	Filter Pack Length: from <u>2</u>	$\frac{19}{16}$ feet feet	
Filter Pack Seal Material and Size: 35-65 Fine Grain sa	nd	Filter Pack Seal Length: from _/	feet to feet	
Surface Seal Material: Fine Grout		Surface Seal Length: from	feet to feet	

		WELL DEVELO	PMENT DATA	
Well Development Date: 12 - January -	2018 Well	Development Method (che Other (describe)	ck one): 🛛 🔀 Surge	e/Pu └─ Pump
Development Pump Type (check):	e)	Peristaltic	Depth to Groundwater A	before developing in feet):
Pumping Rate (gallons per minute):		Maximum Drawdown of Development (feet):	Groundwater During	Well Purged Dry (check one):
Pumping Condition (check one):	Total Develop Removed (gall		Development Duration (minutes): 60	Development Water Drummed (check one): Yes No
Water Appearance (color and odor) A Cloudy, N	t Start of Develo	opment:	Water Appearance (colo	r and odor) At End of Development: 1.27 Wtv, hone

WELL CONSTRUCTION OR DEVELOPMENT REMARKS

ATTACHMENT D

GROUNDWATER SAMPLING LOGS AND ASSOCIATED CALIBRATION LOGS

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;	SITE						SITE		lb			
UNIL: PURCING DATA PURCING DATA OWNED: PURCING DATA WELL: DUMBER: PURCING: MELL SCREEN INTERVAL. STATC DEPTH DURACE, PPE Construction DIMBER: PURCING: MELL SCREEN INTERVAL. STATC DEPTH DVATER; PPE Construction PURCING: MELL VOLUME FURCE: TOTAL WELL DEPTH: STATC DEPTH TO WATER; VELL VOLUME PURCING: ON MELL VOLUME PURCING: PURCING: <td></td> <td></td> <td></td> <td>'All Green T</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td>				'All Green T			1					0
WELL DUNNGE TURNG DURNGETRE (non-bit) /// Well SCREEN INTERVAL DEPTH 5 (Set to 15,55); Set 10 TOWATER (non-bit) // Well SCREEN INTERVAL DEPTH 5 (Set to 15,55); Set 10 PURCE FUNDER <	WELL NO:	M	w - 45		SAM		1 C			DATE: JO	1.014 11	12018
DAMETER (inches): ONAMETER (inches): (1/4) DePTH 5: Meter (speet) ONATER (refer): OR BALER: PP VecL VOLUME PURCE: 1 5.75 bett - 7.7 test ADMETER (inclusion): - 0.16 pationshoot = 0.16 pationshoot - 0.46 pationshoot = 0.46 pationshoot - - - - - - - - - - -				_								44.4
Introduction Intervention Intervention<		R (inches):						STATIC		PUF		
Composition Constraint Constraint <thconstraint< th=""> Constraint Constra</thconstraint<>	WELL VO	LUME PURGE	: 1 WELL VO	DLUME = (TO	TAL WELL	DEPTH – ST	ATIC DEPTH	TO WATER)	WELL CAPACI	TY	DAILEN. I	
EQUIPMENT YOLUME PURCE: 1 EQUIPMENT YOL. PURV YOLUME *(TUBING CAPACITY X TUBING LENTING + ELOW OCEL VOLUME (m) fill out figuration	(only fill ou	t if applicable)		= (15 71	feet -	0.77	feet))	0.16	nallons/for	a = 0	
e galions+(galionstot X feith + galions = galions DEPTH IN WELL (feet) 0.5 FINAL PURP OR TUBING DEPTH IN WELL (feet) 0.5 FINAL PURP OR TUBING DEPTH IN WELL (feet) TOTAL VOLUME PURGED (galions) TOTAL VOLUME DEPTH IN WELL (feet) TOTAL VOLUME PURGED (galions) TOTAL VOLUME DEPTH IN WELL (feet) TOTAL VOLUME PURGED (galions)			URGE: 1 EQ	UIPMENT VO	L. = PUMP \	OLUME + (TU	JBING CAPAC		UBING LENGTH)	+ FLOW CE	LL VOLUME	10 guilona
DEPTH IN WELL (tee): (0.5) (0.5) DEPTH IN WELL (tee): (0.5) DEPTH IN WELL (tee): (0.5) (0.5) (0.5) DEPTH IN WELL (tee): (0.5) (0	(only fill ou	it it applicable)			=	gallons + (gallo	ons/foot X	feet)	+	gallons	= gallons
TIME VOLUME PURGED CUMUL PURGED PURGE (gen) (gen) PURGE (gen) (gen) PURGE (gen) (gen) PURGE (gen) (gen) PURGE (gen) COLUME (gen) COLUME (g			IG IN F				PURGIN	IG LOF	PURGING	MAR	TOTAL VO	LUME
TIME VOLUME (galons) VOLUME (galons) VURGE (galons) VURGE (galons)<	DEPTHIN	VVELL (feet):		DEPTHIN	1					(1-19	PURGED (gallons): 5.44
1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:44 0:6:0 6:17 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:04 0:11 6:13 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:04 0:6:11 6:13 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 0:14 1:13 1:14 1:13 1:14 <td>TIME</td> <td>PURGED</td> <td>VOLUME PURGED</td> <td>RATE</td> <td>TO WATE</td> <td>, (standard</td> <td></td> <td>(circle units) µmhos/cm</td> <td>OXYGEN (circle units)</td> <td></td> <td></td> <td></td>	TIME	PURGED	VOLUME PURGED	RATE	TO WATE	, (standard		(circle units) µmhos/cm	OXYGEN (circle units)			
1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:44 0:6:0 6:17 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:04 0:11 6:13 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 9:3:2 7:04 0:6:11 6:13 3:3:6/3:8:6 6:10 C1/0+ Ander 1:1:44 0:3:3 5:3:3 0.11 0:14 1:13 1:14 1:13 1:14 <td>11:40</td> <td>5.0</td> <td>5.0</td> <td>0.11</td> <td>9.82</td> <td>17.03</td> <td>2597</td> <td>617</td> <td>241/29.7%</td> <td>7.41</td> <td>010</td> <td></td>	11:40	5.0	5.0	0.11	9.82	17.03	2597	617	241/29.7%	7.41	010	
11:44 0.32 5.44 0.11 9.32 7.04 0.11 618 3.30 0.38 0.10 C100 none 11:44 0.32 5.44 0.11 9.32 0.11 618 3.30 0.38 0.10 C100 none 11:44 0.32 5.44 0.11 618 3.30 0.38 0.10 C100 none 11:44 0.32 5.44 0.11 618 3.30 0.38 0.10 C100 none 11:44 0.32 5.44 0.11 1.25 0.01 1.25 0.11 1.25 0.11 1.25 0.11 1.25 0.11 1.25 0.02 5************************************	11:42	0.33	5.22		9.8:	7.04	26.06		2.26/28%	6.47	CIO	n nonp
WELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1"= 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.05; 5" = 1.02; 6" = 1.47; 1.2" = 5.86 WELL CAPACITY (Galions Per Foot): 0.75" = 0.02; 1"= 0.04; 1.45" = 0.006; 316"	11:44	660	5-44	11.0	9.8:	7.04	26.11	618	2.30/28.5	6.10	Cleo	r none
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese												
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese						1	· · · · · · · · · · · · · · · · · · ·		1			
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese							L				_	
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese		1			1					A		
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese		1						1				
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese		-										
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese				-							-	
TUBING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S); OP = Duption of the presentation of the prese												
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLE NET STALL CODE: M arterial Cool: TUBING TUBING TOTAL VOL FILTER SIZE: MATERIAL COOL SAMPLE PLANE SAMPLE PLANE SAMPLE PLANE SAMPLE PLANE SAMPLE PUMP SAMPLE * * * TOTAL VOL FINAL PALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLE PUMP SAMPLY SIS AND/OR SAMPLE PUMP SAMPLY SIS												
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING SAMPLING ENDED AT: [1,1] [1,1] SAMPLING PUMP OR TUBING 10.5 TUBING TUBING Y FILD-FILTERED: Y FILTER SIZE: MALER SIZE: MALE SIZE:	PURGING		CODES: E	B = Bailer;	BP = Bladde				imp; PP = Pe	ristaltic Pump	o; O = C	ther (Specify)
Anthon y Pezz 0141/50 ORegional SAMPLING III 1/16 IIII 1/16								TA			-	
PUMP OR TUBING DEPTH IN WELL (feet): IO.5 TUBING MATERIAL CODE: HDPE HDPE FIELD-FILTERED: Y FILTER SIZE: MA µm FIELD DECONTAMINATION: PUMP Y Y TUBING Y Preservation DUPLICATE: Y				1000	-		RE(S):		SAMPLING	1146	SAMPLIN ENDED 4	
DEPTH IN WELL (feet): IO.5 MATERIAL CODE: HDPE Filtration Equipment Type: FIED DECONTAMINATION: PUMP Y Y TUBING Y DUPLICATE: Y Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FINAL INTENDED SAMPLE PUMP FLOW RATE (mL per minute) SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL METHOD SAMPLE PUMP FLOW RATE (mL per minute) FLO	PUMP OR	TUBING		120				FIELD				
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLING SAMPLING SAMPLE PLOW PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE COULINE SAMPLE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ADED IN FIELD (mL) FINAL ALYSIS AND/OR SAMPLE CODE SAMPLE PUMP MWY-15 I A C 1000AL I Ce - Zott PAths A PP ~3.90 MWY-15 I A C 1000AL I Ce - Zott PAths A PP ~3.90 MWY-15 I A G IO00AL I Ce - IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	DEPTH IN	WELL (feet):			1	CODE: H		Filtrati				
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL pH ANALYSIS AND/OR METHOD EQUIPMENT CODE FLOW RATE (mL per minute) WW-45 I A & IOOAAL J < Q	FIELD DEC	ONTAMINATIO	ON: PUN		y	TUBING	Y N (ce	placed	DUPLICATE:	Y	(N)	
MATERIAL CODEs: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;				ATION								
AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;				VOLUME								
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;	MW-45		AG	LOOPAL	Ice			204	PAH	s f	APP	00.6~
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;		-							1.1.1.1.1.1.1.1.1			1
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;												
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;									5	2.12		
	REMARKS											
		00000		A .								
S = Silicone; T = Teflon; O = Other (Specify)	MATERIAL		AG = Amber S = Silicone;	Glass; CG = T = Teflon;		-	High Density P	olyethylene;	LDPE = Low Den	sity Polyethy	lene; PP	= Polypropylene;
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;	SAMPLING		CODES: A	APP = After (T	hrough) Peris	staltic Pump;				P = Electric S	Submersible F	Pump;
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. O = Other (Specify)	OTES: 1	The above of								0 = Other	(Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	udlam Corrido	r Properties	All Green T	roil!			twoon NIM 7th	and SW 80 th S	tracta Mier		
WELL NO		W-38					STAGELLINA /			on (112-	
		W 35				GING DA	ТА			on all	010
WELL	2	TUBI	IG	VIA WE	LL SCREEN	INTERVAL	STATIC D	рертн	PUR	GE PUMP T	YPE
	ER (inches): 7	DIAM	TER (inches		PTH: 🔗 fe PTH – STA	et to	eet TO WATE	ER (feet):		BAILER: PP	
	ut if applicable)		= (18		11.61		0.16		t = 1.0	` }
	ENT VOLUME P ut if applicable)	URGE: 1 EG	UIPMENT	L. = PUMP VO				UBING LENGTH)	+ FLOW CE		gallons
(Only III O				= g	alions + (gallo	ns/foot X	feet)	+	gallons	= gallons
	UMP OR TUBIN WELL (feet):	1G 125		JMP OR TUBIN N WELL (feet):	G 12.5	PURGIN	G D AT: 1234	PURGING ENDED AT:	1302	TOTAL VOI	UME allons): 2.32
		CUMUL.	1	DEPTH	-		COND	DISSOLVED	13-0		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	WATER (feet)	pH (standard units)	TEMP. ([°] C)	(circle units) μmhos/cm or	OXYGEN (circle units) (mg) or & saturation	TURBIDIT (NTUs)	Y COLO (describ	
1728	9.0	2.0	0.08	11.72	6.89	26.73	671	1.37/17.2%	9.5)	Cieo	r nore
1300	0.16	9.19	0.08	11.72	6.89	26.81	671	1.36/12.0%			
1302	0,16	3.33	0.08	1172	6.89	26.87	673	1.34 16.9%	>-60	-	V
-	-		-			-				-	
	-		-	-					-	-	-
					-						
											_
										1	
	PACITY (Gallon	Dor Foot):	0.75" - 0.02:	1" = 0.04;	1.25" = 0.06	6; 2 " = 0.16	3'' = 0.37:	42 - 0.05		211 . 4 47	400 5 00
TUBING I	NSIDE DIA. CA	PACITY (Gal.	Ft.): 1/8" = 0	0.0006; 3/16"	= 0 0014;	1/4" = 0 0026					12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	CODES: E	s = Bailer;	BP = Bladder F		SP = Electric S	Submersible Pur	mp; PP = Per	istaltic Pump	; 0 = Ot	her (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)			IA .	SAMPLING		SAMPLIN	2
	thony p,	erzotti	1505	0800	DANI			INITIATED AT:		ENDED A	1309
PUMP OR DEPTH IN	TUBING WELL (feet):	12.1	0	TUBING MATERIAL C		PES		FILTERED: Y In Equipment Type	e:	FILTER SI	ZE: <u>MA</u> μm
FIELD DEC	CONTAMINATIO	ON: PUM			TUBING	Y N (re)	~	DUPLICATE:	Y	N	
	PLE CONTAINE		ATION			TION (includin	g wet ice)				SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT. USED		OTAL VOL D IN FIELD (m	FINAL	ANALYSIS AN		CODE	FLOW RATE (mL per minute)
ww-38	1	AG	1000 ML	Ice		-	IL) pH	PAH	F	408	300
			1.1.1								
		-		4			-				
	-						-	-			
REMARKS	:						_				
		_									
MATERIAL		AG = Amber S = Silicone;	Glass; CG T = Teflon;	= Clear Glass; 0 = Other (S		igh Density Po	olyethylene;	LDPE = Low Den	sity Polyethyl	ene; PP :	Polypropylene;
SAMPLING		CODES:	PP = After (T	hrough) Peristal	Itic Pump;	B = Bailer;	BP = Bladde		e = Electric S	ubmersible P	ump;
OTES: 1	The shows o			se Flow Peristal	1.2	the second se	Nethod (Tubing (O = Other (Specify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

DEP Form FD 9000-24: GROUNDWATER SAMPLING LOG

SITE	udlam Corrido	or Properties	s 'All Green T	'rail'				th and SVV 80 th S	troote Miam	; ;;	
WELL NO		W-36				NW-36					R
				-		GING DA				11,00	0
	ER (inches):	TUBI DIAN	IETER (inches		VELL SCREEN	Feet to 75	STATIC	DEPTH ER (feet):	6) OR B	GE PUMP TY AILER: PP	/PE
EQUIPME	ut if applicable) INT VOLUME F ut if applicable)	PURGE: 1 EC	= (QUIPMENT VC	19.7 DL. = PUMP V	5 feet - OLUME + (TU	12.62	feet) X	011	gallons/foot		4 gallons
		10			gallons + (ons/foot X	feet)		gallons	
	WELL (feet):	<u>"13.5</u>		JMP OR TUB N WELL (feet		PURGIN	ED AT: 135	PURGING ENDED AT:	1420	TOTAL VOL PURGED (g	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	E PURGE	E DEPTH TO WATEF (feet)	pH (standard	TEMP. (^O C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/U or % saturation	TURBIDITY (NTUs)		R ODOR
1416	2.25	2,25	0.09	12.60		26.26	444	2.8135.31		Cipor	none
1410	0.18	2.93	0.00	12.6		26.84	442	2.79/35%		Clean	
1430	0,18	9-61	0.09	12.6	9 7.07	26.91	442	2.87/35.4	164.79	CLEON	none
		-	-	-							
				-						-	-
											1
TUBING I	PACITY (Gallor NSIDE DIA. CA	PACITY (Gal	/Ft.): 1/8" = 0		6'' = 0.0014;	1/4" = 0.002	6; 5/16" = 0	004; 3/8" = 0	006; 1/2" =	0.010;	12 " = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	ODES:	B = Bailer;	BP = Bladde		SP = Electric	Submersible Pu	mp; PP = Pe	ristaltic Pump;	O = Ot	her (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION		SAMPLER(S) SIGNATUR			SAMPLING		SAMPLING	
Antho	My Pezzo	++ilsc:	5	open	JOAN			INITIATED AT	1422	ENDED AT	1-127
PUMP OR DEPTH IN	TUBING WELL (feet):	13.5				DEC		-FILTERED: Y on Equipment Typ	<u>"</u>	FILTER SIZ	ZE: MA µm
	CONTAMINATIO		MP Y 🔇		TUBING		placed)	DUPLICATE:	Y	N	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAMP	LE PRESERVA	ATION (includii	ng wet ice)	INTENDE	D SA	MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA		TOTAL VOL D IN FIELD (n	nL) FINAL	ANALYSIS AM METHOI		JIPMENT CODE	FLOW RATE (mL per minute)
NW:-36	T	AG	1000ml	ILE		-	7007	PAH	A	PP	~200
			1								
REMARKS	:							1			
MATERIAL		AG = Amber S = Silicone;	Glass; CG = T = Teflon;	= Clear Glass 0 = Other		High Density P	olyethylene;	LDPE = Low Der	isity Polyethyle	ne; PP =	Polypropylene;
			APP = After (T RFPP = Revers	se Flow Peris	taltic Pump;		BP = Bladd Method (Tubing	Gravity Drain);	P = Electric Su O = Other (S		imp;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

COLUMENT VOLUME PURGE: 1 EQUIPMENT VOL. PUNP VOLUME TUBING CAPACITY X TUBING LENGTH + FLOW CELL VOLUME (m) fill out applicable) = gallons + (gallonshot X feet) + gallons - (gallonshot X feet) + gallons - (gallons - (gallonshot X feet) + gallons - (gallons + (gallonshot X feet) + gallons - (gallons +	SITE	Idlam Carrida	. Drana diaa		ing it!			ALLON NUAL 7		Arresta Adi	enei El	
THOR DURING DATE DURING				All Green T								0
WELL TUBING WELL SCREEN INTERVAL STATE DEPTH STATE DEPTH DURGE PUMP TYPE DUMETER (Incluse) DUMETER (Incluse) DEPTH STATE DEPTH TO VALTER (INCL PURGE PUMP TYPE WELL VOLUME PURGE TOTAL VELL DEPTH STATE DEPTH TO VALTER (INCL V WELL VOLUME PURGE PUMP TYPE GOUMERANT VOLUME PURGE TUBING CAPACITY X TUBING CAPACITY X TUBING CENTRATION PURGE PUMP TYPE INTAL FUND FOR TUBING FIRAL PUMP ON TUBING PERTH PURGED (INCLUSE) PURGED	VVLLL NO		5.5		SAWFLE	• •				DATE. JO	111,30	010
DUANCETER (Inches):	M/ELL		TUD		10/5			CTATIO	DEDTU	DI		
VietL Volume PURCE: Total: Statc DePtH To VATER) VietL VOLUME Constraints Purce galons galons<	DIAMETE	R (inches):	DIAM	ETER (inches)	EF DEF	PTH: 🔗 f	eet to 16 🔊 f	eet TO WAT	ER (feet):) 🗸 OF		
Bit International State Bit Internatin State Bit International	WELL VO	LUME PURGE	: 1 WELL V	DLUME = (TC	TAL WELL DEF	TH ~ STA	TIC DEPTH T	OWATER) X	WELL CAPACI	TY		
BOUIPMENT VOLUME PLOWE EQUIPMENT VOL PLAND VOLUME CONTACT Year (Tubino CAPACITY X TUBINO (ENCIPTY X galors = galors = galors = galors = (galors) PURCING (EAC) TOTAL VOLUME PURCING (EAC) TOTAL VOLUME PURCING (EAC) TOTAL VOLUME PURCING (EAC) TOTAL VOLUME PURCING (EAC) P				= (16.8	feet –	11.08	feet) X	0.16	gallons/fe		
mintare Funder galoms + { gal			URGE: 1 EG	UIPMENT VO	L. = PUMP VOL	UME + (TUI	BING CAPACI	түх т	UBING LENGTH)	+ FLOW C	ELL VOLUME	~
DEPTH IN VELL (dec): Depth IN WELL (dec): Depth IN	(0)				= ga	alions + (gallo	ns/foot X	feet)	+	gallons	= gallons
TIME VOLUME PURGED CUMUL PURGED PURGE (gal act (gal act) DEPTH TO (water) PH (standard (gen) PERF (c) (etcl) Dissource (gal act) Dissource (gal act) <thdissource)< th=""> <thdissource< th=""> <thdiss< th=""><th></th><th></th><th>IG 1</th><th></th><th></th><th>12</th><th>PURGIN</th><th>G</th><th>PURGING</th><th>Ing</th><th>TOTAL VO</th><th></th></thdiss<></thdissource<></thdissource)<>			IG 1			12	PURGIN	G	PURGING	Ing	TOTAL VO	
TIME VOLUME (galons) PURGE (galons) UNTER (test (galons) UNTER (test (galons) UNTER (test (galons) UNTER (test (test) Color (test) UNTER (test) Color (test) UNTER (test) Color (test) Color (test) UNTER (test) Color (test) Color (test) <thcolor (test)<th>DEITHIN</th><th></th><th></th><th></th><th>1</th><th>10</th><th></th><th></th><th></th><th>1601</th><th>PURGED</th><th>galions). $\sigma_{a}q$</th></thcolor 	DEITHIN				1	10				1601	PURGED	galions). $\sigma_{a}q$
162-5 3.0 3.0 0.1 11,12 7.00 3.65.7 41 3.41 3.40 5.44 0.74 1.97	TIME	PURGED	VOLUME PURGED	RATE	TO WATER	(standard	TEMP ([°] C)	(circle units) µmhos/cm	(circle units)			
16-3-7 0.3 3-3 0.1 11.1 3 3.1 36.6 40.7 349(43.7) 4.0 1.0 1.0 16-3-7 0.3 3.1 0.1 11.1 3.1 36.6 40.7 349(43.7) 4.0 1.0 <t< th=""><th>1625</th><th>0.6</th><th>2.0</th><th>0.1</th><th>11.12</th><th>7.20</th><th>26.57</th><th>411</th><th></th><th>1-19</th><th>1 GIPC</th><th>non i</th></t<>	1625	0.6	2.0	0.1	11.12	7.20	26.57	411		1-19	1 GIPC	non i
1634 0.3 0.4 0.1 11.13 7.21 26.63 404 3.54/(41.37-3.84) C.Roh Once 1	1627							407	3.49/43.7	.4.0	Cile	or hop
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE ///	1629	0.8	0.4	0.1	11.12	721		404	3.59/44.81	- 3.8	4 creo	r none
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE ///												
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE ///												
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<	_						A					
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<	_			1								
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<				-								
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<												
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<				1								
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 PURGING EQUIPMENT CODES: B = Bailer; BP = Biadder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; O = Other (Specify) SAMPLEO BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLING [L/1] SAMPLER(S): SAMPLING [L/1] PILTER SIZE //A µm OPEPTH IN WELL (feet): 12 TUBING TUBING MATERIAL CODE: HD P E + S FIELD-FILTERED: Y FILTER SIZE //A µm SAMPLE CONTAMINATION: PUMP Y N TUBING Y Prestervation (including wet ice) Natterial code: AAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) NALYSIS AND/OR SAMPLE PUMP SAMPLE PUMP SAMPLE $000 ML$ T/Ce 721 PA H APP ? >000 V 1 PE 3/5/4 2.3 A/MONIO 1 V V 1 AC 1000/ML T/Ce 721 PA H APP ? >000 V V V V V V V V V V V V<												
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristatic Pump; 0 = Other (Specify) SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING PREVENTION: AM-Low PREVENTION: SAMPLER(S) SIGNATURE(S): SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING DATA SAMPLING TUBING SAMPLIC CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL MATERIAL CODE: HDP E + S INTENDED SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) PH ACCORE MATERIAL D CODE CONTAINER'S CODE APP 2000 I PG J AG APP 2000 INTERIAL <												
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING SAMPLE	PURGING	EQUIPMENT C	ODES: E	B = Bailer;	BP = Bladder P	ump; E	SP = Electric			ristaltic Pun	mp; O = C	ther (Specify)
Anthony PC22041:15C5 Briggen Anthony PC22041:15C5 <td< td=""><td></td><td></td><td></td><td></td><td>a land a del</td><td></td><td></td><td>TA</td><td></td><td></td><td></td><td></td></td<>					a land a del			TA				
PUMP OR TUBING DEPTH IN WELL (feet): TUBING MATERIAL CODE: HDPE + S MATERIAL CODE: FIELD-FILTERED: Y FILTER SIZE//A µm SAMPLE OCNTAMINATION: PUMP Y Y TUBING Y TUBING Y FIELD-FILTERED: Y Y FILTER SIZE//A µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) DUPLICATE: Y Y SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUMP SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL ADDED IN FIELD (mL) FINAL METHOD NaLYSIS AND/OR MALYSIS AND/OR SAMPLE PUMP FLOW RATE (mL per minute) A/W-33 A G (000 mL I/ce I/l PA H A PP ~200 I PE 250mL H25/A1 I/l I/l A/l Y I/l PA H A PP ~200 I PE 250mL H25/A1 I/l I/l A/l I/l I/l PA H A PP ~200 I PE 250mL H25/A1 I/l I/l A/l I/l I/l I/l P/l I/l							E(S):		SAMPLING	1621	SAMPLIN	GILLI
DEPTH IN WELL (feet): A MATERIAL CODE: MD F + J Filtration Equipment Type: FIELD DECONTAMINATION: PUMP Y N TUBING Y DUPLICATE: Y Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLING SAMPLE PUMP SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT CODE			044-12			NAM.						
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUMP SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FICUURATE CODE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANLYSIS AND/OR SAMPLE PUMP CODE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANLYSIS AND/OR SAMPLE PUMP FLOW RATE CODE CONTAINERS MATERIAL VOLUME TOTAL TOTAL VOL FINAL PH ANLYSIS AND/OR SAMPLE PUMP FLOW RATE Available I PRE TOTAL VOL FINAL PH APP \sim 300 Available I PRE TOTAL VOL FINAL PH APP \sim 300 I I Fice Total L2 Available IV IV I Arc 1000 // Trac - Zol Available IV V REMARKS: I			12		MATERIAL CO	DE: HD	PE+5					μιι
SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL PH ANALYSIS AND/OR METHOD EQUIPMENT CODE FLOW RATE (mL per minute) Avv<-23	FIELD DEC	CONTAMINATIO	DN: PUM	ИР Ү 🌾	v)	TUBING	Y Ne	placed)	DUPLICATE:	Y		
OWNEL OWNEL VOLUME PRESERVATIVE ADDED TOTAL VOL PHAL METHOD CODE (mL per minute) D CODE CONTAINERS CODE (000 ML Fice 7.31 PA H APP ~200 I PE JSOML Harde Image: Code 7.31 PA H APP ~200 I PE JSOML Harde Image: Code 7.31 PA H APP ~200 I PE JSOML Harde Image: Code Ima				ATION				ng wet ice)				EL OUNCEATE
$\frac{AV-33}{I} = \frac{A}{I} + $	ID CODE			VOLUME		VE 1 ADDE	OTAL VOL D IN FIELD (m	FINAL pH				
I PE DSOME Hastling La Amonio I I AG 1000M Ice Zoll Phenois I I AG 1000M Ice Zoll Phenois I REMARKS: MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; SEMARKS: Se Silicone; T = Teflon; O = Other (Specify) B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	NW-33	1		1000ML	-		-		PAH		APP	~200
I AG IOOM ICC IOOM ICC REMARKS: REMARKS: Remarks: Image: Second Secon	1	1					~		-	2	1	
AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; REMARKS: S = Silicone; T = Teflon; O = Other (Specify) RAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	1	L.				. 71	-				V	V
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)				1			_		11000		*	
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)		_	+					-	-			
S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	REMARKS:		-						1			
S = Silicone; T = Teflon; O = Other (Specify) AMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	MATERIAL	CODES	AG = Amber	Glass; CG :	= Clear Glass;	HDPE = H	ligh Density Po	olyethylene;	LDPE = Low Der	sity Polyeth	nylene; PP	= Polypropylene;
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)	SAMPLING		CODES:	APP = After (T	hrough) Peristal	becify) tic Pump:						
			F	RFPP = Revers	se Flow Peristalt	ic Pump;	SM = Straw N	lethod (Tubing	Gravity Drain);			T)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE						IS	ITE		_						
	udlam Corrido	or Properti	ies 'All Green 1	Frail				etween NW	/ 7 th a	and SVV 80 th S	treets,	Miami	, FL		
WELL NO): MW-	3E		SA	MPLE ID:	m	N-3E				DATE:	Jou	118,0	018	
	-					PUR	GING DA	TA							
WELL DIAMETE	ER (inches):		BING METER (inches): 1] 4			INTERVAL	STAT		EPTH R (feet): 7.04	2		E PUMP 1 AILER: PP		
WELL VO (only fill o	ULUME PURGE ut if applicable)	: 1 WELL	VOLUME = (TO	DTAL WEL	L DEPTH	- STA	TIC DEPTH 1	O WATER)	Х	WELL CAPACIT	TY				
EQUIPM	ENT VOLUME	PURGE: 1	= (EQUIPMENT VO	15 DL. = PUM		t — E + (TUE	7.09 BING CAPACI	feet) TY X	X	0 . 16 BING LENGTH)	gallon + FLOV	s/foot		5.0	gallons
	ut if applicable)							ns/foot X		feet)		, olle	gallons	_	acliene
INITIAL P	UMP OR TUBI	NG O	FINAL PI	JMP OR TI N WELL (fe	JBING		PURGIN	G		PURGING		1.	TOTAL VO		gallons
DEPTH IN	WELL (feet):	8.0	DEPTH I	N WELL (fe	eet): 👌	.0	INITIATE	ED AT: 105	20	ENDED AT:	119	4	PURGED (gallons):	3.4
TIME	VOLUME PURGED (gallons)	CUMU VOLUI PURGI (gallor	ME PURGI ED RATE) ER (st et)	pH andard units)	TEMP ([°] C)	COND (circle units µmhos/cm or uS/cm		DISSOLVED OXYGEN (circle units) (rng/l) or % saturation	TURE (NT		COLC (descri		ODOR lescribe)
1130	3.0	3.0		70		27	30.18	5 (4	ł	21/14.9%	00		Ca	or n	one
1133	0.2	3.2		7.0		27	26.10	Gu		1-19/14.78			1		
113-1	0.2	3.4	0.1	7.0	+ 7	.98	H.08	619		1.12/14.6%	2.0	1	V		V
-		-		-	-	-					-	-			
									1						
1		-													
-						_			-					_	
		-		-					-			_		_	
): 0.75" = 0.02; al./Ft.): 1/8" = 0	1" = 0.1 0.0006;	04; 1.2 5 3/16'' = 0.0	5" = 0.06 0014;	5; 2" = 0.16 1/4" = 0.0026	3" = 0.3 5; 5/16"		4" = 0.65; 5 04; 3/8" = 0.0	" = 1.02 006;		 = 1.47; 0.010;	12 " = 5.8 5/8 " = 0.0	
PURGING	EQUIPMENT	CODES:	B = Bailer;	BP = Blac	Ider Pump		SP = Electric		Pum	p; PP = Per	istaltic F	Pump;	0 = 0	ther (Spec	tify)
SAMPLED	BY (PRINT) / A		N	SAMPLE	R(S) SIG			TA					_	_	
	Nony Pezi						_(3).			SAMPLING INITIATED AT:	119	7	SAMPLIN ENDED A		33
PUMP OR		8.		TUBING	AL CODE:	4	OPEts			ILTERED: Y Equipment Type	N		FILTER S		
	CONTAMINATI			N		BING		placed)	auon	DUPLICATE:	e. Y	(N		
SAM	PLE CONTAIN	ER SPECIF	ICATION	SAM	IPLE PRE	SERVA	TION (includir	ng wet ice)		INTENDE		SAN	APLING	SAMPLE	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESEF			OTAL VOL D IN FIELD (m	FINA nL) pH		ANALYSIS AN METHOD			IPMENT ODE	FLOW (mL per	
MW-3F	l	AG	1000 ML	IC		ADDE		7,0		PAH		A	PP	.900	2
4	- F	PE	JEOML	HN	103	1.	L	12	-	As		-	r	J.	
					_				-	-				-	
			1					-	+						_
						1									
REMARKS	5.														
MATERIAL			er Glass; CG e; T = Teflon;	= Clear Gla O = Oth	iss; HI er (Specif		igh Density Po	olyethylene;	LI	DPE = Low Den	sity Poly	ethyler	ne; PP	= Polyproj	pylene;
SAMPLING	EQUIPMENT	CODES:	APP = After (T RFPP = Rever				B = Bailer; SM = Straw M	BP = Bla Iethod (Tubi	adder ng Gr	Pump; ESP ravity Drain);	• = Elect • • • •		omersible F becify)	ump;	
DTES: 1.	The above of	do not con	nstitute all of	the infor	nation re	auirea						, ,			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

SITE NAME:	udlam Corrido	or Properties	s 'All Green T	'rail'			OCATION: B	etween NW 7	th and SW 80 th S	treets. Miz	ami, FL	
WELL NO					WPLE ID:						m 17,2	018
		-		1			GING DA	TA			11/10	.010
WELL		TUBI	NG ETER (inches	1/4	WELL S	CREEN	INTERVAL	STATIC	DEPTH (5	PL	RGE PUMP	
WELL VO	ER (inches):	: 1 WELL V	OLUME = (TO) DTAL WELL	DEPTH	- STA	eet to C A f	eet TO WAT O WATER)	ER (feet): 6 . 5	TY OF	R BAILER: PF)
	ut if applicable)		= (12	fee	t- (5.51	feet)	, 016	gallons/fo	oot = 0.	88 gallor
(only fill o	ENT VOLUME F ut if applicable)	VRGE: 1 EC	QUIPMENT VC						TUBING LENGTH)	+ FLOW C	ELL VOLUME	
	UMP OR TUBI	NG	FINAL PL	= JMP OR TL	gallor	is + (gallo PURGIN	ns/foot X	feet)		gallons TOTAL VC	
	WELL (feet):	7.5	DEPTH II	N WELL (fe		7.5	INITIATE		ENDED AT:	1436	PURGED	gallons): 2.1
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGEE (gallons)	RATE	E DEP TO WATI (fee	ER ^{(si}	pH tandard units)	TEMP (°C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg) or % acturation	TURBIDI (NTUs)		
1434		1.75	0.09	6.6	5 7	140		459	1.25/15.3%	(6.1	Ciec	n none
1436				6.6				460	1.2-6/15.4%	-		-
1938	0.18	9.11	0.09	6.6	2 7	.40	29.33	460	1.27/15.5%	13.3	V	V
	-			-	-	_					-	
				-							-	
-	-			-							-	
					-							
			1						1	1		
	PACITY (Gallor	Des Fresh	0.75% - 0.00	1" = 0.0				All 0.07				
TUBING I	NSIDE DIA. CA	PACITY (Gal.			4; 1.2 3/ 16" = 0.		6; 2 " = 0 16 1/4" = 0.0026				6" = 1.47; " = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	CODES:	B = Bailer;	BP = Blade				Submersible PL	imp; PP = Pe	ristaltic Pur	ip; O = C	other (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLE			LING DA	IA				
Ant	hony per				Reso		-(-)-		SAMPLING INITIATED AT	1440	SAMPLIN	IG AT: 1445
PUMP OR DEPTH IN	TUBING WELL (feet)	7.5		TUBING MATERIA		H	DPF +		-FILTERED: Y on Equipment Typ	O .	FILTER S	ilZE: <u>Μ</u> Α+ μm
	CONTAMINATIO	DN: PU	MP Y 🔿			BING		placed	DUPLICATE:	Y	0	
SAM	PLE CONTAINE	R SPECIFIC	ATION	SAM		SERVA	TION (includin	ig wet ice)	INTENDE	D	SAMPLING	SAMPLE PUM
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER			OTAL VOL D IN FIELD (m	FINAL	ANALYSIS AN METHO		QUIPMENT CODE	FLOW RATE (mL per minute
W-17		AG	1000me	I CC		ADDE		L) рН 7910	PAL	+	APP	200
		1							1110			
	· · · · · · · · · · · · · · · · · · ·											
				10.				_				1
REMARKS					_			-				
MATERIAL		AG = Amber S = Silicone;	Glass; CG = T = Teflon;	= Clear Glas 0 = Othe	ss; Hi er (Specif		ligh Density Po	olyethylene;	LDPE = Low Den	sity Polyeth	ylene; PP	= Polypropylene
SAMPLING	EQUIPMENT		APP = After (T RFPP = Revers				B = Bailer; SM = Straw M	BP = Blado	ler Pump; ESF Gravity Drain);	• = Electric • • • Other	Submersible I	Pump;
DTES: 1.	The above of							r 62-160, F.A		0 - Otter	(opecity)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	udlam Corrido	or Properties	s 'All Green T	Frail'				otwoon I		th and SVV 80 th S	Streets Mir	ami El	
WELL NO		NW-10	•		MPLE ID		N-IDE	etweenn				m 18,20	all S
L	,				_		GING DA	TA	-		<u>J'C</u>	NI 10104	10
WELL VC	R (inches):	TUBI DIAN	VETER (inches	TAL WEL	DEPTH L DEPTH	SCREEN	INTERVAL eet to 15. 2 f	feet TC	R) X	DEPTH ER (feet):		RGE PUMP	,
EQUIPME	ENT VOLUME F ut if applicable)	PURGE: 1 E	= (QUIPMENT VO	15. DL. = PUMP	P VOLUM	et – 4 IE + (TUI ns + (fe TY X ons/foot X					
	UMP OR TUBI	^{NG} 7.5	FINAL PI	JMP OR TU N WELL (fe	JBING	7.5	1		_	PURGING ENDED AT:	1648	gallons TOTAL VC PURGED	5
TIME	VOLUME PURGED (gallons)	CUMUL VOLUMI PURGEI (gallons)	E PURGI	DEP	TH) ER (s	pH tandard units)	TEMP. (°C)	CON (circle μ μmhos or uS	D. Inits) /cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)	TY COLO	DR ODOR
1644	1:75	1.75	0.1	6.8		7.18	24.49	550)	0.2513.0%	03.80	- Cie	y none
1646	0.9	1.95		6.5		.18	24.50	551		0,28 (3,4%,	3.24	C110	
1648	6:0	a.15	01	6.8	37	2.17	24.49	555	<u>5</u>	0.3113.8%	281	CIPO	r nore
									-				
_				-	-			-				_	
TUBING I	PACITY (Gallor NSIDE DIA. CA EQUIPMENT (PACITY (Gal			3/16" = 0 Ider Pum	p; E	3; 2" = 0.16 1/4" = 0.0026 SP = Electric S	6; 5/1 Submersil	0.37; 6'' = 0. ble Pu	.004; 3/8'' = 0.	5" = 1.02; 006; 1/2 ristaltic Purr	6 " = 1,47; " = 0,010; np; O = 0	12 " = 5.88 5/8" = 0.016 Other (Specify)
	BY (PRINT) / A			SAMPLE	R(S) SIG	NATURE			-	SAMPLING		SAMPLIN	IG I
	rony Pez	20+11/	ऽउ		Dav	A				INITIATED AT			NG 1656
PUMP OR DEPTH IN	TUBING WELL (feet):	7.5		TUBING MATERI/	AL CODE	140	PES			-FILTERED: Y on Equipment Typ		FILTER S	SIZE: MAμm
FIELD DEC	CONTAMINATIO	ON: PU	MP Y 🕻	R)	-	JBING		placed)		DUPLICATE:	Y	N	
SAMPLE	PLE CONTAINE #	ER SPECIFIC	1	SAN			TION (includir OTAL VOL			INTENDE ANALYSIS AN		SAMPLING QUIPMENT	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	US	ED		D IN FIELD (m	nL)	NAL pH	METHO	о	CODE	(mL per minute)
IW-IDE		AC.	1000	Ice		-	-		17	PAH	1	499	~300
V	2	PE	720	HNC	3		-	-	-)	As		V	V
REMARKS					-								
MATERIAL	. CODES:	AG = Amber S = Silicone;	Glass; CG T = Teflon;	= Clear Gla 0 = Oth	iss; H er (Speci		igh Density Po	olyethylen	ie;	LDPE = Low Den	sity Polyeth	ylene; PP	= Polypropylene;
	EQUIPMENT		APP = After (T RFPP = Rever	se Flow Pe	ristaltic P	ump;		lethod (T	ubing	Gravity Drain);	• = Electric : • • • • • • • • • • • • • • • • • • •	Submersible I (Specify)	Pump;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: L	udlam Corrido	or Propertie:	s 'All Green 1	Frail			etween NW 7	th and SVV 80 th S	treets Mia	mi El	
WELL NO	10	01-W				1-10				m 18,2	018
						GING DA	TA		00	*110/0	~~~~
WELL VO		DIAM	IETER (inches): 114 DEI DTAL WELL DEF		eet to 9 f	eet TO WAT	ER (feet):	OR	RGE PUMP T BAILER: PP	YPE
EQUIPME		PURGE: 1 E	= (QUIPMENT VC	L = PUMP VOI	UME + (TUI			UBING LENGTH)	+ FLOW CE		
	UMP OR TUBI	^{NG} 8.5		JMP OR TUBIN	allons + (PURCIN	G ICII	feet) PURGING		gallons TOTAL VOI	
DEPTHIN	I WELL (feet):	CUMUL		N WELL (feet):	8.5		COND	ENDED AT:	1607	PURGED (g	Jallons): 4.86
TIME	VOLUME PURGED (gallons)	VOLUME PURGEI (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP ([°] C)	(circle units) µmhos/cm or µ\$/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUS)	Y COLO (describ	
1603		9.5		7.48	7.24	03.79	998	1.55/18.49		Clea	h none
1605	81.0	4.60		7.48	7.24	23.86	448	1.48/17.5%		Cleo	
1607	81.0	4.8	6 0.09	7.48	7,24	93.93	449	1.54/18,2%	10,3	C140	V none
			-		-					-	-
				-						-	
			-								
TUBING IN	PACITY (Gallor NSIDE DIA, CA	PACITY (Gal	0.75" = 0.02; /Ft.): 1/8" = (1" = 0.04; 0.0006; 3/16"	= 0.0014;	1/4" = 0.0026	5, 5/16" = 0	.004; 3/8" = 0,0			12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	CODES:	B = Bailer;	BP = Bladder F			Submersible Pu	imp; PP = Per	ristaltic Pump	o; O = Ot	her (Specify)
SAMPLED	BY (PRINT) / A	FILIATION		SAMPLER(S)	SIGNATURE	LING DA		CAMPLING		044704	
	yper20.			oler	W	. ,		SAMPLING INITIATED AT	1610	SAMPLIN ENDED A	i (615
PUMP OR DEPTH IN	TUBING WELL (feet):	8.	5	TUBING MATERIAL CO		PE.S		-FILTERED: Y on Equipment Typ		FILTER SI	ZE: <mark>ΜΛ</mark> μm
	CONTAMINATI		-	N)	TUBING		placed)	DUPLICATE:	e. Y		
SAMF			ATION	SAMPLE	PRESERVA	TION (includin		INTENDE	D S.	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (m	FINAL pH	ANALYSIS AN METHOD	ID/OR EC	CODE	FLOW RATE (mL per minute)
nw-10	1	AG	Lucoot	Ice			242	PAH	F	tbb	A-900
REMARKS:)							
MATERIAL		AG = Amber S = Silicone;	T = Teflon;	= Clear Glass; O = Other (Sj	pecify)	ligh Density Po	olyethylene;	LDPE = Low Den	sity Polyethy	lene; PP =	Polypropylene;
	EQUIPMENT		RFPP = Reven	hrough) Peristal se Flow Peristalt the informatic	ic Pump;		BP = Bladd Aethod (Tubing	Gravity Drain);	• = Electric S • • • • • • • • • • • • • • • • • • •	ubmersible P Specify)	ump;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: Luciam Corridor Properties 'All Green Trail' LOCATION: Between NW 7 th and SW 80 th Streets, Miami, FL WELL NO: MW - Q SAMPLE ID: MW - Q DATE: JAM 18, Jac 18 WELL NO: MW - Q SAMPLE ID: MW - Q DATE: JAM 18, Jac 18 WELL DIAMETER (inches): TUBING DIAMETER (inches): TUBING DIAMETER (inches): WelL SCREEN INTERVAL DEPTH: Stratic DEPTH feet to 5 Stratic DePTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY Quality of the strates (inches): Quality of
PURGING DATA WELL DIAMETER (inches): TUBING DIAMETER (inches): TUBING DIAMETER (inches): TUBING DIAMETER (inches): Well SCREEN INTERVAL DIAMETER (inches): STATIC DEPTH DUAMETER (inches): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH: 5 feet to 5 feet STATIC DEPTH TO WATER) X WELL CAPACITY PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY Quite Capacity gailons/foot = 1.2.9 gailons EQUIPMENT VOLUME PURGE: 1 WELL VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 PURGING DEPTH IN WELL (feet): 7.5 PURGING (circle units) units) PURGING (circle units) (circle units) TURBIDITY (NTUs) COLOR (describe) ODOR (describe) 1 445 3.5 3.5 0.08 6.97 7.36 34.79 4.05 34.131.579 3.68 C11.04 MOV 1 447 0.16 3.82 0.08 6.97 7.36 34.75 4.97 3.6 34.75 4.93 3.9.75 C.104 <
WELL DIAMETER (inches): TUBING DIAMETER (inches): TUBING DIAMETER (inches): WELL SCREEN INTERVAL DEPTH: STATIC DEPTH feet STATIC DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY PURGE PUMP TYPE OR BAILER: PP Well out if applicable) = (15 feet - 6.91 feet) X ULL CAPACITY gallons/foot = (1.2.9 gallons EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = gallons + (gallons/foot X feet) + gallons gallons INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 PURGING INITIATED AT: PURGING ENDED AT: TURBIDITY (NTUs) TOTAL VOLUME PURGED (gallons): ODOR (describe) TIME VOLUME PURGED (gallons) PURGE RATE (gallons) DEPTH (feet) PH VATER TEMP, ('C') COND, ('C') DISSOLVED OX/GEN (GIG units) TURBIDITY (NTUs) COLOR (describe) ODOR (describe) 1 445 3.5 0.08 6.97
DIAMETER (inches): DIAMETER (inches): Image: Construction of the
Well volume Purce: Twell volume = (TOTAL Well DEPTH - STATIC DEPTH TO WATER) X Well CAPACITY (only fill out if applicable) EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) INITIAL PUMP OR TUBING DEPTH IN WELL (feet): PURGING DEPTH IN WELL (feet): 7.5 PURGING DEPTH IN WELL (feet): VOLUME VOLUME VOLUME PURGED (gallons) PURGE PURGE DIGED VOLUME PURGED (gallons) PURGE PURGE DIGED DEPTH IN WELL (feet): 7.5 TIME VOLUME PURGE DIGED PURGE PURGE DIGED DEPTH IN WELL (feet): 7.5 (gallons) Qualter PURGE DIGED PURGE PURGE DIGED PURGE PURGE PURGE DIGED DEPTH IN WELL (feet): 7.5 (gallons) QUALTER (feet) PURGE (feet)<
EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITYXQ.16gallons/foot=I.d.9gallonsEQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITYXTUBING LENGTH) + FLOW CELL VOLUME(only fill out if applicable)=gallons + (gallons/foot XTUBING LENGTH) + FLOW CELL VOLUMEINITIAL PUMP OR TUBING DEPTH IN WELL (feet):7.5PURGING INITIATED AT: 1413PURGING ENDED AT: 1413TOTAL VOLUME PURGING ENDED AT: 1451TOTAL VOLUME PURGED (gallons): 2, 9TIMEVOLUME (gallons)CUMUL VOLUME (gallons)PURGE RATE (gpm)DEPTH TO WATER (feet)DEPTH TO VATER (feet)PH (standard units)TEMP (°C)COND (circle units) productDISSOLVED OXYGEN (circle units) productTURBIDITY (NTUS)COLOR (describe)ODOR (describe)1445 $\overline{A.55}$ $\overline{A.56}$ $\overline{A.08}$ $\overline{A.97}$ $\overline{7.36}$ $\overline{A.9.74}$ $\overline{4.04}$ $\overline{A.9.74}$ $\overline{A.66}$ $\overline{C.104}$ No.41449 $\overline{A.16}$ $\overline{A.66}$ $\overline{A.08}$ $\overline{6.97}$ $\overline{7.36}$ $\overline{A.9.76}$ $\overline{4.04}$ $\overline{A.9.74}$ $\overline{A.66}$ $\overline{C.104}$ No.41449 $\overline{0.16}$ $\overline{A.82}$ $\overline{0.08}$ $\overline{6.97}$ $\overline{7.36}$ $\overline{A.9.76}$ $\overline{4.04}$ $\overline{A.9.76}$ $\overline{A.66}$ $\overline{C.104}$ No.41449 $\overline{0.16}$ $\overline{A.82}$ $\overline{0.08}$ $\overline{6.97}$ $\overline{7.36}$ $\overline{A.9.76}$ $\overline{4.04}$ <
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 FINAL PUMP OR TUBING DEPTH IN WELL (feet): 7.5 PURGING INITIATED AT: 1413 PURGING ENDED AT: 1451 TOTAL VOLUME PURGED (gallons): 2, 98 TIME VOLUME PURGED (gallons) CUMUL VOLUME PURGED (gallons) PURGE RATE (gpm) DEPTH VO WATER (feet) DH VOLUME PURGE (feet) DEPTH VO WATER (feet) PH (standard units) TEMP (°C) COND (circle units) pumbos/cm DISSOLVED OXYGEN (circle units) TURBIDITY (NTUS) COLOR (describe) ODOR (describe) 1445 3.5 3.5 0.08 6.97 7.36 347.76 4.04 343.131.57 3.68 C11.04 MONQ 1449 0.16 3.82 0.08 6.97 7.36 34.76 4.04 343.199.47 2.68 C11.04 MONQ
DEPTH IN WELL (feet): 7.5 INITIATED AT: 1913 ENDED AT: 1913 PURGED (gallons): 2.93 TIME VOLUME PURGED (gallons) CUMUL VOLUME (gallons) PURGE RATE (gpm) DEPTH TO WATER (feet) DEPTH O (standard units) PH (standard units) TEMP (°C) COND (circle units) (res/cm) DISSOLVED OXYGEN (circle units) TURBIDITY (NTUS) COLOR (describe) ODOR (describe) 1445 3.5 3.5 0.08 6.97 7.36 341.79 405 3.01/31.57 3.68 C110V VON 1449 0.16 3.82 0.08 6.97 7.36 34.76 404 3.43/309.47 2.68 C110V VON 1449 0.16 3.82 0.08 6.97 7.36 34.76 404 3.43/309.47 2.68 C110V VON
TIMEVOLUME PURGED (gallons)CUMUL VOLUME PURGED (gallons)PURGE RATE (gpm)DEPTH TO VATER (gpm)pH (standard units)TEMP ($cccle units)$ units)COND (circle units) or S/cmTURBIDITY (NTUS)COLOR (describe)ODOR (describe)1445 $A.55$ $A.55$ 0.08 6.97 7.36 $A477$ 405 $Au1/31.51$ $A.68$ $C110V$ $vone$ 1447 0.16 $A.66$ 0.08 6.97 7.36 $A477$ 404 $A42/393$ $A677$ $c.N04$ $vone$ 1449 0.16 $A.82$ 0.08 6.97 7.35 $A4.75$ 404 $A42/39.31$ $A.67$ $c.N04$ $vone$
1445 2.5 2.5 0.08 6.97 7.36 24.79 405 2.68 CILON NONE 1447 0.16 2.66 0.08 6.97 7.36 24.76 404 242/24.33 2.67 CNON NONE 1449 0.16 2.82 0.08 6.97 7.36 24.75 404 2.43/29.44 2.62 CILON NONE
1449 0.16 2.82 0.08 6.97 7.35 24.75 404 243/29.4% 2.62 (100 More
1449 0.16 2.82 0.08 6.97 7.35 24.75 404 243/29.4% 2.62 (100 More
1451 O.16 2.98 0.08 6.97 7.35 24.69 903 2.58/31,1% 2.34 clear rome
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88
TUBING INSIDE DIA, CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S):
Anthony Personti/SCS Oronow SAMPLING ENDED AT: 1454 ENDED AT: 1500
PUMP OR TUBING 75 TUBING HORO FIELD-FILTERED: Y (N) FILTER SIZE: MA um
DEPTH IN WELL (reet): MATERIAL CODE: DYPE Filtration Equipment Type: FIELD DECONTAMINATION: PUMP Y Y TUBING Y Y Y
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUMP
SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FLOW RATE
$\frac{10 \text{ CODE}}{1000 \text{ CODE}} = \frac{1000 \text{ Me}}{1000 \text{ Me}} = $
V I PE 250ML HNOZ - LD AS V V
REMARKS:
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)
SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;
RFPP = Reverse Flow Peristatic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify) OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. O = Other (Specify)

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	udlam Corrido	or Properties	s 'All Green]	Frail'			etween NW 7 ¹¹	^h and SW 80 th S	Streets Mia	mi El	
WELL NO		1-7E		SAMPLE		1W-71					3018
L	111-5					GING DA					J O I O
WELL DIAMETE		DIAN	IETER (inches): DEP	L SCREEN	eet to 15	STATIC	DEPTH ER (feet): 6-7 WELL CAPAC	🖌 🛛 OR	rge pump 1 Bailer: PP	
(only fill o	ut if applicable)		= (15 DL. = PUMP VOL	feet -	6.78	feet) X	10.10	gallons/for	ot =	37 gallons
	,				illons + (ons/foot X	feet)) +	gallons	= gallons
DEPTH IN	UMP OR TUBI WELL (feet):	NG 7.5		JMP OR TUBING N WELL (feet):	25	PURGIN	IG ED AT: 130	PURGING ENDED AT:	1329	TOTAL VO PURGED (gallons): 1-86
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	E PURGE	WATER (feet)	pH (standard units)	TEMP. ([°] C)	COND (circle units) µmhos/cm or	DISSOLVED OXYGEN (circle units) fng/L or saturation	TURBIDIT (NTUs)		DR ODOR
1325	1.50	1.50	0.0		7.24	26.47	489	1.14/19.29		Cie	y none
1327	0.18	84.0	60.00		2.23	26.93	983	118/19.7%		CNON	
1329	0,18	48.18	6 0.09	r 6.81	7.2-3	26.39	485	1.29/16.14	1.40	Clean	~ NONe
	-		-							-	
					1						
										-	
WELL CA	PACITY (Gallor NSIDE DIA. CA	ns Per Foot): PACITY (Gal	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04; 0.0006; 3/16"	1.25" = 0.0 = 0.0014;					6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT	CODES:	B = Bailer;	BP = Bladder Pr			Submersible Pu	mp; PP = Pe	ristaltic Pump	o; 0 = 0	ther (Specify)
SAMPLED	BY (PRINT) / A			SAMPLER(S)			TA	1		1	
	DAY PCZ		scs	OPENO		=(3)-		SAMPLING	1332	SAMPLIN ENDED A	IG AT:1338
PUMP OR			7.5	TUBING MATERIAL CO	DE: HD	PErs		-FILTERED: Y	De:	FILTER S	IZE: <u>ΜΑ</u> μm
FIELD DE	CONTAMINATI	ON: PU	MPY K	Ø	TUBING	Y N (re	placed)	DUPLICATE:	Y	R	
	PLE CONTAINE		ATION	SAMPLE	PRESERVA	TION (includin	ng wet ice)			AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN USED		OTAL VOL D IN FIELD (n	FINAL pH	ANALYSIS AM METHO		CODE	(mL per minute)
NW-7£	L.	AG	1000 mL	ICP		-	17.2	3 PAH	1	400	~200
L.	1	PE	JOME	HN03		-	61	As		J	V
					_						
REMARKS			·								
MATERIAL	. CODES:	AG = Amber S = Silicone;		= Clear Glass; O = Other (Sp		ligh Density Po	olyethylene;	LDPE = Low Der	nsity Polyethy	lene; PP	= Polypropylene;
			RFPP = Rever	hrough) Peristalti se Flow Peristalti	c Pump;		BP = Bladde Method (Tubing	Gravity Drain);	P = Electric S O = Other		'ump;
DTES: 1.	The above of	do not cons	stitute all of	the informatio	n require	d by Chapte	r 62-160, F.A.	.C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	udlam Corrido	r Proportio	All Groop 1	iroi!!		SITE	aturaan NW	n zih	and SW 80 th S	tracta Mila		
WELL NO			S All Gleen I		MPLE ID:			V 7	10			210
): <u>M</u> w-	1				MW~7		_			on 18/1	0010
WELL		TUB	NG	1. ()					DEPTH	PU	RGE PUMP	TYPE
	R (inches)	DIAN	IETER (inches	14		feet to	feet TO V	NATE	ER (feet): 🚬 🕻		BAILER: PF	
	(Aldonian Bank					STATIC DEPTH						
EQUIPME		URGE: 1 E	= (QUIPMENT VC		feet –	7.63	feet)) X TL	DING LENGTH)	gallons/fo		gallons
(only fill o	ut if applicable)			=	gallons +		ons/foot X					
INITIAL P	UMP OR TUBIN	IG o	FINAL PL	JMP OR TI	JBING	PURGI			feet) PURGING		gallons TOTAL V(
DEPTH IN	WELL (feet):	8.5	DEPTH I	N WELL (fe	et): 8,	5 INITIAT	ED AT:	30	ENDED AT:	1250	PURGED	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGEI (gallons	E PURGE	E DEP TC WAT (fee	ER (stand	ard (°C)	COND (circle uni µmhos/ci or	its) m	DISSOLVED OXYGEN (circle units) (cog/L or % saturation	TURBIDI (NTUs)		
1246	1.50	1.50	0.09	7.6	8 7.2	3 26.32	544		1.41/17.5	16.71	1 Cres	N NOTO
1248	0.18	1.68	0.09	7.6	8 7.2	3 26,32			1.37/16.8%	5.06	Cleon	
1250	0.18	1.86	0,09	7.6	8 7.2	3 26,29	539		1.29/16%	3.61	clex	or none
		-		-	-		-	_			-	
	-			-	-	_		-			_	
	-			-		-					_	
	-			-	-	-		-			_	
				-	_			-				
	1					-	-	1			-	
11.												
	PACITY (Gallor NSIDE DIA. CA				4; 1.25" = 3/16" = 0.001	0.06; 2 " = 0.1 4; 1/4" = 0.002				" = 1.02;	6 " = 1,47; " = 0,010;	12" = 5.88 5/8" = 0.016
	EQUIPMENT (to and	B = Bailer;		der Pump;	ESP = Electric				ristaltic Pum		Other (Specify)
						MPLING D/	ATA					
	BY (PRINT) / A				R(S) SIGNAT	URE(S):			SAMPLING INITIATED AT	125 3	SAMPLI	
PUMP OR	TUBING		2	TUBING	a de la		T EII	FLD-I	FILTERED: Y	(N))	AT: 1303 SIZE: MA µm
DEPTH IN	WELL (feet):	8.5		MATERIA	AL CODE: H	DPES			n Equipment Typ	e:	FILTERY	size. Man
	CONTAMINATIO		MP Y	>	TUBI		eplaced)		DUPLICATE:	Y	\odot	
	PLE CONTAINE #					RVATION (includ		A 1	INTENDE ANALYSIS AN			SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESER		TOTAL VOL DDED IN FIELD (1	METHO		CODE	(mL per minute)
MW-7	1	AG	LOOD ML	ILE	-			7.33			APP	~300
6		J	1000in	<u>r</u> (e	-	-	1	7.23	Phenol	5	4	↓ ↓
							_	-				
								-				
REMARKS	:			-				-				
MATERIAL		AG = Ambe S = Silicone;	r Glass; CG T = Teflon;	= Clear Gla 0 = Oth	ss; HDPE er (Specify)	E = High Density F	olyethylene;	; L	LDPE = Low Den	sity Polyeth	ylene; PF	= Polypropylene;
SAMPLING	GEQUIPMENT		APP = After (T RFPP = Rever						er Pump; ESI Gravity Drain);	• = Electric : • • • • • • • • • • • • • • • • • • •	Submersible (Specify)	Pump;
OTES: 1	The above	to not con	titute all of	the infor	nation root	ured by Chant					,	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	Idlam Corrido	r Propertie	s 'All Green T	rail'			otwoon NIM/ 7 th	and SW 80 th S	troots Miam		
WELL NO			3 Al Oleen I	1			etween NVV /				118
	mu	1-3				JING DA	TA		Ju	11010	010
WELL	R (inches):		ING METER (inches)		L SCREEN	INTERVAL	STATIC D				YPE
WELL VO		: 1 WELL \	/OLUME = (TC	TAL WELL DEP	TH – STA	TIC DEPTH 1	TO WATER) X	WELL CAPACI	ТҮ		
	NT VOLUME P It if applicable)	PURGE: 1 E	= (QUIPMENT VO	L. = PUMP VOL	feet – JME + (TUB	9.71 BING CAPACI	feet) X ITY X TI	0 · 16 UBING LENGTH)	gallons/foot + FLOW CEL		5 gallons
				= ga	llons + (gallo	ons/foot X	feet)	+	gallons	= galions
	UMP OR TUBIN WELL (feet):	10.5		IMP OR TUBING	10-5	PURGIN		PURGING ENDED AT:	1035	TOTAL VOL PURGED (g	JUME gallons): 1,98
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	E PURGE D RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBIDITY (NTUs)	COLO (describ	
1031	1.50	1.50) 0.12	983	7.52	25.67	352	1.5/19/1	1.84	C 108	
1033	0,24	1.70		9.83	7.52	25.75	352	1.09/13.490	1.70	CI-OR	
1035	0.24	1.98	012	9.83	7.52	25.78	35.2	1.02/12.5%	1.48	Llos	r work
			-	-							
			_								
WELL CAP	PACITY (Gallor	ns Per Foot):	0.75 " = 0.02;	1" = 0.04;	1.25" = 0.06				" = 1.02; 6	5'' = 1_47;	12'' = 5.88
	ISIDE DIA. CA EQUIPMENT (I /Ft.): 1/8" = 0 B = Bailer;	.0006; 3/16" = BP = Bladder Pu	= 0_0014; ump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0.0 Submersible Pur		006; 1/2" : ristaltic Pump		5/8" = 0.016 her (Specify)
						LING DA	TA				
	BY (PRINT) / A			SAMPLER(S) S		E(S):		SAMPLING INITIATED AT	1037	SAMPLIN ENDED A	GT: 10412
PUMP OR		10.5		TUBING MATERIAL CO		PF.S		FILTERED: Y		FILTER SI	ZE: <u>Δκ</u> μm
FIELD DEC	ONTAMINATIO	~	лир ү 🕡		TUBING		placed	DUPLICATE:	Y	N	
			CATION			TION (includi	-	INTENDE ANALYSIS AN			SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIN USED		OTAL VOL D IN FIELD (n	nL) FINAL	METHO		CODE	(mL per minute)
mw-3		AG	POOML	Ice	_	-	250	PAH	A	PP	200
		1	-		-		-		-		
_											
REMARKS											
MATERIAL	CODES:	AG = Ambe S = Silicone	r Glass; CG = ; T = Teflon;	= Clear Glass; O = Other (Sp		ligh Density P	olyethylene;	LDPE = Low Den	sity Polyethyle	ene; PP :	= Polypropylene;
SAMPLING	EQUIPMENT	CODES:	APP = After (T RFPP = Revers	hrough) Peristalti se Flow Peristalti	c Pump; c Pump:	B = Bailer; SM = Straw I	BP = Bladde Method (Tubing (• = Electric Su • = Other (\$		ump;
			stitute all of	the informatio	n required	d by Chapte				,,,	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	udlam Corrido	or Properties	'All Green T	'rail'		ITE OCATION: B		and SW 80 th S	treets Mian	ni El	
WELL NO		W-12		SAMPLE II					DATE: Jon		PM PM
	,,,	w ia				GING DA	ТА		(Jew)	1210	040
WELL VO	R (inches):	TUBI DIAM	ETER (inches	TAL WELL DEPT	SCREEN H: - fe H - STA	INTERVAL set to f ATIC DEPTH T	eet STATIC I TO WATI O WATER) X	ER (feet): 7 3		GE PUMP T BAILER: PP	
EQUIPME (only fill of	INT VOLUME F ut if applicable)	PURGE: 1 EC	= (UIPMENT VO	L. = PUMP VOLU				UBING LENGTH)		L VOLUME	.07 gallons
	UMP OR TUBI	NG 8.O		= gallo JMP OR TUBING N WELL (feet):	ons + (DURCIN	G DAT: 1555	Feet) PURGING ENDED AT:		gallons TOTAL VOI	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE	DEPTH	pH (standard units)	TEMP (°C)	COND (circle units) µmhos/cm or us/cm	DISSOLVED OXYGEN (circle units) (mg/L or % saturation	TURBIDITY (NTUs)		R ODOR
1613	1.75	1.70	501	7.32 (0.94	25,13	627	0.6017.3%	4.60) Cier	none
1615	60	1.95	01		93	25.12		0.597,2%	3.16	CNO	+ none
1617	0.3	2.15	0.1	7,32 (6.93	25.14	678	0.51/6.34	7.54	CNO	r none
TUBING IN	I PACITY (Gallor ISIDE DIA. CA EQUIPMENT (PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0 3 = Bailer:	1" = 0.04; 1. 0.0006; 3/16" = BP = Bladder Pun		1/4" = 0.0026		004: 3/8" = 0.0	006; 1/2"	= 0.010;	12" = 5.88 5/8" = 0.016
- on one			- Dailer,		-	LING DA		inp, PP-Per	ristaltic Pump	U = 01	her (Specify)
	BY (PRINT) / A		i (S	SAMPLER(S) SI	GNATURE			SAMPLING INITIATED AT:	1620	SAMPLIN ENDED A	а т. Ц. д. С
PUMP OR DEPTH IN	TUBING WELL (feet):	0.8		TUBING MATERIAL COD		PE,5		FILTERED: Y	(M)		ZE: <u>Α/Α</u> μm
FIELD DEC	CONTAMINATIO	ON: PUN	IP Y	0	TUBING	Y N (re	placed)	DUPLICATE:	Y	N	
SAMPLE	PLE CONTAINE #	MATERIAL	ATION VOLUME	PRESERVATIVE		TION (includin	ig wet ice) FINAL	INTENDE ANALYSIS AN	ID/OR EQ		SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE		USED	ADDE	D IN FIELD (m		METHOE		CODE	(mL per minute)
NW-12	1	AG PE	JEDNL JEDNL	I CE HNO2	-	-	-693			190 10	
				ET.VU3			63	TOTALA	>		
REMARKS											
MATERIAL		AG = Amber S = Silicone;	T = Teflon;	O = Other (Spec	cify)	igh Density Po	olyethylene;	LDPE = Low Den	sity Polyethyl	ene; PP =	= Polypropylene;
1.1.1	EQUIPMENT	F	FPP = Revers	hrough) Peristaltic se Flow Peristaltic the information	Pump;		BP = Bladde fethod (Tubing (Gravity Drain);	• = Electric Su • • • Other (\$		ump;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	dlam Castida	r Dronortio		Teo IP		SITE			21	A1	
WELL NO:			s 'All Green 1				etween NVV /	th and SW 80 th 8			010
	[7	IW-15				<u>1W-15</u> RGING DA	ТЛ		DATE.	on 12,2	3010
WELL DIAMETER	R (inches):		METER (inches): ''('' [VELL SCREE	Feet to 5 (2) f	STATIC	DEPTH TER (feet):	120	Purge Pump Dr Bailer: Pf	
(only fill out	t if applicable)				feet – OLUME + (T	7. 92 UBING CAPACI	feet) TY X	X 0,16	gailons) + FLOW		
	MP OR TUBI	^{1G} 8		JMP OR TUB	gailons + (PURCIN	G G	feet)		gallons TOTAL VC	
DEPTH IN	WELL (feet):	1		N WELL (feet			DAT: 15	ENDED AT:	[53() PURGED	(gallons): 2.25
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gailons	E PURGE D RATE	WATER (feet)	standar (standar units)	d TEMP. ([°] C)	COND. (circle units) µmhos/cm or µS(cm)	OXYGEN (circle units) (circle units) OT Saturation	TURBII (NTU	Js) (descr	
1526		1.75			_		659	0.21/2.51		CIA	
1520		0.00						0.19/2.3%		A	
1530	0.35	2.6.6	0.138	5 7.44	7.07	25.18	658	0.19(2.3%	0.7	7 (100	none
									1		
				-							
			-								_
TUBING IN	ACITY (Gallor SIDE DIA. CA EQUIPMENT (PACITY (Ga	0.75" = 0.02; 1./Ft.): 1/8" = 0 B = Bailer;	1" = 0.04; 0.0006; 3/1 BP = Bladde	6" = 0.0014; r Pump;	06; 2" = 0.16 1/4" = 0.0020 ESP = Electric : PLING DA	5; 5/16" = 0 Submersible Pu			/2" = 0.010	12" = 5.88 5/8" = 0.016 Other (Specify)
	BY (PRINT) / A				S) SIGNATU			SAMPLING	1	SAMPLI	NG
ANthe PUMP OR T	Ny PEZ	20.1+1/	5(5	TUBING	att			INITIATED AT			NG 1537
	VELL (feet):	8		MATERIAL		PETS	FIELD	D-FILTERED: Y ion Equipment Typ	be O	FILTER S	
FIELD DEC	ONTAMINATIO	ON: PU	IMP Y	0	TUBING	Y W (re	placed)	DUPLICATE:	Y	N	
SAMPLE	LE CONTAINE #	ATERIAL	VOLUME	PRESERV		ATION (includir TOTAL VOL	FINAL	INTENDE ANALYSIS AN METHO	ND/OR	SAMPLING EQUIPMENT CODE	SAMPLE PUMP FLOW RATE (mL per minute)
	CONTAINEDO					ED IN FIELD (m	IL) pH	METHO		OODL	
	CONTAINERS	CODE	1000mL	USED			7.97	PA14	00	000	APP
		CODE					7.97	PA14	6	200	<u>466</u>
AW-15		CODE					7:07	PA 14		200	<u> </u>
REMARKS:	CODES:	AG = Ambe	1000mL		; HDPE =	High Density Po		PAIA LDPE = Low Der			Polypropylene;

2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Buildy "A" this hos dura on this page dura on this page Fail PF PF PF PF PF PF PF PF PF PF PF PF PF			
	Bottle # Slope Reading Bottle # Slope Su Acceptance Criteria: 2.00 2.00 Pisolved Oxygen Membrane Changed: Pisolved Oxygen Membrane Changed:		
FD 4000) % DO % DO Cell Constant	Slope Acce		
0, FD 1000- 000k Temp °c Bottle # Bottle #	Bottle #		
LIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05 Date: UIII 2018 Date: UIII 2018 tit Temperature Verification see tit Temperature Verification see tit Temperature Verification see In log book Metei tit Temperature Verification see In log book Charge Probe Probe Probe Probe Probe Metei In log book Temp °C< % DO Metei Metei Metei In log pook Satua Metei Metei Metei Metei In log pook Satua In log pook Satua In log pook In log pook <th <="" colspan="2" td=""><td>Lot # Lot # Zec 3009 Zec 310 Zec 310 Zec 310 Zec 310 Zec 310</td></th>	<td>Lot # Lot # Zec 3009 Zec 310 Zec 310 Zec 310 Zec 310 Zec 310</td>		Lot # Lot # Zec 3009 Zec 310 Zec 310 Zec 310 Zec 310 Zec 310
SOP FT 1 Probe Gain Exp. Date	Time Standard Su Exp. Date Lot Su Su Exp. Date Lot Su Zo0 Zo1 Zo5 Specific Conductance Probe Cleaned? Yes		
99000-8 CALIBRATION LOG (FDEP For Date of Last Temperature Verification see Probe Initials Date Time Probe Probe AP IIII 200 Initials Date Time AP IIII 200 Standard	Standard Standard Standard Standard U SU SU SU 2,000 1		
Time Time I Time	Time 1030		
CA Da	Date Date		
Form FD9000-8 Iow T1500 Initials T1500 Initials	Initials		
Form F Form F LCJ Iow uarterly) en DEP SOP FT 1500 FT 1200 FT 1200	DEP SOP FT 1100		
Froject/Site: Loj I Temperature (Quarterly) Project/Site: Loj I Temperature (Quarterly) CAL ICV CCV CAL ICV CCV			

3

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

, đ

CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification

Page

DEP-SOP-001/01 FT 1600 Field Measurement of Turbidity

				D INSTRUME				
				10-51000		INSTR	UMENT #	<u> </u>
	-	heck only o	•			_		
		TURE	_	-		ГҮ 🗌 рН		
				-	00		ER	
values, and t	the date th	e standards	were prepa	dards used for ca red or purchased				tandard
				319 NOV-		D 100	Lot	
Sta	indard B	10 1	0+ A77	465 Dec-1	8	E 800	Lot	
				+83 Jon-	19			
DATE (yy/mm/dd)	TIME (hr:min)	STD (A, B, C)	STD VALUE	INSTRUMENT RESPONSE	% DEV	CALIBRATED (YES, NO)	TYPE (INIT, CONT)	SAMPLER INITIALS
18/01/11	1032	ton A	0,5	0.5	0	∧/9	cont	AP
	(03)	B	10	9.54	4.6	NO		
	1033	C	20	191	4.5	NO		
	1033	5	100	46.9	31	NO		1
	(033	E	800	748	0:25	NO		
	1723	A	0.5	0.5	6	NO		
	1723	B	40	9.62	3.8	No		
	17241	C	30	19.3	3.6	NO		
S.	1724	D	100	97.2	2.8	NO		I.e.
4	1724	e	800	799	0.125	NO	V	~
			h					
								_
			-					
		1						
					-			
		_						
	-							
								-

|--|

Form ED9000-8 CALIBRATION | OG (EDED SOD ET 1000-ET 1500 ED 1000)

		Form FD9000-8		CALIBRATION LOG		SOP FT 1	000-FT 150	(FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05	FD 4000)	-	
Project/Site:	molon						Date: 111/2013	Shoe		Meter # 03111	9 11
Temperature (Quarterly)	terly)	For Date of L	of Last Tem	perature Ve	ast Temperature Verification see		in log book	book			
Dissolved Oxygen	DEP SOP FT 1500	Initials	Date	Time	Probe Charge	Probe Gain	mg/L	Temp °c	% DO	Saturation mg/L	Pass or Fail
ICV		AP	81/41/1	0/261			8.86	Q.ee	Acce	Acceptance Criteria:+/-0.3mg/	+/-0.3mg/l
		+	L 10113	1710			8.75	3191	1.001	8.761	ш С
CAL ICV 6CV		>	1118118	1505			9.76	1256	109.4	9.056 4.545	ш и Ва
202											. ц. . с.
CAL ICV CCV											և և գ գ
Specific Conductance	DEP SOP FT 1200	Initials	Date	Time	Standard	Exp. Date	Lot #	Bottle #	Cell	Reading	Pass or
CAL ICV CON		AP	11/18	13414	300	4103	560764			Acceptance Criteria:	a: +/- 5%
ICV		$\left \right $		1347	(413	9130118	761 347			13.05	. ц.
CAL ICV COV			+	1213	300	<u>til (ð</u>	76.0769			308	ч С
		Þ	111813	9:5%	300	51110 ci 110	76.0 249			1393	
CAL ICV CCV CAL ICV CCV		>	7	1001	[113	di valo	762347			1383	. ш і С
									Ĩ		0 VAD
Hd	FT 1100	Initials	Date	Time	Standard SU	Exp. Date	Lot #	Bottle #	Slope	Reading SU	Pass or Fail
CAL ICV CCV		φĄ	1/17/18	6461	2.0	5/13	5641000	0	Acce	Acceptance Criteria:	+/- 0.2 SU
		H		(363	G'h	5113	Tatox			40H	. ц
CAL ICV CCV		+		1355	20.0	2/14	Delitad			00.01	ш и @@
CAL ICV CCV		H		(223	4.0	5119	Set was	00°		601H	
				1727	0.01	5113	Relityoc			10.05	E E
		+	1118/10	1001	2.0	5119	0001472			2.08	ш I
CAL ICV CCV		>		8001	10.0	5112	2011472			h0.01	т ц DC
Maintenance: Weekly pH Slope: Notes:	ly pH Slope			Specific	Conductance	Specific Conductance Probe Cleaned? Yes	ned? Yes No	122241	Oxygen Mer	Dissolved Oxygen Membrane Changed:	Yes No

1

CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

Page _

Boldly"X" this bax if there is qualified data on this page.

g mere n quantited data on this page	031116		Pass or Fail	(tiom chan) Acceptance Criteria:+/-0.3mg/l	ц (ф	4	ц Д					a rass or	Acceptance Criteria: +/- 5%	י דין ספר 			. LL . CL	ц д	1	g Pass or Fail	0 -/+	ш. Ф(-	_ u				ш и 2 о	iged: Yes No
11-10-05	Meter #		Saturation mg/L	(from chart) ptance Crit	9.362						Randing	mhos/cm	ceptance C	296	KLC1					Reading SU	Acceptance Criteria:	112	4.04	01-11			100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	A STATE AND A	ibrane Char
ED 4000)			% DO		44						Cell	Constant	Ac			Le La Su				Slope	Accel								Dissolved Oxygen Membrane Changed: Yes
FD 1000-F	8/08/611	k	Temp °c	C, 0	69-01							Bottle #								Bottle #			1				ľ		Dissolved (
CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05	Date: 11191	in log book	mg/L 1	0.01	10							# 101	0111	10-10/10-1	1 herent					Lot #	Soci II w	10010212	ALH HAR						ed? Yes No
SOP FT 1			Probe Gain			-				-	Eve Dete	cxp. uate	chi g	4110611	2					Exp. Date	C (10	21 17	2116						Specific Conductance Probe Cleaned? Yes
og (Fdef		rui Date di Last Temperature Verification see	Probe Charge								Standard	µmhos/cm	00 0	100					Ctandard	SU	212	n o	0.01						Conductance
RATION L		perature Ve	Time	9.15							Time		5.18	IR'S						Time	うての	0:26	96:0		Start Start				Specific (
	of I out T.	OI LAST IEN	Date	P119	2		Contraction of the local distance of the loc				Date		9111							Date	6111		3						
Form FD9000-8	Ear Data	LUI Dala	Initials	4p							Initials		AP	-			1 and 1			Initials	4P	+	-						
Form Fl	U.J. (OVV)	(ALIA)	DEP SOP FT 1500						Wind I	,	DEP SOP	FT 1200		A LOUT					DEP SOP	FT 1100					A COL ST COL				ly pH Slope:
	Temperature (Quarterly)	inna anna anna	Dissolved Oxygen	CAL ICV CCV	- ICV	ICV	ICV	C<	N C C	CAL ICV CCV	Specific	conductance	CAL ICV CCV	ICV	20	CAL ICV CCV		ICV	1	5	CAL ICV CON		ICV	CAL ICV CCV		2 S	2	CAL ICV CCV	<u>Maintenance:</u> Weekly pH Slope: <u>Notes:</u>

CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification Perform only in Calibrate Mode Perform only in Run Mode: Perform only in Run Mode:

Page_

27

DEP-SOP-001/01 FT 1600 Field Measurement of Turbidity

INSTR	1144	Form	FD 9000		D INSTRUME			ECORDS	294129
					110001010		INSIR		
PAKA	_		neck only o	-				-	
	-						—.		RP.
STAN	,					- ·		ER	
values, a	and th	he date th	e standards	were prepa	dards used for ca red or purchased	1			
	Sta	ndard A	1.0 4	of C691	749 Exp41	18 D	A.5 Lot	A73191	VOV-19
	Star	ndard B	10 LotA	17265 1	Exp Dec-1	9			
	Star	ndard C	20 Lot	A728	BERPJON-	19			
DAT		TIME	STD	STD	INSTRUMENT	1	CALIBRATED	TYPE	SAMPLER
(yy/mm	-	(hr:min)	(A, B, C)	VALUE	RESPONSE 0.5	% DEV	(YES, NO)	(INIT, CONT)	INITIALS
10/01	117	1357	P	0-5		0	NO	cont	AP
-	-	(357	B	0.0	9.61	3.9	NO		
V		(367	C	30.0	19.7	1.5	NO		_
	_	1730	D	0.5	0.5	0	NO		
		1730	B	10.0	9.81	1.9	~0		
V		1230	С	90.0	19.5	2.5	NO		
13/01/	18	1009	A	1.0	1.08	8	~0		
		1009	B	0.0	9.51	49	~0		
		1009	С	0.06	19.0	1	NO		
		and	A	1.0	1.06	6	NO	1	
		01Pc	B	0.0	9.41	59	NO		
		0910	6	0.06	19.8	1	ND		$\neg \lor$
4	AP			1				1	
	-								
	-								
	+								
	-								
-	-								
	_								
					1. State 1.				
					the second se				

		[DEP Forr	n FD 9000)-24: GF	ROUNDV	VATER SA		OG	-	11 2
SITE					s	TE				Jun-1	16-20
	lam Corridor	Properties	All Green Tr	ail'	LC	CATION B	etween NW 7 th	and SW 80 th St	reets, Miami,	FL	O AM
VELL NO:	MW-	49-2	-	SAMPLE	00	10-	49-2	2		16/1	80
						SING DA			/		
VELL	(inches):		G TER (inches):		LL SCREEN	INTERVAL eet to	STATIC D			e pump type Iler: PP	
VELL VOLU								WELL CAPACIT	gallons/foot	_ 1.30	o gallons
	T VOLUME PU	JRGE: 1 EQI	JIPMENT VO	= PUMP VOL				JBING LENGTH) feet)			gallons
	MP OR TUBING	3 12		MP OR TUBINO WELL (feet):		PURGIN	IG 1030		THE	OTAL VOLUM PURGED (gallo	E 2.20
	VELL (leet).	CUMUL		DEPTH			COND.	DISSOLVED	- PIN		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP ([°] C)	(circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
110	2.0	2.0	0.0	7.51	6.81	261	600	2.46/30.5	\$ 2.8	cheal	None
112	0.10	2.10	0.05	7,51	6.81	26.1	600	2,46/30,5	6 2.13	chear	None
114	PAR.	2.20	0.05	7,51	6.81	261	600	2,46/30.5	\$ 2.03	scheal	Nere
0	.1001										
									7		
								1			
	ACITY (Gallon SIDE DIA. CAF			1" = 0.04; .0006; 3/16"	1.25 " = 0.0						= 5.88 = 0.016
	QUIPMENT C		s = Bailer;	BP = Bladder f			Submersible Put	mp; PP = Pe	ristaltic Pump;	O = Other	(Specify)
				SAMPLER(S)	and the second se	LING DA	ATA	Contraction of the second	12540		
	BY (PRINT) A	lau	a 155	SMINIFLER(S)	SIGNATURI	E(3).		SAMPLING INITIATED AT	1115	SAMPLING	117
UMP OR T	UBING	10	PA	TUBING	H	OPE+		-FILTERED: Y	N	FILTER SIZE:	μm
CHRISTIAN NOTICE	VELL (feet): ONTAMINATIO	DN: PUN	AP Y G		TUBING	Y (NG	placed)	DUPLICATE:		N	
Netter peter					_	ATION (includ		INTENDE			MPLE PUMP
SAMPLE	#	MATERIAL	VOLUME	PRESERVAT	IVE -	TOTAL VOL	FINAL	ANALYSIS AN METHOI	ND/OR EQU	IPMENT F	LOW RATE
D CODE	CONTAINERS	CODE	12SW	UGED		DIN FIELD (Total A			200
W-77-2	1	<u><u></u></u>	120M	- HVO)	6	22	10100 11		rr	
						<i>k</i>					
REMARKS											
MATERIAL		AG = Amber S = Silicone;	Glass; CG T = Teflon;	= Clear Glass; 0 = Other (S		High Density I	Polyethylene;	LDPE = Low Der	nsity Polyethyle	ne; PP = P	olypropylene;
SAMPLING	EQUIPMENT	CODES:	APP = After (T	hrough) Perista se Flow Perista	altic Pump;	B = Bailer SM = Straw	; BP = Bladd Method (Tubing		P = Electric Su O = Other (S	bmersible Pum	p;
							ar 62 160 E A				

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		D	EP Form	FD 9000)-24: GF	ROUNDW	ATER S	AMPLING L	OG	171	1 2.4
SITE						TE		lb ib		11-0	Jun-201
	Ilam Corrido	Properties V	II Green Trai			CATION: BE	tween NW 7	^h and SW 80 th St		ni FL	0
WELL NO:	MN	- 98		SAMPLE	M	W-1	18		DATE:	TH	0018
14/51		TUDING		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second se	SING DA					
WELL DIAMETER	(inches):	DIAMET	ER (inches):		TH: 6 fe	et to 6 f	STATIC	ER (feet):		GE PUMP T' BAILER: PP	YPE
	UME PURGE: if applicable)	1 WELL VOL	UME = (TOTA = (I WELL DEP	TH - STA feet -	TIC DEPTH T	feet) X	WELL CAPACIT	gallons/foc	_{et =} 1. 2	7 gallons
	IT VOLUME P if applicable)	URGE: 1 EQU	IPMENT VOL.		UME + (TUE Illons + (ГҮ Х Т ns/foot X	UBING LENGTH) feet)		LL VOLUME	= gallons
INITIAL PUN DEPTH IN V	MP OR TUBIN NELL (feet):	° /0 ₩	FINAL PUM DEPTH IN V	P OR TUBING VELL (feet):	10	PURGIN	G ED AT: /050	PURGING ENDED AT:	1134	TOTAL VOI PURGED (g	Jume 2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)	COLO (descrit	
1130	2.0	2-0	0.05	8.11	7.27	25.79	543	0.53/6.5%	3.24	1 Cla	al None
1(32	0.10	2.10	0.05	8.11	7.27	25.79	543	0.53/6.5%	2.50	Clea	R Nare
1134	0.10	2.20	0.05	8.11	7.26	25.79	543	0.53/6.5%	3.30	GRAG	e nue
		s Per Foot): 0 PACITY (Gal./F			1.25" = 0.06	5; 2" = 0.16 1/4" = 0.0026		Sector Se		Contract State	12" = 5.88 5/8" = 0.016
				P = Bladder P			Submersible Pu		istaltic Pump		ther (Specify)
						LING DA	TA		_		
John		1	5	SAMPLER(S)		=(S):		SAMPLING	[135	SAMPLIN ENDED A	
PUMP OR T DEPTH IN V		10		TUBING	DDE: H	OPE +		D-FILTERED: Y ion Equipment Typ	e:	FILTER S	ZE:μm
FIELD DECO	ONTAMINATIO	DN: PUMF	Y N)	TUBING	Y Nge	placed)	DUPLICATE:	Y	N	
		R SPECIFICA				TION (includir		INTENDE ANALYSIS AN			SAMPLE PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	LOUE	VOLUME	PRESERVATIN USED		OTAL VOL D IN FIELD (n	nL) pH	METHOD		CODE	(mL per minute)
Mur 48	-	AG	1000ML		~			PAH	/ /	1PP	2 2 00
REMARKS:	& Due	e to F	PAH S	unpl	iz o	ner:	2 ++ =6	tobay t	from	PTWX	-
MATERIAL		AG = Amber G S = Silicone;	ilass; CG = (T = Teflon;	Clear Glass; 0 = Other (Sp		ligh Density P	olyethylene;	LDPE = Low Den	sity Polyethy	lene; PP	= Polypropylene;
SAMPLING	EQUIPMENT		PP = After (Thr PP = Reverse	ough) Peristali	tic Pump;	B = Bailer; SM = Straw I	BP = Blado Method (Tubing	der Pump; ESF Gravity Drain);	• = Electric S • • • • • • • • • • • • • • • • • • •	ubmersible P (Specify)	Pump;

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

eres.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		D	EP Form	FD 9000)-24: GF	ROUNDV	ATER S	AMPLING L	og Ja	1-16.	-2018
SITE		December (TE	L NIA/ 7	h City colh Ci			
WELL NO:	dlam Corridor	ALAL		SAMPLE	1/	ALA N	etween NVV 7	^h and SW 80 th St		118	
	/	100 -	91	O'AMI EE		SING DA				0110	
WELL	0	TUBING	;	VEL		51174		DEPTH 👩 🥂	7 PURG		E
DIAMETER	(inches)		ER (inches):			INTERVAL eet to		ER (feet): 7. 3		ILER: PP	
10. H.	t if applicable)	1 WELL VOL	-	18	(1 C 7		A 11		1.3	ST.
	NT VOLUME P	URGE: 1 EQU	= (IPMENT VOL.	= PUMP VOL	feet – UME + (TUE	ING CAPACI	feet) X TY X T	UBING LENGTH)	gallons/foot + FLOW CELL	1.72	gallons
(only fill ou	t if applicable)			= ga	llons + (gallo	ns/foot X	feet)	+	gailons =	galions
		G /A			15	PURGIN	G AT 1/30	PURGING ENDED AT		OTAL VOLUN	
DEPTHIN	WELL (feet):	CUMUL.	DEPTH IN V	DEPTH			COND.	DISSOLVED	a-OL	GRGED (gain	
TIME	VOLUME PURGED	VOLUME	PURGE RATE	то	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)		COLOR	ODOR (deperihe)
	(gallons)	PURGED (gallons)	(gpm)	WATER (feet)	`units)	(⁰ C)	umhos/cm	ang/L or Saturation	(NTUs)	(describe)	(describe)
1254	3,0	30	0.036	9.57	7.02	96.0	581	3.38/41.69	9.92	Clai	wore
1256	0.072	3.72	0,036	9.57	2.07	26.0	581	338/41.6	6 4.86	Clean	None
1258	0.022	4.44	0.036	9.57	7.02	260	58	3.38/41.69	6 4.14	Clear	Noe
					12			<u> </u>	194		- 6
											-
TUBING IN	ACITY (Gailon	PACITY (Gal./F	it.): 1/8'' = 0.0	006; 3/16"	1.25" = 0.06 = 0.0014;	1/4" = 0.002	6; 5/16'' = 0	.004; 3/8'' = 0.	006; 1/2" =	0.010; 5/8	" = 5.88 " = 0.016
PURGING	EQUIPMENT	ODES: B	= Bailer; B	IP = Bladder P		SP = Electric	Submersible Pu	ump; PP = Pe	ristaltic Pump;	O = Othe	r (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S)	and a second			SAMPLING	1000	SAMPLING	12
Je	ohn d	ang /	Ses	An	/	1.2.9.1		INITIATED AT	1237	ENDED AT:	120
PUMP OR	TUBING WELL (feet):	14		TUBING MATERIAL CO	DEHC	PET		D-FILTERED: Y ion Equipment Typ		FILTER SIZE	:μm
	ONTAMINATIO	DN: PUM			TUBING	Y NTe	placed)	DUPLICATE:	Y	N)	
SAMF		R SPECIFICA		SAMPLE	PRESERVA	TION (includi	ng wet ice)	INTENDE			AMPLE PUMP
SAMPLE ID CODE	# CONTAINERG	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (r	nL) FINAL	ANALYSIS AN METHOD			FLOW RATE nL per minute)
Uw-47	CONTAINERS		25mc	HNOS			<	Total A	sere A	pp '	2200
		11		11100						1	
								_			
DEMARK											
REMARKS											
MATERIAL		AG = Amber G S = Silicone;		Clear Glass; 0 = Other (S		ligh Density P	olyethylene;	LDPE = Low Der	sity Polyethyle	ne; PP = F	olypropylene;
SAMPLING		· · ·	PP = After (Thr			B = Bailer;	BP = Blad	der Pump; ESI	P = Electric Sul	bmersible Purr	ıp;
0750.4	-		PP = Reverse					Gravity Drain);	O = Other (S	pecify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		D	EP Forr	n FD 900	0-24: GF	ROUND	NATER SA	AMPLING L	.OG	an-1	6-201
SITE	-					TE		lh i ovir oolh o			
	0	Properties 'A	1.1.2				etween Nyv 7	th and SW 80 th S	DATE:	r (0	
VELL NO:	N	lw-	46	SAMPLE		nn	- 76	7		6 0	
VELL	-	TUBING			PURC LL SCREEN	SING DA	STATIC		PUPC		
AMETER (ir		DIAMET	ER (inches):	V4 DEF	PTH: 🎖 fe	et to 18	feet TO WAT	TER (feet): 7.0	OR BA	ILER: PP	
only fill out if a	applicable)		= (18	feet -	11.5	feet)	WELL CAPACI	gallons/foot		$\mathcal{Y}_{gallons}$
QUIPMENT only fill out if a		RGE: 1 EQU	PMENT VOL	= PUMP VOL	·			FUBING LENGTH)			
		11-	GINAL DU	= g: MP OR TUBING	allons + (ons/foot X	feet)		gallons =	gallons
EPTH IN WE	P OR TUBING ELL (feet):	° 11.57		WELL (feet):	ChS	PURGIN	ED AT: 8	PURGING ENDED AT:	1354 F	OTAL VOLUN PURGED (gallo	ons) 2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP ([°] C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
025	2-0	2.0	0.05	2.65	2.23	251	674	3.39/4/98	3.82	Clea	None
352	0.10	2.10	0.05	9.65	7.23	25.1	674	3,39/4194	4.01	Clean	None
384	0.10	220	0.05	265	2.23	25,1	674	3,391 4100	3.15	Clear	None
							-				
			(
		_							1		
		Per Foot): 0. ACITY (Gal./F		1 " = 0.04; 0006; 3/16 "	1.25" = 0.00 = 0.0014;	5; 2" = 0.1 1/4" = 0.002		C			' = 5.88 ' = 0.016
URGING EQ	UIPMENT CO	DDES: B	= Bailer;	BP = Bladder F		SP = Electric	Submersible Pi	ump; PP = Pe	ristaltic Pump;	O = Other	(Specify)
AMPLED BY	(PRINT) (A	FILIATION:	a /scs	SAMPLER(S)				SAMPLING INITIATED AT	1355	SAMPLING ENDED AT:	1403
JMP OR TU		115	1	TUBING	H	PF+		D-FILTERED: Y	(N)	FILTER SIZE:	μm
		N: PUMF	р ү (М	MATERIAL CO		Y NT	→ Filtrat placed)	DUPLICATE:		N	
				1				-			
AMPLE	#		VOLUME	PRESERVAT	IVE T	TION (includ	FINAL	INTENDE ANALYSIS AM METHOR	ND/OR EQU	IPMENT F	FLOW RATE
	ONTAINERS	CODE	1000m	USED	ADDE	D IN FIELD (0111			= 200
m.46		PP	125mc	HINOZ	(JA)	to An	7.2	TotalA		100	200
~76			125000	/-[0002		1110	and a L	corder	NAL I	tep :	- 0
	# Re	C PAI	40	o.de	ane	22	.Ft A	Kon D	TW		
ATERIAL CO	ODES:	AG = Amber G S = Silicone;	lass; CG =	Clear Glass; 0 = Other (S	HDPE = H		Polyethylene;	LDPE = Low Der		ne; PP = Pe	olypropylene;
AMPLING E		ODES: AF	PP = After (Th	nrough) Perista	Itic Pump;	B = Bailer			P = Electric Sub		ρ;
TES 1 TE	ha abaya d			e Flow Peristal			Method (Tubing		O = Other (S	pecity)	

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: Ludiam Condice Properties 'All Green Trail' LOCATION: Between NW 7 th and SW 80 th Streets, Miami, FL WELL NO: W - 44 SAMPLE ID: DATE: 444444444444444444444444444444444444	JÃ)	
PURGING DATA WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH 9.69 PURGE PUMP TYPE DIAMETER (inches): DIAMETER (inches): M WELL SCREEN INTERVAL STATIC DEPTH 9.69 PURGE PUMP TYPE Well volume Purge: 1 Well volume = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X Well CAPACITY 0.16 gallons/foot 1 gallons/foot = (7 feet - 7.69 feet) X 0.16 gallons/foot 1 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME	.7	
WELL TUBING /// WELL SCREEN INTERVAL STATIC DEPTH 7.69 PURGE PUMP TYPE DIAMETER (inches): /// DEPTH: feet to feet TO WATER (feet): 7.69 OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY //	7	
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (7 feet - 7.69 feet) X 0.16 gallons/foot = / 1 EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME	7	
= (feet - feet) X Gallons/foot = feet) X Gallons/foot = feet) X Gallons/foot = feet) X Gallons/foot = feet) X TUBING LENGTH) + FLOW CELL VOLUME		
	gallons	
only fill out if applicable) = gallons + (gallons/foot X feet) + gallons =	gallons	
VITIAL PUMP OR TUBING 11.5 FINAL PUMP OR TUBING 11.5 PURGING 900 PURGING 944 TOTAL VOLUME INITIATED AT: 900 ENDED AT: 944 PURGED (gallon	1	
CLIMIN DEPTH COND DISSOLVED		
TIME VOLUME VOLUME PURGE TO pH TEMP (circle units) TURBIDITY COLOR PURGED PURGED PURGED RATE WATER (standard units) (°C) µmhos/cm (circle units) TURBIDITY COLOR (gallons) (gallons) (gpm) (feet) (feet) 0 <td>ODOR (describe)</td>	ODOR (describe)	
740 2.0 2.0 0.05 9.69 7.23 25.5 465.0 4 47/552 3.89 Clear	None	
942 0.10 2.10 0.05 9.69 7.23 25.5 465.0 4.471552 3.21 Clear	Nine	
949 0.10 2.20 0.05 9.69 7.23 255 465.0 4.47/552 3.01 Clock	Nene	
VELL CAPACITY (Gallons Per Foot): 0.75" = 0.02: 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12"	= 5.88	
	= 0.016	
	Specify)	
SAMPLING DATA		
AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING DATA SAMPLING P45 SAMPLING INITIATED AT: 945 SAMPLING ENDED AT:	953	
SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 945 SAMPLING ENDED AT: JAM / Mamages TUBING JAP / FILTER SIZE: SAMPLING PASS SAMPLING ENDED AT: UMP OR TUBING TUBING JAP / FILTER SIZE: FIELD-FILTERED: Y Y FILTER SIZE:	953	
SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING ENDED AT: UMP OR TUBING IEPTH IN WELL (feet): 11.5 TUBING MATERIAL CODE: HDPE + S MATERIAL CODE: FIELD-FILTERED: Y Filtration Equipment Type: FILTER SIZE: IELD DECONTAMINATION: PUMP Y TUBING Y Y OV	<i>15-</i> 3 μm	
SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING ENDED AT: UMP OR TUBING EPTH IN WELL (feet): 11.5 TUBING MATERIAL CODE: HD PE 4 S FIELD-FILTERED: Y Filtration Equipment Type: FILTER SIZE: IELD DECONTAMINATION: PUMP Y Y TUBING Y (Verplaced) DUPLICATE: Y Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PRESERVATION (including wet ice) SAMPLING FOULPMENT SAMPLING FOULPMENT SAMPLING FOULPMENT SAMPLING FOULPMENT SAMPLING FOULPMENT	953	
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING ENDED AT: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: FILLO FILIATION: TUBING MAMAGASCS SAMPLER(S) SIGNATURE(S): SAMPLING ENDED AT: FILLO-FILTERED: Y SAMPLING ENDED AT: TUBING TUBING TUBING Y FILLO-FILTERED: Y Y FILTER SIZE: SAMPLE CONTAMINATION: PUMP Y TUBING Y OV (replaced) DUPLICATE: Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FOR CODE SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLE CONTAINERS PRESERVATIVE TOTAL VOL FINAL MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL SAMPLING EQUIPMENT CODE SAMPLING EQU	15-3 μm WPLE PUMP LOW RATE per minute)	
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING DATA SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 945 SAMPLING ENDED AT: PUMP OR TUBING DEPTH IN WELL (feet): 11.5 TUBING MATERIAL CODE: MOPEAS FIELD-FILTERED: Y Filtration Equipment Type: FILTER SIZE: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR EQUIPMENT FOR DEPTH IN WELL (feet): ///////////////////////////////////	15-3 μm MPLE PUMP LOW RATE per minute) -200	
SAMPLING DATA AMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING ENDED AT: UMP OR TUBING EPTH IN WELL (feet): 11.5 TUBING MATERIAL CODE: 1000 FF4 S FIELD-FILTERED: Y Y FILTER SIZE: IELD DECONTAMINATION: PUMP Y Y TUBING Y Y OUPLICATE: Y Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FI MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FI MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL PAH Apple FI MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL PAH Apple TOTAL MAY I A G 1000 m/ Image: PAH Apple TOTAL Image: PAH Apple TOTAL	15-3 μm WPLE PUMP LOW RATE per minute)	
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING DATA SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 945 SAMPLING ENDED AT: PUMP OR TUBING DEPTH IN WELL (feet): // 5 TUBING MATERIAL CODE: MD PE 4 S FIELD-FILTERED: Y Filtration Equipment Type: FILTER SIZE: SAMPLE CONTAMINATION: PUMP Y TUBING Y (Vreplaced) DUPLICATE: Y SAMPLING EQUIPMENT FILTER SIZE: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED ANALYSIS AND/OR EQUIPMENT FILD SAMPLE # MATERIAL VOL ME PRESERVATIVE TOTAL VOL ADDED IN-FILD (mL) PH PAH A PAH A PAH MATERIAL VOLUME PRESERVATIVE TOTAL VOL ADDED IN-FILD (mL) PH PAH A PAH <td c<="" td=""><td>15-3 μm MPLE PUMP LOW RATE per minute) -200</td></td>	<td>15-3 μm MPLE PUMP LOW RATE per minute) -200</td>	15-3 μm MPLE PUMP LOW RATE per minute) -200
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 945 SAMPLING INITIATED AT: 945 <th colspa="</td"><td>15-3 μm MPLE PUMP LOW RATE per minute) -200</td></th>	<td>15-3 μm MPLE PUMP LOW RATE per minute) -200</td>	15-3 μm MPLE PUMP LOW RATE per minute) -200
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION, Affiliation, Augusta SAMPLER(S) SIGNATURE(S): SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLER(S) SIGNATURE(S): SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SAMPLING 9455 SIGNATURE(S): SAMPLING 9455 FILTER D. FILTERED: Y SAMPLING 500 DUPLICATE: Y O SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL DOOD PRESERVATIVE TOTAL VOL AMPLE (* 000 m/ PRESERVATIVE TOTAL VOL AMPLE (* 1 A G SAMPLING SAMPLE PRESERVATIVE CODE ONTAINER SPECIFICATION SAMPLING CODE SAMPLING PRESERVATIVE CODE ONTAINER SPECIFICATION SAM	15-3 μm MPLE PUMP LOW RATE per minute) -200	
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: JOHN MAUG/SCS SAMPLER(S) SIGNATURE(S): SAMPLES SIGNATURE(S): SAMPLING 1455 SAMPLING INITIATED AT: 9455 SAMPLING ENDED AT: INITIATED AT: 9455 SAMPLING ENDED AT: FILTER SIZE: DEPTH IN WELL (feet): FILTER SIZE: FILTER SIZE: FILTER SIZE: SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) CODE DUPLICATE: Y Y SAMPLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED DIAFIELD (mL) FINAL PH NATENDAD ANALYSIS AND/OR MATERIAL SAMPLING EQUIPMENT CODE SAMPLING INTENDED ADDED DIAFIELD (mL) SAMPLING PH SAMPLING EQUIPMENT CODE SAMPLING EQUIPMENT CODE SAMPLING INTENDED ADDED DIAFIELD (mL) PH App TO ADDED DIAFIELD (mL) PH MW-44 1 P 123mC H/M3 L2 To tal Masoric App To Intended Intended <	15-3 μm MPLE PUMP LOW RATE per minute) -200	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP FORM FD 9000-24: GROONDWATER SAMPLING LOG SITE NAME: Ludiam Corridor Properties 'All Green Trail' WELL NO: MW-93 SAMPLE ID: DURGING DATA WELL DIAMETER (inches): WELL SCREEN-INTERVAL DIAMETER (inches): STATIC DEPTH DEPTHS Static DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL OLIMETER (inches): WELL SCREEN-INTERVAL DEPTH Steet to Static DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) gallons / feet - feet STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) gallons / feet - gallons / feet + gallons = gallons + (gallons/foot X feet + gallons = gallon INITIAL PUMP OR TUBING DEPTH IN WELL (feet): FINAL PUMP OR TUBING DEPTH IN WELL (feet): FINAL PUMP OR TUBING INITIATED AT / 430 PURGING ENDED AT: FURGED (gallons): TOTAL VOLUME PURGED (gallons): TOTAL VOLUME
WELL NO: MARAN SAMPLE ID: DATE: Homoson PURGING DATA DATE: PURGE PUMP TYPE DATE: DATE: PURGE PUMP TYPE DIAMETER (inches): DIAMETER (inches): MELL SCREEN INTERVAL DIAMETER (inches): STATIC DEPTH DEPTHIC STATIC DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (5 feet - feet) X O_ Gallons/foot O_ 0 3 gallon EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME gallons gallons gallons gallons gallons gallons gallons gallons gallons (only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallon gallons gallons gallons gallons gallon gallons gallon gallon<
PURGING DATA WELL TUBING DIAMETER (inches): TUBING DIAMETER (inches): WELL SCREEN INTERVAL DEPTHIS STATIC DEPTH TO WATER (feet): PURGE PUMP TYPE OR BAILER: PP WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH - STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) PURGE (feet - gallons/foot Gallons/foot Output Output Gallons/foot Output Gallons // Outp
WELL TUBING WELL SCREEN INTERVAL STATIC DEPTH 9.69 PURGE PUMP TYPE DIAMETER (inches): DIAMETER (inches): DEPTH Static DEPTH TO WATER (feet): 9.69 PURGE PUMP TYPE WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH STATIC DEPTH TO WATER (feet): 9.69 PURGE PUMP TYPE (only fill out if applicable) = (S. feet - 9.69 feet) X WELL CAPACITY gallons/foot 0.73 gallons/foot EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME gallons/foot 0.743 gallons/foot
(only fill out if applicable) = (IS . S feet - 9.69 feet) x O. IG gallons/foot 0.43 gallons/foot gallons/foot 0.43 gallons/foot EQUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL. = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons gallons = gallons INITIAL PUMP OR TUBING IS FINAL PUMP OR TUBING IS PURGING INTIATED AT PURGING ENDED AT: TOTAL VOLUME PURGED (gallons): DEPTH IN WELL (feet): DEPTH IN WELL (feet): DISSOLVED PURSING INTIATED AT PURSING ENDED AT: PURGED (gallons):
(only fill out if applicable) = gallons + (gallons/foot X feet) + gallons = gallons INITIAL PUMP OR TUBING DEPTH IN WELL (feet): I S PURGING PURGING PURGING PURGING PURGED (gallons): DEPTH IN WELL (feet): I S PURGING PURGING PURGING PURGED (gallons):
INITIAL PUMP OR TUBING US FINAL PUMP OR TUBING US PURGING PURGING PURGING TOTAL VOLUME DEPTH IN WELL (feet): INITIATED AT 430 PURGING DEPTH IN WELL (feet): INITIATED AT 430 PURGING DEPTH IN WELL (feet): INITIATED AT 430 PURGING PURGING PURGED (gailons): 2
DISSOLVED
TIME CUMUL. VOLUME CUMUL. VOLUME DEPTH PURGED pH TO (gallons) DEPTH VOLUME pH TO (gallons) COND (standard (feet) DISSULVED (standard units) TURBIDITY (orcle units) COLOR (circle units) TURBIDITY (not units) COLOR (describe) ODO (describe)
1510 2.0 2.0 0.05 9.698.30 26.0 600 0.25/305/9. 10 Clar Non
512 0. 10 2.10 0.05 9.69 8.30 26.0 600 0.25/ 30% 19.92 Clear No
314 0.10 2.200.05 9.64 9.30 26.0 600 0.25 3.09 18.87 Clear No
WELL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016
PURGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify)
SAMPLING DATA
SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: 55 SAMPLING ENDED AT: 52
DEPTH IN WELL (feet): // S MATERIAL CODE: TUPE P Filtration Equipment Type:
FIELD DECONTAMINATION: PUMP Y (N) TUBING Y (N)eplaced) DUPLICATE: Y (N)
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUB SAMPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR EQUIPMENT FLOW RAT
ID CODE CONTAINERS CODE VOLUME USED ADDED IN FIELD (mL) METHOD CODE (mL per minu
MUYS AG 1000MC BO PAH APP = 20
REMARKS:
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropyler
S = Silicone; T = Teflon; O = Other (Specify) SAMPLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump;
RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); O = Other (Specify)

.

The above do not constitute all of the information required by Chapter 62-160, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

		[DEP Form	n FD 900	0-24: GI	ROUNDV	VATER S	AMPLING L	.OG	<u>14</u>	
SITE NAME: Lu	dlam Corrido	r Properties '	All Green Tr	ail'	S	ITE OCATION: B	etween NVV 7 ⁱ	^h and SW 80 th S	treets, Miami	FL Jan	-16-20
WELL NO:	MC	V-C	17	SAMPLE	E ID:	MW.	-42			1161	18 GN
					PUR	GING DA			6		
only fill ou	UME PURGE t if applicable)		TER (inches): LUME = (TOT = (AL WELL DEF	TH - STA	TIC DEPTH T	FO WATER) X	ER (feet):	OR BA		3 gallons
	t if applicable)				allons + (ons/foot X	feet)		gailons =	gallons
	MP OR TUBIN WELL (feet):	ig 11,5		/P OR TUBINO WELL (feet):			12762	PURGING ENDED AT:	In	TOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP ([°] C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L <u>br</u> % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
615	2.0	2:0	6.067	9.57	7.88	25.5	60/	1.44/125	38.87	Clean	Nare
617	0.13	2.13	0.067		7.88	25.5	601	1.44/17,5	3 8.82	Clean	none
619	0,13	2,26	6.067	9.57	7.88	25.5	601	1.44/17,59	6 8.69	Clace	None
				-							
UBING IN		s Per Foot): 0 PACITY (Gal./F	t.): 1/8" = 0.0		= 0.0014;			004; 3/8'' = 0.		0.010; 5/8 "	= 5.88 = 0.016
		.00L3. D	- Daller, E			LING DA		nip, FF - Fei	istanic Pump,	0 = Other	(Specity)
AMPLED	BY (PRINT) / A	FEILIATION:	1555	SAMPLER(S)	Contraction of the Contraction o			SAMPLING INITIATED AT	1620	SAMPLING ENDED AT:	1626
JMP OR 1	UBING VELL (feet):	11.5		TUBING MATERIAL CO	DDE H	DPET		-FILTERED: Y	R	FILTER SIZE:	μm
	ONTAMINATIO	DN: PUM			TUBING	Y N de	placed)	DUPLICATE:		N	
SAMP		R SPECIFICA	TION	SAMPLE	PRESERVA	TION (includin	ng wet ice)	INTENDE	D SAN	PLING SA	MPLE PUMP
AMPLE CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (n	nL) FINAL	ANALYSIS AN METHOD			LOW RATE L per minute)
92		AG 1	boom				1.00	PAL	A	r p -	200
EMARKS:											
ATERIAL		AG = Amber G S = Silicone;	T = Teflon;	O = Other (S	oecify)	ligh Density P		LDPE = Low Den			lypropylene;
MPLING	EQUIPMENT	RI	PP = Reverse	rough) Peristal Flow Peristalt	ic Pump;		BP = Bladd Method (Tubing r 62-160, F.A	Gravity Drain)	P = Electric Sub O = Other (Sp		ç

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: Luc	lam Corrido	r Properties 'A	I Green Tra	iP	S	ITE OCATION: E	etween NW 7	" and SW 80 th S	treets Miami	FJan -1	16-20
WELL NO:	MIL	11-4	0	SAMPLI		MW	-U/F	N 1		16/	10
	190	v	<u> </u>		PUR	GING DA				10/1	0-
WELL	5	TUBING		11 WE	LL SCREEN	INTERVAL	STATIC			E PUMP TYPE	
	(inches):	DIAMET	ER (inches):		PTH6 fe	eet to 65	feet TO WAT	ER (feet):		ILER: PP	
	if applicable)	I WELL VOL		IL C	6		active contracts and the	016		10	7
EQUIPMEN	T VOLUME P	URGE: 1 EQUI	= (PMENT VOL.	= PUMP VOI	feet – LUME + (TUE	BING CAPAC	feet)) ITY X 1	UBING LENGTH)	gallons/foot + FLOW CELL		gallons
	if applicable)	- 1244-124 - 1244-1244-1244-1244-1244-12			allons + (ons/foot X	feet)			
INITIAL PU	MP OR TUBIN	GION	FINAL PUM	P OR TUBIN				PURGING		gallons = OTAL VOLUM	gallons
	VELL (feet):	10	DEPTH IN V		10		ED AT: 169	ENDED AT:		URGED (gallo	
	VOLUME	CUMUL. VOLUME	PURGE	DEPTH TO	рН	TEMP	COND.	DISSOLVED OXYGEN	THEORE		
TIME	PURGED	PURGED	RATE	WATER	(standard units)	TEMP. (°C)	(circle units) µmhos/cm	(circle units)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
	(gallons)	(gallons)	(gpm)	(feet)			or n8/cm	Asaturation		20	
ino	2.0	2.0	0.05	9.85	6.19	25.6	631	7.57/19.	49 6.43	K leu	None
722	0.10	2.10	0.05	9.85	6.79	25.6	631	1.59/19.9	03 5.82	Clear	None
724	6.0	2.20	0.05	9.85	6.19	25.6	637	1.59/1949	5.61	Clear	Nace
1.1941.05					- J			1.54/1944	KIN)		
									e		
									s		
									-15		
	OITY (Calles	Dev Freedor 0.7		411 0.04					7	1.2	
UBING INS	IDE DIA. CAP	ACITY (Gal./Ft.)	5" = 0.02;): 1/8" = 0.00	1" = 0.04; 106; 3/16 "	1.25" = 0.06 = 0.0014;	; 2" = 0.16 1/4" = 0.002	6; 3" = 0.37; 6; 5/16" = 0.				= 5.88 = 0.016
URGING E	QUIPMENT CO	DDES: B =	Bailer; BF	P = Bladder P			Submersible Pu	mp; PP = Per	istaltic Pump;	O = Other (Specify)
			esc			ING DA	TA	8			
			SUS	AMPLER(S)	SIGNATURE	(S):		SAMPLING		SAMPLING	
AMPLED B	Y (PRINT) / AF	-FILIATION:	1.0	1 1				INUTIATED AT			721
C	John	Mai	19 2	UBING				INITIATED AT:	-		731
	John JBING	Mai	M	UBING ATERIAL CO		PEt.		-FILTERED: Y	F F	FILTER SIZE:	<u>73</u>] μm
UMP OR TI EPTH IN W	John JBING	Ma	M	ATERIAL CO		PET Y (N (re	Filtratio	-FILTERED: Y	(N) F	FILTER SIZE:	<u></u> μm
UMP OR TI EPTH IN W IELD DECC SAMPL	John JBING ELL (feet): NTAMINATIO	Mai 12 N: PUMP R SPECIFICATIO	Y	ATERIAL CO	TUBING	FION (includin	Filtration aced)	FILTERED: Y on Equipment Type DUPLICATE: INTENDED	Y -Co SAMI	FILTER SIZE:	
UMP OR TI EPTH IN W IELD DECC SAMPL	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai 12 N: PUMP R SPECIFICATIO	Y N ON	SAMPLE	TUBING PRESERVAT	TION (includin	riltration acced) acced) FINAL	-FILTERED: Y on Equipment Type DUPLICATE:	Y SAMI D/OR EQUIF	FILTER SIZE:	
UMP OR TI EPTH IN W ELD DECC SAMPL SAMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINEF	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	ATERIAL CO SAMPLE	TUBING PRESERVAT	FION (includin	aced) ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE: PLING SAM PMENT FL DDE (mL	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W ELD DECC SAMPL	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y W	SAMPLE	TUBING PRESERVAT	TION (includin	ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE:	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includin	ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE: PLING SAM PMENT FL DDE (mL	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includin	ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE: PLING SAM PMENT FL DDE (mL	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includin	ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE: PLING SAM PMENT FL DDE (mL	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includin	ng wet ice) FINAL	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y SAMI D/OR EQUIF	FILTER SIZE: PLING SAM PMENT FL DDE (mL	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includir DTAL VOL D IN FIELD (m	Filtrational Filtr	FILTERED: Y on Equipment Type DUPLICATE: INTENDEL ANALYSIS ANI METHOD	Y Constant	FILTER SIZE:	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W IELD DECC SAMPL AMPLE CODE CODE CODE CODE CODE	JBING ELL (feet): NTAMINATIO E CONTAINER #	Mai N: PUMP R SPECIFICATION MATERIAL CODE V	Y N ON OLUME	SAMPLE	TUBING PRESERVAT	TION (includin	Filtrational Filtr	FILTERED: Y DI Equipment Type DUPLICATE: INTENDED ANALYSIS AN	Y Constant	FILTER SIZE: PLING PMENT DDE (mL PD C C C C C C C C C C C C C	IPLE PUMP OW RATE per minute)
UMP OR TI EPTH IN W ELD DECC SAMPL CODE C	DELL (feet): NTAMINATIO E CONTAINER ONTAINERS PAL DDES: A	G = Amber Glass	$\begin{array}{c} Y \\ ON \\ OLUME \\ \hline \\ $	ATERIAL CC SAMPLE RESERVATIN USED		TION (includir DTAL VOL D IN FIELD (m	Piltrational Second	FILTERED: Y on Equipment Type DUPLICATE: INTENDEL ANALYSIS ANI METHOD	Y CON SAMI DOR EQUIF CC	PLING SAM PMENT FL ODE (mL	IPLE PUMP OW RATE per minute)
JMP OR TI EPTH IN W ELD DECC SAMPL CODE C C V 40 MARKS:	DELL (feet): NTAMINATIO E CONTAINER ONTAINERS PAL DDES: A	Main Marine Mari	$\begin{array}{c} Y \\ ON \\ OLUME \\ \hline \\ $	ATERIAL CC SAMPLE RESERVATIN USED	TUBING PRESERVAT /E T(ADDED	FION (includir DTAL VOL D IN FIELD (m DTAL VOL D IN FIELD (m DTAL VOL D IN FIELD (m DTAL VOL D IN FIELD (m DTAL VOL D IN FIELD (m D IN FIELD (m)	Piltrational Second	FILTERED: Y FILTERED: Y DUPLICATE: UPLICATE: INTENDEL ANALYSIS ANI METHOD PIAM LDPE = Low Dens	Y CON SAMI DOR EQUIF CC	PLING SAM PMENT FL (mL PP = Poly	APLE PUMP OW RATE per minute)

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: ± 0.2 units **Temperature:** ± 0.2 °C **Specific Conductance:** ± 5% **Dissolved Oxygen:** all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) **Turbidity:** all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

SITE NAME: Luc	dlam Corrido	r Properties	All Green T	'rail'		SITE LOCATION: B	etween NVV 7	th and SW 80 th S	treets. Miz	ami, FL	19-Jan-0
WELL NO:	MA	-37;		SAMPL	1	1W-3				119/1	E (M)
	1.00				PUR	GING DA	TA		1	11.	
WELL VOL	R (inches):		ETER (inches	USY DE	PTHAR	N INTERVAL feet to 27 ATIC DEPTH	feet TO WAT	DEPTH TER (feet): /2 WELL CAPACI	06 OF	IRGE PUMP ⁻ R BAILER: PF	
EQUIPMEN		PURGE: 1 EC	= (QUIPMENT VC	L. = PUMP VO	•		feet) X ITY X T ons/foot X 7	UBING LENGTH)	gallons/fc + FLOW C + 0.0	ELL VOLUME	gallons = $O.//Gallons$
	MP OR TUBIN WELL (feet):	1624.	FINAL PU DEPTH II	IMP OR TUBIN N WELL (feet):			IG IUM	PURGING ENDED AT	1454		(gallons):2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGEE (gallons)	E PURGE (gpm)	WATER (feet)	pH (standard units)	TEMP ([°] C)	COND. (circle units) μmhos/cm or აδ/cm	DISSOLVED OXYGEN (circle units) mg/l. or 7% saturation	TURBIDI (NTUsj		OR ODOR
1450	2.0	2.0	0.0	10.00	9.52	26.9	371	2.64/3320	4.86		- rause
452	0.10	3.6	0. 03	10.010	9.52	26.9	371	2.64/53%	4.71	Cas	
1454	0.10	2.21	0.03	12.86	9.52	26.9	371	2.64/333	4.23	3 Can	m nrup
				_							
											_
			0.75" = 0.02; /Ft.): 1/8" = 0		1.25 " = 0.0 ' = 0.0014;	06; 2 " = 0.10 1/4" = 0.002			i" = 1.02; 006; 1/2	6 " = 1.47; " = 0.010;	12 " = 5.88 5/8 " = 0.016
URGING E		CODES:	B = Bailer;	BP = Bladder F			Submersible Pu	imp; PP = Pei	ristaltic Pun	np; O = C	Other (Specify)
AMPLED	BY (PRINT), / A	AFFILIATION	Ises	SAMPLER(S)	Contraction of the second s	PLING DA		SAMPLING INITIATED AT	1455	SAMPLIN ENDED A	
UMP OR T		24	0	TUBING	ODE HA	PEAS		-FILTERED: Y	N	FILTER S	SIZE:μm
	VELL (feet): ONTAMINATIO			MATERIAL C	TUBING	Y Nire	placed)	on Equipment Typ DUPLICATE:	e: Y	N	
				SAMPLE		ATION (includi		INTENDE	D	SAMPLING	SAMPLE PUMP
AMPLE	# CONTAINERS	MATERIAL	VOLUME	PRESERVAT		TOTAL VOL	FINAL pH	ANALYSIS AN METHOD		CODE	FLOW RATE (mL per minute)
v-37c	1	PP	psme	HN03			62	. Total h	Irsenic	App	2200
	_								_		
EMARKS:											
		AG = Amber S = Silicone;	T = Teflon;	= Clear Glass; O = Other (S hrough) Peristal	pecify)	High Density P	olyethylene; BP = Bladd	LDPE = Low Den		ylene; PP Submersible I	= Polypropylene;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		I	DEP For	m FD 900	0-24: GI		NATER S	AMPLING I	LOG		
SITE						ITE				Jun-	-11-2018
WELL NO:		or Properties	710/	SAMPLE			etween NW 7	^{Ih} and SW 80 ^{Ih} 8	DATE:		1.0
	MUU	9.	///			GING DA			DATE.	1.17	10
WELL	R (inches):			1/2 WE	LL SCREEN	INTERVAL	STATIC	DEPTH /2 /	PUR	GE PUMP T	
WELL VOL	UME PURG	E: 1 WELL VO	TER (inches)	TAL WELL DEP	PTH - STA		TO WATER) X	ER (feet)		BAILER: PP	
	t if applicable)	PURGE: 1 EQ	= (20	feet -	13.10	feet) X		gallons/foo		gallons
(only fill out	t if applicable)	PORGE. TEQ	UPMENT VO		allons + (ITY X T ons/foot X	UBING LENGTH			-
	IMP OR TUBI			MP OR TUBIN				feet)	12/0	gallons TOTAL VO	
DEPTH IN	WELL (feet):	CUMUL	DEPTH IN	WELL (feet))		IG ED AT: /2 32 COND.	ENDED AT	510	PURGED (gallons - 20
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. ([°] C)	(circle units) µmhos/cm	OXYGEN (circle units) ong/. or % saturation	TURBIDITY (NTUs)	Y COLO (descril	
13/0	2.0	2.0	0.05	13.10	7.08	2620	626	2.53/313	1.07	de	RIGNE
13/2	0.10	2.0	0.05	13.10	7.08	26.20	626	2.53/31,3		clea	n None
1314	0.10	2.20	0.05	13.10	2.08	26.20	626	2.52/31.2	0.90	alle	Mone
								5			
		_		_							
						Y					
WELL CAP	ACITY (Gallo	ns Per Foot): (75" = 0.02	1" = 0.04;	1.25" = 0.06	6; 2" = 0.1	6; 3" = 0.37;	4" = 0.65;	- 1 00) - 0	11 - 4 47	480 5.00
TUBING INS	SIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0.	0006 3/16 "	= 0.0014;	1/4" = 0.002	6; 5/16'' = 0	004; 3/8'' = 0	006; 1/2"		12 " = 5.88 5/8 " = 0.016
PORGING	EQUIPMENT	CODES: B	= Bailer;	BP = Bladder P		SP = Electric	Submersible Pu	mp; PP = Pe	ristaltic Pump	0 = 0	ther (Specify)
SAMPLED	BY (PRINT)	AFFILIATION:	SCS	SAMPLER(S)				SAMPLING	1210	SAMPLIN	
PUMP OR T		119/10	263		~ Un	PEIS	FIELD	-FILTERED: Y		FILTER SI	
DEPTH IN V	VELL (feet): ONTAMINATI	ON: PUM	PYON	MATERIAL CO		Y N (re		DUPLICATE:			p
_		ER SPECIFICA				TION (includi		INTENDE			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI USED		OTAL VOL D IN FIELD (n	FINAL nL) pH	ANALYSIS AN METHOI	ND/OR EQ	UIPMENT CODE	FLOW RATE (mL per minute)
1w-3m/		11 1	1000ml	-				PAH	A	PP	2200
242.63											
							-				
REMARKS:	, f										
NEWARKS:	X	Due +	O P	AH S	ml	y -0.	ly 2	Ft of	vbuz f	rom	OTW
MATERIAL	CODES:	AG = Amber G	·	Clear Glass;		gh Density P	olyethylene;	LDPE = Low Den	isity Polyethyle	arte; PP :	= Polypropylene;
SAMPLING E	EQUIPMENT	S = Silicone; CODES: A	T = Teflon; PP = After (Th	O = Other (Sp rough) Peristal		B = Bailer;	BP = Bladd	er Pump: ESI	P = Electric Su	Ibmersihle P	umo:
TES: 1	The above	RI	PP = Reverse	e Flow Peristalt	ic Pump;	SM = Straw	Method (Tubing	Gravity Drain);	O = Other (S		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

NAME: Lu	dlam Corrido	or Propertie	s 'All Green "	Trail'		OCATION: B	etween NW 7 ^t	th and SW 80 th S	treets, N	/liami, Fl	1.19	-Jane
WELL NO:	M	4	37	SAMPL		N-37	7		DATE:	1	481	18
					PUR	GING DA	TA			6	TAN	
WELL		1 ТИВ				INTERVAL	STATIC	DEPTH 17	71		UMP TYPE	· · · · · · · · · · · · · · · · · · ·
			AETER (inches				eet TO WAT	ER (feet): 12.		OR BAILE	ER: PP	
	t if applicable)		1000	17		12.71		611			0 69	2
	NT VOLUME P	PURGE: 1 E	= (QUIPMENT VO	DL. = PUMP VO			feet) X TY X T	UBING LENGTH)		CELL VC		gallons
(only fill out	t if applicable)			= 0	allons + (gallo	ons/foot X	feet)	+		gallons =	gallons
	IMP OR TUBIN	NG ILI		UMP OR TUBIN		PURGIN	G L CIA	PURGING		1 707	TAL VOLUN	AE C ZO
DEPTH IN	WELL (feet):	17.	-	N WELL (feet):	1 10			DISSOLVED	1224	PUF	RGED (gallo	ons): S. 20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUM PURGE (gallons	E PURGE D RATE	WATER	pH (standard units)	TEMP. (°C)	COND. (circle units) µmbos/cm ar µS/cm	OXYGEN (circle units)	TURBI (NTL		COLOR (describe)	ODOR (describe)
220	5.0	50	0.05	12.71	7.06	23.7	647	61.27/51%	7.1	14	Clea	None
122	0.10	5.10	0.05	1271	7.06	23.7	648	4.27/51%	7.0	80	leas	Nore
224	0.10	520	0.05	12.71	7.06	237	648	427/518	7.1	8 0	Class	None
A				1	1							
				1								
				_								
									· · · · ·			
					-							
_										1941		
	ACITY (Galloo	Per Foot):	0.75 " = 0.02:	1" = 0.04:	1 25" = 0.0	6· 2" = 0.16	s 3" = 0.37:	<i>A</i> " = 0.65:	$5^{n} = 1.02$	-	1 47· 12 ′	= 5.88
			0.75" = 0.02; I./Ft.): 1/8" = (1.25 " = 0.0 ' = 0.0014;	6; 2 " = 0.16 1/4" = 0.002			5" = 1.02; 006; 1	-		' = 5.88 ' = 0.016
UBING IN		PACITY (Ga			' = 0.0014; Pump; E	1/4" = 0.0020 SP = Electric \$	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0.		6" = 1 1/2" = 0.0		' = 0.016
UBING IN: URGING E	SIDE DIA. CAI	PACITY (Ga CODES:	l./Ft.): 1/8" = (B = Bailer;	0.0006; 3/16" BP = Bladder F	' = 0.0014; ^{Pump;} E SAMP	1/4" = 0.0020 SP = Electric S LING DA	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0. imp; PP = Pe	006;	6" = 1 1/2" = 0.0 ump;	0 = Other	' = 0.016 (Specify)
UBING IN: URGING E	SIDE DIA. CA	PACITY (Ga CODES:	l./Ft.): 1/8" = (B = Bailer;	0.0006; 3/16"	' = 0.0014; ^{Pump;} E SAMP	1/4" = 0.0020 SP = Electric S LING DA	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0.	006; 1 ristaltic P	6" = 1 1/2" = 0.0 ump;	0 = Other	' = 0.016 (Specify)
		PACITY (Ga CODES:	l./Ft.): 1/8" = (B = Bailer;	D.0006; 3/16" BP = Bladder F SAMPLER(S)	' = 0.0014; Pump; E SAMP SIGNATURI	1/4" = 0.0020 SP = Electric S LING DA	3; 5/16" = 0 Submersible Pu TA FIELD	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT P-FILTERED: Y		6" = 1 1/2" = 0.0 ump;	0 = Other	' = 0.016 (Specify)
URGING IN AMPLED I UMP OR T EPTH IN V	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A MUSING WELL (feet):	PACITY (Ga CODES:	I./Ft.): 1/8" = (B = Bailer; 5	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO	' = 0.0014; Pump; E SAMP SIGNATURI ODE: HU	1/4" = 0.002(SP = Electric : LING DA E(S):	5: 5/16" = 0. Submersible Pu TA FIELD Filtratio	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ		6" = 1 1/2" = 0.0 ump; 25 SA EN FIL	O = Other	' = 0.016 (Specify)
URGING IN AMPLED I UMP OR T EPTH IN V	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC	PACITY (Ga CODES: AFFILIATION	I./Ft.): 1/8" = (B = Bailer; 	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO	' = 0.0014; Pump; E SAMP I SIGNATURI ODE: //// TUBING	1/4" = 0.002(SP = Electric S LING DA E(S): Y (rej	5; 5/16" = 0. Submersible Pu TA FIELD Filtration placed)	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE:	006; 1 ristaltic Pr 	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL	0 = Other MPLING NDED AT	' = 0.016 (Specify) 237 μm
UBING IN URGING E AMPLED I UMP OR T EPTH IN V IELD DECO SAMP AMPLE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A MUSING WELL (feet):	PACITY (Ga CODES: AFFILIATION MATERIAL	I./Ft.): 1/8" = 0 B = Bailer; 5 MP Y 7 CATION	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO	' = 0.0014; Pump; E SAMP I SIGNATURI ODE: /// TUBING E PRESERVA	1/4" = 0.002(SP = Electric : LING DA E(S):	5; 5/16" = 0. Submersible Pu TA FIELD Filtration placed)	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN	006; 1 ristaltic Pr /22 vie vie vie vie vie vie vie vie vie vie	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	IIO; 5/8" O = Other AMPLING NDED AT LTER SIZE:	2 = 0.016 (Specify) 2 3 7 μm MPLE PUMP CLOW RATE
CUBING IN PURGING E SAMPLED I PUMP OR T DEPTH IN V IELD DEC SAMPLE D CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer; 5 IMP Y 7 CATION VOLUME	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CI N SAMPLE	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.002(SP = Electric S LING DA E(S): Y (re TION (includir	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1 ristaltic Pr /22 vie vie vie vie vie vie vie vie vie vie	6" = 1 1/2" = 0.0 ump; 5 SA FIL SAMPL	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) 2.3.7 μm MPLE PUMP FLOW RATE hL per minute)
AMPLED F CUMP OR T DEPTH IN V TIELD DECT SAMPLE D CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD FIELD Filtration placed) ng wet ice) FINAL	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37 μm μm LOW RATE L per minute) 200
URGING IN URGING E AMPLED I UMP OR T EPTH IN V IELD DECU SAMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer; 5 IMP Y 7 CATION VOLUME	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. mp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) 2.3.7 μm MPLE PUMP FLOW RATE hL per minute)
URGING IN URGING E AMPLED I UMP OR T EPTH IN V ELD DECU SAMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37 μm μm LOW RATE L per minute) 200
AMPLED I AMPLED I UMP OR T EPTH IN V ELD DECU SAMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37) μm μm LOW RATE L per minute)
AMPLED I AMPLED I UMP OR T EPTH IN V IELD DECO SAMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37 μm μm LOW RATE L per minute) 200
AMPLED AMPLED UMP OR T EPTH IN V IELD DECU SAMPLE CODE W37	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37) μm μm LOW RATE L per minute)
AMPLED CUMP OR T DEPTH IN V IELD DECC SAMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIC LE CONTAINE #	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	' = 0.0014; Pump; E SAMP SIGNATURI ODE: TUBING E PRESERVA IVE 1	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratii placed) ng wet ice) FINAL pla	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr //22 Pr Pr PD ND/OR D	6" = 1 1/2" = 0.0 ump; 25 SA EN FIL SAMPL EQUIPM	I10; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT F	['] = 0.016 (Specify) (L37) μm μm LOW RATE L per minute)
AMPLED AMPLED UMP OR T EPTH IN V IELD DECU SAMP AMPLE CODE	SIDE DIA. CAI EQUIPMENT C BY (PRINT) / A TUBING WELL (feet): ONTAMINATIO LE CONTAINERS	PACITY (Ga CODES: AFFILIATION MATERIAL CODE	I./Ft.): 1/8" = 0 B = Bailer; B = Bailer;	0.0006; 3/16" BP = Bladder F SAMPLER(S) (TUBING MATERIAL CO N SAMPLE PRESERVAT	+ = 0.0014; Dump; E SAMP I SIGNATURI ODE: //// TUBING E PRESERVA IVE 1 ADDE 	1/4" = 0.0020 SP = Electric 3 E(S): Y (rej TION (includir TOTAL VOL	s; 5/16" = 0. Submersible Pu TA FIELD Filtrati- placed) ng wet ice) FINAL pH T.CC	.004; 3/8" = 0. Imp; PP = Pe SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic Pr /222 P /2 /2 P /2 /2 P /2 /2 /2 P /2 /2 /2 /2 /2 /2 /2 /2 /2 /2	6" = 1 1/2" = 0.0 ump; SAMPL EQUIPM COD MARKA	IIIO; 5/8" O = Other AMPLING NDED AT LTER SIZE: LING MENT DE (m 2 1 1 1 1 1 1 1 1 1 1 1 1 1	['] = 0.016 (Specify) (L37 μm μm LOW RATE L per minute) 200

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

		D	EP Form	FD 900	0-24: GF	ROUNDV	VATER S	AMPLING L	.OG		0 10
SITE NAME: Lud	lam Corridoi	Properties 'A	All Green Tra	il'		TE DCATION: BO	etween NW 7	hand SW 80th S	treets, Miami,	Jan - H	-0010
VELL NO:	MA	1-37	E	SAMPLE	: ID: 🖊	W-	376	-		441	Sold
	1-1-0			-	PURC	SING DA	TA		1	1 / 4	-
WELL DIAMETER WELL VOLI (only fill out			ER (inches):	DEF	TH - STA	et to 19.81	eet TO WAT O WATER) X	DEPTH /2 ER (feet): /2 WELL CAPACI	OR BA		
	T VOLUME P f applicable)	URGE: 1 EQU	= (IPMENT VOL.			SING CAPACI	feet) X TY X T	UBING LENGTH)	gallons/foot + FLOW CELL	- /	gailons
	IP OR TUBIN	0 110			allons + (ons/foot X	feet)		gallons =	gallons
DEPTH IN V		y yak	DEPTH IN V	P OR TUBING VELL (feet):	14	PURGIN		PURGING ENDED AT:		OTAL VOLUM	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
420	2.0	2.0	0.05	12.17	1.18	26.33	586	2.62/32.5	1.25	Clar	None
1422	2,10	0.10	0.05	12,17	2.18	26.33	586	2.62/52.59	0.93	lean	Alon
1424	2.20	0.10	0.05	12.17	1.18	26-33	586	2.62/32.5%	0.92	Cled	- Nan
UBING INS		s Per Foot): 0. PACITY (Gal./F ODES: B =	.): 1/8" = 0.00		ump; E	1/4" = 0.002 SP = Electric	6; 5/16'' = 0 Submersible Pu	.004; 3/8'' = 0.0			= 5.88 = 0.016 (Specify)
				Deser		LING DA					
Jok		WA 250000000550000	·cs	SAMPLER(S)		:(S):		SAMPLING INITIATED AT	100	SAMPLING	43/
UMP OR TU		14		UBING MATERIAL CO	DE: HI	DPE		-FILTERED: Y on Equipment Typ		FILTER SIZE:	μ m
ELD DECO	NTAMINATIC	N: PUMF	Y 🔿		TUBING	Y Nre	placed)	DUPLICATE:	Y (N	
SAMPLE	E CONTAINE # CONTAINERS	R SPECIFICAT		SAMPLE RESERVATI USED	VE T	TION (includir OTAL VOL D IN FIELD (n	FINAL	INTENDE ANALYSIS AN METHOD	ID/OR EQUI	IPMENT FI	MPLE PUMP LOW RATE L per minute)
luste	1		booml	~				PAU	A.	-pp ==	200
EMARKS:	¥ C	ne	to 1	AH	Sam	n les	only	~2Ft	tubar	Fran 1	DTW
	ODES:	AG = Amber G S = Silicone;	T = Teflon;	0 = Other (Sp	HDPE = H becify)	igh Density P	olyethylene:	LDPE = Low Den			lypropylene;
	QUIPMENT (RF	P = After (Thro PP = Reverse	Flow Peristalt	ic Pump;		BP = Bladd Method (Tubing r 62-160. F.A	Gravity Drain);	• = Electric Sub • O = Other (Sp	mersible Pump becify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	lere Carrida	Draentina			S	ITE		" and SW 80 th S		-)an	- 11-20
WELL NO:	iam Corridor	Properties	All Green Tra	SAMPLE		I III		and SVV 80" S	DATE:	111	Q
	-M	w-	55			GING DA	00			THE	ð
	(inches):		TER (inches):		LL SCREEN	INTERVAL eet to 19	feet TO WAT	ER (feet):	OR BA	E PUMP TYPE	
only fill out i	f applicable)		= (. = PUMP VOL	feet -	1.8)	feet) X	UBING LENGTH)	gallons/foot		5 gallons
		10.00			allons + (gallo	ons/foot X	feet)	+	gallons =	gallons
NITIAL PUN DEPTH IN W	IP OR TUBIN VELL (feet):	° 73. S		VP OR TUBINO WELL (feet):	3/3.5	PURGIN	IG AT: /SQ	PURGING ENDED AT:		FOTAL VOLUM PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg2_or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
150	2,0	2.0	0.50	11.81	7.45	26.11	393	5.72 70.72	0.78	Clean	None
542	0.20	2.10	0.50		7.43	26.11	393	5.72/ 70,93	0.55	Clean	None
15 99	0.10	OL. OL	, 0.50	>7(.8)	1,95	26.11	393	5. WL 70.99	0.93	Clear	None
UBING INS	CITY (Gallons IDE DIA. CAP	ACITY (Gal./I	t.): 1/8" = 0.0	0006; 3/16 "		1/4" = 0.002	6; 5/16'' = 0	.004; 3/8" = 0.	006; 1/2" =	0.010; 5/8 "	= 5.88 = 0.016
UKGING E		ODE3. B	= Bailer; E	3P = Bladder P			Submersible Pu	imp; PP = Pe	ristaltic Pump;	O = Other	(Specity)
AMPLED B		FILIATION	185	SAMPLER(S)				SAMPLING INITIATED AT	1545	SAMPLING	1551
UMP OR TU		13.		TUBING MATERIAL CO	DDE: HU	PEts		-FILTERED: Y on Equipment Typ	e:	FILTER SIZE:	μm
IELD DECO	NTAMINATIO	N: PUM	PYN)	TUBING	Y N (re	placed)	DUPLICATE:	Y	R	
SAMPLE	E CONTAINE #	MATERIAL		PRESERVATI	VE T	TION (includi OTAL VOL	FINAL	INTENDE ANALYSIS AN METHOL	ID/OR EQU	IPMENT F	MPLE PUMP LOW RATE
D CODE C	CONTAINERS	CODE AG	1000ml	USED	ADDE	D IN FIELD (r	nL) pH	PAH	A	,	L per minute) $\approx 2 \infty$
EMARKS:											
ATERIAL C		AG = Amber G 5 = Silicone;		Clear Glass; 0 = Other (S		igh Density P	olyethylene;	LDPE = Low Den	sity Polyethyle	ne; PP = Pc	lypropylene;
		R	PP = Reverse	rough) Peristal Flow Peristalt	ic Pump;		BP = Bladd Method (Tubing er 62-160, F.A	Gravity Drain)	• = Electric Sut • • • • • • • • • • • • • • • • • • •	omersible Pump pecify));

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

٦

SITE						ITE		ib Ib	_		a- Anl
NAME: Lu WELL NO:	0 1 2	or Propertie	s 'All Green ⁻		4	OCATION: B	etween NW 7	th and SW 80 th 5		iami, FL	1.7
WELL NU:	MA	1-35	E	SAMPL	100	W-E	SSE		DATE:	419	4/
NELL		🔨 ТИВ	INC		ELL SCREEN	GING DA	STATIC		1500	<u>C</u>	M
	R (inches):		AETER (inches		PTH: 7.36	eet to 173	feet TO WAT	ER (feet):	4 0	URGE PUMP R BAILER: Pf	
	LUME PURGI t if applicable)		OLUME = (TO	TAL WELL DE	PTH - STA	ATIC DEPTH	TO WATER) X	WELL CAPAC	ITY	1	20
-				17.5	feet -	9.95	feet) X		gallons/f	oot = /.	26 gallons
	t if applicable)		QUIPMENT V	DL. = PUMP VO		BING CAPACI	ПҮХТ	UBING LENGTH) + FLOW (ELL VOLUME	
		10 11			allons + (ons/foot X	feet)	+	gallons	
	IMP OR TUBI WELL (feet):	NG //.(JMP OR TUBIN N WELL (feet):	^G / (. C			PURGING ENDED AT:	1024	PURGED	
		CUMUL		DEPTH	рН		COND.	DISSOLVED			
TIME	VOLUME PURGED	VOLUMI PURGEI		TO WATER	(standard	TEMP. (^o C)	(circle units) µmhos/cm	(circle units)	TURBID (NTUs		
	(gallons)	(gallons		(feet)	units)	(0,	or aS/cm	mg/L or % saturation	(1103	(desci	ibe) (describe)
)20	20	2.0	0.029	9.99	7.55	25.4	387.6	323/397%	2.7-	s clee	a mre
0.22	0.05	10.0	5 0.075	IN SIT	7.55	25.4	387.6	3.23/31.7%	2.8	Cea	a nue
024	0.05	12 11	0.025	and the second	7.55	25.4	38.6	3.23/39.79	2.5	1 Cla	a nove
		2.1				× /		1			
_											
										(sal	
										3 - F	
ELL CAP	ACITY (Gallor	ns Per Foot):	0.75" = 0.02; /Ft.): 1/8" = 0	1" = 0.04;	1.25" = 0.06 = 0.0014;	5; 2" = 0.16 1/4" = 0.0026	Second Second Second		" = 1.02;	6" = 1.47; " = 0.010;	12" = 5.88
			B = Bailer;	BP = Bladder P			Submersible Pur	122	ristaltic Pun		5/8" = 0.016 Other (Specify)
				~		LING DA	TA				
AMPLEDE	BY (PRINT) /	AFFILIATION		SAMPLER(S)	SIGNATURE	(S):		SAMPLING	075	SAMPLIN	IG 10 22
	11000	ranc	1505	S	~			INITIATED A	-	ENDED A	
	VELL (feet):	11.	0	TUBING MATERIAL CO	DDE: HN	PEts		FILTERED: Y on Equipment Typ	E N	FILTER S	SIZE:µm
ELD DEC	ONTAMINATI	ON: PUI	MPY	ij	TUBING	Y (N (re)	placed)	DUPLICATE:	Y	(N)	
SAMPL		ER SPECIFIC	ATION	SAMPLE	PRESERVA	TION (includin	g wet ice)	INTENDE	D	SAMPLING	SAMPLE PUMP
CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		OTAL VOL	FINAL	ANALYSIS AN METHOD		QUIPMENT CODE	FLOW RATE (mL per minute)
1-34	CON CHINERO	AC	1000	USED	AUDEL	D IN FIELD (m	IL) pH	PAH		AON	7-200
W 332		00	125M	HN03		-	27	TILLA	Serve	A-00	12200
V 31/			LUSIT	11042				LUTEIN	0 210 0-1	U YT	race
					_						
						_					
MARKS:	A	A1	1		201	1.		11	0	11	
	~	PAT	75 -	- 4	aft	Gla	n p	Tw	00	tokii	n
TERIAL C			Glass; CG =	Clear Glass;	HDPE = Hig	gh Density Po	lyethylene; I	LDPE = Low Den:	sity Polyeth	ylene; PP	Polypropylene;
			T = Teflon;	O = Other (Sp							
MPLING E		CODES: A	APP = After (The REPP = Reverse the REPP = Reverse the Reverse the Reverse the Reverse the REPP = Reverse the Reverse the REPP = Reverse the REPP	rough) Peristalti e Flow Peristalti	ic Pump; c Pump;	B = Bailer; SM = Straw N	BP = Bladde lethod (Tubing C		Electric 0 = Other	Submersible F	Pump;
ES: 1. T	he above d						r 62-160, F.A.			(opcony)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

Ň

Electronic Description Control Particle Outward Lick Order 19-2 model MARE Ladiant Confider Properties All Green Trail SAMPLE ID: Date: Mitty 77 and SW 80" Streets, Maim, EL WELL NO: MW-3 DATE: Date: Mitty 77 and SW 80" Streets, Maim, EL WELL Coulder Purger, Industry TUBING Mitty 77 and SW 80" Streets, Maim, EL Date: Mitty 77 and SW 80" Streets, Maim, EL WELL Coulder Purger, Industry TUBING TUBING Mitty 77 and SW 80" Streets, Maim, EL Date: Purger, Mitty 77 and SW 80" Streets, Maim, EL WELL Coulder Purger, Toronu WELL CORTAL WELL CORTANT Stratic Depthy Norther Streets, Maim, EL Date: galons				DEP Foi	rm FD 900	0-24: G	ROUND		AMPLING L	.OG	10-1	د م
WELL NO: MW-3 SAMPLE ID: MW-3 DATE HHTT//////////////////////////////////	. –		-						ib.		12 N. R. 1	on ac
PURGING DATA PURGING DATA VELL DUMMETER (inches): DUMMETER (inches): MELL SCREEN INTERVAL STATIC DEPTH PURGE PUMP TYPE MARCTER (inches): DUMMETER (inches): MELL VOLUME (ICOTAL WELL OCLUME + (TOTAL WELL SCREEN INTERVAL STATIC DEPTH PURGEND:	Contractor in the second	M A.	or Properties	All Green			OCATION: E	Between NW 7			FL I	TIRT
MELL MARETER (inches) DUNNE DIAMETER (inches) DUNNE DIAMETER (inches) DUNNE DEPTH. Setto //	VELL NO:	1/11	V-31		SAMPLI		NW	-3/		DATE:	1119	118A
DAMETER (Inclus): DDAMETER (Inclus): Deam of the second s					11						/ /	
VELL VOLUME PURGE: TWELL VOLUME PURGE: TWELL VOLUME PURGE: TWELL VOLUME PURGE: Text: gallons: gallon: gallon: gallon: </td <td></td> <td>R (inches):</td> <td></td>		R (inches):										
GUIPMENT VOLUME PURGE: 1 EQUIPMENT VOL Feet rest rest rest gallons/foot feet gallons/foot feet gallons/foot feet gallons/foot feet gallons/foot gallons/foot gallons/foot gallons/foot feet gallons/foot	VELL VOL	UME PURGE	: 1 WELL V	OLUME = (TO	TAL WELL DE			TO WATER)	WELL CAPACI	TY		
Infinitional applicable) = galons + (galons / (Reit + galons = galons = <td></td> <td>,</td> <td></td> <td></td> <td></td> <td>feet –</td> <td></td> <td>feet) X</td> <td></td> <td></td> <td></td> <td>gallons</td>		,				feet –		feet) X				gallons
TITAL PUMP OR TUBING PPIREING FINAL PUMP OR TUBING DEPTH IN WELL (ree): FINAL PUMP OR TUBING DEPTH IN WELL (ree): PURGING TUBING PURCED (galons) PURCENG TUBING PURCED (galons) TOTAL VOLUME PURCED (galons) TOTAL VOLUME PURCED (galons) TOTAL VOLUME PURCED (galons) PURCENG TUBING PURCED	QUIPMEN only fill out	NT VOLUME I t if applicable)	PURGE: 1 EC	UIPMENT VO	DL. = PUMP VOI	LUME + (TUE	BING CAPAC	ту х т	UBING LENGTH)	+ FLOW CELL	VOLUME	
EPTH IN WELL (seet): /// DEPTH IN WELL (seet): /// INITIATED AT//// DEPTH IN WELL (seet): // PURGE gallons): // // PURGE gallons): // // PURGE (gallons): //					9				feet)	+	gallons =	gallons
VOLUME PURGED PURGE (gallons) PURGE PURGED PURGE (gallons) PURCE (gallons) PURCE (gallons)			NG 12			^G 12						
TIME PURCED PURCED <td></td> <td>1</td> <td>CUMUL.</td> <td></td> <td></td> <td></td> <td>T</td> <td>1144</td> <td>DISSOLVED</td> <td>· · ·</td> <td>GROLD (gallo</td> <td></td>		1	CUMUL.				T	1144	DISSOLVED	· · ·	GROLD (gallo	
(galions)	TIME		VOLUME		ТО			(circle units)				
'40 2.5 2.0 0.05 10.10 7.35 25.9 457.6 1.16/1/4/4 3.60 Clear Mure '44 0.10 2.35 0.5 9 457.6 1.16/1/4/4 3.60 Clear Nure '44 0.10 2.35 0.5 9 457.6 1.16/1/4/4 3.60 Clear Nure '44 0.10 2.35 0.5 9 457.6 1.16/1/4/4 3.60 Clear Nure '44 0.10 2.35 0.5 9 457.6 1.16/1/4/4 3.60 Clear Nure '44 0.10 2.35 0.5 9 457.6 1.16/1/4/4 3.60 Clear Nure '44 0.10 2.35 0.5 9 1.01/2						units)	(0)			(NTUS)	(describe)	(describe)
YZ G-O J. G G-OS 10-10 2.35 S. 9 YS. 6 1.16/14/44 3.83 Gun Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 1.16/14/44 3.83 Gun Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 1.16/14/44 3.60 Use Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 1.16/14/44 3.60 Use Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 1.16/14/44 3.60 Use Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 1.16/14/44 3.60 Use Nume YH4 O-OS 10-10 Z.35 DS-9 YS. 6 YS. 7 YS. 6 YS. 6 YS. 6 YS. 7 YS. 6 YS. 6 YS. 6 YS. 7 YS. 6 YS. 7 YS. 7 YS. 7 YS. 7 YS. 7 YS	140	2.0	2.0	0.05	10.10	735	25.9	4576	Th/14 49	106	Non	Aund
U44 0-00 2-36 0-05 10.10 2.35 35-9 457.6 116/14/47 3-60 020 Nume L1 0-05 10.10 2.35 35-9 457.6 116/14/47 3-60 020 Nume L1 0-05 10.10 2.35 35-9 457.6 116/14/47 3-60 020 Nume L1 CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.86 BING INSUE DIA. CAPACITY (Gallons Per Foot): 0.75" = 0.02; 11" = 0.04; 1.45" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.65; 5" = 1.47; 12" = 5.86 BING INSUE DIA. CAPACITY (Gallons Per Foot): 0.75" = 0.02; 14" = 0.026; 316" = 0.006; 12" = 0.01; 58" = 0.016; 8" = 0.016; 8" = 0.016; 8" = 0.016; 12" = 0.016; 58" = 0.02; 58" = 0.02; 58" = 0.016; 58" = 0.02; 58" = 0.02; 58" = 0.02; 58" = 0.016; 58" = 0.02; 58" = 0.02; 58" = 0.02; 58" = 0.02; 58" = 0.02; 58" = 0.02; 58" = 0.02;	42	0-10	2.10	0.05	10.10	235	25.9	4576	1.16/14/19	3.87	(Onen.	Nine
ILL CAPACITY (Gallons Per Foot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.06; 2" = 0.16; 3" = 0.37; 4" = 0.85; 5" = 1.02; 6" = 1.47; 12" = 5.86 BING INSIDE DIA. CAPACITY (Gall/RL): 1.18" = 0.0006; 316" = 0.0014; 114" = 0.0026; 516" = 0.001; 318" = 0.016 12" = 0.116; 31" = 0.02; 6" = 1.47; 12" = 5.86 BING INSIDE DIA. CAPACITY (Gall/RL): 1.18" = 0.0006; 316" = 0.0014; 114" = 0.0026; 516" = 0.004; 318" = 0.016 12" = 0.016; 516" = 0.016 RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; P = Peristatic Pump; 0 = Other (Specify) MPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING MITATED AT: <	144	0.10		101	5 10.10	735	25.9	4516	1.16/14/19		alea	Nue
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) IPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: AP OR TUBING TUBING TUBING FIELD-FILTERED: Y N FILTER SIZE: µm AP OR TUBING TUBING MATERIAL CODE: #/DPLET FIELD-FILTERED: Y N FILTER SIZE: µm ADECONTAMINATION: PUMP Y N TUBING Y O(replaced) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FINAL INTENDED SAMPLING EQUIPMENT SAMPLE PUMP PLE containers MATERIAL ODE ADDED IN FIELD (mL) FINAL ANALYSIS AND/OR SAMPLING EQUIPMENT FLOW RATE 231 CG YOU M PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FLOW RATE TOW P TOW P TOTAL YOL ANALYSIS AND/OR CODE YM P TOW P TOW P TOW P TOW P TOW P TOW P				-			1	1 2 7 10	- per la			
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 ROING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLING DATA Image: Sample R(S) SiGNATURE(S); SAMPLING ////S AP OR TUBING TUBING FIELD-FILTERED: Y N AP OR TUBING TUBING FIELD FILTERED: Y N AP OR TUBING TUBING MATERIAL CODE: /// SC AP OR TUBING TUBING FIELD-FILTERED: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FIRAL SAMPLE PUMP PLE contrainers MATERIAL ODE ADDED IN FIELD (mL) SAMPLE QUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 ROING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLING DATA Image: Sample R(S) SiGNATURE(S); SAMPLING ////S AP OR TUBING TUBING FIELD-FILTERED: Y N AP OR TUBING TUBING FIELD FILTERED: Y N AP OR TUBING TUBING MATERIAL CODE: /// SC AP OR TUBING TUBING FIELD-FILTERED: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FIRAL SAMPLE PUMP PLE contrainers MATERIAL ODE ADDED IN FIELD (mL) SAMPLE QUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 ROING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLING DATA Image: Sample R(S) SiGNATURE(S); SAMPLING ////S AP OR TUBING TUBING FIELD-FILTERED: Y N AP OR TUBING TUBING FIELD FILTERED: Y N AP OR TUBING TUBING MATERIAL CODE: /// SC AP OR TUBING TUBING FIELD-FILTERED: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FIRAL SAMPLE PUMP PLE contrainers MATERIAL ODE ADDED IN FIELD (mL) SAMPLE QUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 ROING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) SAMPLING DATA Image: Sample R(S) SiGNATURE(S); SAMPLING ////S AP OR TUBING TUBING FIELD-FILTERED: Y N AP OR TUBING TUBING FIELD FILTERED: Y N AP OR TUBING TUBING MATERIAL CODE: /// SC AP OR TUBING TUBING FIELD-FILTERED: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FIRAL SAMPLE PUMP PLE contrainers MATERIAL ODE ADDED IN FIELD (mL) SAMPLE QUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP 231 CG VOLUME PRESERVATIVE TOTAL VOL FINAL <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) IPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INITIATED AT: SAMPLING IPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING FILED-FILTERED: Y N MP OR TUBING TUBING TUBING FILED-FILTERED: Y N FILED FILTERED: Y N AMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FILON RATE CODE SAMPLE PUMP GODE CONTAINERS MATERIAL CODE TOTAL VOL FINAL INTENDED SAMPLING EQUIPMENT GODE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL INTENDED SAMPLE PUMP FLOW RATE CODE												
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) MPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING J/1/5" SAMPLING J/1/5" MP OR TUBING TUBING TUBING TUBING FIELD-FILTERED: Y N SAMPLE (reet): TUBING MATERIAL CODE: J/1/6" DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FILO ADDED IN FIELD TOTAL VOL FINAL NALSSIA ND/OR SAMPLE PUMP FLOW RATE ADDED IN FIELD TOTAL VOL FINAL ALLYSIS AND/OR SAMPLING FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR										14		
BING INSIDE DIA. CAPACITY (Gal./FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.018 RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristattic Pump; O = Other (Specify) MPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING J/1/5" SAMPLING J/1/5" MP OR TUBING TUBING TUBING TUBING FIELD-FILTERED: Y N SAMPLE (reet): TUBING MATERIAL CODE: J/1/6" DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FILO ADDED IN FIELD TOTAL VOL FINAL NALSSIA ND/OR SAMPLE PUMP FLOW RATE ADDED IN FIELD TOTAL VOL FINAL ALLYSIS AND/OR SAMPLING FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP FLOW RATE AJ TOTAL TOTAL VOL FINAL ANALYSIS AND/OR											2	
RGING EQUIPMENT CODES: B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; O = Other (Specify) SAMPLING DATA MIPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING ////S SAMPLING ////S SAMPLING ////S MIPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING ////S SAMPLING ////S SAMPLING ////S SAMPLING ////S MIPLED BY (PRINT) / AFFILIATION: MATERIAL CODE: HOP Et S FIELD-FILTERED: Y N TUBING // Well (feet): FILTER SIZE: _//M D DECONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING EQUIPMENT FILTER CODE SAMPLING EQUIPMENT FILTER CODE Y N FILD /// CALLYSIS AND/OR SAMPLING EQUIPMENT FILD /// CALLYSIS AND/OR SAMPLING EQUIPMENT FILTER CODE Y N	LL CAP	ACITY (Gallon SIDE DIA, CAI	s Per Foot): PACITY (Gal /	0.75" = 0.02; (Ft): 1/8" = 0	1" = 0.04;		• • pts				- <u>-</u>	
APLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURE(S): SAMPLING INTIATED AT: FILTER SIZE:												
MP OR TÜBING TÜBING TÜBING TÜBING TÜBING FILLOFILITERED: Y N FILTER SIZE: µm D DECONTAMINATION: PUMP Y N TÜBING Y N(replaced) DUPLICATE: Y N SAMPLE CONTAMINATION: PUMP Y N TÜBING Y N(replaced) DUPLICATE: Y N SAMPLE CONTAMINATION: PUMP Y N TÜBING Y N(replaced) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATIVE TOTAL VOL FINAL ANALYSIS AND/OR SAMPLE PUMP IPLE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL METHOD CODE VOLUME SAMPLE PUMP V31 TO 1 MC Joon TUCL TOTAL VOL FINAL METHOD CODE CODE VOLUME TOTAL VOL FINAL METHOD CODE CODE CODE TOTAL VOL FINAL METHOD CODE CODE CODE CODE TOTAL VOL FINAL METHOD CODE <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>TA</td> <td>1</td> <td></td> <td>an</td> <td>1153</td>								TA	1		an	1153
MP OR TÜBING TÜBING MATERIAL CODE: HOPETS FILLERED: Y Y FILTER SIZE: µm D DECONTAMINATION: PUMP Y Y TUBING Y PESERVATION (including wet ice) DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUMP PILE # MATERIAL VOLUME PRESERVATIVE TOTAL VOL ANALYSIS AND/OR SAMPLING SAMPLE PUMP PILE 000 T MATERIAL VOLUME PRESERVATIVE TOTAL VOL PIL ANALYSIS AND/OR SAMPLING SAMPLE PUMP SAMPLE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL PH MATERIAL SAMPLE PUMP SAMPLE CONTAINERS CODE VOLUME PRESERVATIVE TOTAL VOL FINAL PH ANALYSIS AND/OR SAMPLING SAMPLE PUMP SAMPL MATERIAL VOLUME PRESERVATIVE TOTAL VOL FILA PH APA CODE CODE CODE CODE CODE CODE	APLED B	Y (PRINT) / A	FEILIATION:	les.	SAMPLER(S)	SIGNATURE	(S):					HUR
PTH IN WELL (feet): Imaterial code: fap fet filter fil	AP OR T	ÜBING	Mane	1 1507	TUBING	~	00.0	EIEL D	1			10
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION (including wet ice) INTENDED SAMPLING SAMPLE PUMP PLE CONTAINERS MATERIAL VOLUME PRESERVATIVE TOTAL VOL FINAL PH ANALYSIS AND/OR SAMPLING SAMPLE PUMP DE CONTAINERS CODE VOLUME PRESERVATIVE TOTAL VOL PH ANALYSIS AND/OR SAMPLE PUMP FLOW RATE CODE ONTAINERS CODE VOLUME PRESERVATIVE TOTAL VOL PH MATERIAL CODE CODE CODE FLOW RATE CODE IMC IMC IMC IMC IMC PAH APP PLOW FLOW RATE CG IMC			IL	l c		DE: HP	PETS	Filtratio				μn
PLE # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL pH ANALYSIS AND/OR METHOD CAUPENENT EQUIPMENT CODE FLOW RATE (mL per minute) 31 700 1 700 0 700 0 730 0	D DECC	ONTAMINATIO	DN: PUN	IP Y C	y)	TUBING	Y N(re	placed)	DUPLICATE:	Y 🤇	N	
DDE CONTAINERS WOLUME THESERVENTLE ADDED IN FIELD (mL) PH METHOD CODE (mL per minute) 31 TO 1 MG Month 7.35 PAHA APP 200 31 TO 1 MG Month TO 7.35 PAHA APP 200 31 TO 1 MG Month TO 7.35 PAHA APP 200 31 TO 1 MG Month TO 7.35 PAHA APP 200 31 TO CG Month HICL - Chiloroveltae APP 200 731 TO CG Month HICL - Chiloroveltae APP 200 734 TO CG Month - - Chiloroveltae APP 200 734 TO CG Month - - Chiloroveltae APP 200 ARKS: PAHS Toby SAF AG AT MON - - - - <td></td> <td></td> <td></td> <td>ATION</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				ATION								
$\frac{31}{34} \frac{70}{1} \frac{1}{66} \frac{1}{600} \frac{1}{161} \frac{1}{1$			CODE	VOLUME								
$\frac{23}{34} + \frac{26}{6} + \frac{900}{6} + \frac{161}{6} + 161$	4317	01	MG	1000ml			~ `		PAH		100 3	-200
$\frac{31}{4} + \frac{1}{6} + 1$	131	3	CG	Yome	FICL	-	·	62	Chlow	mettero, A	00 -	100
Image: A particular of the second state of the second		1	66	Yorne	2 ······	-			chlora	the Ar	18 2	In
AT PAHS Tubuy S Off From PTW ERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;		15							- 1		0	
AT PAHS Tubuy S Off From PTW ERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;												
ERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;												
ERIAL CODES: AG = Amber Glass; CG = Clear Glass; HDPE = High Density Polyethylene; LDPE = Low Density Polyethylene; PP = Polypropylene;	ARKS:	XP.	Alls -	- Tubu	$x \leq 6$	A fr	on P	TW				
	ERIAL C				Clear Glass;	HDPE = Hig		20 C	LDPE = Low Dens	ity Polyethylene	e; PP = Pol	ypropylene;
PLING EQUIPMENT CODES: APP = After (Through) Peristaltic Pump; RFPP = Reverse Flow Peristaltic Pump; B = Bailer; SM = Straw Method (Tubing Gravity Drain); ESP = Electric Submersible Pump; S: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C. 0 = Other (Specify)			R	FPP = Revers	e Flow Peristalting	c Pump;	SM = Straw N	Aethod (Tubing (Gravity Drain);			

1

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> $pH: \pm 0.2$ units Temperature: ± 0.2 °C Specific Conductance: $\pm 5\%$ Dissolved Oxygen: all readings $\leq 20\%$ saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or $\pm 10\%$ (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or $\pm 10\%$ (whichever is greater)

N

WINE. LU	dlam Corridor	Properties 'A	ul Green Tra	iP			atween NW 7 ^t	^h and SW 80 th S	treets Miami	FI	w-a
VELL NO:	11 1 1	1-3	$\hat{\mathbf{O}}$	SAMPLE		Mals	えつ			1191	180
	100		-		PURC	SING DA	TA	1			
VELL	(inches)	TUBING	ER (inches):			INTERVAL et to 17.5 f	STATIC eet TO WAT			SE PUMP TYPE AILER: PP	
VELL VOL	UME PURGE:			L WELL DEPT	TH - STA			WELL CAPACI		1 -	>
	t if applicable)	1905 4 501	= (17.5	feet -	0.0	feet) X		gallons/foot		or gallons
	IT VOLUME PI	JRGE: 1 EQUI	PMENT VOL.					UBING LENGTH)			
	MP OR TUBIN	GIL	FINAL PUM	= gai P OR TUBING	llons + (PURGIN	G / C	feet) PURGING	12511	gallons = TOTAL VOLUME	gallons
	WELL (feet):	11,5	DEPTH IN V		165			ENDED AT:	127	PURGED (gallor	ns): L. de
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP ([°] C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
250	20	2.0	0.05	10.6	7.21	26.3	538	2.60/315	63.87	(looy	Non
252	0.10	2.10	0.05	10.0	7,27	26.3	538	2.60/3159	4.12	Cloon	Ater
254	0.0	2.20	0.05	10.0	7.27	263	538	2.60/31.58	4.01	Clea	Non
_						_					
									1		
				10.000						1	
			_				Ti Di		144		
ELL CAP	ACITY (Gallons	Per Foot): 0.1	75" = 0.02;	1" = 0.04; 1	1.25" = 0.06	2" = 0.16	01 - 0 07	4" = 0.65; 5	"= 1.02; 6"	= 1.47; 12" =	= 5.88
IDING IN	SIDE DIA, CAP						3" = 0.37;				0.00
		ACITY (Gal./Ft				1/4" = 0.0026	5, 5/16" = 0.	004; 3/8" = 0.0	006; 1/2" =		= 0.016
				P = Bladder Pu	mp; ES		5, 5/16" = 0. Submersible Put	004; 3/8" = 0.0		0.010; 5/8": 0 = Other (= 0.016
JRGING E		ODES: B =	Bailer; Bl	P = Bladder Pu	mp; ES	P = Electric S	5, 5/16" = 0. Submersible Put	004; 3/8" = 0.0 mp; PP = Per	006; 1/2" = istaltic Pump;	O = Other (= 0.016 Specify)
		ODES: B =	Bailer; BF	P = Bladder Pu AMPLER(S) S	mp; ES	P = Electric S LING DA (S):	5/16" = 0. Submersible Pur TA	004; 3/8" = 0.0 mp; PP = Per	006; 1/2" = istaltic Pump;	O = Other (= 0.016 Specify)
JRGING E	EQUIPMENT CO BY (PRINT) / AF UBING VELL (feet):	FILIATION:	Bailer; BF	P = Bladder Pu AMIPLER(S) S UBING IATERIAL COL	mp; ES SAMPL IGNATURE	P = Electric S ING DA (S): $F = f = S$	5/16" = 0. Submersible Pur TA FIELD Filtratio	SAMPLING INITIATED AT: FILTERED: Y on Equipment Type	006; 1/2" = istaltic Pump; /255	O = Other (SAMPLING ENDED AT: / FILTER SIZE:	= 0.016 Specify)
URGING E AMPLED I JMP OR T EPTH IN V ELD DEC	EQUIPMENT CO BY (PRINT) / AF UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BF	P = Bladder Pu FAMIPLER(S) S UBING IATERIAL COL	TUBING	P = Electric S ING DA (S): $F = f = S$ $Y = N (reg$	5/16" = 0. Submersible Pur TA FIELD Filtratic	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE:	1/2" = istaltic Pump; /255 No e: Y	O = Other (SAMPLING ENDED AT: <i>l</i> FILTER SIZE:	= 0.016 Specify) 3 0 3 μm
AMPLED AMPLED AMPLED AMPLE	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BF	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVE	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN	1/2" = istaltic Pump; /255 N P P D D D/OR EQU	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT FL	= 0.016 Specify) 3 5 μm //PLE PUMP OW RATE
AMPLED P AMPLED P UMP OR 1 EPTH IN V ELD DEC SAMP AMPLE CODE	EQUIPMENT CO BY (PRINT) / AF UBING VELL (feet): ONTAMINATIO LE CONTAINER	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TON (includin	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 /255 P Y D D/OR D C	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT FL	= 0.016 Specify) 3 0 3 μm IPLE PUMP OW RATE per minute)
JRGING E AMPLED A JMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE CODE 6, -30	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVE	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	1/2" = istaltic Pump; /255 N P P D D D/OR EQU	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT ODE SAM	= 0.016 Specify) 303 μm IPLE PUMP OW RATE per minute)
IMPLED I IMP OR T PTH IN V ELD DEC SAMP MPLE CODE	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 /255 P Y D D/OR D C	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT ODE SAM	= 0.016 Specify) 3 0 3 μm IPLE PUMP OW RATE per minute)
JRGING E MPLED I JMP OR T EPTH IN V ELD DEC SAMP MPLE CODE 60-30	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 /255 P Y D D/OR D C	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT ODE SAM	= 0.016 Specify) 303 μm MPLE PUMP OW RATE per minute)
AMPLED P AMPLED P JMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 /255 P Y D D/OR D C	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT ODE SAM	= 0.016 Specify) 303 μm IPLE PUMP OW RATE per minute)
IRGING E IMPLED I IMP OR T EPTH IN V ELD DEC SAMP MPLE CODE W 30	UBING VELL (feet): DNTAMINATIO	DDES: B =	Bailer; BR	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	mp; ES SAMPL IGNATURE DELPP TUBING RESERVAT	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	5/16" = 0. Submersible Pur TA FIELD Filtratic placed) g wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 /255 P Y D D/OR D C	O = Other (SAMPLING ENDED AT: / FILTER SIZE: N APLING IPMENT ODE SAM	= 0.016 Specify) 303 μm MPLE PUMP OW RATE per minute)
JRGING E AMPLED A JMP OR T EPTH IN V ELD DEC SAMP AMPLE CODE CODE 6, -30	EQUIPMENT CO	DDES: B =	Bailer; BF	P = Bladder Pu AMPLER(S) S UBING IATERIAL COL SAMPLE P RESERVATIVI USED	HDPE = Hig	P = Electric S ING DA (S): Y N (reg TION (includin DTAL VOL	si 5/16" = 0. Submersible Pur TA FIELD- Filtratic placed) g wet ice) FINAL pH C2 772	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN METHOD	006; 1/2" = istaltic Pump; /255 N P N P D SAN E Y O SAN E Y Senc	O = Other (SAMPLING ENDED AT: 1 FILTER SIZE: N APLING APLING SAM IPMENT CODE CM CM CM CM CM CM CM CM CM CM	= 0.016 Specify) 303 μm IPLE PUMP OW RATE per minute)

2. <u>STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)</u> pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

									~ ~		~
			DEP For	m FD 900			NATER SA	AMPLING L	.0G	19 - 10	m - 20
	dlam Corrido	r Properties		ail			atwaan NW/ 7	th and SW 80 th S			1
VELL NO:	1			SAMPLE	1.0	A A	C C/	_	DATE:	atic	= fit
	pri	v-d	9K		10	in	all		T	9/18	C
/=1.1	P	TUBIN		1		SING DA					
VELL	R (inches): 🙎		G TER (inches):		LL SCREEN PTH: <mark>7 </mark>	et to 173	STATIC	ER (feet): 8, 3	And State of State of State	SE PUMP TYP AILER: PP	CO I III
		: 1 WELL VO	LUME = (TO					WELL CAPACI		mb	1.99
•	t if applicable)		= ([1.5	feet -	5.30	feet) X	0.16	gallons/foot	= 0. T	gallons
	IT VOLUME P	URGE: 1 EQU	JIPMENT VOL	= PUMP VOL	UME + (TUE	BING CAPAC	ПТҮ Х Т	UBING LENGTH)	+ FLOW CELL	VOLUME	
ing an out				= ga	allons + (gail	ons/foot X	feet)	+	gallons =	gallons
	MP OR TUBIN	ig /7		MP OR TUBINO	3 10	PURGIN		PURGING	1×11	TOTAL VOLUN	
EPTHIN	WELL (feet):	10	DEPTH IN	WELL (feet):	10		1	DISSOLVED	1344	PURGED (gail	ons): 2.2
	VOLUME	CUMUL.	PURGE	DEPTH TO	рН	TEMP.	COND. (circle units)	OXYGEN		COLOR	ODOR
TIMÉ	PURGED (gallons)	PURGED	RATE (gpm)	WATER	(standard units)	(⁰ C)	µmhos/cm	(circle units)	(NTUs)	(describe)	(describe)
2015		(gallons)	1 1 1	(feet)	57	207	or µS/cm	% saturation	11.000	0/1	
270	20	2.0	0.05	8.30	7,30	25.3	447.5	1526/15,3	6 7.72	Clear	Nane
541	0.0	2.10	0.05	8.30	7.30	25.3	447.5	1,26/15.34	3.81	llea	Acre
344	0.10	2.20	10.05	8,30	7.30	25.3	447.5	1.25/15.39	4.12	Claes	Non
									102		
FLI CAP			1						-		
		s Per Foot): 0			1.25 " = 0.06	•	· 102	122			' = 5.88 ' = 0.016
BING INS	SIDE DIA. CAR	PACITY (Gal./F	Ft.): 1/8" = 0.0	0006; 3/16"	= 0.0014;	1/4" = 0,002	6; 5/16" = 0	004; 3/8'' = 0.0	006; 1/2" =	0.010; 5/8	' = 0.016
BING INS		PACITY (Gal./F	Ft.): 1/8" = 0.0		= 0.0014; ump; E	1/4" = 0,002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8'' = 0.0			' = 0.016
IBING INS JRGING E	SIDE DIA. CAR	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16"	= 0.0014; ump; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8" = 0.0 mp; PP = Per	006; 1/2" =	0.010; 5/8 0 = Other	' = 0.016
BING INS IRGING E	SIDE DÍA. CAF	PACITY (Gal./F CODES: B	Ft.): 1/8" = 0.0 = Bailer; E	0006; 3/16" BP = Bladder Pr	= 0.0014; ump; E SAMP	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	004; 3/8'' = 0.0	006; 1/2" = ristaltic Pump;	0.010; 5/8	' = 0.016
		PACITY (Gal./F CODES: B	<u>= Bailer;</u>	3006; 3/16" 3P = Bladder P SAMPLER(S) : TUBING	= 0.0014; ump; E: SAMP SIGNATURE	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu TA FIELD	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y	006; 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING	' = 0.016
IBING INS IRGING E MPLED E IMP OR T IMP OR T	SIDE DIA. CAR QUIPMENT C BY (PRINT) (A UBING VELL (feet):	FFILIATION:	= Bailer; E	0006; 3/16" 3P = Bladder P SAMPLER(S) :	= 0.0014; ump; E: SIGNATURE DDE: HO	1/4" = 0.002 SP = Electric LING DA (S):	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratid	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type	006; 1/2" = ristaltic Pump; 3/5 N e:	0.010; 5/8 0 = Other SAMPLING ENDED AT:	'= 0.016 (Specify)
MPLED E MPLED E MPLED T MP OR T PTH IN V	SIDE DIA. CAR QUIPMENT C BY (PRINT) (A UBING VELL (feet): DNTAMINATIC	PACITY (Gal./F CODES: B FFILIATION: CMAC DN: PUMI	P Y 7	30006; 3/16" 3P = Bladder P SAMPLER(S) ; TUBING MATERIAL CO	= 0.0014; ump; E: SIGNATURE DDE: HIP TUBING	1/4" = 0.002 SP = Electric LING DA (S): Y N (re	6; 5/16" = 0. Submersible Pu NTA FIELD Filtratic placed)	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE:	006; 1/2" = ristaltic Pump; 3/5 N e: Y	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE:	' = 0.016 (Specify) /353 μm
JEING INS JRGING E MPLED E MP OR T PTH IN V ELD DECC SAMPL	SIDE DIA. CAR QUIPMENT C BY (PRINT) (A UBING VELL (feet): DNTAMINATIC LE CONTAINE	FFILIATION:	Et.): 1/8" = 0.(= Bailer; E SSS P Y TION	30006; 3/16" 3P = Bladder P SAMPLER(S) ; TUBING MATERIAL CO SAMPLE	= 0.0014; ump; Es SIGNATURE DDE: HIQ TUBING PRESERVA	1/4" = 0.002 SP = Electric LING DA (S): Y Nre TION (includie)	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratic placed) ng wet ice)	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type	2006; 1/2" = ristaltic Pump; 3/5 e: Y D	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING SA	'= 0.016 (Specify)
JBING INS JRGING E JMPLEP E JMP OR T EPTH IN V ELD DECC SAMPL MPLE CODE	SIDE DIA. CAR QUIPMENT C BY (PRINT) (A UBING VELL (feet): DNTAMINATIC	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et.): 1/8" = 0.(= Bailer; E SSS P Y Y TION VOLUME	30006; 3/16" 3P = Bladder P SAMPLER(S) ; TUBING MATERIAL CO	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 SP = Electric LING DA (S): Y N (re	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEL	DOG; 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT F	' = 0.016 (Specify) /3 53 μm MPLE PUMP
JBING INS JRGING E IMPLEP E IMP OR T EPTH IN V ELD DECC SAMPL MPLE CODE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: FFILIATION: CODE B R SPECIFICA MATERIAL CODE	Et.): 1/8" = 0.(= Bailer; E SSS P Y TION	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratic placed) ng wet ice) FINAL	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDE ANALYSIS AN	DOG; 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT F	' = 0.016 (Specify) /3 53 μm μm MPLE PUMP FLOW RATE
BING INS RGING E MPLED E MP OR T PTH IN V LD DECC SAMPL WPLE CODE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et.): 1/8" = 0.(= Bailer; E SSS P Y Y TION VOLUME	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	DOG; 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT F	' = 0.016 (Specify) /3 S μm μm LOW RATE Low RATE L per minute)
JBING INS JRGING E MPLED E JOV IMP OR T PTH IN V ELD DECC SAMPL MPLE CODE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	['] = 0.016 (Specify) /3 μm MPLE PUMP LOW RATE bL per minute)
MPLED E MPLED E MPC PT T MP OR T PTH IN V CLD DECC SAMPL MPLE CODE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	' = 0.016 (Specify) /3 53 μm MPLE PUMP LOW RATE bL per minute)
IBING INS IRGING E MPLED E MPD OR T PTH IN V SLD DECC SAMPL MPLE CODE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	' = 0.016 (Specify) /3 53 μm MPLE PUMP LOW RATE bL per minute)
JBING INS JRGING E MPLED E JMP OR T PTH IN V ELD DECC SAMPL MPLE CODE U 29	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	' = 0.016 (Specify) /3 S3 μm MPLE PUMP LOW RATE bL per minute)
JBING INS JRGING E JRGING E JRGING E JMPLE ED DECC SAMPL CODE U-2916 W-2916	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	' = 0.016 (Specify) /3 53 μm MPLE PUMP LOW RATE bL per minute)
JBING INS JRGING E AMPLED E JMP OR T EPTH IN V ELD DECC SAMPL MPLE	SIDE DIA. CAF	FFILIATION: CODES: B FFILIATION: CODE FFILIATION: R SPECIFICA MATERIAL CODE	Et): 1/8" = 0.0 = Bailer; E S P Y TION VOLUME 1000m	3/16" 3P = Bladder P SAMPLER(S) S TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; ES SAMP SIGNATURE DDE: HIP DDE: HIP TUBING PRESERVA'	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	2006; 1/2" = ristaltic Pump; /3 /5 N P O P D D/OR EQU A	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N MPLING IPMENT ODE (rr	' = 0.016 (Specify) /3 S3 μm MPLE PUMP LOW RATE bL per minute)
JBING INS JRGING E IMPLED E JOANNE IMPORT PTH IN V ELD DECC SAMPL MPLE CODE	SIDE DIA. CAR	AG = Amber G	Et): 1/8" = 0.(= Bailer; E SSS P Y TION VOLUME 1000m (125m) 125m)	2006; 3/16" 3P = Bladder P SAMPLER(S) : TUBING MATERIAL CO SAMPLE PRESERVATIN USED USED USED	= 0.0014; ump; E3 SIGNATURE DDE: HIP TUBING PRESERVA /E ADDEC ADDEC	1/4" = 0.002 BP = Electric LING DA (S): Y N re TION (includie OTAL VOL	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH 7/3/0 2/2	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type DUPLICATE: INTENDEI ANALYSIS AN METHOD	DOG: 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: MPLING IPMENT ODE (m P P P ODE	' = 0.016 (Specify) /3 S3 μm MPLE PUMP LOW RATE bL per minute)
IBING INS IRGING E IRGING E IRGING E IRGING E INPLE SAMPL SA	SIDE DIA. CAR	AG = Amber G S = Silicone;	Et.): 1/8" = 0.0 = Bailer; E SSS P YOLUME P 1000 N 125 P Iass; CG = 0 T = Teflon; CG = 0	2006; 3/16" 3P = Bladder P SAMPLER(S) : TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014; ump; E3 SAMP SIGNATURE DDE: HIP TUBING PRESERVA /E T ADDE: HDPE = Hi ecify)	1/4" = 0.002 3P = Electric LING DA (S): Y Nre TION (includii DTAL VOL D IN FIELD (n DTAL VOL D IN FIELD (n DTAL VOL D IN FIELD (n	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH 2.2 Divethylene;	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y DUPLICATE: DUPLICATE: INTENDEI ANALYSIS AN METHOD Arther and and any of the second secon	sity Polyethyler	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: N APLING IPMENT ODE (rr PP = Pc	' = 0.016 (Specify) /3 S μm MPLE PUMP FLOW RATE hL per minute) 2 C C C D S D S D S D S D S D S D S S S S S
JBING INS JRGING E INPLED E IMPORT PTH IN V CLD DECC SAMPL MORE CODE W291 WARKS: TERIAL C	SIDE DIA. CAR	AG = Amber G S = Silicone; CODES: AF	Et.): 1/8" = 0.0 = Bailer; E S Image: S P Y TION VOLUME IOOOM (Image: S Image: S Image: S CG = 0 Image: S	2006; 3/16" 3P = Bladder P SAMPLER(S) : TUBING MATERIAL CO SAMPLE PRESERVATIN USED USED USED	= 0.0014; ump; E3 SAMP SIGNATURE DDE: HIP TUBING PRESERVA /E ADDEC ADDEC HDPE = Hi ecify) ic Pump;	1/4" = 0.002 BP = Electric LING DA (S): Y Nre TION (includii OTAL VOL D IN FIELD (n B = Bailer;	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL pH 7/3/0 2/2	004; 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: INITIATED AT: PERE FILTERED: Y DUPLICATE: INTENDE ANALYSIS AN METHOD INTENDE INTENDE ANALYSIS AN METHOD INTENDE INTENDE INTENDE INTENDE ANALYSIS AN METHOD INTENDE INTENDE	DOG: 1/2" = ristaltic Pump;	0.010; 5/8 0 = Other SAMPLING ENDED AT: FILTER SIZE: MPLING IPMENT ODE (m PP = Pc mersible Pump	 Y = 0.016 (Specify) (Specify

-

SITE	lam Carridar F	Properties 'All G	raan Trail!				tween MM/7th or	nd SW 80th Streets	Minuti El		
WELL NO:		N - 29		SAMPLE		W-2	-			- 1010	-2018
	1010	NOI				GING DA				Jan	- 2018
	UME PURGE		ER (inches)	19 DEF	LL SCREEN	INTERVAL eet to 15,2	STATIC I	DEPTH ER (feet): 9.5 WELL CAPACI	/ OR	rge pump 1 Bailer:	PPE PP
EQUIPMEN		URGE: 1 EQU	= (IPMENT VOL		feet UME + (TUB	9.57 BING CAPAC	feet) X	0.16 UBING LENGTH)	galions/fo + FLOW CI		9/ gallons
(only fill out	if applicable)			= ga	allons + (galle	ons/foot X	feet)	+	gallons	= gallons
INITIAL PUI DEPTH IN V	VP OR TUBIN VELL (feet):	° /1.5		MP OR TUBING WELL (feet):	3/1.5	PURGIN	IG ED AT: 1630	PURGING ENDED AT:	1714	TOTAL VO PURGED (LUME gallons): 2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (circle units) μmhos/cm <u>or</u> μS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDI (NTUs)		
1710	2.0	2.0	0.05	9.57	7.48	25.71	443	3.78/46.34		Clea	
1712	2.10	0.10	0.05	9.57	7.48	25.71	443	3.78/46.3		Clea	10000
1714	2.20	0.10	0.05	9.57	7.48	25.71	443	3.78/46.39	1.70	Clea	l Nore
									2		
										_	
		s Per Foot): 0. PACITY (Gal./F			1.25" = 0.00 = 0.0014;	6; 2 " = 0 1 1/4 " = 0 002	,		;" = 1,02; 006; 1/2	6'' = 1.47; '' = 0.010;	12" = 5.88 5/8" = 0.016
PURGING E		ODES: B	= Bailer;	BP = Bladder P			Submersible Pu	mp; PP = Pe	ristaltic Pum	ip; O = C	ther (Specify)
CAMPLED F	W (DOINT) (A	FEIL INTION				LING DA		1			
Joh	1 MG	a/SCS	-	SAMPLER(S)		=(5):		SAMPLING INITIATED AT	1715	SAMPLIN ENDED A	IG 1727
PUMP OR T DEPTH IN V		1	1.5	TUBING MATERIAL CO	DE.	LIDPE		-FILTERED: Y	N	FILTER S	IZE:μm
		DN: PUMF	YN		TUBING		placed)	DUPLICATE:	Y	N	
SAMPL		R SPECIFICA	ION	SAMPLE	PRESERVA	TION (includi	Contraction of the local data	INTENDE		SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI		TOTAL VOL	mL) pH	ANALYSIS AN METHOD		QUIPMENT CODE	FLOW RATE (mL per minute)
MW-29			DOOME				7.48	PAH		APP	5200
MW-29	1		poome		-		7. 48	Phenod	018270	App	2200
REMARKS:	# PA	HW.	tru	d ft	Blan	- 07	w ob	topay L	engt	~	
MATERIAL		AG = Amber G S = Silicone;	lass; CG = T = Teflon;	Clear Glass; O = Other (S		ligh Density F	olyethylene;	LDPE = Low Den	sity Polyeth	ylene; PP	= Polypropylene;
		RF	PP = Revers	nrough) Peristal e Flow Peristal	tic Pump;		BP = Bladd Method (Tubing er 62-160, F.A	Gravity Drain);	P = Electric O = Other	Submersible I (Specify)	Pump;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE	dlam Corrido	r Properties	s 'All Green T	[rail]			lotwoon NIM 7	^h and SW 80 th S	branks Minnes	- 17.	Jan-20
WELL NO:	A + A -	1.7	7	SAMPL	4	ALAL				tint	GUN
WEEL NO.		1- 0	/		//	SING DA			DATE.	11/1	000
WELL	(TUBI	NG	11 . W	ELL SCREEN		STATIC	DEPTH DC	DO PURC		
DIAMETER			IETER (inches): / Y DE	PTH: 🌱 fe	et to 14	feet TO WAT	ER (feet): 🏹 🗸	OR B	AILER: PP	
	UME PURGE if applicable)	1 WELL V	OLUME = (TO	TAL WELL DE			TO WATER) X	WELL CAPACI	ΤY	n 1-	
				19		88	feet) X		gallons/foot	= 0.81	gallons
	if applicable)	URGE: 1 E	JUIPMENT VC)L. = PUMP VO		ING CAPAC	ІТҮ Х Т	UBING LENGTH)	+ FLOW CELL	VOLUME	
		0	-		gallons + (ons/foot X	feet)		gallons =	gallons
	MP OR TUBIN WELL (feet):			JMP OR TUBIN N WELL (feet):	^{IG} /(PURGI	NG ED AT: 000	PURGING ENDED AT:	044	TOTAL VOLUM PURGED (gallo	
		CUMUL		DEPTH	рН		COND.	DISSOLVED OXYGEN			
TIME	VOLUME PURGED	VOLUME PURGED		E TO WATER	(standard	TEMP ([°] C)	(circle units) µmhos/cm	(circle units)	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
	(galions)	(gallons)		(feet)	units)	(0)	or uS/cm	% saturation	(1103)	(describe)	(describe)
640	2.0	2.0	0.0	5 8.88	7.73	26.8	430.7	3.45/43.59	1.83	Clear	Nore
1042	0.10	2.10	0.05		7.73	26.8	430.7	3.4943.54	1.26	clear	NOO
1044	0.10	0 20	0 8.05	8.88	7.73	26.8	430.7	3.45/43.5%	1.03	Clean	None
1						-			- ue		
	1										
	1						·		1		
								-		1	
								· · · · · · · · · · · · · · · · · · ·			
			0.75" = 0.02; /Ft.): 1/8" = 0		1.25" = 0.06 " = 0.0014;	; 2" = 0.1 1/4" = 0.002					= 5.88 = 0.016
			B = Bailer;	BP = Bladder			Submersible Pu		istaltic Pump;	O = Other	
				-	SAMPI	LING DA	ATA				
SAMPLED	PRINT) / A	FILIATION		SAMPLER(S	SIGNATURE	(S):		SAMPLING INITIATED AT	INUS	SAMPLING ENDED AT:	1052
PUMP OR T		yas		TUBING	110	100		-FILTERED: Y		_	
DEPTH IN V				MATERIAL C	ODE: 171	PET.		on Equipment Typ		FILTER SIZE:	μm
IELD DEC	ONTAMINATIC	DN: PU	MP Y	9	TUBING	Y (re	eplaced)	DUPLICATE:	Y	O	
SAMPI	LE CONTAINE	R SPECIFIC	ATION	SAMPLE	E PRESERVA	TION (includ	ing wet ice)	INTENDE			MPLE PUMP
SAMPLE D CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVAT USED		OTAL VOL) IN FIELD (I	FINAL	ANALYSIS AN METHOD			LOW RATE L per minute)
14-27		AG	1000 ml	UCLD			(M)	PAH	A	20 2	200
w-27	1	PE	125mc	HN03		/	62	Total Ar	senic A	PP 1	205
		V ./						ic just fill	1		
			1								
		1									
REMARKS	A PA	Hs	- 2	Ft B.	an l	TW				/	
		AG = Amber S = Silicone;		= Clear Glass; O = Other (S		gh Density F	olyethylene;	LDPE = Low Den	sity Polyethyle	ne; PP = Po	lypropylene;
SAMPLING				hrough) Perista	altic Pump;	B = Bailer;	BP = Bladd			bmersible Pump);
TEC. 4	The above d			se Flow Perista			Method (Tubing		O = Other (S	pecify)	

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: L	udlam Corridor	Properties 'A	I Green Trail'			ITE OCATION: Be	etween NW7th a	and SW 80th Street	s. Miami, FL		
WELL NO	11	W-2	.6	SAMPLE	11	W-2	6			7-Ja1	n-2018
					PUR	GING DA	TA				
WELL DIAMETE	ER (inches):	Z TUB DIAN	ING /IETER (inches		LL SCREEN			DEPTH 9.9	18 PUR		YPE PP
	ULUME PURGE ut if applicable)	: 1 WELL V	OLUME = (TO = (TAL WELL DEP	TH - STA	TIC DEPTH	TO WATER) >	x WELL CAPACI	TY gallons/foo	- 1.	12, 0011000
	ENT VOLUME F ut if applicable)	PURGE: 1 E		DL. = PUMP VOL	UME + (TUE		ITY X	TUBING LENGTH)			100 gations
		10 11	1		allons + (ons/foot X	feet)	+	gallons	
	UMP OR TUBIN WELL (feet):	^{IG} //,5	DEPTH I	UMP OR TUBING N WELL (feet):	11.5		IG ED AT: //00		1144	TOTAL VOL PURGED (g	ume allons).2.20
TIME	VOLUME PURGED (gallons)	CUMUL VOLUMI PURGEI (gallons)	E PURGE	WATER	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm	DISSOLVED OXYGEN (circle units) (mgil: or %saturation	TURBIDITY (NTUs)	Y COLOF (describ	
1140	2.6	2.0	0.05	9.98	6.96	26.9	485	2.27/28.0	0.74	clear	e None
142	0.10	2.10		9.98	6.96	26.9	485	2.27/28.0%		Clea	R None
144	0.10	2.20	0.05	9.98	6.96	26.9	485	2.27/28.64	1.02	Clea	r None
	-		10						T		
_											
			-								
TUBING IN	PACITY (Gallon NSIDE DIA. CAR EQUIPMENT C	PACITY (Gal	0.75" = 0.02; //Ft.): 1/8" = 0 B = Bailer;	1" = 0.04; 0.0006; 3/16" = BP = Bladder Pu		1/4" = 0.0020 SP = Electric :	6; 5/16" = 0 Submersible Pu	.004; 3/8'' = 0.0		= 0.010; 5	12" = 5.88 5/8" = 0.016 her (Specify)
CAMPLED	BY (PRINT) / A	CEU IATION		CAMPLED(C)		LING DA		1			
1	1 1 /		ses	SAMPLER(S) S	SIGNATURE	:(S):		SAMPLING INITIATED AT:	1145	SAMPLING ENDED AT	. <i>11</i>
PUMP OR DEPTH IN	TUBING WELL (feet):	11.	5	TUBING MATERIAL CO	DE: +/	DPE+		P-FILTERED: Y on Equipment Typ	N	FILTER SIZ	ΖΕ: μm
IELD DEC	CONTAMINATIO	DN: PUI	MP Y	V)	TUBING	Y Nide	placed)	DUPLICATE:	Y		
SAMPLE	PLE CONTAINE	MATERIAL	ATION VOLUME	SAMPLE F		TION (includir OTAL VOL	ng wet ice) FINAL	INTENDE ANALYSIS AN	ID/OR EQ		SAMPLE PUMP FLOW RATE
N-26	CONTAINERS	AG	looome	USED		D IN FIELD (m	1L) pH	PA H	A	PP	(mL per minute) $\simeq 2 \circ 0$
EMARKS:	XPI	141 4	rithin	- 2ft	flor	n D	TW	of to	bury l	length	
IATERIAL			Glass; CG = T = Teflon;		HDPE = Hi	gh Density Po		LDPE = Low Den	V		Polypropylene;
AMPLING				hrough) Peristaltionse Flow Peristaltion		B = Bailer; SM = Straw N	BP = Bladd lethod (Tubing		e = Electric Su O = Other (S		imp;
TES: 1.	The above d	o not cons	titute all of	the information	n required	by Chapte	r 62-160, F.A	C.			

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

0.75		D	EP Form	n FD 900			NATER SA	AMPLING L	.OG	17-10	n-20
SITE NAME: Lud	lam Corridor	Properties 'A	I Green Tra	il ^e		ITE OCATION: B	etween NW 7	^h and SW 80 th S	treets Miami		In
WELL NO:		W-Z		SAMPLE	1 4	111-	10			Int	, Cur
			V		PLIR	GING DA			/	1/1	10
WELL	1	TUBING		1/1 WE	LL SCREEN		STATIC	DEPTH 11	10 PURG	E PUMP TYPE	
DIAMETER			ER (inches):	19 DEI	PTH: 10 fe	eet to 20	feet TO WAT	ER (feet):	O OR BA	ILER: PP	
NELL VOLU only fill out i	JME PURGE: f applicable)	1 WELL VOL	UME = (TOT)	AL WELL DEF	PTH - STA	TIC DEPTH	OWATER) X	WELL CAPACIT	ΤY	1 -) -)
		JRGE: 1 EQU	= (PMENT VOL	= PUMP VOI	feet -	BING CAPAC	feet) X	UBING LENGTH)	gallons/foot		gallons
only fill out i	f applicable)										
		300	FINAL PUM	P OR TUBING	allons + (DURCIN	ons/foot X	feet)		gallons =	gallons
EPTH IN V		13,2	DEPTH IN V		Bos	INITIATI	ED AT: 200	ENDED AT:	244 F	URGED (gallo	ns): Q_Q
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. ([°] C)	COND. (circle units) μmhos/cm or μS/cm	DISSOLVED OXYGEN (circle units) ng/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
240	2.0	2.0	0.05	11.78	7,26	26.8	544	1.82/22.9%	4.82	cloar	Nore
242	0.10	2.10	0.05	11.78	7.26	26.8	544	1.82/22.99		llen	None
1244	0.10	2.20	0.05	11.78	226	26.8	544	1.87/22.9	1 / 1	Clerc	Non
						1					
JBING INS	IDE DIA. CAP	Per Foot): 0. ACITY (Gal./Ft	75 " = 0.02;): 1/8" = 0.0	1" = 0 04; 006; 3/16"		1/4" = 0.002	6; 5/16'' = 0	004; 3/8" = 0.0			= 5.88 = 0.016
URGING EC	QUIPMENT CO	DDES: B =	Bailer; B	P = Bladder P			Submersible Pu	mp; PP = Per	ristaltic Pump;	O = Other	(Specify)
AMPLED B	Y (PRINT) / A	FILIATION:	1 - 0	SAMPLER(S)					12.15		10
20	mM	alla	1505	AN	/	-(0).		SAMPLING INITIATED AT:	1245	SAMPLING ENDED AT:	1.25:
JMP OR TU		12.5		TUBING	- HO	PE+S		-FILTERED: Y		FILTER SIZE:	μm
	NTAMINATIO	N: PUMP	6	MATERIAL CO	TUBING	Y N (re	piaced)	DUPLICATE:		N	
		R SPECIFICAT	- 4	SAMPLE		TION (includi		INTENDE			
AMPLE	# ONTAINERS			PRESERVATI	VE T	OTAL VOL	FINAL	ANALYSIS AN METHOD	ID/OR EQUI	PMENT F	MPLE PUMP LOW RATE L per minute)
w-25		A c .	ocom	USED	ADDE		nL) pH	PAH	A	N D	=20
W-25	1		asme	HINOB	3		22	Total Ars	ienic Age	0 1	
									4		
EMARKS:	PAT	l.* :	> 5	257	tuko	Bru	r OTH				
	s	,	T = Teflon;	Clear Glass; O = Other (Specietal)	pecify)	igh Density P		LDPE = Low Den:			lypropylene;
	QUIPMENT C	RFI	P = After (Thro PP = Reverse ute all of the	Flow Peristalt	ic Pump;		BP = Bladd Method (Tubing er 62-160, F.A.	Gravity Drain);	• = Electric Sub • • • O = Other (Sp		;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: L	udlam Corridor	Properties 'All	Green Trail'				tween NM/7th a	nd SW 80th Streets	a Miami El		
WELL NO	MAI	-73		SAMPLE I	1	1W-	23		DATE: /	7-201	-201
	1.00	4)			PUR	GING DA	TA		,	0017	1 10
WELL VO	ER (inches):	1 WELL VO	ETER (inches):		'H: // fe	TIC DEPTH		ER (feet): 13	.6) OR I	GE PUMP TYP BAILER:	^e p
	ENT VOLUME (out if applicable)		= (UIPMENT VOI	. = PUMP VOLU	eet – / ME + (TUI	BING CAPAC		UBING LENGTH)	gallons/foo + FLOW CEI		gallons
		10 1-		0	ons + (ons/foot X	feet)	+	gallons ≠	gallons
	PUMP OR TUBI N WELL (feet):	NG 15		VIP OR TUBING WELL (feet):	15	PURGIN INITIAT		> PURGING ENDED AT:	1414	TOTAL VOLU PURGED (gail	Inspr.20
TIME	VOLUME PURGED (galions)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP (^o C)	COND (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDIT (NTUs)		ODOR
1410	2.0	2.0	0.05	13.65	7.23	26.6	548	1.19/14.59	4.49	Clean	c None
1412	. 0.10	2.10	0.05		7.23	26.6	548		4.26	Clear	nare
1919	0.10	2.20	0.05	13.65	7.23	26.6	548	1.19/14.54	4.02	cleur	have
	-			-	_						
]					
TUBING I	PACITY (Gallor NSIDE DIA. CA	PACITY (Gal./	Ft.): 1/8" = 0.	0006; 3/16" = BP = Bladder Pur	пр; Е	1/4" = 0.002 SP = Electric	6; 5/16" = 0 Submersible Pu	.004; 3/8" = 0		= 0.010; 5/8	r (Specify)
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S) SI							
Jo	m Mo		ics	San	_	-(0)		SAMPLING	1415	SAMPLING ENDED AT:	1425
PUMP OR DEPTH IN	TUBING WELL (feet):	15		TUBING MATERIAL COD	E H	OPET.		on Equipment Typ		FILTER SIZE	.: μ m
FIELD DE	CONTAMINATI	ON: PUN	IP Y N		TUBING	Y Nore	placed)	DUPLICATE	Y	N	
SAM	PLE CONTAIN			SAMPLE P	RESERVA	TION (includi	ng wet ice)	INTENDE		-	AMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE		OTAL VOL D IN FIELD (r	nL) FINAL	ANALYSIS AN METHOD			FLOW RATE nL per minute)
W-23	1	AU	1000 mL		-	D INTICED (I		PAHS	1	IPP -	-200
(w-23	3	CG-	40 ml	HCL	-		62	chloroma			= 200
REMARKS				4							
MATERIAL		AG = Amber (Glass; CG =	· · ·	F+ HDPE = H	Burn Density P	10.0	LDPE = Low Den	~		olypropylene;
SAMPLING		S = Silicone; CODES: A	T = Teflon; PP = After (Th	0 = Other (Spe rough) Peristaltic e Flow Peristaltic	Pump:	B = Bailer;	BP = Bladd Method (Tubing	ler Pump; ESF		ubmersible Pum	ip;
TES: 1.	The above of			he information					(i		

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME: Lu	dlam Corrido	r Properties 7	All Green T	'rail'		ITE OCATION: B	etween NW 7	th and SW 80 th S	Streets, M	Miami, FL	Jano	wy .
WELL NO	MW	122	/	SAMPLE	EID:	MW	-22		DATE:	11171	18	JW)
	1				PUR	GING DA	TA			11		
WELL	R (inches):		G FER (inches)		LL SCREEN		STATIC					
WELL VO	LUME PURGE				PTH: 1 fe	TIC DEPTH	TO WATER) X	ER (feet):		OR BAILER: P	·P	-
(only fill ou	t if applicable)		= (21	feet -	2.40) feet) X	0.16	gallons	s/foot = /	.38	gallons
EQUIPME only fill ou	NT VOLUME P t if applicable)	URGE: 1 EQU	IPMENT VO	L. = PUMP VOL	LUME + (TUE	BING CAPAC	ד א אדו	UBING LENGTH)	+ FLOW	CELL VOLUM	IE	
					allons + (ons/foot X	feet)	+	gailon		gallons
	JMP OR TUBIN WELL (feet):	^G 14		IMP OR TUBING	° 14	PURGIN	179/1	PURGING ENDED AT:	152	9 TOTAL V PURGED	OLUME (gallons):	2,2
	1.	CUMUL.	1	DEPTH		T I	COND.	DISSOLVED			(3/	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gailons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	C [°] C)	(circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBI (NTU		LOR cribe) (ODOR (describe)
\$10	2.0	2.0	0.05	DUD	7.37	257	540	3.00/37.18	7.1	0 100	ent	lino
022	0-10	2.10	0.05	12.40	7.37	257	540	3.00/37.1%	70	2 100	an a	1100
524	0.10	2.20		12.40	7.37	25.7	540	3.00 /37.1%	7.	15 00	an 1	Marc
							214			-		Vin
			1									
_					I							
							()					_
			1									
	-		1	-								
		(14		
		Por Footie 0	75" - 0.02:	4" = 0.04	4.25% - 0.06	2/ = 0.1	2. 27 - 0.27.	A ¹² = 0.65, E	····	6 ¹ = 4.47:	492 - 5	00
	ACITY (Gallons SIDE DIA. CAP			1" = 0.04; .0006; 3/16"	1.25" = 0.06 = 0.0014;	6; 2 " = 0.16 1/4" = 0.002			;" = 1.02; 006; 1	6 " = 1,47; 1/2 " = 0.010;	12" = 5. 5/8" = 0	
UBING IN		ACITY (Gal./Ft			= 0.0014; ump; E	1/4" = 0.002 SP = Electric	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0.0		1/2" = 0.010;		.016
UBING IN URGING I	SIDE DÍA. CAP EQUIPMENT C	ODES: B =	t.): 1/8" = 0	0006; 3/16" BP = Bladder P	= 0.0014; ump; E: SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pu	.004; 3/8 = 0.1 mp; PP = Per	006;	1/2" = 0.010; ump; O = -	5/8" = 0 Other (Spe	.016
UBING IN URGING I	SIDE DIA. CAP	ACITY (Gal./Ft ODES: B =	t.): 1/8" = 0	0006 3/16"	= 0.0014; ump; E: SAMP	1/4" = 0.002 SP = Electric LING DA	6; 5/16" = 0. Submersible Pu	.004; 3/8" = 0.0	006; fistaltic P	1/2" = 0.010;	5/8" = 0 Other (Spe	.016
	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI MACA TUBING	ACITY (Gal./Ft ODES: B =	t.): 1/8'' = 0 = Bailer;	0006; 3/16" BP = Bladder P SAMPLER(S)	= 0.0014; ump; E: SAMP SIGNATURE	1/4" = 0.002 SP = Electric LING DA (S):	6: 5/16" = 0. Submersible Pu	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y	006; ristaltic P	1/2" = 0.010; ump; O = 0	5/8" = 0 Other (Spe ING AT: /5	.016
UBING IN URGING I AMPLED UMP OR EPTH IN		PACITY (Gal./Ft ODES: B = FFILIATION: Tra / St	t.): 1/8" = 0 = Bailer;	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; ump; E: SAMP SIGNATURE DDE: DDE:	1/4" = 0.002 SP = Electric LING DA (S):	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratio	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ	006; ristaltic P	1/2" = 0.010; ump; 0 = 25 SAMPLI ENDED FILTER	5/8" = 0 Other (Spe ING AT: /5	.016 ecify)
UBING IN URGING I AMPLED UMP OR EPTH IN IELD DEC		PACITY (Gal./Ft ODES: B = FFILIATION: Tra 50 10 N: PUMP	t.): 1/8" = 0 = Bailer;	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING	1/4" = 0.002 SP = Electric LING DA (S): PETS Y Nre	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratic placed)	.004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE:	006; ristaltic P : 152 : 152 Y	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER	5/8" = 0 Other (Spe ING AT: /5 SIZE:	.016 ecify) 3 (μm
UBING IN PURGING I AMPLED UMP OR EPTH IN IELD DEC SAMP		PACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I / C N: PUMP R SPECIFICAT	t.): 1/8" = 0 = Bailer; C S Y (N 10N	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	1/4" = 0.002 SP = Electric LING DA (S):	6; 5/16" = 0. Submersible Pu \TA FIELD Filtratic placed)	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE: SAMPL FLOV	.016 ecify) 3 (μm LE PUMP V RATE
CUBING IN PURGING I COMPLED COMPOR DEPTH IN IELD DEC SAMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI DI CAP TUBING WELL (feet): ONTAMINATIO LE CONTAINE	ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N TON VOLUME	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CO SAMPLE	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	1/4" = 0.002 SP = Electric LING DA (S): PE+S Y N(co TION (including)	5; 5/16" = 0. Submersible Pu TA FIELD FIELD FIRAtion FINAL	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (µm LE PUMP V RATE er minute)
UBING IN PURGING I SAMPLED PUMP OR DEPTH IN IELD DEC SAMPLE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI BY (ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N 10N	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	$\frac{1}{4} = 0.002$ $SP = Electric$ $\frac{LING DA}{S}$ $\frac{F}{S}$ \frac{F}	6; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) ng wet ice) FINAL	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm LE PUMP V RATE
UBING IN URGING I AMPLED UMP OR EPTH IN IELD DEC SAMP AMPLE CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI BY (ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N TON VOLUME	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	$\frac{1}{4} = 0.002$ $SP = Electric$ $\frac{LING DA}{S}$ $\frac{F}{S}$ \frac{F}	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm LE PUMP V RATE ar minute)
UBING IN URGING I AMPLED UMP OR EPTH IN ELD DEC SAMP AMPLE CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI BY (ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N TON VOLUME	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	$\frac{1}{4} = 0.002$ $SP = Electric$ $\frac{LING DA}{S}$ $\frac{F}{S}$ \frac{F}	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm LE PUMP V RATE ar minute)
AMPLED AMPLED UMP OR EPTH IN IELD DEC SAMP AMPLE CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI BY (ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N TON VOLUME	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	$\frac{1}{4} = 0.002$ $SP = Electric$ $\frac{LING DA}{S}$ $\frac{F}{S}$ \frac{F}	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm LE PUMP V RATE ar minute)
UBING IN URGING I AMPLED UMP OR EPTH IN IELD DEC SAMP AMPLE D CODE	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI BY (ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	t.): 1/8" = 0 = Bailer; C S Y (N TON VOLUME	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	$\frac{1}{4} = 0.002$ $SP = Electric$ $\frac{LING DA}{S}$ $\frac{F}{S}$ \frac{F}	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	006; ristaltic P : / S 2 : / S	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (µm LE PUMP V RATE er minute)
AMPLED AMPLED UMP OR EPTH IN N IELD DEC SAMP	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI DA ACA FUBING NELL (feet): ONTAMINATIO LE CONTAINERS	ACITY (Gal./Ft ODES: B = FFILIATION: CCA / SC I C I C I C I C I C I C I C I C I C I	L): 1/8" = 0 = Bailer; C S Y (N TON VOLUME (200 MC	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN USED	= 0.0014; ump; E: SIGNATURE DDE: HD TUBING PRESERVA	1/4" = 0.002 SP = Electric LING DA (S): Y N(re TION (includir OTAL VOL D IN FIELD (m	6; 5/16" = 0. Submersible Pu TA FIELD FIELD FIRAtion placed) ng wet ice) FINAL pH 7.37	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD	OOG; ristaltic P (S) Y D DD/OR	1/2" = 0.010; ump; O = SAMPLI ENDED FILTER SAMPLING EQUIPMENT	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm LE PUMP V RATE ar minute)
AMPLED CODE CODE CODE CODE CODE CODE CODE CO	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI DIAING VELL (Feet): ONTAMINATIO LE CONTAINERS	ACITY (Gal./Ft ODES: B = FFILIATION: Ca / S FFILIATION: Ca / S FFILIATION: CODE / C FFILIATION: CODE / C FFILIATION: C FFILIATION: CODE / C FFILIATION: C FFI	L): 1/8" = 0 = Bailer; C S Y (N TON VOLUME (200 MC C S VOLUME (200 MC C S C S C S C S C S C S C S	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN USED		1/4" = 0.002 SP = Electric LING DA (S): Y N(re TION (includir OTAL VOL D IN FIELD (m	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD MAHY	D D D D D D D D D D D D D D D D D D D	1/2" = 0.010; ump; O = 0 SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP	5/8" = 0 Other (Spe AT: /5 SIZE:	.016 ecify) 3 (μm V RATE er minute) 2 2 C
EMARKS:	SIDE DIA. CAP EQUIPMENT C BY (PRINT) / AI DIAING VELL (Feet): ONTAMINATIO LE CONTAINERS	ACITY (Gal./Ft ODES: B = FFILIATION: MATERIAL CODE (AG = Amber Gla B = Silicone;	 t.): 1/8" = 0 Bailer; C S Y (N Y (N VOLUME COO MC COO MC	0006; 3/16" BP = Bladder P SAMPLER(S) TUBING MATERIAL CC SAMPLE PRESERVATIN USED	= 0.0014; ump; E: SIGNATURE DDE: HP TUBING PRESERVA VE T ADDE(A	1/4" = 0.002 SP = Electric LING DA (S): PE + S Y NG TION (includir OTAL VOL D IN FIELD (m	6; 5/16" = 0. Submersible Pu TA FIELD FILD	004: 3/8" = 0.1 mp; PP = Per SAMPLING INITIATED AT -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOD PA44 INTENDE ANALYSIS AN METHOD PA44 LDPE = Low Den: LDPE	006; ristaltic P ristaltic P ristaltic P V P D D D D D/OR D S V V V S V V V S V V S V V S S V S N	1/2" = 0.010; ump; O = 0 SAMPLI ENDED FILTER SAMPLING EQUIPMENT CODE APP	5/8" = 0 Other (Spe ING AT: /5 SIZE: SAMPL FLOV (mL pe	.016 ecify) 3 (μm V RATE er minute) 2 2 C

SITE	am Corridor P	rogenties (All	Green Trail'					nd SIM 90th Street	a Miami El		
WELL NO:		W-2		SAMPLE			21-2	nd SW 80th Street		- Janua	n-2018
	10	00.2				GING DA				0 - 11 - 60	8 0 0
WELL DIAMETER (WELL VOLU (only fill out if	ME PURGE	DIAM	ETER (inches)	14 DEP	L SCREEN	INTERVAL set to 18 f	eet TO WAT	DEPTH ER (feet): 0.	OL ORE	ge pump typi Bailer:	
EQUIPMENT (only fill out if		JRGE: 1 EC	= (QUIPMENT VO	L. = PUMP VOL	feet UME + (TUE	BING CAPACI	feet) X TY X T	(UBING LENGTH)	gallons/foot + FLOW CEL		gallons
					illons + (ons/foot X	feet)	T	gallons =	gallons
INITIAL PUM DEPTH IN W		12		MP OR TUBING	12	PURGIN	G AT: 154	PURGING ENDED AT:		TOTAL VOLUN PURGED (galic	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH (standard units)	TEMP_ (°C)	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) (mg) or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
1620	2.0	20	0.05	10.02	7.11	25.8	492	1.95/248	3.87	Clear	Mone
1622	0.10	2.10		10.02	7.11	25.8	492	1-95/244	4.12	Clean	
1624	0.10	5.90	<u>0.05</u>	10.02	7-11	25.8	492	1.95/248	3.98	Clegk	None
			-	-							
			-						-		
			-								
TUBING INSIE PURGING EQI	DE DIA. CAPA UIPMENT CO	ACITY (Gal./ DDES: E	/Ft.): 1/8" = 0. 3 = Bailer;	BP = Bladder Pu	= 0.0014; imp; ES SAMPI	1/4" = 0.0026 SP = Electric S LING DA	5: 5/16" = 0. Submersible Pur	004; 3/8" = 0.0		= 0.010; 5/8"	' = 5.88 ' = 0.016 (Specify)
SAMPLED BY	nMo	A CCA	1ses	SAMPLER(S) S		(S):		SAMPLING INITIATED AT:	1625	SAMPLING ENDED AT:	1633
PUMP OR TUE		12		MATERIAL COL	DE: 1-1	DPE-		-FILTERED: Y on Equipment Type		FILTER SIZE:	μm
IELD DECON	TAMINATION	N: PUN			TUBING	Y N Dep		DUPLICATE:	Y		
SAMPLE	CONTAINER # NTAINERS	MATERIAL CODE		PRESERVATIV	E T	TION (includin OTAL VOL	FINAL	INTENDE ANALYSIS AN METHOD	D/OR EQU	JIPMENT F	MPLE PUMP LOW RATE
N-21-2	-	6	TODOML	USED	ADDEL	D IN FIELD (m	<u>с)</u> рн	PAH	1		= 200
w-21-2			125mc	HNU3	Tor	tal be		. Total	Doch A	pp 3	= 200
	T PA	441-	- 2 F	it tub	oing	BION	n Dr	The			
ATERIAL CO		G = Amber (= Silicone;		Clear Glass; O = Other (Spe	HDPE = Hi	gh Density Po		LDPE = Low Den	sity Polyethyle	ene; PP = Pc	olypropylene;

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

LIANE.		Deserves	UL Orange T	.;µ		ITE	a hara a bitar al		4	10	John- de
	dlam Corridor	Properties A	All Green 1 ra	- (1)	la la		etween NVV /	th and SW 80 th S		1.010	Y
WELL NO:	MU	~11		SAMPLE		lh-	4			Hoff	-
		TUDING		D		GING DA		0.50TU	/	en	/
WELL DIAMETER	R (inches): 2	DIAMET	ER (inches):			INTERVAL eet to 5 f	eet TO WAT	ER (feet): 7.	10 OR BA	E PUMP TYPE	
WELL VOI	UME PURGE:	1 WELL VOL	UME = (TOT					WELL CAPACI	TY	10	
	t if applicable)		= (15	feet -	110	feet) X		gallons/foot		gallons
	NT VOLUME PL t if applicable)	JRGE: 1 EQU	IPMENT VOL.	= PUMP VOL	UME + (TUI	BING CAPACI	тү х т	UBING LENGTH)	+ FLOW CELL	VOLUME	
					allons + (gallo	ons/foot X	feet)	+	gallons =	gallons
	WELL (feet):	³ 9,0	FINAL PUM DEPTH IN V	P OR TUBING WELL (feet):	9.0	PURGIN	G ED AT: 1600			PURGED (gallo	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP ([°] C)	COND. (circle units) µmhos/cm <u>or</u> µS/cm	DISSOLVED OXYGEN (circle units) (ng/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ODOR (describe)
639	2.0	2.0	0.05	710	702	24.9	551	0.24/2.9%	4.65	Clear	Acre
41	0.10	2.10	0.05	210	202	249	est	0.24/2.99	, 4.42	COOM	Nrio
43	0.10	2.20	0.05	7.10	7.02	249	551	0.2412.92	4.11	PODR.	AXINO
								and a		hand	
_											
	-										
									-		
			75" = 0.02	1" = 0.04;	1.25" = 0.06	5: 2 " = 0.16			- 4 00; CH	= 1.47: 12"	= 5.88
ELL CAP	ACITY (Gallons	Per Foot): 0.									
UBING IN	SIDE DIA. CAP	ACITY (Gal./Ft	.): 1/8" = 0_0	006; 3/16"	= 0.0014;	1/4" = 0.0026	5; 5/16'' = 0.	004; 3/8" = 0.0	006; 1/2" =	0.010; 5/8"	= 0.016
UBING IN	ACITY (Gallons SIDE DIA. CAP. EQUIPMENT CO	ACITY (Gal./Ft	.): 1/8" = 0_0		= 0.0014; ump; E	1/4" = 0.0026 SP = Electric \$	5: 5/16" = 0. Submersible Pu	004; 3/8" = 0.0			= 0.016
JBING IN URGING E	SIDE DIA. CAP	ACITY (Gal./Ft	.): 1/8" = 0_00 Bailer; B	006; 3/16"	= 0.0014; ump; E SAMP	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0. Submersible Pu	004; 3/8" = 0.0 mp; PP = Per	006; 1/2" = 1 istaltic Pump;	0.010; 5/8" O = Other	= 0.016
JBING IN URGING E	SIDE DIA. CAP. EQUIPMENT CO	ACITY (Gal./Ft	.): 1/8'' = 0_00 Bailer; B	006; 3/16" P = Bladder P	= 0.0014; ump; E SAMP	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0. Submersible Pu	004; 3/8" = 0.0 mp; PP = Per	006; 1/2" = 1 istaltic Pump;	0.010; 5/8"	= 0.016
	SIDE DIA. CAPA EQUIPMENT CO BY (PRINT) / AF Mal	ACITY (Gal./Ft	.): 1/8" = 0.00 Bailer; B ScS \$	DOG: 3/16" P = Bladder P SAMPLER(S) TUBING	= 0.0014; ump; E: SAMP; SIGNATURE	1/4" = 0.0026 SP = Electric S	5: 5/16" = 0. Submersible Pu TA FIELD	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y	006; 1/2" = 1 istaltic Pump; 16.444	0.010; 5/8" O = Other SAMPLING	= 0.016
JBING IN URGING E AMPLED I JMP OR T EPTH IN V	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF DEAL TUBING VELL (feet):	ACITY (Gal/Ft DDES: B = FILIATION: RRa/2 7.0	.): 1/8" = 0.00 Bailer; B S c S N	DOG: 3/16" P = Bladder P SAMPLER(S) UBING MATERIAL CO	= 0.0014; ump; E: SIGNATURE DE: ///	1/4" = 0.0026 SP = Electric S LING DA E(S):	5: 5/16" = 0. Submersible Pur TA FIELD. Filtratic	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type	006; 1/2" = 1 istaltic Pump; 16.40/	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE:	= 0.016 (Specify)
JBING IN URGING E AMPLED I JMP OR T EPTH IN V ELD DEC	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION	ACITY (Gal/Ft DDES: B = FILIATION: RRa/2 9.0 N: PUMP	.): 1/8" = 0.00 Bailer; B Sc S S Y	DOG; 3/16" P = Bladder P SAMPLER(S) TUBING MATERIAL CO	= 0.0014; ump; E: SIGNATURE DE: UP TUBING	1/4" = 0.0026 SP = Electric S LING DA E(S): PE + S Y (rep	5: 5/16" = 0. Submersible Pur TA FIELD Filtratic	004: 3/8" = 0.0 mp: PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE:	006; 1/2" = istaltic Pump; 16 444	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE:	= 0.016 (Specify) /652 μm
JBING IN JRGING E AMPLED I JMP OR T EPTH IN V ELD DEC SAMP	SIDE DIA. CAP. EQUIPMENT CO BY (PRINT) / AF DIA UBING VELL (feet): ONTAMINATION	ACITY (Gal/Ft DDES: B = FILIATION: R A A A 9.0 N: PUMP R SPECIFICAT	.): 1/8" = 0.00 Bailer; B Sc S Y N ION	DOG; 3/16" P = Bladder P SAMPLER(S) TUBING MATERIAL CO SAMPLE	= 0.0014; ump; E: SAMP; SIGNATURE DE: HP TUBING PRESERVA	1/4" = 0.0026 SP = Electric S LING DA E(S): PE + 5 Y N (ref TION (includin	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) g wet ice)	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Type	006; 1/2" = istaltic Pump; 16.444 	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING SAI	= 0.016 (Specify)
	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION	ACITY (Gal/Ft DDES: B = FILIATION: R A A A 9.0 N: PUMP R SPECIFICAT): 1/8" = 0.00 Bailer; B Sc S Y N ION	DOG; 3/16" P = Bladder P SAMPLER(S) TUBING MATERIAL CO	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	1/4" = 0.0026 SP = Electric S LING DA E(S): PE + S Y (rep	5; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) rg wet ice) FINAL pH	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ: DUPLICATE: INTENDE	006; 1/2" = istaltic Pump; 16.444 0 0 0 0 0 0 0 0 0 0 0 0 0	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N PLING PMENT FI	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A / 2 7.0 N: PUMP R SPECIFICAT MATERIAL CODE / / 6- (0	.): 1/8" = 0.00 Bailer; B Sc S Y N ION	D06; 3/16" P = Bladder P SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD: Filtratic placed) Ig wet ice) FINAL	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Typi DUPLICATE: INTENDE ANALYSIS AN	006; 1/2" = istaltic Pump; 16 4/4	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N PLING PMENT FI	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE
JBING IN JRGING E JMP OR T EPTH IN V ELD DEC SAMP	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc S S Y N ION /OLUME F	D06; 3/16" P = Bladder P SAMPLER(S) TUBING MATERIAL CO SAMPLE PRESERVATIN	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5; 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: FILTERED: Y on Equipment Typi DUPLICATE: INTENDE ANALYSIS AN	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (m)	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE _ per minute)
AMPLED I AMPLED I JMP OR T EPTH IN V ELD DECO SAMP	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc. S Sc. S S S S S S S S S S S S S S S S S S S	DOG; 3/16" P = Bladder P SAMPLER(S) = TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH 7.02	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (mi pp T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
JBING IN URGING E JMP OR T EPTH IN V ELD DEC SAMP	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc. S Sc. S S S S S S S S S S S S S S S S S S S	DOG; 3/16" P = Bladder P SAMPLER(S) = TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH 7.02	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (mi pp T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc. S Sc. S S S S S S S S S S S S S S S S S S S	DOG; 3/16" P = Bladder P SAMPLER(S) = TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH 7.02	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (mi pp T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc. S Sc. S S S S S S S S S S S S S S S S S S S	DOG; 3/16" P = Bladder P SAMPLER(S) = TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014; ump; E SAMP SIGNATURE DE: HO TUBING PRESERVA /E T	$\frac{1}{4''} = 0.0026$ SP = Electric S LING DA $\frac{1}{5}$ (S): $\frac{1}{7}$ (S): $\frac{1}{7}$ (includin OTAL VOL	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH 7.02	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (mi pp T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
AMPLED I AMPLED I JMP OR T EPTH IN V ELD DECO SAMP	SIDE DIA. CAP. EQUIPMENT CC BY (PRINT) / AF UBING VELL (feet): ONTAMINATION LE CONTAINEF #	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE): 1/8" = 0.00 Bailer; B Sc S S Y N ION /OLUME F 00 <i>in</i> C 25 <i>m</i> C	DOG; 3/16" P = Bladder P SAMPLER(S) = TUBING MATERIAL CO SAMPLE PRESERVATIN USED	= 0.0014: ump: E SAMP SIGNATURE DE: HP TUBING PRESERVA /E T ADDEI	1/4" = 0.0026 SP = Electric S LING DA (S): Y N (rep TION (includin OTAL VOL D IN FIELD (m	5: 5/16" = 0. Submersible Pu TA FIELD Filtratic placed) Ig wet ice) FINAL pH 7.02	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	006; 1/2" = istaltic Pump; //6 4/0/ V P D D/OR EQUID C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N IPLING IPLING IPMENT ODE A FI (mi pp T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
JBING IN URGING E AMPLED I PTH IN V ELD DEC SAMP AMPLE CODE V - 1	SIDE DIA. CAP.	ACITY (Gal/Ft DDES: B = FILIATION: R A A P.O N: PUMP R SPECIFICAT MATERIAL CODE	.): 1/8" = 0.00 Bailer; B Sc.S S Y N ION VOLUME Y N 25 MC S Sc.S S Sc.S S Sc.S S Y N ION VOLUME Sc.S S Sc.S CG = C	DOG: 3/16" P = Bladder P SAMPLER(S) = UBING MATERIAL CO SAMPLE PRESERVATIN USED HING 3	E 0.0014: UMP: E SIGNATURE DE: UP TUBING PRESERVA VE ADDEI ADDEI HDPE = Hi	1/4" = 0.0026 SP = Electric S LING DA (S): Y N (rep TION (includin OTAL VOL D IN FIELD (m	5; 5/16" = 0. Submersible Pu TA FIELD. Filtratic placed) g wet ice) FINAL pH 7.02 < 2	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: -FILTERED: Y on Equipment Typ DUPLICATE: INTENDE ANALYSIS AN METHOE PAM	$\frac{1/2" = 1}{\frac{1}{2}}$ istaltic Pump; $\frac{1/6 4/2}{2}$ $\frac{7}{2}$	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N PLING PP PP T PP T PP T PP T PP T PP T T PP T T T T T T T T T T T T T	= 0.016 (Specify) /652 μm MPLE PUMP LOW RATE per minute)
	SIDE DIA. CAP.	ACITY (Gal/Ft DDES: B = FILIATION: PUMP R SPECIFICAT MATERIAL CODE A G = Amber Gla = Silicone; T DDES: APE	.): 1/8" = 0.00 Bailer; B Sc.S S Y N ION VOLUME Y N 25 MC S Sc.S S Sc.S S Sc.S S Y N ION VOLUME Sc.S S Sc.S CG = C	P = Bladder P SAMPLER(S) = UBING MATERIAL CO SAMPLE PRESERVATIN USED HING 3 HING 3 EARCHART SAMPLE PRESERVATIN USED HING 3 EARCHART	= 0.0014: ump: E: SAMP: SIGNATURE DE: UP TUBING PRESERVA /E ADDEI ADDEI HDPE = Hi ecify) c Pump;	TION (includin OTAL VOL DIN FIELD (m	5; 5/16" = 0. Submersible Pu TA FIELD. Filtratic placed) g wet ice) FINAL pH 7.02 < 2	004: 3/8" = 0.0 mp; PP = Per SAMPLING INITIATED AT: INITIATED AT:	1/2" = istaltic Pump; //6 4/4/ P D D D/OR SAM EQUI C C SAM EQUI C SAM EQUI C SAM EQUI C SAM EQUI C	0.010; 5/8" O = Other SAMPLING ENDED AT: FILTER SIZE: N PLING PP PP T PP T PP T PP T PP T PP T T PP T T T T T T T T T T T T T	 = 0.016 (Specify) /652 μm MPLE PUMP OW RATE per minute) 200 200

DEP-SOP-001/01

FT 1600 Field Measurement of Turbidity

		_		-										
	Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS													
		ETER: <i>[cl</i>			1 Course C									
		TEMPERA			OUCTIVITY		TY DpH)RP					
	¢	TURBIDIT	Y											
	STANDA	RDS: [Sp	ecify the typ	oe(s) of sta	ndards used for c	alibration, t		the second se	standard					
STD P: 8					ared or purchased		7369	Ed	A his					
	Si	tandard A tandard B	201	rtu		+ A	7165	Exp	Sept.					
	Si	andard C	100	Nto	1 10	HI A	7163	ExP.	sept.					
	DATE	TIME	STD	STD	INSTRUMENT		CALIBRATED	TYPE	I SAMPLER					
	(yy/mm/do		(A, B, C)	VALUE	RESPONSE	% DEV	(YES, NO)	(INIT, CONT)	INITIALS					
	9010	1032	B	0.5	100	17	100	Cart	100					
		1034	D		907	100 5	100	weit	000					
			5	100	70.0	2.3	NO	Cut	000					
	114.10	1036	-		19/0	12	100	cart	JM					
	1440	\$180	B	O.S	0.49	L	No	(av)	JM					
		1802	C	20	19.90	0.5	NO	un,	514					
		1824	0	100	98.1 786	1.9	NO	Cont	514					
	1 Julio	A 30	X	800	010	0.5	100	lent	2111					
	1/10/12		B	0.5	10.00	d	NO	Cent	San					
		832	2	20	17.80	10	NO	Carty	JM					
		Back	0	100	98.10	1.8	NO	cont,	JM					
		1930	n	800	/79.2	0.7	ND	Cant	JIM					
		1754	17	0.5	0.98	I	NO	Cant	JM					
		1734	2	20	19.9	0.5	NO	Cart	JM					
		1736	6	100	99.10	0.9	100	Cont	JM					
	11/210		P	\$0		0.17	NO	Cart	JA					
	1/17/18	910	R	0.5	0.49	2	NO	Cont	J/V					
		912	B C	20	19.90	0.5	NO	Cont	VM					
		17.	n	100	99.10	9	NO	cont	SM					
	1/18/181	220			795.0	0.6	NO	cart	JA					
	1/10	820	A	0.5	0. 98	4	100	Cont	SM					
		422	BC	20	19,90	0.5	No	Cart	JA					
		824	5	100		0.4	NO	Cart	JNI					
		826	D	800	796.0	0.5	NO	cart.	JM					
	12t	2.525					122							

Revision Date: February 1, 2004

1

響

DEP-SOP-001/01 FT 1600 Field Measurement of Turbidity

PARAMETER: [check only one] TEMPERATURE CONDUCTIVITY SALINITY pH ORP XURBIDITY CONDUCTIVITY SALINITY pH ORP XIANDARDS: [Specify the type](of standards used for calibration, the origin of the standards, the standard values, and the date the standards were propared or purchased] Standard B 20.0 http://ctit.A 73/9 Expt: NOV-19 Standard B 20.0 http://ctit.A 71/65 Exp; Sept-R Standard C 100.0 http://ctit.A 71/63 Exp: Sept-R Standard C 100.0 http://ctit.A 71/63 Exp: Sept-R Standard C 100.0 http://ctit.A 71/63 Exp: Sept-R Standard C 100.0 http://www.mespineser (1/18/R F8/49M 800 A 0.5 0.49 2 K0 Cout JM 802 B 20 19.8 0.94 MO Cout JM 1802 B 20 19.9 0.5 N/0 Cout JM 1802 B 20 19.9 0.5 N/0 Cout JM 1802 B 20 19.9 0.5 N/0 Cout JM 1907 C 100 91.8 0.2 N/0 Cout JM 1907 C 100 91.8 0.2 N/0 Cout JM 1907 C 100 91.9 0.5 N/0 Cout JM		Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS													
Image: Conductivity Image: Conductivity<						100000	and								
DTURBIDITY RESIDUAL CI DO OTHER STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standards values, and the date the standards were prepared or purchased! Standard A Standard A Standard A Left' A 73/9 Exp': NOV-19 Standard B Left' A 73/9 Exp': Sept-18 Standard C Left': A 71/63 Exp': Sept-18 Standard C Sept-18 Standard C Sept-18 Standard C Sept-18 DATE Sept-18 (1/18/8 Sept-18 (1/18/8 Sept-18 (1/18/8 (1/18/8 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>N 1</td> <td></td> <td></td>					-			N 1							
STANDARDS: [Specify the type(s) of standards used for calibration, the origin of the standards, the standards values, and the date the standards were prepared or purchased]. Standards A Standards Standards Standards Colspan="2">ACU LGT; A 73/9 Exp: NOU-19 Standard B 20.0 http://Lot: A 71/63 Exp: Sept-78 Standard C 100.0 http://Lot: A 71/63 Exp: Sept-78 Standard C 100.0 http://Lot: A 71/63 Exp: Sept-78 DATE TIME STD STD NOT Lot: A 71/63 Exp: Sept-78 DATE TIME STD STD NTRUMENT No CALIBRATED IVPER Standard D UNIT colspan="2">Colspan=16 UNIT colspan="2">Colspan=16 ODATE STD STD STD STD STD STD STD STD STD Standard D Standar		16.0	1												
Values, and the date the standards were prepared or purchased. Standard A		C													
Standard B Standard C 100.0 Mt Lot: A 7163 EXP: Sept-B Standard C 100.0 Mt Lot: A 7163 EXP: Sept-18 Standard C 100.0 Mt Lot: A 7163 EXP: Sept-18 Sampler (INIT.CONT) STD INSTRUMENT (A.B.C) VALUE STD (INIT.CONT) STD (INIT.CONT) STD INTIALS 1/18/8 18/19/1 800 A 802 B 20 19.8 1 NO Cart JM 802 B 20 19.9 0.5 NO Cart JM 1802 B 20 19.9 0.5 NO Cart JM 1802 B 20 19.9 0.5 NO Cart JM 1802 B 20 19.9 0.5 NO Cart JM 1/19/8 0730 A 0.5 0.49 2 NO Cart JM 1/10/8 0730 A 0.5 0.40 0 A 0.5 0.40 0 A 0.5 0.40 0 A 0.5 0 A 0.5 0		values, and l	the date the	standards	were prepa	red or purchased]			-						
Standard COO_D UDC: A7/63 EXP: Sapt-15 DATE (yummidd) TIME (hr.min) STD (A.B.C) VALUE INSTRUMENT RESPONSE % DEV CALIBRATED (YES. ND) TYPE (NITLAS) 1/18/8 18/420M 800 A O.5 O.49 2 NO Cont JM 802 B R I.9.5 O.49 2 NO Cont JM 802 B R I.9.8 I NO Cant JM 802 B R I.9.8 I NO Cant JM 809 C IOO IB.6 O.49 MO Cant JM 1802 B O.79 I.9.5 NO Cant JM 1802 B O.19.9 I.9.5 NO Cant JM 1802 B O.2 I.9.7 O.5 NO Cant JM 1802 B O.5 O.49 2 NO Cant JM 1803 A O.5		Sta	andard A	0.	Shti	1 61		13/9 E							
Other Date The strutule in strutulent is colleged for the strutule in strutulent is colleged for the strutule in the strutulent is colleged for the strutuent is colleged for the strutulent is colleged for the		Sta	andard B					165 E	XP: Se	=pt-18					
(y/10m/dd) (h.min) (A. B. C) VALUE RESPONSE % DEV (NT. CONT) INTIALS 1/18/R 18/2 BO A 0.5 0.49 2 NO Cont JM 802 B 28 19.8 1 NO Cart JM 802 B 28 19.8 1 NO Cart JM 1802 B 0.5 0.48 4 NO Cart JM 1802 B 0.79 9.5 NO Cart JM 1802 B 0.9 19.5 NO Cart JM 1802 B 0.5 0.49 NO Cart JM 1909 C 100 9.49 NO Cart JM 1000 19.9 19		Sta	ndard C	100	.Oh	to Lot!	AT	163 E	AP: Se	pt-18					
1/18/8 +8/18/1 800 A 0.5 0.49 2 NO Cont JM 802 B 28 19.8 1 NO Cart JM 804 C 100 98.6 0.4 NO Cart JM 1800 A 0.5 0.48 4 NO Cart JM 1802 B 20 19.9 0.5 NO Cart JM 1802 B 20 19.9 0.5 NO Cart JM 1804 C 100 99.5 0.5 NO Cart JM 1909 C 100 99.8 0.2 NO Cart JM 6732 B 20 19.9 0.5 NO Cart JM 1600 A 0.5 0.49 2 NO Cart JM							% DEV								
802 B 28 19.8 1 NO Cant JM 809 C 100 98.6 0.4 NO Cant JM 1800 A 0.5 0.48 4 NO Cant JM 1800 A 0.5 0.48 4 NO Cant JM 1802 B 20 19.9 0.5 NO Cant JM 1802 B 20 19.9 0.5 NO Cant JM 1802 B 20 19.9 2 NO Cant JM 1802 B 20 19.9 2 NO Cant JM 1987 C 100 91.8 0.2 NO Cant JM 0732 B 20 19.9 0.5 NO Cant JM 0734 C 100 91.8 0.2 NO Cant JM 1602 B 20 19.9 0.5 NO Cant JM	1/18/18	18418PM	1	A											
804 C 100 98.6 0.4 NO Cart 3M 1800 A 0.5 0.48 4 NO Cart JM 1802 B 20 19.9 0.5 NO Curt JM 1802 B 20 19.9 0.5 NO Curt JM 1809 C 100 99.5 0.5 NO Curt JM 1998 0730 A 0.5 0.49 2 NO Curt JM 6732 B 20 19.9 0.5 NO Curt JM 0734 C 100 99.8 0.2 NO Curt JM 1600 A 0.5 0.49 2 NO Curt JM		1		β	0		Ĩ			JM					
1800 A 0.5 0.48 4 NO Curt JM 1802 B 20 19.9 0.5 NO Curt JM 1801 C 100 99.5 0.5 NO Curt JM 1801 C 100 99.5 0.5 NO Curt JM 1901 C 100 99.5 0.5 NO Curt JM 1901 C 100 99.5 0.5 NO Curt JM 6732 B 20 19.9 2.00 NO Curt JM 0734 C 100 91.8 0.2 NO Curt JM 1600 A 0.5 0.49 2 NO Curt JM 16002 B 20 19.9 0.5 NO Curt JM 1607 C 100 98.9 1.1 NO Curt JM 100 100 100 100 100 100 100 100 <t< td=""><td></td><td></td><td>804</td><td>C</td><td>100</td><td>98.6</td><td>0.4</td><td></td><td></td><td>JM</td></t<>			804	C	100	98.6	0.4			JM					
1009 C 100 99.5 0.5 WO Curt JM 1/19/18 0730 A 0.5 0.47 2 No 1.04 JM 6732 B 20 19.9 0.5 NO Cont JM 0734 C 100 99.8 0.2 NO Cont JM 0734 C 100 99.8 0.2 NO Cont JM 1600 A 0.5 0.49 2 NO Cont JM 1600 A 0.5 0.49 2 NO Cont JM 1600 A 0.5 0.49 2 NO Cont JM 1600 B 20 19.9 0.5 NO Curt JM - - - - - - - - - - - - - - - - - - - - - - - - - -			1800	A	0.5	0.48	4	NO	0	JM					
Image: 100 99.5 0.5 NO Curt JM 1/19/18 0730 A 0.5 0.49 2 NO Curt JM 6732 B 20 19.9 0.5 NO Curt JM 0734 C 100 99.8 0.2 NO Curt JM 0734 C 100 99.8 0.2 NO Curt JM 1600 A 0.5 0.49 2 NO Curt JM 1600 A 0.5 0.49 2 NO Curt JM 1600 B 20 19.9 0.5 NO Curt JM 1600 B 20 19.9 0.5 NO Curt JM - 100 98.9 1.1 NO Curt JM - - - - - - - - - - - - - - - - - - -			1802	в	20	19.9	0.5	NO	cut.	JM					
1/19/18 0730 A 0.5 0.49 2 No cut JM 6732 B 20 19.9 0.5 NO Cont. JM 0734 C 100 99.8 0.2 NO Cut. JM 1600 A 0.5 0.49 2 NO Cut. JM 1600 A 0.5 0.49 2 NO Cut. JM 1600 A 0.5 0.49 2 NO Cut. JM 1600 B 20 19.9 0.5 NO Cut. JM - 100 98.9 1.1 NO Cut. JM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -			1809	C	100	99.5	0.5	WO							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1/19/18	0730	A	0.5	0.49	2	NO	1	JM					
1600 A 0.5 0.49 2 WO Cart JM 1602 B 20 19.9 0.5 NO Curt JM - 1604 C 100 98.9 1.1 NO Curt JM 			6732	B	20	19.9	0.5	NO	Cont.	JM					
1602 B 20 19.9 0.5 NO Curt JM - 1604 C 100 98.9 1.1 NO Curt JM - 1004 C 100 98.9 1.1 NO Curt JM			0734	4	100	99.8	0.2	NO	Cart	JM					
- 1604 C 100 18.9 1.1 NO Curt JM			1600	A	0.5	0.49	2	WO	Cont	JM					
				B	20	19.9	0.5	NO	cart	JM					
		+	1604	C	100	18.9	1.)	NO	Curt	JM					
	Ī														
	Γ														

Boldly"X" this has if there is qualified data on this page.	114	Pass or	a:+/-0.3mg/l	. <u>u</u> u u A a a	P F Pass or		ս ս ս ս ս ս	<u>и</u> и а а [Pass or Fail	1.1	 000(т ш и Э <mark>Ф</mark> @	Yes V
	Meter # 1	Saturation mo/L	4cceptance Criteria: +/-0.3mg/l	9.4%	Reading	Acceptance Criteria:	1587 88	10 21	pe reading SU Acceptance Criteria	6.97	6.98	7.08	9.95 Dissolved Oxygen Membrane Changed:
FD 4000)	1/18/18	% DO	Acce 100.2	100.5	Cell	Ac			Slope Accel				Oxygen Men
CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05	1118	Dook Temp °c	20.4	17.9	Bottle #				Bottle #				1
000-FT 150	Date:	<u>mog book</u> mg/L T∈	9.01	9.53	Lot #				Lot #				ed? Yes No
P SOP FT 1		Probe			Exp. Date				Exp. Date				SYO <u>10, 0</u> Specific Conductance Probe Cleaned? Yes
.0G (FDEI	For Date of Last Temperature Varification see	Probe			Standard µmhos/cm	84 0415	1413	Standard	SU SU	0.01	0.0	012	LD. D Conductance
RATION L	noerature V	Time	930		Time	132	<u>832</u> 832	100	lime	05b	1658	836	Specific
	of Last Ter	Date	<u>SIL8111</u> 81/211		Date	8/21/1	1112111		Date		$\left\ \right\ $	6/12/1	
Form FD9000-8	For Date	Initials	M		Initials	M					+	Щ	4
Form F	terly)	DEP SOP FT 1500			DEP SOP FT 1200			DEP SOP	FT 1100				y pH Slope
Droion	Temperature (Quarterly)	Dissolved Oxygen	CAL ICV CCV CAL ICV CCV CAL ICV CCV		Specific Conductance	CAL ICV COV CAL ICV COV CAL ICV COV	CAL ICV CCV CAL ICV CCV CAL ICV CCV		CALICVOR	200	<u>5 5 5</u>		UAL ICV CCV Maintenance: Weekly pH Slope: Notes:

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification

Page___

boldy"X" this hox 4 there to qualified data on this page Pre Cortal	Pass <i>or</i> Fail	Acceptance Criteria: +/0.3mg/l	<u>, r r</u> r		iteria: +/-5%	α ()	P F Pass or Fail	A A A A A A A A A A A A A A A A A A A
#	Saturation mg/L	Itom chart)		Reading	Acceptance Criteria	55 1903 8701	Reading	Acceptance Criteria
FP 1000-FP 4000) 11-10-05	% DO	Acce 100.5		Cell	Ac		Slope	Acceptance Criteria:
FD 1000	ok Temp °c	17.9		Bottle #			Bottle #	Dissolved
IBRATION LOG (FDEP SOP FT 1000-FT 1500, Date:	mg/L Te	953		Lot #	76-1960	76-624	Lot #	76 Bang
P SOP FT 1	Probe Gain			Exp. Date	DecH18	Scillis Scillis	Exp. Date	7.0 Feb 19 1 10.0 WOU 8 6 7.0 WOU 8 6 7.0 WU 8 6 7.0 WU 8 6 7.0 WU 8 6 7.0 WU 8 7 7.0 WU 9 7 7.0 WU
IBRATION LOG (FDEP	Probe Charge			Standard µmhos/cm	64	Ref B	Standard SU	7, 2 10.0 10.0 2, 0 2, 0 2, 0 Conductance
3ATION L	Time	5 1900 820 820		Time	1900	A A A A A A A A A A A A A A A A A A A	Time	1904 1904 1905 1905 1905 1905 1905 1616 Specific
CAL		1/18/18 21/2/1		Date	1/18/18	211-11	Date	
Form FD9000-8 CAL	Initials	No.		Initials			Initials	
Form F	DEP SOP FT 1500		111	DEP SOP FT 1200			DEP SOP FT 1100	y pH Slope
Project/Site:	Dissolved Oxygen	~~~	CAL ICV CCV CAL ICV CCV CAL ICV CCV	Specific Conductance	CAL ICV COV CAL ICV COV CAL ICV COV	<u>S</u> S S S	Н	CAL ICV COL CAL ICV COL CAL ICV COL CAL ICV COL CAL ICV COV CAL IC

e: CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

Page___

Boldly"X" this has if there is qualified duta on this page 11-10-05 Meter # AMC	Saturation Pass or mg/L Fail	Acceptance Criteria:+/-0.3mg/l		Reading Pass or µmhos/cm Fail	Acceptance Criteria: +/- 5%	SS G	
FD 4000)	% DO	Acre 101.15		Cell Constant	Ac	Slope	Acce
FD 1000-	Temp °c	3.7		Bottle #		Bottle #	
CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05 AVV Date: 1000 FD 1000-FD 4000 Meter	mg/L	30		Lot #	764779	Lot #	76 Boog
P SOP FT 10	Probe Gain			Exp. Date	And B	Exp. Date	20 2.0 7 6 19 7 20 4.0 16 9 21 2.0 16 9 75 2.0 16 16 10 10
19000-8 CALIBRATION LOG (FDEP Cudion Control C	Probe Charge			Standard µmhos/cm	575 272 272	Standard SU	2.0 4.0 10.0 10.0 Conductano
AATION L	Time	5621		Time	(00)	Time	10000000000000000000000000000000000000
	Date	1/11/18		Date	<u>81/4/18</u>	Date	
Form FD9000-8	Initials	1		Initials		Initials	3++++
Form F	DEP SOP FT 1500			DEP SOP FT 1200		DEP SOP FT 1100	ly pH Slope
F(Project/Site:	Dissolved Oxygen		CAL ICV CCV CAL ICV CCV CAL ICV CCV	specific Conductance	CAL ICV CCV CAL ICV CCV	Hd	CAL ICV CO CAL ICV CO

7

¥

λ.

 r^{-1}

Mode: CAL - Calibrate -: ICV - Initial Calibration Verification : CCV - Continuing Calibration Verification

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

Page ____

 \cap

Boldly"X" this bas if there is qualified data on this page.	Rental		Pass or Fail	:+/-0.3mg/l	0	ш и с. а		ц. ц с. с	SS	+/- 5		-	т ш т с	SS) -/+				ц и В а		d: Yes No	
	Meter # Rt		Saturation mg/L	Acceptance Criteria:+/-0.3mg/l	8.779				Reading	Acceptance Criteria:	10/2/	.86	OLL.	Reading	Acceptance Criteria:	4.04	9.95	100%	10.06		Dissolved Oxygen Membrane Changed:	
FD 4000) 1			% DO	Accel	1012				Constant	Acc				Slope	Accep	0.17					Oxygen Merr	
, FD 1000-	811	20K	Temp °c	-8 22	200				Bottle #		40			Bottle #		2					Dissolved	
CALIBRATION LOG (FDEP SOP FT 1000-FT 1500, FD 1000-FD 4000) 11-10-05	Date: 1/11	In log book	mg/L	8-8	8.89				Lot #		A76.662		1	Lot #	12022 4 1600	0 92 #	# 74.23		-		ed? Yes No	
SOP FT 1			Probe Gain						Exp. Date	4 miles	21/16	+	+	Exp. Date	2 64 CT	16/19	6//01	\parallel	4		Specific Conductance Probe Cleaned? Yes	
og (Fdef		or relined ature vehication see	Probe Charge						Standard	2x	512	21/14		Standard SU	70	0%	10.0	1.0	10.0		Conductance	
RATION L	norotine Vo	ineral de la	Time	1000	1860				Time	1010	2012	1802		Time	1014	1016	101	1800	TRIO		Specific	
	1 Jun		Date	1/4/18					Date	1/11/18	21/11/1	+	H	Date	81/11/1		+		4			
Form FD9000-8	For Data of 1 a	5	Initials	ろう	MC				Initials	Jun	M		H	Initials	111	MC	MC	the second				
Form F	terlv)		FT 1500						DEP SOP FT 1200					DEP SOP FT 1100							ly pH Slope	
	Project/Site: Temperature (Quarterly)		Dissolved Oxygen	~				CV	tance	ICV CON	A STOCK		ICV CCV		Icv 🔊		-			ICV CCV		
	Project/Site: Temperatur		Dissolv		CAL CAL		CAL	CAL	Specific Conductance			CAL		 Ha	CAL	CAL				CAL	Mainten Notes	NOIDS.

7.

Perform only in Calibrate Mode: Perform only in Run Mode: Perform only in Run Mode:

CAL - Calibrate -ICV - Initial Calibration Verification CCV - Continuing Calibration Verification

Page_